Browse Source

Added new HBIOS Function SYSGET_DIOMED

pull/430/head
Mark Pruden 1 year ago
parent
commit
497e5333c4
  1. 1
      Doc/ChangeLog.txt
  2. BIN
      Doc/RomWBW Applications.pdf
  3. BIN
      Doc/RomWBW Disk Catalog.pdf
  4. BIN
      Doc/RomWBW Errata.pdf
  5. BIN
      Doc/RomWBW System Guide.pdf
  6. BIN
      Doc/RomWBW User Guide.pdf
  7. 586
      ReadMe.md
  8. 597
      ReadMe.txt
  9. 38
      Source/Doc/SystemGuide.md
  10. 260
      Source/HBIOS/hbios.asm
  11. 80
      Source/HBIOS/hbios.inc
  12. 2
      Source/ver.inc
  13. 2
      Source/ver.lib

1
Doc/ChangeLog.txt

@ -39,6 +39,7 @@ Version 3.5
- WBW: Add Warm/Cold reboot options to CPUSPD utility
- D?N: Added support for eZ80 CPU
- MAP: Contributed COPYSL utility
- MAP: Added new HBIOS function SYSGET_DIOMED
Version 3.4
-----------

BIN
Doc/RomWBW Applications.pdf

Binary file not shown.

BIN
Doc/RomWBW Disk Catalog.pdf

Binary file not shown.

BIN
Doc/RomWBW Errata.pdf

Binary file not shown.

BIN
Doc/RomWBW System Guide.pdf

Binary file not shown.

BIN
Doc/RomWBW User Guide.pdf

Binary file not shown.

586
ReadMe.md

@ -1,293 +1,293 @@
**RomWBW ReadMe** \
Version 3.5 \
Wayne Warthen ([wwarthen@gmail.com](mailto:wwarthen@gmail.com)) \
27 Sep 2024
# Overview
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- [RetroBrew Computers](https://www.retrobrewcomputers.org)
(<https://www.retrobrewcomputers.org>)
- [RC2014](https://rc2014.co.uk) (<https://rc2014.co.uk>),
[RC2014-Z80](https://groups.google.com/g/rc2014-z80)
(<https://groups.google.com/g/rc2014-z80>)
- [Retro Computing](https://groups.google.com/g/retro-comp)
(<https://groups.google.com/g/retro-comp>)
- [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
\[Installation\] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the [RomWBW Releases
Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the “Assets” drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
# Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf).
## Documentation
Documentation for RomWBW includes:
- [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf)
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
- [RomWBW
Applications](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Applications.pdf)
- [RomWBW
Errata](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Errata.pdf)
# Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original code
can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW including
the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included SD
Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers which
has exponentially increased RomWBW usage. Some of his kits include
RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images including
Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft BASIC Compiler,
Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the User
Guide as well as the COPYSL utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver including
compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility (WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
# Licensing
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see <https://www.gnu.org/licenses/>.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
> Wayne Warthen
> <wwarthen@gmail.com>
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>.
**RomWBW ReadMe** \
Version 3.5 \
Wayne Warthen ([wwarthen@gmail.com](mailto:wwarthen@gmail.com)) \
05 Oct 2024
# Overview
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- [RetroBrew Computers](https://www.retrobrewcomputers.org)
(<https://www.retrobrewcomputers.org>)
- [RC2014](https://rc2014.co.uk) (<https://rc2014.co.uk>),
[RC2014-Z80](https://groups.google.com/g/rc2014-z80)
(<https://groups.google.com/g/rc2014-z80>)
- [Retro Computing](https://groups.google.com/g/retro-comp)
(<https://groups.google.com/g/retro-comp>)
- [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
\[Installation\] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the [RomWBW Releases
Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the “Assets” drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
# Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf).
## Documentation
Documentation for RomWBW includes:
- [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf)
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
- [RomWBW
Applications](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Applications.pdf)
- [RomWBW
Errata](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Errata.pdf)
# Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original code
can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW including
the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included SD
Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers which
has exponentially increased RomWBW usage. Some of his kits include
RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images including
Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft BASIC Compiler,
Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the User
Guide as well as the COPYSL utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver including
compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility (WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
# Licensing
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see <https://www.gnu.org/licenses/>.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
> Wayne Warthen
> <wwarthen@gmail.com>
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>.

597
ReadMe.txt

@ -1,299 +1,298 @@
RomWBW ReadMe
Wayne Warthen (wwarthen@gmail.com)
27 Sep 2024
OVERVIEW
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
A complete list of the currently supported platforms is found in the
[Installation] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
ACQUIRING ROMWBW
The RomWBW Repository (https://github.com/wwarthen/RomWBW) on GitHub is
the official distribution location for all project source and
documentation. The fully-built distribution releases are available on
the RomWBW Releases Page (https://github.com/wwarthen/RomWBW/releases)
of the repository. On this page, you will normally see a Development
Snapshot as well as recent stable releases. Unless you have a specific
reason, I suggest you stick to the most recent stable release. Expand
the “Assets” drop-down for the release you want to download, then select
the asset named RomWBW-vX.X.X-Package.zip. The Package asset includes
all pre-built ROM and Disk images as well as full source code. The other
assets contain only source code and do not have the pre-built ROM or
disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
INSTALLATION & OPERATION
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the RomWBW User Guide.
Documentation
Documentation for RomWBW includes:
- RomWBW User Guide
- RomWBW System Guide
- RomWBW Applications
- RomWBW Errata
ACKNOWLEDGMENTS
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original
code can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and
advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW
including the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included
SD Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers
which has exponentially increased RomWBW usage. Some of his kits
include RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images
including Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft
BASIC Compiler, Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the User
Guide as well as the COPYSL utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver
including compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility
(WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
LICENSING
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see https://www.gnu.org/licenses/.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
Wayne Warthen
wwarthen@gmail.com
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
GETTING ASSISTANCE
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com.
RomWBW ReadMe
Wayne Warthen (wwarthen@gmail.com)
05 Oct 2024
OVERVIEW
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
A complete list of the currently supported platforms is found in the
[Installation] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
ACQUIRING ROMWBW
The RomWBW Repository (https://github.com/wwarthen/RomWBW) on GitHub is
the official distribution location for all project source and
documentation. The fully-built distribution releases are available on
the RomWBW Releases Page (https://github.com/wwarthen/RomWBW/releases)
of the repository. On this page, you will normally see a Development
Snapshot as well as recent stable releases. Unless you have a specific
reason, I suggest you stick to the most recent stable release. Expand
the “Assets” drop-down for the release you want to download, then select
the asset named RomWBW-vX.X.X-Package.zip. The Package asset includes
all pre-built ROM and Disk images as well as full source code. The other
assets contain only source code and do not have the pre-built ROM or
disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
INSTALLATION & OPERATION
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the RomWBW User Guide.
Documentation
Documentation for RomWBW includes:
- RomWBW User Guide
- RomWBW System Guide
- RomWBW Applications
- RomWBW Errata
ACKNOWLEDGMENTS
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original
code can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and
advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW
including the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included
SD Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers
which has exponentially increased RomWBW usage. Some of his kits
include RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images
including Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft
BASIC Compiler, Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the User
Guide as well as the COPYSL utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver
including compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility
(WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
LICENSING
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see https://www.gnu.org/licenses/.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
Wayne Warthen
wwarthen@gmail.com
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
GETTING ASSISTANCE
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com.

38
Source/Doc/SystemGuide.md

@ -1076,8 +1076,10 @@ there is no media in device, function will return an error status.
**NOTE**: This function will always return MID_HD512 for hard disk
devices. MID_HD1K is provided for use internally by operating systems
that provide different filsystem formats depending on the partition
table. This function cannot be used to determine if an HD1K formatted
partition exists on the hard disk.
table. To determine if an HD1K formatted partition exists on the hard disk
please see the following function.
[SYSGET Subfunction 0x12 -- Get Extended Disk Media (DIOMED)]
### Function 0x19 -- Disk Define Media (DIODEFMED)
@ -2459,6 +2461,36 @@ the caller can use interbank calls directly to the function in the
driver which bypasses the overhead of the normal function invocation
lookup.
#### SYSGET Subfunction 0x12 -- Get Extended Disk Media (DIOMED)
| **Entry Parameters** | **Returned Values** |
|----------------------------------------|---------------------------------------|
| B: 0xF8 | A: Status |
| C: 0x12 | C: Media ID |
| D: Disk Unit | DEHL: Sector Address |
| E: Slice | |
Report the Media ID (C) for the for media in the specified Disk Unit (D),
and for hard disks the absolute Sector offset to the start of the Slice (E).
The Status (A) is a standard HBIOS result code.
This function extends upon [Function 0x18 -- Disk Media (DIOMEDIA)] for hard
disk media by scanning for a partition to determine if the disk uses HD512
or HD1K, correctly reporting MID_HD or MID_HDNEW respectively.
It will also return the sector number of the first sector in the
slice if the slice number is valid. If the slice number is invalid
(it wont fix on the media) an error will be returned.
The slice calculation is performed by considering the partition start
(if it exists), the size of a slice for the given format type, and ensuring
that the slice fits within the media or partition size, taking into
consideration other partitions that may exist.
If the Unit specified is not a hard disk the Media ID will be returned and
the slice parameter ignored. If there is no media in device, or the slice
number is invaid (Parameter Out Of Range) the function will return an error status.
#### SYSGET Subfunction 0x20 -- Get RTC Device Unit Count (RTCCNT)
| **Entry Parameters** | **Returned Values** |
@ -3211,7 +3243,7 @@ The following section outlines the read only data referenced by the
| CMDREG | 5 | 1 | IO PORT ADDRESS FOR MODE 1 |
| | | | _Below are the register mirror values_ |
| | | | _that HBIOS used for initialisation_ |
| REG. 0 | 6 | 1 | $00 - NO EXTERNAL VID
| REG. 0 | 6 | 1 | $00 - NO EXTERNAL VID |
| REG. 1 | 7 | 1 | $50 or $70 - SET MODE 1 and interrupt if enabled |
| REG. 2 | 8 | 1 | $00 - PATTERN NAME TABLE := 0 |
| REG. 3 | 9 | 1 | $00 - NO COLOR TABLE |

260
Source/HBIOS/hbios.asm

@ -1766,7 +1766,7 @@ ROMRESUME:
EZ80_IO()
OUT (MPGSEL_1),A ; PROG SECOND 16K MMU REGISTER
#ENDIF
;
;
#IF (PLATFORM == PLT_DUO)
; DUO HAS VARIABLE RAM SIZE. RAM ALWAYS STARTS AT 2048K.
; SETUP COMMON RAM FOR HIGHEST 32K OF RAM BASED ON TOTAL RAM.
@ -2036,7 +2036,7 @@ HB_START1: ; BNKCALL ARRIVES HERE, BUT NOW RUNNING IN RAM BANK
;
; NOTIFY THAT WE MADE THE TRANSITION!
FPLEDS(DIAG_03)
DIAG(2)
DIAG(2)
;
; RECOVER DATA PASSED PRIOR TO RAM TRANSITION
; (HBX_LOC - 1) = BATCOND
@ -4139,7 +4139,7 @@ CIO_SETCRT:
POP AF ; RESTORE AF
LD (CB_CRTDEV),A ; SAVE CRT DEV NUM
RET ; AND DONE
;
;
CIO_SETCRT_Z:
POP AF ; RESTORE AF
RET ; AND DONE
@ -5146,6 +5146,8 @@ SYS_GET:
JP Z,SYS_GETDIOCNT
CP BF_SYSGET_DIOFN
JP Z,SYS_GETDIOFN
CP BF_SYSGET_DIOMED
JP Z,SYS_GETDIOMED
CP BF_SYSGET_RTCCNT
JP Z,SYS_GETRTCCNT
CP BF_SYSGET_DSKYCNT
@ -5227,6 +5229,256 @@ SYS_GETDIOFN:
LD IY,DIO_TBL ; POINT TO UNIT TABLE
JP SYS_GETFN ; GO TO COMMON CODE
;
; GET DISK EXTENDED HARD DISK MEDIA INFORMATION
; This function is specificly intended for Hard Drives, where it will scan
; the partition table and return a Media ID, including hd1k (MID_HDNEW).
; It will also return the absolute LBA offset of the first sector in the slice
; If the slice number is invalid (wont fit) the Status will return an error
; If the Unit is not a hard disk the Media ID will be returned and slice ignored.
;
; ENTRY:
; B: FUNCTION 0xF8 SYSGET
; C: SUB FUNCTION 0x12 DIOMED
; D: DISK UNIT, preferably for a hard disk.
; E: SLICE, ignored if media is not a hard disk
; RETURNS:
; A: STATUS, -6 (parameter out of range) - if Slice is invalid
; C: MEDIAID, including MID_HDNEW if hd1k partition is found
; DEHL: LBAOFFSET, of Slice if valid, 0 otherwise.
;
DIOMED_SLICE .DB 0 ; SLICE ARGUMENT (E)
DIOMED_UNIT .DB 0 ; UNIT ARGUMENT (D)
;
DIOMED_WRKSTA .EQU $
DIOMED_LBAOFF .FILL 4,0 ; START OF PARTITION / SLICE (SECTORS)
DIOMED_LBASIZ .FILL 4,0 ; SIZE OF MEDIA / PARTITION (SECTORS)
DIOMED_MID .DB 0 ; DISCOVERED MEDIAID
DIOMED_SPS .DW 0 ; DISCOVERED SECTORS PER SLICE (16BIT)
DIOMED_FND .DB 0 ; DID WE FIND A NON CPM PARTITION
DIOMED_WRKSIZ .EQU $ - DIOMED_WRKSTA ; SIZE OF WORKING DATA
;
SYS_GETDIOMED:
; SAVE CALL ARGUMENTS
LD (DIOMED_SLICE),DE ; STORES DE -> SLICE/UNIT PARAMETERS
;
; DETERMINE MEDIA IN DRIVE USING DIOMEDIA FUNCTION
LD A,(DIOMED_UNIT)
LD C,A ; UNIT ID PARAMETER INTO C
LD E,1 ; ENABLE MEDIA CHECK/DISCOVERY
LD B,BF_DIOMEDIA ; DRIVER FUNCTION = DISK MEDIA
CALL DIO_DISPATCH ; CALL DIO TO GET MEDIAID (RESULT IN E)
RET NZ ; ABORT ON ERROR
;
; CHECK MEDIA TYPE, ONLY HD IS APPLICABLE
LD A,E ; RESULTANT MEDIA ID TO ACCUM
OR A ; SET FLAGS
JR Z, SYS_GETDIOMED1A ; BAIL IF NO MEDIA
CP MID_HD ; IS IT A HARD DISK
JR NZ, SYS_GETDIOMED1A ; BAIL IF NOT HARD DISK
JR SYS_GETDIOMED1B ; CONTINUE TO PROCESS HD
;
SYS_GETDIOMED1A:
; RETURN MEDIA ID (NOT HD) WITH SUCCESS
LD DE,0
LD HL,0
LD C,A ; RETURN MEDIA ID IN C
XOR A ; SIGNAL SUCCESS
RET ; NOT HD JUST RETURN
;
SYS_GETDIOMED1B:
; FOUND HD, NEED TO PROCESS MBR / PART TABLE
; CLEAR WORKING STORAGE
LD HL,DIOMED_WRKSTA ; HL SET TO FIRST BYTE
LD (HL),0 ; CLEAR FIRST BYTE
LD D,H
LD E,L
INC DE ; DE SET TO SECOND BYTE
LD BC,DIOMED_WRKSIZ - 1 ; NUMBER OF LDIR COPIES
LDIR ; BLOCK COPY TO CLEAR WORKING STORAGE
;
; SEEK TO SECTOR ZERO (MBR TABLE)
LD B,BF_DIOSEEK ; SEEK FUNCTION
LD A,(DIOMED_UNIT) ; GET UNIT
LD C,A ; PUT IN C
LD DE,$8000 ; LBA SECTOR ZERO
LD HL,0 ; ASSUME LBA ACCESS FOR NOW
CALL DIO_DISPATCH ; DO IT
RET NZ ; ABORT ON ERROR
;
; READ SECTOR ZERO (MBR TABLE)
LD B,BF_DIOREAD ; READ FUNCTION
LD A,(DIOMED_UNIT) ; GET UNIT
LD C,A ; PUT IN C
LD A,(HB_CURBNK) ; GET CURRENT BANK ID
LD D,A ; PUT IN D
LD E,1 ; SECTOR COUNT
LD HL,HB_WRKBUF ; IO BUFFER TO USE
CALL DIO_DISPATCH ; DO IT
RET NZ ; ABORT ON ERROR
;
; CHECK MBR OF DISK TO SEE IF IT HAS A PARTITION TABLE.
LD HL,HB_WRKBUF ; DSKBUF ADR
LD DE,$1FE ; OFFSET TO SIGNATURE
ADD HL,DE ; POINT TO SIGNATURE
LD A,(HL) ; GET FIRST BYTE
CP $55 ; CHECK FIRST BYTE
JR NZ,SYS_GETDIOMED3C ; NO MATCH, NO PART TABLE
INC HL ; NEXT BYTE
LD A,(HL) ; GET SECOND BYTE
CP $AA ; CHECK SECOND BYTE
JR NZ,SYS_GETDIOMED3C ; NO MATCH, NO PART TABLE
;
; FOUND PARTITION TABLE - LOOP AND PROCESS PARTITION TABLE
LD HL,HB_WRKBUF ; DSKBUF ADR
LD DE,$1BE+4 ; OFFSET OF FIRST ENTRY PART TYPE
ADD HL,DE ; POINT TO IT
LD B,4 ; FOUR ENTRIES IN PART TABLE LOOP
SYS_GETDIOMED2A:
LD A,(HL) ; GET PART TYPE
LD DE,4
ADD HL,DE ; MOVE HL FWD TO GET TO LBA OFFSET
CP $2E ; CP/M PARTITION?
JR Z,SYS_GETDIOMED3B ; HD1K, GRAB THE LBA OFFSET
CP $00 ; IS ANOTHER PARTITION TYPE, NOT CPM
JR NZ,SYS_GETDIOMED3A ; OTHER VALID PART TYPE
SYS_GETDIOMED2B:
LD DE,12 ; REMAINING SIZE TO GET TO NEXT PARTITION
SYS_GETDIOMED2C:
ADD HL,DE ; BUMP TO NEXT PARTITION ENTRY - TYPE
DJNZ SYS_GETDIOMED2A ; LOOP THRU TABLE
JR SYS_GETDIOMED3C ; READ ALL - NO CP/M PARTITION FOUND
;
SYS_GETDIOMED3A
; FOUND OTHER (NOT CPM) PARTITION
LD A,(DIOMED_FND) ; HAVE WE ALREADY FOUND PROCESSED NON CPM
OR A ; PARTITION, AND CAPTURED ITS START SECTOR, SO
JR NZ,SYS_GETDIOMED2B ; IGNORE AND CONTINUTE TO NEXT PARTITION ENTRY
;
; NOTE THERE SLIGHT ISSUE HERE THAT WE ONLY CONSIDER THE FIRST NON-CPM PARTITION
; TO GET THE UPPER SIZE OF MEDIA, IDEALLY WE WOULD CONSIDER ALL, AND TAKE THE LOWEWST
; STARTING SECTOR - THIS IS A COMPRIMISE - OUT OF SEQUENCE PARTITIONS ARE UNLIKELY.
;
PUSH BC ; SAVE IT, BEING USED IN PARTITION LOOP
LD BC, 4 ; IF NOT ALREADY SET - COPY 4 BYTES
LD DE, DIOMED_LBASIZ ; FROM PARTION LBA OFFSET (HL) - TO WORKING LBA SIZE (DE)
LDIR ; COPY 4 BYTES
POP BC ; RESTORE
;
LD A,$FF
LD (DIOMED_FND),A ; SET FOUND FLAG, SO DONT PROCESS ANY OTHERS
LD DE,8 ; AND INC HL BY 8 TO GET TO NEXT PARITION
JR SYS_GETDIOMED2C ; CONTINUE TO NEXT PARTITION
;
SYS_GETDIOMED3B:
; FOUND CP/M (HD1K) PARTITION - RECORD THIS
LD A, MID_HDNEW ; DISCOVERED HD1K MEDIA
LD (DIOMED_MID), A ; STORE IT
LD BC, SPS_HD1K ; DISCOVERED HD1K MEDIA
LD (DIOMED_SPS), BC ; STORE IT
;
; CAPTURE THE LBA OFFSET AND SECTOR COUNT FROM PARTITION
; HL POINTS TO PART LBA OFFSET FIELD OF PART ENTRY
LD DE,DIOMED_LBAOFF ; LOC TO STORE OFFSET AND SIZE
LD BC,8 ; 8 BYTES - LBA OFFSET AND SIZE
LDIR ; COPY IT
;
JR SYS_GETDIOMED4A ; CONTINUE AND COMPUTE THE SLICE
;
SYS_GETDIOMED3C:
; NO PARTITION TABLE FOUND / NO CPM PARTITION FOUND -> HD512
LD A, MID_HD ; HD512 MEDIA
LD (DIOMED_MID), A ; STORE IT
LD BC, SPS_HD512 ; WITH HD512 SECTORS PER SLICE
LD (DIOMED_SPS), BC ; STORE IT
; DID WE FIND AN OTHER (NOT CPM) PARTITION
LD A,(DIOMED_FND) ; HAVE WE ALREADY FOUND PROCESSED NON CPM
OR A ; PARTITION, AND CAPTURED ITS START SECTOR, SO
JR NZ,SYS_GETDIOMED4A ; MEDIA SIZE IS KNOWN BASED ON START OF PARTITION
; FIND THE PHYSICAL CAPCITY OF THE MEDIA CALL (DIOCAP)
LD B, BF_DIOCAP ; HBIOS FUNC: TO GET DISK LBA CAPACITY
LD A, (DIOMED_UNIT)
LD C, A ; PUT DISK UNIT IN C FOR FUNC CALL
CALL DIO_DISPATCH ; DO IT - RETURNS SIZE in DE:HL
RET NZ ; ABORT ON ERROR
; UPDATE LBA SIZE FROM MEDIA SIZE
LD (DIOMED_LBASIZ), HL ; LOWER ORDER BYTES - HL
EX DE,HL
LD (DIOMED_LBASIZ+2), HL ; HIGHER ORDER BYTES - DE
;
SYS_GETDIOMED4A:
; COMPUTE THE START SECTOR (RELATIVE) FOR SLICE -> DE:HL
LD HL,0 ; STARTING SECTOR NUMBER
LD DE,0 ; ASSUMING A 0 OFFSET, SO CAN COMPARE TO SIZE
LD BC,(DIOMED_SPS) ;
LD A,(DIOMED_SLICE)
OR A ; SLICE NUMBER - SET FLAGS TO CHECK LOOP CTR
JR Z,SYS_GETDIOMED5A ; NOTHING TO COUNT
SYS_GETDIOMED4B:
ADD HL,BC ; ADD ONE SLICE (SPS) TO LOW WORD
JR NC,SYS_GETDIOMED4C ; CHECK FOR CARRY
INC DE ; IF SO, BUMP HIGH WORD
SYS_GETDIOMED4C:
DEC A ; DEC LOOP (SLICE) COUNTER
JR NZ,SYS_GETDIOMED4B ; AND LOOP
;
SYS_GETDIOMED5A:
; DE:HL NOW CONTAINS THE STARTING SECTOR FOR SLICE
PUSH HL ; SAVE THE SECTOR OFFSET (SPS * SLICE NUMBER)
PUSH DE
;
ADD HL, BC ; ADD SPS, GET REQUIRED CAPCITY (UPPER SECTOR)
JR NC, SYS_GETDIOMED5B
INC DE
SYS_GETDIOMED5B:
; DEHL HAS THE REQUIRED NUMBER OF SECTORS (ON MEDIA) FOR THE SLICE
PUSH DE ; SAVE DSK_REQ (MSW)
PUSH HL ; SAVE DSK_REQ (LSW)
;
; CHECK DSK_CAPACITY >= CAP_REQUIRED, CF SET ON OVERFLOW
; NO NEED SAVE ACTUAL RESULT
OR A ; CLEAR CARRY FOR SBC
LD HL,(DIOMED_LBASIZ+0) ; CAPACITY LSW
POP DE ; REQUIRED LSW
SBC HL,DE ; CAPACITY - REQUIRED (LSW)
LD HL,(DIOMED_LBASIZ+2) ; CAPAITY MSW
POP DE ; REQUIRED MSW
SBC HL,DE ; CAPACITY - REQUIRED (MSW)
;
; POP STARTING OFSETT SECTOR
POP DE
POP HL
;
; REQUIRE - CAPACITY -> GENERATES BORROW IF CAPITY > REQUIREMENT
JR NC,SYS_GETDIOMED6 ; IF WE HAVE ENOUGH CAPACITY
;
; SLICE WONT FIT - STOP AND RETURN ERROR
LD DE,0
LD HL,0 ; EMTY OFFSET IN DEHL
LD A,(DIOMED_MID)
LD C,A ; RETURN MEDIA ID IN C
LD A,ERR_RANGE ; OTHERWISE SIGNAL NOT ENOUGH CAPACITY
OR A
RET
;
SYS_GETDIOMED6:
; FINAL CALC AND RETURN SUCCESS
; ADD PARTITION OFFSET (START) TO DEHL TO GET ABSOLUTE SLICE OFFSET
LD BC,(DIOMED_LBAOFF+0) ; LSB OF LBA OFFSET
ADD HL,BC ; ADD LSB OFFSET
EX DE,HL ; FLIP DE INTO HL
LD BC,(DIOMED_LBAOFF+2) ; MSB OF LBA OFFSET
ADC HL,BC ; ADD MSB
EX DE, HL ; FLIP BACK DE:HL AS SLICE OFFSET
;
; SLICE FITS - RETURN CORRECTLY
LD A,(DIOMED_MID)
LD C,A ; RETURN MEDIA ID IN C
XOR A ; CLEAR FLAGS
RET ; RETUNING DE:HL AND C
;
; GET RTC UNIT COUNT
;
SYS_GETRTCCNT:
@ -7412,7 +7664,7 @@ FP_SETLEDS:
#ENDIF
EZ80_IO
OUT (FPLED_IO),A ; WRITE
OUT (FPLED_IO),A ; WRITE
FP_SETLEDS1:
POP HL ; RESTORE HL
RET ; DONE

80
Source/HBIOS/hbios.inc

@ -109,6 +109,7 @@ BF_SYSGET_CIOCNT .EQU $00 ; GET CHAR UNIT COUNT
BF_SYSGET_CIOFN .EQU $01 ; GET CIO UNIT FN/DATA ADR
BF_SYSGET_DIOCNT .EQU $10 ; GET DISK UNIT COUNT
BF_SYSGET_DIOFN .EQU $11 ; GET DIO UNIT FN/DATA ADR
BF_SYSGET_DIOMED .EQU $12 ; GET DISK MEDIA EXTENDED INFO
BF_SYSGET_RTCCNT .EQU $20 ; GET RTC UNIT COUNT
BF_SYSGET_DSKYCNT .EQU $30 ; GET DSKY UNIT COUNT
BF_SYSGET_VDACNT .EQU $40 ; GET VDA UNIT COUNT
@ -168,7 +169,7 @@ PLT_RCEZ80 .EQU 24 ; RCBUS W/ eZ80
; HBIOS GLOBAL ERROR RETURN VALUES
;
ERR_NONE .EQU 0 ; SUCCESS
;
;
ERR_UNDEF .EQU -1 ; UNDEFINED ERROR
ERR_NOTIMPL .EQU -2 ; FUNCTION NOT IMPLEMENTED
ERR_NOFUNC .EQU -3 ; INVALID FUNCTION
@ -196,46 +197,46 @@ DIAG_TRIG .EQU 6 ; TRIGGER
DIAG_DISP .EQU DIAG_PROG ; DEFAULT
;
#IF (DIAG_DISP == DIAG_PROG)
DIAG_00 .EQU 00000000B
DIAG_01 .EQU 00000001B
DIAG_02 .EQU 00000011B
DIAG_03 .EQU 00000111B
DIAG_04 .EQU 00001111B
DIAG_05 .EQU 00011111B
DIAG_06 .EQU 00111111B
DIAG_07 .EQU 01111111B
DIAG_08 .EQU 11111111B
DIAG_09 .EQU 11111111B
DIAG_00 .EQU 00000000B
DIAG_01 .EQU 00000001B
DIAG_02 .EQU 00000011B
DIAG_03 .EQU 00000111B
DIAG_04 .EQU 00001111B
DIAG_05 .EQU 00011111B
DIAG_06 .EQU 00111111B
DIAG_07 .EQU 01111111B
DIAG_08 .EQU 11111111B
DIAG_09 .EQU 11111111B
#ENDIF
;
#IF (DIAG_DISP == DIAG_STEP)
DIAG_00 .EQU 00000000B
DIAG_01 .EQU 00000001B
DIAG_02 .EQU 00000010B
DIAG_03 .EQU 00000100B
DIAG_04 .EQU 00001000B
DIAG_05 .EQU 00010000B
DIAG_06 .EQU 00100000B
DIAG_07 .EQU 01000000B
DIAG_00 .EQU 00000000B
DIAG_01 .EQU 00000001B
DIAG_02 .EQU 00000010B
DIAG_03 .EQU 00000100B
DIAG_04 .EQU 00001000B
DIAG_05 .EQU 00010000B
DIAG_06 .EQU 00100000B
DIAG_07 .EQU 01000000B
DIAG_08 .EQU 10000000B
DIAG_09 .EQU 11111111B
#ENDIF
;
#IF (DIAG_DISP == DIAG_ASCII)
DIAG_00 .EQU '0'
DIAG_00 .EQU '0'
DIAG_01 .EQU '1'
DIAG_02 .EQU '2'
DIAG_03 .EQU '3'
DIAG_02 .EQU '2'
DIAG_03 .EQU '3'
DIAG_04 .EQU '4'
DIAG_05 .EQU '5'
DIAG_06 .EQU '6'
DIAG_06 .EQU '6'
DIAG_07 .EQU '7'
DIAG_08 .EQU '8'
DIAG_09 .EQU '9'
DIAG_08 .EQU '8'
DIAG_09 .EQU '9'
#ENDIF
;
#IF (DIAG_DISP == DIAG_BINARY)
DIAG_00 .EQU 0
DIAG_00 .EQU 0
DIAG_01 .EQU 1
DIAG_02 .EQU 2
DIAG_03 .EQU 3
@ -244,7 +245,7 @@ DIAG_05 .EQU 5
DIAG_06 .EQU 6
DIAG_07 .EQU 7
DIAG_08 .EQU 8
DIAG_09 .EQU 9
DIAG_09 .EQU 9
#ENDIF
;
#IF (DIAG_DISP == DIAG_7SEG)
@ -253,30 +254,30 @@ DIAG_00 .EQU 00000000B ; BLANK
DIAG_01 .EQU 01111110B ; 0
DIAG_02 .EQU 00110000B ; 1
DIAG_03 .EQU 01101101B ; 2
DIAG_04 .EQU 01111001B ; 3
DIAG_04 .EQU 01111001B ; 3
DIAG_05 .EQU 00110011B ; 4
DIAG_06 .EQU 01011011B ; 5
DIAG_07 .EQU 00011111B ; 6
DIAG_07 .EQU 00011111B ; 6
DIAG_08 .EQU 01110000B ; 7
DIAG_09 .EQU 01111111B ; 8
DIAG_10 .EQU 01110011B ; 9
#ENDIF
;
#IF (DIAG_DISP == DIAG_FLASH)
DIAG_00 .EQU 00000000B ; OFF
DIAG_00 .EQU 00000000B ; OFF
DIAG_01 .EQU 11111111B ; ON
DIAG_02 .EQU 00000000B ; OFF
DIAG_02 .EQU 00000000B ; OFF
DIAG_03 .EQU 11111111B ; ON
DIAG_04 .EQU 00000000B ; OFF
DIAG_04 .EQU 00000000B ; OFF
DIAG_05 .EQU 11111111B ; ON
DIAG_06 .EQU 00000000B ; OFF
DIAG_06 .EQU 00000000B ; OFF
DIAG_07 .EQU 11111111B ; ON
DIAG_08 .EQU 00000000B ; OFF
DIAG_09 .EQU 11111111B ; ON
DIAG_08 .EQU 00000000B ; OFF
DIAG_09 .EQU 11111111B ; ON
#ENDIF
;
#IF (DIAG_DISP == DIAG_TRIG)
DIAG_00 .EQU 11111111B ; ON
DIAG_00 .EQU 11111111B ; ON
DIAG_01 .EQU 11111111B ; ON
DIAG_02 .EQU 11111111B ; ON
DIAG_03 .EQU 11111111B ; ON
@ -285,7 +286,7 @@ DIAG_05 .EQU 11111111B ; ON
DIAG_06 .EQU 11111111B ; ON
DIAG_07 .EQU 11111111B ; ON
DIAG_08 .EQU 11111111B ; ON
DIAG_09 .EQU 11111111B ; ON
DIAG_09 .EQU 11111111B ; ON
#ENDIF
;
; FRONT PANEL SWITCHES
@ -311,6 +312,11 @@ MID_FD120 .EQU 8
MID_FD111 .EQU 9
MID_HDNEW .EQU 10
;
; SECTORS PER SLICE
;
SPS_HD512 .EQU $4100
SPS_HD1K .EQU $4000
;
; CHAR DEVICE IDS
;
CIODEV_UART .EQU $00

2
Source/ver.inc

@ -2,7 +2,7 @@
#DEFINE RMN 5
#DEFINE RUP 0
#DEFINE RTP 0
#DEFINE BIOSVER "3.5.0-dev.87"
#DEFINE BIOSVER "3.5.0-dev.88"
#define rmj RMJ
#define rmn RMN
#define rup RUP

2
Source/ver.lib

@ -3,5 +3,5 @@ rmn equ 5
rup equ 0
rtp equ 0
biosver macro
db "3.5.0-dev.87"
db "3.5.0-dev.88"
endm

Loading…
Cancel
Save