Browse Source

Merge pull request #78 from wwarthen/master

Resync
pull/486/head
b1ackmai1er 1 year ago
committed by GitHub
parent
commit
52826ddd50
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
  1. BIN
      Doc/RomWBW Applications.pdf
  2. BIN
      Doc/RomWBW Disk Catalog.pdf
  3. BIN
      Doc/RomWBW Errata.pdf
  4. BIN
      Doc/RomWBW System Guide.pdf
  5. BIN
      Doc/RomWBW User Guide.pdf
  6. 592
      ReadMe.md
  7. 604
      ReadMe.txt
  8. 133
      Source/Apps/assign/assign.asm
  9. 72
      Source/CBIOS/cbios.asm
  10. 186
      Source/CBIOS/util.asm
  11. 49
      Source/Doc/UserGuide.md
  12. 2
      Source/HBIOS/hbios.asm
  13. 5
      Source/HBIOS/hbios.inc
  14. 61
      Source/HBIOS/romldr.asm
  15. 6
      Source/HBIOS/std.asm
  16. 2
      Source/ver.inc
  17. 2
      Source/ver.lib

BIN
Doc/RomWBW Applications.pdf

Binary file not shown.

BIN
Doc/RomWBW Disk Catalog.pdf

Binary file not shown.

BIN
Doc/RomWBW Errata.pdf

Binary file not shown.

BIN
Doc/RomWBW System Guide.pdf

Binary file not shown.

BIN
Doc/RomWBW User Guide.pdf

Binary file not shown.

592
ReadMe.md

@ -1,296 +1,296 @@
**RomWBW ReadMe** \
Version 3.5 \
Wayne Warthen ([wwarthen@gmail.com](mailto:wwarthen@gmail.com)) \
20 Dec 2024
# Overview
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- [RetroBrew Computers](https://www.retrobrewcomputers.org)
(<https://www.retrobrewcomputers.org>)
- [RC2014](https://rc2014.co.uk) (<https://rc2014.co.uk>),
[RC2014-Z80](https://groups.google.com/g/rc2014-z80)
(<https://groups.google.com/g/rc2014-z80>)
- [Retro Computing](https://groups.google.com/g/retro-comp)
(<https://groups.google.com/g/retro-comp>)
- [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
\[Installation\] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the [RomWBW Releases
Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the “Assets” drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
# Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf).
## Documentation
Documentation for RomWBW includes:
- [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf)
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
- [RomWBW
Applications](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Applications.pdf)
- [RomWBW
Errata](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Errata.pdf)
# Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original code
can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW including
the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included SD
Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers which
has exponentially increased RomWBW usage. Some of his kits include
RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images including
Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft BASIC Compiler,
Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk mode
of disk assignment to the ASSIGN utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver including
compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility (WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
# Licensing
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see <https://www.gnu.org/licenses/>.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
> Wayne Warthen
> <wwarthen@gmail.com>
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>.
**RomWBW ReadMe** \
Version 3.5 \
Wayne Warthen ([wwarthen@gmail.com](mailto:wwarthen@gmail.com)) \
22 Dec 2024
# Overview
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- [RetroBrew Computers](https://www.retrobrewcomputers.org)
(<https://www.retrobrewcomputers.org>)
- [RC2014](https://rc2014.co.uk) (<https://rc2014.co.uk>),
[RC2014-Z80](https://groups.google.com/g/rc2014-z80)
(<https://groups.google.com/g/rc2014-z80>)
- [Retro Computing](https://groups.google.com/g/retro-comp)
(<https://groups.google.com/g/retro-comp>)
- [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
\[Installation\] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the [RomWBW Releases
Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the “Assets” drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
# Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf).
## Documentation
Documentation for RomWBW includes:
- [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf)
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
- [RomWBW
Applications](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Applications.pdf)
- [RomWBW
Errata](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Errata.pdf)
# Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original code
can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW including
the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included SD
Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers which
has exponentially increased RomWBW usage. Some of his kits include
RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images including
Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft BASIC Compiler,
Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk mode
of disk assignment to the ASSIGN utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver including
compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility (WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
# Licensing
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see <https://www.gnu.org/licenses/>.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
> Wayne Warthen
> <wwarthen@gmail.com>
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>.

604
ReadMe.txt

@ -1,302 +1,302 @@
RomWBW ReadMe
Wayne Warthen (wwarthen@gmail.com)
20 Dec 2024
OVERVIEW
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
A complete list of the currently supported platforms is found in the
[Installation] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
ACQUIRING ROMWBW
The RomWBW Repository (https://github.com/wwarthen/RomWBW) on GitHub is
the official distribution location for all project source and
documentation. The fully-built distribution releases are available on
the RomWBW Releases Page (https://github.com/wwarthen/RomWBW/releases)
of the repository. On this page, you will normally see a Development
Snapshot as well as recent stable releases. Unless you have a specific
reason, I suggest you stick to the most recent stable release. Expand
the “Assets” drop-down for the release you want to download, then select
the asset named RomWBW-vX.X.X-Package.zip. The Package asset includes
all pre-built ROM and Disk images as well as full source code. The other
assets contain only source code and do not have the pre-built ROM or
disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
INSTALLATION & OPERATION
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the RomWBW User Guide.
Documentation
Documentation for RomWBW includes:
- RomWBW User Guide
- RomWBW System Guide
- RomWBW Applications
- RomWBW Errata
ACKNOWLEDGMENTS
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original
code can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and
advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW
including the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included
SD Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers
which has exponentially increased RomWBW usage. Some of his kits
include RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images
including Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft
BASIC Compiler, Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk
mode of disk assignment to the ASSIGN utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver
including compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility
(WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
LICENSING
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see https://www.gnu.org/licenses/.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
Wayne Warthen
wwarthen@gmail.com
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
GETTING ASSISTANCE
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com.
RomWBW ReadMe
Wayne Warthen (wwarthen@gmail.com)
22 Dec 2024
OVERVIEW
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
A complete list of the currently supported platforms is found in the
[Installation] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
ACQUIRING ROMWBW
The RomWBW Repository (https://github.com/wwarthen/RomWBW) on GitHub is
the official distribution location for all project source and
documentation. The fully-built distribution releases are available on
the RomWBW Releases Page (https://github.com/wwarthen/RomWBW/releases)
of the repository. On this page, you will normally see a Development
Snapshot as well as recent stable releases. Unless you have a specific
reason, I suggest you stick to the most recent stable release. Expand
the “Assets” drop-down for the release you want to download, then select
the asset named RomWBW-vX.X.X-Package.zip. The Package asset includes
all pre-built ROM and Disk images as well as full source code. The other
assets contain only source code and do not have the pre-built ROM or
disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
INSTALLATION & OPERATION
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the RomWBW User Guide.
Documentation
Documentation for RomWBW includes:
- RomWBW User Guide
- RomWBW System Guide
- RomWBW Applications
- RomWBW Errata
ACKNOWLEDGMENTS
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original
code can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and
advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW
including the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included
SD Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers
which has exponentially increased RomWBW usage. Some of his kits
include RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images
including Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft
BASIC Compiler, Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk
mode of disk assignment to the ASSIGN utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver
including compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility
(WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
LICENSING
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see https://www.gnu.org/licenses/.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
Wayne Warthen
wwarthen@gmail.com
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
GETTING ASSISTANCE
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com.

133
Source/Apps/assign/assign.asm

@ -36,6 +36,8 @@
; 2023-09-19 [WBW] Added CHUSB & CHSD device support
; 2023-10-13 [WBW] Fixed DPH creation to select correct DPB
; 2024-12-17 [MAP] Added new /B=opt feaure to assign drives
; 2024-12-21 [MAP] Added CBIOS heap estimation to /B to prevent
; overflow when the drives are finally added
;_______________________________________________________________________________
;
; ToDo:
@ -170,6 +172,8 @@ init:
ld a,(cpmver) ; low byte of cpm version
cp $30 ; CP/M 3.0?
jp nc,initcpm3 ; handle CP/M 3.0 or greater
;
; CP/M 2.2 (CBIOS) initialization
;
; make a local working copy of the drive map
ld hl,(maploc) ; copy from CBIOS drive map
@ -219,6 +223,13 @@ initx:
add hl,de ; adjust
ld (heaplim),hl ; save it
;
; establish remaining heap, used for estimation during /b
ld de,(maploc) ; start of free heap space
or a ; clear carry
sbc hl,de ; upper heap - start of heap = size
ld de,SIZ_DBUF ; 128 bytes for directory buffer
sbc hl,de ; less directory buffer overhead
ld (heaprem),hl ; save heap size that can be allocated
#if 0
ld a,' '
call crlf
@ -233,7 +244,9 @@ initx:
call prtchr
ld bc,(heaplim)
call prthexword
call prtchr
ld bc,(heaprem)
call prthexword
#endif
;
; return success
@ -566,6 +579,16 @@ bootdr4:
;
; PRESERVE, SKIP 1, JUST LOOP
bootdrp:
; determine the drive being preserved, calc estimate
ld hl,(mapadr) ; address of next map entry in table. Indirect
ld a,(hl) ; the unit number of drive being skipped
call bootdest ; for unit in A, calc the heap estimate -> DE
; subtract bytes from estimate, not not checking for overflow
ld hl,(heaprem) ; remaing heap estimate
or a ; clear carry
sbc hl,de ; subtract slice from heap estimate
ld (heaprem),hl ; update estimate based on adding slice
; and skip to next drive
call bootinc ; Skip to next drive letter
ret ; Finished
;
@ -575,6 +598,8 @@ bootdrx:
ld (unit),a ; set unit
xor a ; slice 0
ld (slice),a ; save as slice to assign.
ld hl,SIZ_DMAP ; heap used is 4 bytes for drvmap entry only
ld (slicmem),hl ; save estmate so heap space can be counted
call bootadd ; assign the slice
ret ; Finished, returning error
;
@ -584,6 +609,8 @@ bootdrz:
ld (unit),a ; set unit
xor a ; slice 0
ld (slice),a ; save as slice to assign.
ld hl,0 ; all remainging drives consume 0 bytes
ld (slicmem),hl ; save estmate so heap space can be counted
bootdrz1:
call bootadd ; assign the slice
jr nc,bootdrz1 ; NC still can continue to allocate
@ -594,10 +621,11 @@ bootdrz1:
bootdrb:
ld bc,BC_SYSGET_BOOTINFO ; HBIOS SysGet; BootInfo
rst 08 ; Get boot disk unit/slice in DE
ld a,d ; boot unit id returned in D
ld (unit),a ; save as unit number
ld a,e ; boot slice returned in E
ld (slice),a ; save as slice to assign.
ld a,d ; boot unit id returned in D
ld (unit),a ; save as unit number
call bootdest ; calc estimat of unit A store in (sliceem)
call bootadd ; add the boot drive slice
ret ; Finished, returning error
;
@ -607,6 +635,8 @@ bootdra:
ld (atrmask),a ; mask for device attributes
ld a,%00010101 ; specific mask for RAM DRIVE.
ld (atrcomp),a ; compare to after mask
ld hl,EST_MD ; estimate of heap used. for RAM ROM
ld (slicmem),hl ; save estmate so heap space can be counted
call bootadds ; do single slice assignment
ret ; Finished, returning error
;
@ -618,6 +648,8 @@ bootdro:
ld (atrmask),a ; mask for device attributes
ld a,%00010100 ; for values "MD_AROM", "MD_AFSH"; Att="000101x0"
ld (atrcomp),a ; compare to after mask
ld hl,EST_MD ; estimate of heap used. for RAM ROM
ld (slicmem),hl ; save estmate so heap space can be counted
call bootadds ; do single slice assignment
ret ; Finished, returning error
;
@ -626,6 +658,8 @@ bootdrf:
ld a,%11000000 ; device parameters (Removable Floppy)
ld (atrmask),a ; mask for device attributes
ld (atrcomp),a ; compare to after mask
ld hl,EST_FD ; estimate of heap used. for Floppy
ld (slicmem),hl ; save estmate so heap space can be counted
call bootadds ; do single slice assignment
ret ; Finished, returning error
;
@ -634,6 +668,8 @@ bootdrs:
; find the boot drive, save unit /slice number
ld a,(mapwrk) ; boot drive unit number
ld (unit),a ; save as unit number to assign
ld hl,EST_HD ; estimate of heap used, for HDD
ld (slicmem),hl ; save estmate so heap space can be counted
ld a,0 ; starting slice number
bootdrs1:
; A is next slice to assign when entering here
@ -652,6 +688,8 @@ bootdrh:
ld a,%00100000 ; device parameters (High Capacity)
ld (atrmask),a ; mask for device attributes
ld (atrcomp),a ; compare to after mask
ld hl,EST_HD ; estimate of heap used, for HDD
ld (slicmem),hl ; save estmate so heap space can be counted
; count the number of drives matching criteria
call bootcnt ; return Drive count in A
; compute Slices per volume from drv count in A
@ -668,6 +706,8 @@ bootdrh1:
ld d,a ; put it in d
ld a,16 ; total number of drives
sub d ; less assigned = remaining
; above assumes we have space remaining on heap for all drives
; ideally should take A=Min( A, (heaprem)/EST_HD ) before division
ld d,a ; divides d - remaing drives
; The following routine divides d by e and places the quotient in d and the remainder in a
; https://wikiti.brandonw.net/index.php?title=Z80_Routines:Math:Division
@ -689,6 +729,8 @@ bootdrl:
ld a,%00100000 ; device parameters (High Capacity)
ld (atrmask),a ; mask for device attributes
ld (atrcomp),a ; compare to after mask
ld hl,EST_HD ; estimate of heap used, for HDD
ld (slicmem),hl ; save estmate so heap space can be counted
;
; count the number of drives matching criteria
call bootcnt ; return Drive count in A
@ -716,13 +758,56 @@ bootdrl2:
ret
;
; -------------------------------------------------
; Memory allocation estimates for each device type
;
SIZ_DBUF .EQU 128 ; actual size of directory buffer
SIZ_DPH .EQU 20 ; actual size of a DPH structure
SIZ_DMAP .EQU 4 ; actual bytes per drvmap entry
;
EST_FIXED .EQU SIZ_DPH+SIZ_DMAP ; overhead for all assignments
;
EST_MD .EQU EST_FIXED + 24 ; estimated size for ram/rom
EST_FD .EQU EST_FIXED + 192 ; estimated size for floppy
EST_HD .EQU EST_FIXED + 256 ; estimated size hdd (CKS/ALS)
;
; -------------------------------------------------
; /B=XXX - General Purpose Functions
;
; Determine Slice Estimate for Unit in A reg
; storing estimate in (slicmem), and DE
;
bootdest:
; is it assigned
ld c,a ; store unit (passed in A) for hbios call
ld de,SIZ_DMAP ; assume unassigned, 4 bytes for drvmap
cp $FF ; unassigned?
jr z,bootdest2 ; finished at this point.
; check for UNA mode, before calling HBIOS
ld a,(unamod) ; get UNA mode flag, and set Flags
or a ; if UNA Mode then dont do hbios lookup
jr nz,bootdest1 ; use worst case scenario (future una call)
; determine device type by hbios lookup
ld b,BF_DIODEVICE ; get device info
rst 08 ; Note C was set above
; now work out the bytes to allocate
ld a,d ; device type to A
ld de,EST_MD ; assume md size
cp DIODEV_MD ; ram/rom MD device
jr z,bootdest2 ; finished at this point
ld de,EST_FD ; assume floppy
cp DIODEV_FD ; floppy device
jr z,bootdest2 ; finished at this point
bootdest1:
ld de,EST_HD ; otherwise assume HD
bootdest2:
ld (slicmem),de
ret
;
; Count Number of Devices
; (atrmask) mask the device attribtes
; (atrcomp) compare to set zero flag
; return A number of drives mathing the attributes
bootcnt
bootcnt:
; loop thru hbios units looking for device type/unit match
ld bc,BC_SYSGET_DIOCNT ; hbios func: sysget subfunc: diocnt
rst 08 ; call hbios, E := device count
@ -818,6 +903,13 @@ bootadd:
jr z,bootinc1 ; Z - found a duplicate, exit out
;
bootadd1:
; check we have enough heap to allocate
ld hl,(heaprem) ; remaing heap estimate
ld de,(slicmem) ; memory alloc per drive
or a ; clear carry
sbc hl,de ; subtract slice from heap estimate
ret c ; overflow (not enough heap) so abort
ld (heaprem),hl ; update estimate based on sub of mem
; actually assign it.
ld hl,(mapadr) ; address of next map entry in table
ld a,(unit) ; the unit number
@ -962,7 +1054,7 @@ install3:
ld (heaptop),de ; DE has next byte available
;
; allocate directory buffer
ld hl,128 ; size of directory buffer
ld hl,SIZ_DBUF ; size of directory buffer
call alloc ; allocate the space
jp c,instovf ; handle overflow error
ld (dirbuf),hl ; ... and save in dirbuf
@ -990,8 +1082,7 @@ dph_init2:
ld a,(hl) ; unit to A
push bc ; save loop control
push hl ; save drive map pointer
;ld hl,16 ; size of a DPH structure
ld hl,20 ; size of a DPH structure
ld hl,SIZ_DPH ; size of a DPH structure
call alloc ; allocate space for dph
jp c,instovf ; handle overflow error
push hl ; save DPH location
@ -1023,6 +1114,12 @@ dph_init3:
call prtdecw ; print it
ld de,msgmem ; add description
call prtstr ; and print it
;
#if 0
call crlf
ld bc,(heaprem)
call prthexword
#endif
;
call drvrst ; perform BDOS drive reset
;
@ -1072,22 +1169,22 @@ makdphwbw: ; determine appropriate dpb (WBW mode, unit number in A)
ld b,BF_DIODEVICE ; HBIOS: Report Device Info
rst 08 ; call HBIOS, return w/ device type in D, physical unit in E
ld a,d ; device type to A
cp $00 ; ram/rom?
cp DIODEV_MD ; ram/rom?
jr nz,makdph00 ; if not, skip ahead to other types
ld a,e ; physical unit number to A
ld e,1 ; assume rom
ld e,MID_MDROM ; assume rom
cp $01 ; rom?
jr z,makdph0 ; yes, jump ahead
ld e,2 ; otherwise ram
ld e,MID_MDRAM ; otherwise ram
jr makdph0 ; jump ahead
makdph00:
ld e,6 ; assume floppy
cp $01 ; floppy?
ld e,MID_FD144 ; assume floppy
cp DIODEV_FD ; floppy?
jr z,makdph0 ; yes, jump ahead
ld e,3 ; assume ram floppy
cp $02 ; ram floppy?
ld e,MID_RF ; assume ram floppy
cp DIODEV_RF ; ram floppy?
jr z,makdph0 ; yes, jump ahead
ld e,4 ; everything else is assumed to be hard disk
ld e,MID_HD ; everything else is assumed to be hard disk
jr makdph0 ; yes, jump ahead
;
makdph0:
@ -2301,6 +2398,7 @@ slice .db 0 ; source slice
atrmask .db 0 ; device attributes mask before compare
atrcomp .db 0 ; device attributes compare to
slicec .db 1 ; number of slices to assign for each volume
slicmem .dw 280 ; memory to allocate to next slice assigment
;
unamod .db 0 ; $FF indicates UNA UBIOS active
modcnt .db 0 ; count of drive map modifications
@ -2312,6 +2410,7 @@ tmpstr .fill 17,0 ; temporary string of up to 16 chars, zero term
;
heaptop .dw 0 ; current address of top of heap memory
heaplim .dw 0 ; heap limit address
heaprem .dw $7FFF ; estimate of heap remaining, (before allocate)
;
dirbuf .dw 0 ; directory buffer location
;
@ -2365,10 +2464,10 @@ stack .equ $ ; stack top
; Messages
;
indent .db " ",0
msgban1 .db "ASSIGN v1.9 for RomWBW CP/M ",0
msgban1 .db "ASSIGN v2.0 for RomWBW CP/M ",0
msg22 .db "2.2",0
msg3 .db "3",0
msbban2 .db ", 9-Dec-2024",0
msbban2 .db ", 21-Dec-2024",0
msghb .db " (HBIOS Mode)",0
msgub .db " (UBIOS Mode)",0
msgban3 .db "Copyright 2024, Wayne Warthen, GNU GPL v3",0

72
Source/CBIOS/cbios.asm

@ -411,8 +411,7 @@ REBOOT:
;
#IFDEF PLTWBW
; WARM START
LD B,BF_SYSRESET ; SYSTEM RESTART
LD C,BF_SYSRES_WARM ; WARM START
LD BC,BC_SYSRES_WARM ; SYSTEM WARM RESTART
CALL $FFF0 ; CALL HBIOS
#ENDIF
;
@ -2199,8 +2198,7 @@ INIT:
#ELSE
; GET CRITICAL BANK ID'S
LD B,BF_SYSGET ; HBIOS FUNC=GET SYS INFO
LD C,BF_SYSGET_BNKINFO ; HBIOS SUBFUNC=GET BANK ASSIGNMENTS
LD BC,BC_SYSGET_BNKINFO ; HBIOS FUNC=GET SYS INFO;GET BANK ASSIGNMENTS
RST 08 ; CALL HBIOS
LD A,D ; GET HBIOS BANK RETURNED IN D
LD (BNKBIOS),A ; ... AND SAVE IT
@ -2213,8 +2211,7 @@ INIT:
#ENDIF
;
; SOFT RESET HBIOS
LD B,BF_SYSRESET ; HB FUNC: RESET
LD C,BF_SYSRES_INT ; WARM START
LD BC,BC_SYSRES_INT ; HB FUNC: RESET; WARM START
RST 08 ; DO IT
;
#IF DEBUG
@ -2494,8 +2491,7 @@ DEV_INIT000:
DEV_INIT00:
; LOOP THRU DEVICES ADDING DEVICES TO DEVMAP
; CONSOLE DEVICE WAS ALREADY DONE, SO IT IS SKIPPED HERE
LD B,BF_SYSGET ; HBIOS FUNC: GET SYS INFO
LD C,BF_SYSGET_CIOCNT ; SUBFUNC: GET CIO UNIT COUNT
LD BC,BC_SYSGET_CIOCNT ; HBIOS FUNC: GET SYS INFO; GET CIO UNIT COUNT
RST 08 ; E := SERIAL UNIT COUNT
LD B,E ; COUNT TO B
LD C,0 ; UNIT INDEX
@ -2926,8 +2922,7 @@ DRV_INIT:
; DEVICES. NON-HARD DISK UNITS ARE ALWAYS CONSIDERED
; ACTIVE, BUT HARD DISK UNITS ARE ONLY CONSIDERED ACTIVE
; IF THERE IS MEDIA IN THE DRIVE.
LD B,BF_SYSGET
LD C,BF_SYSGET_DIOCNT
LD BC,BC_SYSGET_DIOCNT ; GET DISK UNIT COUNT
RST 08 ; E := DISK UNIT COUNT
LD B,E ; COUNT TO B
LD A,B ; COUNT TO A
@ -3433,6 +3428,63 @@ DEV15 .EQU DEVUNK
;
#ENDIF
;
;
;__________________________________________________________________________________________________
;
; INITIALIZATION Utilities
;
; PRINT VALUE OF A IN DECIMAL WITH LEADING ZERO SUPPRESSION
;
PRTDECB:
PUSH HL
PUSH AF
LD L,A
LD H,0
CALL PRTDEC
POP AF
POP HL
RET
;
; PRINT VALUE OF HL IN DECIMAL WITH LEADING ZERO SUPPRESSION
;
PRTDEC:
PUSH BC
PUSH DE
PUSH HL
LD E,'0'
LD BC,-10000
CALL PRTDEC1
LD BC,-1000
CALL PRTDEC1
LD BC,-100
CALL PRTDEC1
LD C,-10
CALL PRTDEC1
LD E,0
LD C,-1
CALL PRTDEC1
POP HL
POP DE
POP BC
RET
PRTDEC1:
LD A,'0' - 1
PRTDEC2:
INC A
ADD HL,BC
JR C,PRTDEC2
SBC HL,BC
CP E
JR Z,PRTDEC3
LD E,0
CALL COUT
PRTDEC3:
RET
;
;__________________________________________________________________________________________________
;
; INITIALIZATION Working Storage
;
DPHTOP .DW 0 ; CURRENT TOP OF DPH POOL
DIRBUF .DW 0 ; DIR BUF POINTER
HEAPTOP .DW BUFPOOL ; CURRENT TOP OF HEAP

186
Source/CBIOS/util.asm

@ -28,10 +28,10 @@ PC_COLON:
LD A,':'
JR PC_PRTCHR
PC_COMMA:
PUSH AF
LD A,','
JR PC_PRTCHR
;PC_COMMA:
; PUSH AF
; LD A,','
; JR PC_PRTCHR
PC_LBKT:
PUSH AF
@ -43,30 +43,30 @@ PC_RBKT:
LD A,']'
JR PC_PRTCHR
PC_LT:
PUSH AF
LD A,'<'
JR PC_PRTCHR
;PC_LT:
; PUSH AF
; LD A,'<'
; JR PC_PRTCHR
PC_GT:
PUSH AF
LD A,'>'
JR PC_PRTCHR
;PC_GT:
; PUSH AF
; LD A,'>'
; JR PC_PRTCHR
PC_LPAREN:
PUSH AF
LD A,'('
JR PC_PRTCHR
;PC_LPAREN:
; PUSH AF
; LD A,'('
; JR PC_PRTCHR
PC_RPAREN:
PUSH AF
LD A,')'
JR PC_PRTCHR
;PC_RPAREN:
; PUSH AF
; LD A,')'
; JR PC_PRTCHR
PC_ASTERISK:
PUSH AF
LD A,'*'
JR PC_PRTCHR
;PC_ASTERISK:
; PUSH AF
; LD A,'*'
; JR PC_PRTCHR
PC_CR:
PUSH AF
@ -201,7 +201,7 @@ _REGDMP:
LD A,'@'
CALL COUT
POP AF
PUSH BC
LD BC,(REGDMP_PC)
CALL PRTHEXWORD ; PC
@ -235,7 +235,7 @@ _REGDMP:
POP AF
;LD SP,(RD_STKSAV) ; BACK TO ORIGINAL STACK FRAME
JP $FFFF ; RETURN, $FFFF IS DYNAMICALLY UPDATED
REGDMP_RET .EQU $-2 ; RETURN ADDRESS GOES HERE
;
@ -340,17 +340,17 @@ ADDHLA1:
; IN: MULTIPLY H BY E
; OUT: HL = RESULT, E = 0, B = 0
;
MULT8:
LD D,0
LD L,D
LD B,8
MULT8_LOOP:
ADD HL,HL
JR NC,MULT8_NOADD
ADD HL,DE
MULT8_NOADD:
DJNZ MULT8_LOOP
RET
;MULT8:
; LD D,0
; LD L,D
; LD B,8
;MULT8_LOOP:
; ADD HL,HL
; JR NC,MULT8_NOADD
; ADD HL,DE
;MULT8_NOADD:
; DJNZ MULT8_LOOP
; RET
;
; FILL MEMORY AT HL WITH VALUE A, LENGTH IN BC, ALL REGS USED
; LENGTH *MUST* BE GREATER THAN 1 FOR PROPER OPERATION!!!
@ -364,54 +364,6 @@ FILL:
LDIR ; DO THE REST
RET ; RETURN
;
; PRINT VALUE OF A IN DECIMAL WITH LEADING ZERO SUPPRESSION
;
PRTDECB:
PUSH HL
PUSH AF
LD L,A
LD H,0
CALL PRTDEC
POP AF
POP HL
RET
;
; PRINT VALUE OF HL IN DECIMAL WITH LEADING ZERO SUPPRESSION
;
PRTDEC:
PUSH BC
PUSH DE
PUSH HL
LD E,'0'
LD BC,-10000
CALL PRTDEC1
LD BC,-1000
CALL PRTDEC1
LD BC,-100
CALL PRTDEC1
LD C,-10
CALL PRTDEC1
LD E,0
LD C,-1
CALL PRTDEC1
POP HL
POP DE
POP BC
RET
PRTDEC1:
LD A,'0' - 1
PRTDEC2:
INC A
ADD HL,BC
JR C,PRTDEC2
SBC HL,BC
CP E
JR Z,PRTDEC3
LD E,0
CALL COUT
PRTDEC3:
RET
;
; PRINT THE HEX BYTE VALUE IN A
;
PRTHEXBYTE:
@ -457,9 +409,9 @@ HEXASCII:
HEXCONV:
AND 0FH ;LOW NIBBLE ONLY
ADD A,90H
DAA
DAA
ADC A,40H
DAA
DAA
RET
;
;****************************
@ -488,40 +440,40 @@ BCD2BYTE:
; [0..99] => [00H..99H]
;*****************************
;
BYTE2BCD:
PUSH BC
LD B,10
LD C,-1
BYTE2BCD1:
INC C
SUB B
JR NC,BYTE2BCD1
ADD A,B
LD B,A
LD A,C
ADD A,A
ADD A,A
ADD A,A
ADD A,A
OR B
POP BC
RET
;BYTE2BCD:
; PUSH BC
; LD B,10
; LD C,-1
;BYTE2BCD1:
; INC C
; SUB B
; JR NC,BYTE2BCD1
; ADD A,B
; LD B,A
; LD A,C
; ADD A,A
; ADD A,A
; ADD A,A
; ADD A,A
; OR B
; POP BC
; RET
;
; PRINT A BYTE BUFFER IN HEX POINTED TO BY DE
; REGISTER A HAS SIZE OF BUFFER
;
PRTHEXBUF:
OR A
RET Z ; EMPTY BUFFER
;
LD B,A
PRTHEXBUF1:
CALL PC_SPACE
LD A,(DE)
CALL PRTHEXBYTE
INC DE
DJNZ PRTHEXBUF1
RET
;PRTHEXBUF:
; OR A
; RET Z ; EMPTY BUFFER
;
; LD B,A
;PRTHEXBUF1:
; CALL PC_SPACE
; LD A,(DE)
; CALL PRTHEXBYTE
; INC DE
; DJNZ PRTHEXBUF1
; RET
;
; LEFT SHIFT DE:HL BY B BITS (B > 0)
;

49
Source/Doc/UserGuide.md

@ -252,6 +252,7 @@ is discussed in [Customizing RomWBW].
| [Z80 ZRC CPU Module]^7^ | RCBus | RCZ80_zrc_std.rom | 115200 |
| [Z80 ZRC CPU Module]^7^ ROMless | RCBus | RCZ80_zrc_ram_std.rom | 115200 |
| [Z80 ZRC512 CPU Module]^7^ | RCBus | RCZ80_zrc512_std.rom | 115200 |
| [Z80 EaZy80-512 CPU Module]^7^ | RCBus | RCZ80_ez512_std.rom | 115200 |
| [Z180 Z1RCC CPU Module]^7^ | RCBus | RCZ180_z1rcc_std.rom | 115200 |
| [Z280 ZZRCC CPU Module]^7^ | RCBus | RCZ280_zzrcc_std.rom | 115200 |
| [Z280 ZZRCC CPU Module]^7^ ROMless | RCBus | RCZ280_zzrcc_ram_std.rom | 115200 |
@ -6119,6 +6120,54 @@ the RomWBW HBIOS configuration.
`\clearpage`{=latex}
### Z80 EaZy80-512 CPU Module
#### ROM Image File: RCZ80_ez512_std.rom
| | |
|-------------------|---------------|
| Default CPU Speed | 22.000 MHz |
| Interrupts | Mode 2 |
| System Timer | CTC |
| Serial Default | 115200 Baud |
| Memory Manager | EZ512 |
| ROM Size | 0 KB |
| RAM Size | 512 KB |
##### Supported Hardware (see [Appendix B - Device Summary]):
- FP: LEDIO=0, SWIO=0
- LCD: IO=218, SIZE=20X4
- DSRTC: MODE=STD, IO=192
- UART: MODE=RC, IO=160
- UART: MODE=RC, IO=168
- SIO MODE=STD, IO=8, CHANNEL A, INTERRUPTS ENABLED
- SIO MODE=STD, IO=8, CHANNEL B, INTERRUPTS ENABLED
- ACIA: IO=128
- VRC: IO=0, KBD MODE=VRC, KBD IO=244
- KBD: ENABLED
- CH: IO=62
- CH: IO=60
- CHUSB: IO=62
- CHUSB: IO=60
- MD: TYPE=RAM
- FD: MODE=RCWDC, IO=80, DRIVE 0, TYPE=3.5" HD
- FD: MODE=RCWDC, IO=80, DRIVE 1, TYPE=3.5" HD
- IDE: MODE=RC, IO=16, MASTER
- IDE: MODE=RC, IO=16, SLAVE
- PPIDE: IO=32, MASTER
- PPIDE: IO=32, SLAVE
- SD: MODE=EZ512, IO=2, UNITS=1
- KIO: IO=0
- CTC: IO=4, TIMER MODE=TIMER/16, DIVISOR=4608, HI=256, LO=18, INTERRUPTS ENABLED
##### Notes:
- HBIOS is loaded from disk at boot by ROM monitor
- CPU speed will be dynamically measured at startup if DSRTC is present
`\clearpage`{=latex}
### Z180 Z1RCC CPU Module
#### ROM Image File: RCZ180_z1rcc_std.rom

2
Source/HBIOS/hbios.asm

@ -817,6 +817,8 @@ HBX_ROM:
;
#IF (MEMMGR == MM_MON)
;
; *** DEPRECATED ***
;
; CURRENTLY ASSUMES FIRST 16 PAGES ARE RAM FOLLOWED BY 16 PAGES OF ROM.
; SO, WE MAP HBIOS BANKS $00-$0F (ROM SELECT) TO $10-$%1F AND HBIOS
; BANKS $80-$8F (RAM SELECT) TO $00-$0F.

5
Source/HBIOS/hbios.inc

@ -146,6 +146,11 @@ BF_SYSINT_SET .EQU $20 ; SET INT VECTOR ADDRESS
; 2 BYTE FUNCTION/SUBFUNCTION : BC_ => BIOS CALL
; e.g. LOAD BC, BC_SYSxxxx (avoid load B and C seperately)
;
BC_SYSRES_INT .EQU BF_SYSRESET * $100 + BF_SYSRES_INT
BC_SYSRES_WARM .EQU BF_SYSRESET * $100 + BF_SYSRES_WARM
BC_SYSRES_COLD .EQU BF_SYSRESET * $100 + BF_SYSRES_COLD
BC_SYSRES_USER .EQU BF_SYSRESET * $100 + BF_SYSRES_USER
;
BC_SYSGET_CIOCNT .EQU BF_SYSGET * $100 + BF_SYSGET_CIOCNT
BC_SYSGET_CIOFN .EQU BF_SYSGET * $100 + BF_SYSGET_CIOFN
BC_SYSGET_DIOCNT .EQU BF_SYSGET * $100 + BF_SYSGET_DIOCNT

61
Source/HBIOS/romldr.asm

@ -413,16 +413,12 @@ prompt:
call dsky_l2on
#endif
;
; purge any garbage on the line
call delay ; wait for prompt to be sent
ld b,0 ; failsafe max iterations
purge:
call cst ; anything there?
jr z,wtkey ; if not, move on
call cin ; read and discard
djnz purge ; and loop till no more
call delay ; wait for prompt to be sent?
;
#if (BIOS == BIOS_WBW)
;
call flush ; flush all char units
;
#if (AUTOCON)
or $ff ; initial value
ld (conpend),a ; ... for conpoll routine
@ -459,6 +455,46 @@ clrbuf1:
ret
;
;=======================================================================
; Flush queued data from all character units
;=======================================================================
;
; Prior to starting to poll for a console takeover request, we clean
; out pending data from all character units. The active console
; is included.
;
#if (BIOS == BIOS_WBW)
;
flush:
ld a,(curcon) ; get active console unit
push af ; save it
ld c,0 ; char unit index
;
flush1:
ld b,0 ; loop max failsafe counter
ld a,c ; put char unit in A
ld (curcon),a ; and then make it cur con
;
flush2:
call cst ; char waiting?
jr z,flush3 ; all done, do next unit
call cin ; get and discard char
djnz flush2 ; loop max times
;
flush3:
inc c ; next char unit
ld a,(ciocnt) ; get char unit count
cp c ; unit > cnt?
jr c,flush_z ; done
jr flush1 ; otherwise, do next char unit
;
flush_z:
pop af ; recover active console unit
ld (curcon),a ; and reset to original value
ret ; done
;
#endif
;
;=======================================================================
; Poll character units for console takeover request
;=======================================================================
;
@ -490,8 +526,15 @@ conpoll1:
jr z,conpoll2 ; if no char, move on
call cin ; get char
cp ' ' ; space char?
jr nz,conpoll2 ; if not, move on
jr z,conpoll1a ; if so, handle it
;
; something other than a <space> was received, clear
; the pending console
or $ff ; idle value
ld (conpend),a ; save it
jr conpoll2 ; continue checking
;
conpoll1a:
; a <space> char was typed. check to see if we just saw a
; <space> from this same unit.
ld a,(conpend) ; pending con unit to A

6
Source/HBIOS/std.asm

@ -21,7 +21,7 @@
; 17. DUO Andrew Lynch's Duodyne Computer
; 18. HEATH Les Bird's Heath Z80 Board
; 19. EPITX Alan Cox' Mini-ITX System
; 20. MON Jacques Pelletier's Monsputer
; 20. MON Jacques Pelletier's Monsputer (deprecated)
; 21. GMZ180 Doug Jacksons' Genesis Z180 System
; 22. NABU NABU w/ Les Bird's RomWBW Option Board
; 23. FZ80 S100 Computers FPGA Z80
@ -91,7 +91,7 @@ MM_Z280 .EQU 5 ; Z280 NATIVE MEMORY MANAGER
MM_ZRC .EQU 6 ; ZRC BANK SWITCHING
MM_MBC .EQU 7 ; MBC MEMORY MANAGER
MM_RPH .EQU 8 ; Z180 WITH RPH EXTENSIONS
MM_MON .EQU 9 ; MONSPUTER MMU
MM_MON .EQU 9 ; MONSPUTER MMU (DEPRECATED)
MM_EZ512 .EQU 10 ; EZ512 BANK SWITCHING
;
; BOOT STYLE
@ -741,7 +741,7 @@ SYSTIM .SET TM_EZ80
SYSECHO "RHYOPHYRE ONBOARD (RPH)"
#ENDIF
#IF (MEMMGR == MM_MON)
SYSECHO "MONSPUTER ONBOARD (MON)"
SYSECHO "MONSPUTER ONBOARD (MON)" ; DEPRECATED
#ENDIF
SYSECHO "\n"
#ENDIF

2
Source/ver.inc

@ -2,7 +2,7 @@
#DEFINE RMN 5
#DEFINE RUP 0
#DEFINE RTP 0
#DEFINE BIOSVER "3.5.0-dev.101"
#DEFINE BIOSVER "3.5.0-dev.102"
#define rmj RMJ
#define rmn RMN
#define rup RUP

2
Source/ver.lib

@ -3,5 +3,5 @@ rmn equ 5
rup equ 0
rtp equ 0
biosver macro
db "3.5.0-dev.101"
db "3.5.0-dev.102"
endm

Loading…
Cancel
Save