Browse Source

Merge pull request #63 from wwarthen/master

Resync
pull/391/head
b1ackmai1er 2 years ago
committed by GitHub
parent
commit
bf9a8400de
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
  1. 11
      .github/pull_request_template.md
  2. 68
      .github/workflows/commit.yml
  3. 124
      .github/workflows/release.yml
  4. 28
      .gitignore
  5. 6
      Binary/Apps/Clean.cmd
  6. 7
      Binary/Apps/Makefile
  7. 9
      Binary/Apps/ReadMe.txt
  8. 4
      Binary/Apps/Test/Clean.cmd
  9. 7
      Binary/Apps/Test/Makefile
  10. 16
      Binary/Apps/Test/ReadMe.txt
  11. 2
      Binary/Apps/Tunes/ReadMe.txt
  12. 11
      Binary/CPM3/Clean.cmd
  13. 7
      Binary/CPM3/Makefile
  14. 17
      Binary/CPM3/ReadMe.txt
  15. 4
      Binary/CPNET/Clean.cmd
  16. 7
      Binary/CPNET/Makefile
  17. BIN
      Binary/CPNET/NetBoot/ccp.spr
  18. BIN
      Binary/CPNET/NetBoot/cpnos-wbw.sys
  19. BIN
      Binary/CPNET/NetBoot/ndos.spr
  20. BIN
      Binary/CPNET/NetBoot/snios.spr
  21. 38
      Binary/CPNET/ReadMe.txt
  22. 9
      Binary/Clean.cmd
  23. 167
      Binary/DiskList.txt
  24. 6
      Binary/Makefile
  25. 43
      Binary/ReadMe.txt
  26. 218
      Binary/RomList.txt
  27. 10
      Binary/ZPM3/Clean.cmd
  28. 7
      Binary/ZPM3/Makefile
  29. 17
      Binary/ZPM3/ReadMe.txt
  30. 6
      Build.cmd
  31. 42
      CONTRIBUTING.md
  32. 5
      Clean.cmd
  33. BIN
      Doc/Aztec_C_1.06_User_Manual_Mar84.pdf
  34. 218
      Doc/ChangeLog.txt
  35. 186
      Doc/Contrib/Flash4.txt
  36. BIN
      Doc/Contrib/How to Make Disk Images in Linux with DD Command.pdf
  37. BIN
      Doc/Contrib/Microsoft NASCOM BASIC.docx
  38. 39
      Doc/Contrib/PPI_Bus.txt
  39. BIN
      Doc/Cowgol Language.pdf
  40. 564
      Doc/DDTZ.doc
  41. 514
      Doc/FDU.txt
  42. 11351
      Doc/HI-TECH Z80 C Compiler Manual.txt
  43. BIN
      Doc/Hard Disk Anatomy.pdf
  44. BIN
      Doc/Microsoft Basic-80 Reference Manual v5.0.pdf
  45. 4090
      Doc/Microsoft_FORTRAN-80_Users_Manual_1977.pdf
  46. 129
      Doc/ReadMe.txt
  47. BIN
      Doc/RomWBW Applications.pdf
  48. BIN
      Doc/RomWBW Architecture.pdf
  49. BIN
      Doc/RomWBW Disk Catalog.pdf
  50. BIN
      Doc/RomWBW Errata.pdf
  51. BIN
      Doc/RomWBW Getting Started.pdf
  52. BIN
      Doc/RomWBW ROM Applications.pdf
  53. BIN
      Doc/RomWBW System Guide.pdf
  54. BIN
      Doc/RomWBW User Guide.pdf
  55. BIN
      Doc/SIO+CTC Baud Rate Options.pdf
  56. 25
      Doc/Testing Notes.txt
  57. BIN
      Doc/The Cowgol language.pdf
  58. 49495
      Doc/Turbo_Pascal_Version_3.0_Reference_Manual_1986.pdf
  59. BIN
      Doc/UCSD p-System Users Manual.pdf
  60. BIN
      Doc/Z180 ASCI Baud Rate Options.pdf
  61. 765
      Doc/ZCPR-DJ.doc
  62. BIN
      Doc/qcp27.pdf
  63. BIN
      Doc/qdos27.pdf
  64. BIN
      Doc/qpm27.pdf
  65. BIN
      Doc/z80asm (SLR Systems).pdf
  66. 38
      Makefile
  67. 1308
      ReadMe.md
  68. 1280
      ReadMe.txt
  69. 49
      Readme.unix
  70. 1899
      Source/Apps/Assign.asm
  71. 62
      Source/Apps/Build.cmd
  72. 16
      Source/Apps/Clean.cmd
  73. 14
      Source/Apps/Dev/Build.cmd
  74. 7
      Source/Apps/Dev/Clean.cmd
  75. 10
      Source/Apps/Dev/Makefile
  76. 1
      Source/Apps/Dev/ReadMe.txt
  77. 32
      Source/Apps/Dev/dev.asm
  78. 2
      Source/Apps/FAT/Build.cmd
  79. BIN
      Source/Apps/FAT/FAT.com
  80. 4
      Source/Apps/FAT/Makefile
  81. 125
      Source/Apps/FAT/ReadMe.md
  82. 101
      Source/Apps/FAT/ReadMe.txt
  83. BIN
      Source/Apps/FAT/fat.com
  84. 8
      Source/Apps/FDU/Build.cmd
  85. 4613
      Source/Apps/FDU/FDU.asm
  86. 514
      Source/Apps/FDU/FDU.txt
  87. 6
      Source/Apps/FDU/Makefile
  88. 4774
      Source/Apps/FDU/fdu.asm
  89. 545
      Source/Apps/FDU/fdu.doc
  90. 214
      Source/Apps/Format.asm
  91. 14
      Source/Apps/HTalk/Build.cmd
  92. 5
      Source/Apps/HTalk/Clean.cmd
  93. 10
      Source/Apps/HTalk/Makefile
  94. 725
      Source/Apps/HTalk/htalk.asm
  95. 11
      Source/Apps/Makefile
  96. 1040
      Source/Apps/Mode.asm
  97. 1732
      Source/Apps/RTC.asm
  98. 725
      Source/Apps/Survey.asm
  99. 16
      Source/Apps/Survey/Build.cmd
  100. 8
      Source/Apps/Survey/Clean.cmd

11
.github/pull_request_template.md

@ -0,0 +1,11 @@
<!--
BEFORE YOU CREATE A PULL REQUEST:
- Please base all pull requests against the master branch
- Include a clear description of your change
- Reference related Issue(s) (e.g., "Resolves Issue #123")
Thank you for contributing to RomWBW! I will review your pull request as soon as possible.
DELETE EVERYTHING IN THIS COMMENT BLOCK AND REPLACE WITH YOUR COMMENTS
-->

68
.github/workflows/commit.yml

@ -3,30 +3,72 @@ name: Commit Build
on:
push:
branches:
- master
- '**'
tags-ignore:
- v*
- '**'
jobs:
build:
buildLinux:
runs-on: ubuntu-latest
steps:
- uses: rlespinasse/github-slug-action@v3.x
- uses: actions/checkout@v2
- name: Checkout
uses: actions/checkout@v4.1.1
- name: Get Commit Ref
run: |
COMMIT_REF=$(git rev-parse --short $GITHUB_SHA)
echo "COMMIT_REF: $COMMIT_REF"
echo "COMMIT_REF=$COMMIT_REF" >>$GITHUB_ENV
- name: Build
run: |
export TZ='America/Los_Angeles'
sudo apt-get install srecord
make distlog
rm -rf .git*
- name: List Output
run: |
cd Binary
ls -l
find -type f -exec md5sum '{}' \;
- name: Upload Artifact
uses: actions/upload-artifact@v4.3.0
with:
name: RomWBW-${{env.COMMIT_REF}}-Linux
path: .
buildMacOS:
runs-on: macOS-latest
steps:
- name: Checkout
uses: actions/checkout@v4.1.1
- name: Get Commit Ref
run: |
COMMIT_REF=$(git rev-parse --short $GITHUB_SHA)
echo "COMMIT_REF: $COMMIT_REF"
echo "COMMIT_REF=$COMMIT_REF" >>$GITHUB_ENV
- name: Build
run: |
export TZ='America/Los_Angeles'
sudo apt-get install libncurses-dev
make
make clean
brew install srecord
make distlog
rm -rf .git*
- name: List Output
run: |
cd Binary
ls -l
find . -type f -exec md5 -r -- '{}' +;
- name: Upload Artifact
uses: actions/upload-artifact@v1
uses: actions/upload-artifact@v4.3.0
with:
name: RomWBW-${{env.GITHUB_REF_SLUG}}-${{env.GITHUB_SHA_SHORT}}
name: RomWBW-${{env.COMMIT_REF}}-MacOS
path: .

124
.github/workflows/release.yml

@ -1,8 +1,9 @@
name: Release Build
on:
release:
types: published
push:
tags:
- '**'
jobs:
build:
@ -10,42 +11,99 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Create Package Label
run: |
LABEL=`echo "$GITHUB_REF" | sed "s|^refs/tags/||"`
echo "::set-env name=PKGLBL::$LABEL"
- name: Display Diagnostics
run: |
echo PKGLBL: "$PKGLBL"
echo Upload URL: "${{github.event.release.upload_url}}"
echo GITHUB_TOKEN: "${{secrets.GITHUB_TOKEN}}"
- name: Checkout
uses: actions/checkout@v4.1.1
- name: Build
run: |
export TZ='America/Los_Angeles'
sudo apt-get install libncurses-dev
make
make clean
sudo apt-get install srecord
make distlog
rm -rf .git*
- name: Upload Artifact
uses: actions/upload-artifact@v1
with:
name: RomWBW-${{env.PKGLBL}}-Package
path: .
- name: Create Package Archive
run: |
zip -r Package.zip .
- name: Upload Release Asset
uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
zip -r RomWBW-${{github.ref_name}}-Package.zip .
- name: Set Title
run: |
echo "Tag: ${{github.ref_name}}"
if grep -q "dev" <<< "${{github.ref_name}}"; then
TITLE="RomWBW Development Snapshot"
elif grep -q "pre" <<< "${{github.ref_name}}"; then
TITLE="RomWBW Prerelease"
elif grep -q "rc" <<< "${{github.ref_name}}"; then
TITLE="RomWBW Release Candidate"
else
TITLE="RomWBW"
fi
echo "Title: $TITLE"
echo "TITLE=$TITLE" >>$GITHUB_ENV
- name: Attach Package Archive
uses: wwarthen/actions/packages/automatic-releases@built-packages
with:
upload_url: ${{github.event.release.upload_url}}
asset_path: Package.zip
asset_name: RomWBW-${{env.PKGLBL}}-Package.zip
asset_content_type: application/zip
repo_token: "${{secrets.GITHUB_TOKEN}}"
draft: true
prerelease: true
title: "${{env.TITLE}} ${{github.ref_name}}"
files: |
RomWBW-${{github.ref_name}}-Package.zip
# - name: Upload Package Archive
# uses: AButler/upload-release-assets@v2.0.2
# with:
# repo-token: ${{secrets.github_token}}
# files: |
# RomWBW-${{env.PKGLBL}}-Package.zip
# - name: Post SnapShot
# uses: docker://antonyurchenko/git-release:latest
# env:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# RELEASE_NAME_PREFIX: "${{env.TITLE}} "
# CHANGELOG_FILE: "none"
# with:
# args: |
# RomWBW-SnapShot-Package.zip
# - name: Post SnapShot
# uses: cb80/pubrel@latest
# with:
# replace: true
# files: |
# RomWBW-SnapShot-Package.zip
# - name: Post SnapShot
# uses: wwarthen/actions/packages/automatic-releases@built-packages
# with:
# repo_token: "${{ secrets.GITHUB_TOKEN }}"
# prerelease: true
# title: "RomWBW Development SnapShot ${{env.GITHUB_REF_SLUG}}"
# files: |
# RomWBW-SnapShot-Package.zip
# - name: Remove Older Releases
# uses: wwarthen/delete-release-action@v1.2
# with:
# release-drop: true
# release-keep-count: 0
# release-drop-tag: true
# pre-release-drop: false
# pre-release-keep-count: 0
# pre-release-drop-tag: true
# draft-drop: true
# env:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# - name: Remove Older Releases
# uses: s00d/delete-older-releases@0.2.1
# with:
# keep_latest: 1
## delete_tag_pattern: beta # defaults to ""
# delete_type: 'release'
# delete_branch: 'main'
# env:
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

28
.gitignore

@ -20,6 +20,7 @@
Binary/**/*.mym
Binary/**/*.pt3
!Binary/CPNET/NetBoot/cpnos-wbw.sys
Source/**/eeprom
Source/Apps/Assign.com
@ -49,6 +50,9 @@ Source/Images/blankhd
Source/Prop/Spin/ParPortProp.list
Source/Prop/Spin/PropIO.list
Source/Prop/Spin/PropIO2.list
Source/Prop/ParPortProp.list
Source/Prop/PropIO.list
Source/Prop/PropIO2.list
Source/ZPM3/bnkbios3.spr
Source/ZPM3/gencpm.com
Source/ZPM3/gencpm.com
@ -73,24 +77,36 @@ Tools/unix/zx/zx
!Source/ver.lib
!Source/Apps/FAT/FAT.COM
!Source/Apps/ZMP/zmpx.com
!Source/Apps/ZMD/zmdsubs.rel
!Source/Apps/Test/vdctest/font.asm
!Source/BPBIOS/bpbuild.com
!Source/BPBIOS/movp112.com
!Source/BPBIOS/*.lib
!Source/BPBIOS/Z34RCP11/cledinst.com
!Source/BPBIOS/Z34RCP11/cledsave.com
!Source/Fonts
!Source/Images/**/*.[Cc][Oo][Mm]
!Source/RomDsk/**/*.[Cc][Oo][Mm]
!Source/CPNET/**
!Source/Fonts/*
!Source/Images/**
!Source/RomDsk/**
!Source/UBIOS/FSFAT.BIN
!Source/UBIOS/UNA-BIOS.BIN
!Source/ZCCP/*.[Cc][Oo][Mm]
!Source/ZCPR-DJ/*.[Cc][Oo][Mm]
!Source/ZPM3/*.[Cc][Oo][Mm]
!Source/ZSDOS/*.[Cc][Oo][Mm]
!Tools/cpm/bin
!Tools/unix/zx
!Tools/zx
!Source/ZRC/*.bin
!Source/ZRC512/*.bin
!Source/Z1RCC/*.bin
!Source/ZZRCC/*.bin
!Tools/cpm/**
!Tools/unix/zx/*
!Tools/zx/*
Source/ZPM3/gencpm.com
Source/ZPM3/startzpm.com
Source/ZPM3/zccp.com
Source/ZPM3/zpmldr.com
Source/ZPM3/genbnk.dat
Source/ZSDOS/zsdos.err

6
Binary/Apps/Clean.cmd

@ -2,5 +2,11 @@
setlocal
if exist *.com del *.com
if exist *.ovr del *.ovr
if exist *.doc del *.doc
if exist *.hlp del *.hlp
if exist Tunes\*.pt? del Tunes\*.pt?
if exist Tunes\*.mym del Tunes\*.mym
if exist Tunes\*.vgm del Tunes\*.vgm
pushd Test && call Clean || exit /b 1 & popd

7
Binary/Apps/Makefile

@ -1,10 +1,11 @@
TOOLS = ../../Tools
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.com Tunes/*)
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.com)
SUBDIRS = Test
include $(TOOLS)/Makefile.inc
all::
mkdir -p Tunes
clobber::
rm -f *.bin *.com *.img *.rom *.pdf *.log *.eeprom *.COM *.BIN Tunes/*.mym Tunes/*.pt?
clean::
@rm -f *.bin *.com *.img *.rom *.pdf *.log *.eeprom *.ovr *.hlp *.doc *.COM *.BIN Tunes/*.mym Tunes/*.pt? Tunes/*.vgm

9
Binary/Apps/ReadMe.txt

@ -11,4 +11,11 @@ are specific to RomWBW. The source for these applications is found
in the Source\Apps directory of the distribution.
The Tunes subdirectory contains some sample ProTracker and MYM sound
files that can be played by the TUNE application.
files that can be played by the TUNE application.
All of these files are already included in the pre-built boot disk
images. They are also included on the ROM disk except for
FAT.COM, TUNE.COM, and the sample tune files in the Tunes directory.
If you upgrade your ROM to a new version, you should also copy
these files over to any hard disk images you are using.

4
Binary/Apps/Test/Clean.cmd

@ -0,0 +1,4 @@
@echo off
setlocal
if exist *.com del *.com

7
Binary/Apps/Test/Makefile

@ -0,0 +1,7 @@
TOOLS = ../../../Tools
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.com)
include $(TOOLS)/Makefile.inc
clean::
@rm -f *.com

16
Binary/Apps/Test/ReadMe.txt

@ -0,0 +1,16 @@
***********************************************************************
*** ***
*** R o m W B W ***
*** ***
*** Z80/Z180 System Software ***
*** ***
***********************************************************************
This directory contains various hardware test application files that
are specific to RomWBW. The source for these applications is found
in the Source\Apps\Test directory of the distribution.
These files are included on the pre-built disk images in user area 2.
N.B., these files may be specific to certain hardware. They should
be used as directred by the instructions for your specific hardware.

2
Binary/Apps/Tunes/ReadMe.txt

@ -7,4 +7,4 @@
***********************************************************************
This directory contains some sample ProTracker and MYM sound
files that can be played by the TUNE application.
files that can be played by the TUNE or VGMPLAY application.

11
Binary/CPM3/Clean.cmd

@ -0,0 +1,11 @@
@echo off
setlocal
if exist *.spr del *.spr
if exist *.com del *.com
if exist *.sys del *.sys
if exist *.pat del *.pat
if exist *.dat del *.dat
if exist *.1st del *.1st
if exist *.spr del *.spr
if exist *.pat del *.pat

7
Binary/CPM3/Makefile

@ -0,0 +1,7 @@
TOOLS = ../../Tools
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.spr)
include $(TOOLS)/Makefile.inc
clean::
@rm -f *.spr *.com *.sys *.dat cpm3fix.pat readme.1st

17
Binary/CPM3/ReadMe.txt

@ -0,0 +1,17 @@
***********************************************************************
*** ***
*** R o m W B W ***
*** ***
*** Z80/Z180 System Software ***
*** ***
***********************************************************************
This directory contains the CP/M 3 system files for the RomWBW CP/M 3
adaptation. All of these files are already included on the CP/M 3
boot disk images. However if you are creating a CP/M 3 boot disk
manually, you should copy all of these files to the boot disk.
These files should also be copied to any CP/M 3 boot disks on your
system when you upgrade your ROM firmware. Some of these files
*must* match the version of the RomWBW firmware you are using for
proper operation of your system.

4
Binary/CPNET/Clean.cmd

@ -0,0 +1,4 @@
@echo off
setlocal
if exist *.lbr del *.lbr

7
Binary/CPNET/Makefile

@ -0,0 +1,7 @@
TOOLS = ../../Tools
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.lbr)
include $(TOOLS)/Makefile.inc
clean::
@rm -f *.lbr

BIN
Binary/CPNET/NetBoot/ccp.spr

Binary file not shown.

BIN
Binary/CPNET/NetBoot/cpnos-wbw.sys

Binary file not shown.

BIN
Binary/CPNET/NetBoot/ndos.spr

Binary file not shown.

BIN
Binary/CPNET/NetBoot/snios.spr

Binary file not shown.

38
Binary/CPNET/ReadMe.txt

@ -0,0 +1,38 @@
***********************************************************************
*** ***
*** R o m W B W ***
*** ***
*** Z80/Z180 System Software ***
*** ***
***********************************************************************
This directory contains the CP/NET client packages. Please refer to
the RomWBW User Guide for instructions on installing these packages.
Either the MT011 RCBus module or the Duodyne Disk I/O board is required.
All of these files come from Douglas Miller. Please refer to
https://github.com/durgadas311/cpnet-z80 for more information, complete
documentation and the latest source code. Refer to the RomWBW
User Guide for basic installation and usage instructions under RomWBW.
| File | CP/NET Version | OS | Hardware |
+--------------+----------------+----------+-----------------------+
| CPN12MT.LBR | CP/NET 1.2 | CP/M 2.2 | RCBus w/ MT011 |
| CPN3MT.LBR | CP/NET 3 | CP/M 3 | RCBus w/ MT011 |
| CPN12DUO.LBR | CP/NET 1.2 | CP/M 2.2 | Duodyne w/ Disk I/O |
| CPN3DUO.LBR | CP/NET 3 | CP/M 3 | Duodyne w/ Disk I/O |
In general, to use CP/NET on RomWBW, it is intended that you will
extract the appropriate set of files into your default directory in
user area 0. Refer to the RomWBW User Guide for more information.
The libraries include enhanced help files appropriate for the version
of CP/NET. Rename the desired topic collection to HELP.HLP on the
target system.
CPM2NET.HLP CP/M 2.2 basic system with CP/NET 1.2
CPNET12.HLP CP/NET 1.2 help only
CPM3NET.HLP CP/M 3 basic system with CP/NET 3
CPNET3.HLP CP/NET 3 help only
-- WBW 7:14 AM 2/11/2024

9
Binary/Clean.cmd

@ -2,11 +2,16 @@
setlocal
if exist *.bin del *.bin
if exist *.dat del *.dat
if exist *.com del *.com
if exist *.img del *.img
if exist *.rom del *.rom
if exist *.hex del *.hex
if exist *.upd del *.upd
if exist *.pdf del *.pdf
if exist *.log del *.log
if exist *.eeprom del *.eeprom
setlocal & cd Apps && call Clean || exit /b 1 & endlocal
pushd Apps && call Clean || exit /b 1 & popd
pushd CPM3 && call Clean || exit /b 1 & popd
pushd ZPM3 && call Clean || exit /b 1 & popd
pushd CPNET && call Clean || exit /b 1 & popd

167
Binary/DiskList.txt

@ -1,167 +0,0 @@
***********************************************************************
*** ***
*** R o m W B W ***
*** ***
*** Z80/Z180 System Software ***
*** ***
***********************************************************************
This directory ("Binary") is part of the RomWBW System Software
distribution archive. Refer to the ReadMe.txt file in this
directory for more information on the overall contents of the
directory.
RomWBW includes a set of disk images that are ready to copy onto
a floppy or hard/CF/SD disk. You can use your modern computer
(Windows/Linux/Mac) to copy the disk image file onto your disk
media. The disk media will then be ready to use in your RomWBW
System.
A description of the disk images is provided later in this file.
For more information on the creatioin of these images including
instructions for customizing them or creating your own, refer to
the ReadMe.txt file in the Source\Images directory.
Installing Images
-----------------
The following instructions apply to Windows computers. Alternatively,
you can use the "dd" command on Linux or Mac.
First of all, a MAJOR WARNING!!!! The tools described below are
quite capable of obliterating your running Windows system drive. Use
with extreme caution and make sure you have backups.
To install a floppy image on floppy media, you can use the tool
called RaWriteWin. This tool is included in the Tools directory of
the distribution. This tool will write your floppy image (fd_xxx.img)
to a floppy disk using a raw block transfer. The tool is GUI based
and it's operation is self explanatory.
To install a hard disk image on a CF card or SD card, you must have
the appropriate media card slot on your computer. If you do, you can
use the tool called Win32DiskImager. This tool is also included in
the Tools directory of the distribution. It will write your
hard disk image (hd_xxx.img) to the designated media card. This tool
is also GUI based and self explanatory.
The use of the SIMH emulator is outside of the scope of this document.
However, if you use SIMH, you will find that you can attach the hard
disk images to the emulator with lines such as the following in your
SIMH configuration file:
| attach hdsk0 hd_cpm22.img
| set hdsk0 format=HDSK
| set hdsk0 geom=T:2048/N:256/S:512
| set hdsk0 wrtenb
Making Disk Images Bootable
---------------------------
The Operating System disk images below are ready to boot by the
RomWBW Boot Loader. However, if you update your RomWBW ROM, then
you should also update the system tracks of your bootable disk
images. You would use SYSCOPY to do this. SYSCOPY can also be
used to make a disk bootable if it is not already bootable.
You would use a command like the following to make drive C bootable:
| B>SYSCOPY C:=CPM.SYS
The system file to use depends on the operating system you are trying
to boot from the slice you are initializing with SYSCOPY:
CP/M 2.2 - cpm.sys
ZSDOS 1.1 - zsys.sys
CP/M 3 - cpmldr.sys
ZPM3 - cpmldr.sys
Slices
------
A RomWBW CP/M filesystem is fixed at 8MB. This is because it is the
largest size filesystem supported by all common CP/M variants. Since
all modern hard disks (including SD Cards and CF Cards) are much
larger than 8MB, RomWBW supports the concept of "slices". This
simply means that you can concatenate multiple CP/M filesystems (up
to 256 of them) on a single physical hard disk and RomWBW will allow
you to assign drive letters to them and treat them as multiple
independent CP/M drives.
With the exception of the hd_combo image, each of the disk images
includes a single CP/M file system (i.e., a single slice). However,
you can easily create a multi-slice disk image by merely concatenating
multiple images together. For example, if you wanted to create a 2
slice disk image that has ZSDOS in the first slice and Wordstar in
the second slice, you could use the following command from a Windows
command prompt:
| C:\RomWBW\Binary>copy /b hd_zsdos.img + hd_ws.img hd_multi.img
You can now write hd_multi.img onto your SD or CF Card and you will
have ZSDOS in the first slice and Wordstar in the second slice.
The hd_combo disk image is an example of this. It contains several
slices in one image file. The contents of this special disk image
are described below.
The concept of slices applies ONLY to hard disks. Floppy disks are
not large enough to support multiple slices.
Disk Image Contents
-------------------
What follows is a brief description of the contents of the
disk images automatically provided in the RomWBW distribution.
Note that all of the OS images include the RomWBW custom
support apps.
cpm22 - DRI CP/M 2.2 (Bootable Floppy and Hard Disk)
Standard DRI CP/M 2.2 distribution files along with a few commonly
used utilities.
zsdos - ZCPR1 + ZSDOS 1.1 (Bootable Floppy and Hard Disk)
Contains ZCPR1 and ZSDOS 1.1. This is roughly equivalent to the
ROM boot contents, but provides a full set of the applications
and related files that would not all fit on the ROM drive.
nzcom - NZCOM (Bootable Floppy and Hard Disk)
Standard NZCOM distribution. Note that you will need to run the
NZCOM setup before this will run properly. You will need
to refer to the NZCOM documentation.
cpm3 - DRI CP/M3 (Bootable Floppy and Hard Disk)
Standard DRI CP/M 3 adaptation for RomWBW that is ready to run.
It can be started by running CPMLDR.
zpm3 - ZPM3 (Bootable Floppy and Hard Disk)
Simeon Cran's ZCPR 3 compatible OS for CP/M 3 adapted for RomWBW and
ready to run. It can be started by running CPMLDR (which seems
wrong, but ZPMLDR is somewhat broken).
ws4 - WordStar 4 (Floppy and Hard Disk)
Micropro Wordstar 4 full distribution. This image is not bootable
and is intended to be added as an additional slice to an OS image.
bp - BPBIOS (Hard Disk only)
Adaptation of BPBIOS for RomWBW. This is NOT complete and NOT
useable in it's current state.
combo - Multi-Boot Combination (Bootable Hard Disk)
A pre-created combo image that contains the following slices. The
slices are identical to the individual images listed above.
Slice 0: cpm22 (bootable)
Slice 1: zsdos (bootable)
Slice 2: nzcom (bootable)
Slice 3: cpm3 (bootable)
Slice 4: zpm3 (bootable)
Slice 5: ws4 (not bootable)

6
Binary/Makefile

@ -1,8 +1,8 @@
TOOLS = ../Tools
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.img *.rom *.com *.eeprom)
SUBDIRS = Apps
SUBDIRS = Apps CPM3 ZPM3 CPNET
include $(TOOLS)/Makefile.inc
clobber::
rm -f *.bin *.com *.img *.rom *.pdf *.log *.eeprom
clean::
@rm -f *.bin *.com *.img *.rom *.upd *.hex *.pdf *.log *.eeprom *.dat

43
Binary/ReadMe.txt

@ -39,8 +39,17 @@ image for the Mark IV with the standard configuration. If a custom
configuration called "custom" is created and built, a new file called
MK4_custom.rom will be added to this directory.
Documentation of the pre-built ROM Images is contained in the
RomList.txt file in this directory.
Documentation of the pre-built ROM Images is contained in
"RomWBW User Guide.pdf" in the Doc directory.
ROM Firmware Update Images (<plt>_<cfg>.upd)
-------------------------------------
The files with a ".upd" extension are binary images identical to the
.rom files, but they only have the first 128K bytes. The first 128K
is the system image without the ROM disk contents. These files can be
used to update the system image without modifying the ROM disk
contents. Refer to the RomWBW User Guide for more information.
ROM Executable Images (<plt>_<cfg>.com)
---------------------------------------
@ -66,8 +75,8 @@ The VDU video board requires a dedicated onboard ROM containing the
font data. The "vdu.rom" file contains the binary data to program
onto that chip.
Disk Images (fd_*.img, hd_*.img)
------------------------------
Disk Images (fd_*.img, hd_*.img, psys.img)
------------------------------------------
RomWBW includes a mechanism for generating floppy disk and hard disk
binary images that are ready to copy directly to a floppy, hard disk,
@ -87,19 +96,35 @@ RawWriteWin (as long as you have access to a floppy drive on your
Windows computer). The resulting floppy disks will be usable on any
RomWBW-based system with floppy drive(s).
Likewise, the hd_*.img files are hard disk images. Each file is
intended to be copied to the start of any type of hard disk media
(typically a CF Card or SD Card). The resulting media will be usable
on any RomWBW-based system that accepts the corresponding media type.
Likewise, the hd512_*.img and hd1k_*.img files are hard disk images.
Each file is intended to be copied to the start of any type of hard
disk media (typically a CF Card or SD Card). The resulting media will
be usable on any RomWBW-based system that accepts the corresponding
media type.
NOTE: The hd512_*.img files are equivalent to the hd_*.img
files in previous distributions. The hd1k_*.img files
contained a revised file system format that increases the
maximum number of CP/M directory entries from 512 to 1024.
Refer to the ReadMe.txt in the Source/Images directory
for details.
Documentation of the pre-built disk images is contained in the
DiskList.txt file in this directory.
"RomWBW User Guide" found in the Doc directory. The contents of
the disk images is contained in the "RomWBW Disk Catalog", but it
is significantly out-of-date.
The contents of the floppy/hard disk images are created by
the BuildImages.cmd script in the Source directory. Additional
information on how to generate custom disk images is found in the
Source\Images ReadMe.txt file.
The psys.img file contains a full implementation of the UCSD p-System
for the Z80 running under RomWBW. This image file must be placed on
disk media by itself (not appended or concatenated with hd*.img files.
Refer to the Source/pSys/ReadMe.txt file for more information on the
p-System implementation.
Propeller ROM Images (*.eeprom)
-------------------------------

218
Binary/RomList.txt

@ -1,218 +0,0 @@
***********************************************************************
*** ***
*** R o m W B W ***
*** ***
*** Z80/Z180 System Software ***
*** ***
***********************************************************************
This directory ("Binary") is part of the RomWBW System Software
distribution archive. Refer to the ReadMe.txt file in this
directory for more information on the overall contents of the
directory.
When distributed, RomWBW contains a set of pre-built ROM images that
are ready to program onto the EEPROM of any of the Z80/Z180 based
RetroBrew Computers CPU boards. Additionally, any custom built ROM
images will be placed in this directory.
All of the pre-built ROM images are 512KB. This size is compatible
with all of the Z80/Z180 systems. Some systems can accept different
size ROM images. Creating alternative sizes requires a custom ROM
build (see ReadMe.txt in the Source directory).
It is critical that the right ROM Imgae be selected for the target
platform being used. The table below indicates the correct ROM
image to use for each platform:
SBC V1/V2 SBC_std.rom
SBC SimH SBC_simh.rom
Zeta V1 ZETA_std.rom
Zeta V2 ZETA2_std.rom
N8 N8_std.rom
Mark IV MK4_std.rom
RC2014 w/ Z80 RCZ80_std.rom
RC2014 w/ Z180 RCZ180_nat.rom (native Z180 memory addressing)
RC2014 w/ Z180 RCZ180_ext.rom (external 512K RAM/ROM module)
SC-series SC126, SC130
Easy Z80 EZZ180_std.rom
Dyno DYNO_std.rom
You will find there is one additional ROM image called
"UNA_std.rom". This ROM image is an UNA-based RomWBW ROM image. As
such, this ROM image can be used on any Z80/Z180 platform supported
by John Coffman's UNA BIOS. Refer to RetroBrew Computers Wiki for
more information on UNA hardware support.
For each of the ROM Images (".rom"), there are corresponding files
with the extensions of ".com" and ".img". The .com variant can be
copied to a functional RomWBW-based system and executed like a
normal application under CP/M or Z-System. This will load the new
ROM on-the-fly. It is an excellent way to test a ROM Image before
actually burning it. Similarly, the .img files can be loaded using
the UNA FAT loader for testing.
WARNING: In a few cases the .com file is too big to load. If you get
a message like "Full" or "BAD LOAD" when trying to load one of the
.com files, it is too big. In these cases, you will not be able to
test the ROM prior to programming it.
All of the standard ROM Images are configured for:
- 512KB ROM Disk
- 512KB RAM Disk
- 38.4Kbps baud serial console (*)
- Auto-discovery of all serial ports
* RC2014 and Stephen Cousins' kits run at 115,200Kbps baud
All hard disk type devices (IDE, PPIDE, CF Card, SD Card) will be
automatically assigned two drive letters per device. The drive
letters will refer to the first 2 slices of the device. The ASSIGN
command can be used to display and reassign drives to disk devices
and slices as desired.
Standard ROM Image Notes
------------------------
The standard ROM images will detect and install support for certain
devices and peripherals that are on-board or frequently used with
each platform as documented below. If the device or peripheral is
not detected at boot, the ROM will simply bypass support
appropriately.
SBC (SBC_std.rom):
- CPU speed is detected at startup
- Console on onboard UART serial port at 38400 baud
- Includes support for PPIDE/CF Card(s) connected to on-board
parallel port.
- Includes support for CVDU and VGA3 boards. If detected at
startup, support for video and keyboard is installed
including VT-100/ANSI terminal emulation.
- Auto-detects PropIO or PropIO V2 and installs associated
video, keyboard and SD Card support if present.
- If PropIO, PropIO V2, CVDU, or VGA hardware is detected,
initial console output is determined by JP2. If JP2 is
shorted, console will go to on-board serial port, if JP2
is open, console will go to the detected video and keyboard
ports.
- SBC V1 has a known race condition in the bank switching
circuit which is likely to cause system instability. SBC
V2 does not have this issue.
SBC (SBC_simh.rom):
- SBC variant customized to run under SimH
- Implments two emulated SimH hard disk images
- Uses SimH RTC
ZETA (ZETA_std.rom):
- CPU speed is detected at startup
- Console on onboard UART serial port at 38400 baud
- Includes support for on-board floppy disk controller and
two attached floppy disks.
- Auto-detects ParPortProp and includes support for it if it
is attached.
- If ParPortProp is installed, initial console output is
determined by JP1. If JP1 is shorted, console will go to
on-board serial port, if JP1 is open, console will go to
ParPortProp video and keyboard ports.
ZETA2 (ZETA2_std.rom):
- CPU speed is detected at startup
- Console on onboard UART serial port at 38400 baud
- Includes support for on-board floppy disk controller and
two attached floppy disks.
- Auto-detects ParPortProp and includes support for it if it
is attached.
- Uses CTC to generate periodic timer interrupts.
- If ParPortProp is installed, initial console output is
determined by JP1. If JP1 is shorted, console will go to
on-board serial port, if JP1 is open, console will go to
ParPortProp video and keyboard ports.
N8 (N8_std.rom):
- CPU speed is detected at startup
- Console on Z180 onboard primary ASCI serial port at 38400 baud
- Includes support for on-board floppy disk controller and
two attached floppy disks.
- Includes support for on-board TMS9918 video and keyboard
including VT-100/ANSI terminal emulation.
- Includes support for on-board SD Card as hard disk and
assumes a production level N8 board (date code >= 2312).
MK4 (MK4_std.rom):
- CPU speed is detected at startup
- Console on Z180 onboard primary ASCI serial port at 38400 baud
- Includes support for on-board IDE port (CF Card via adapter).
- Includes support for on-board SD Card port.
- Auto-detects PropIO or PropIO V2 and installs associated
video, keyboard and SD Card support if present.
- Includes support for CVDU and VGA3 boards. If detected at
startup, support for video and keyboard is installed
including VT-100/ANSI terminal emulation.
RCZ80 (RCZ80_std.rom):
- Assumes CPU oscillator of 7.3728 MHz
- Requires 512K RAM/ROM module
- Auto detects Serial I/O Module (ACIA) and Dual Serial
Module (SIO/2). Either one may be used.
- Console on whichever serial module is installed,
but will use the SIO/2 if both are installed. Baud
rate is determined by hardware, but normally 115200.
- Includes support for RC2014 Compact Flash Module
- Support for RC2014 PPIDE Module may be enabled in config
- Support for Scott Baker SIO board may be enabled in config
- Support for Scott Baker floppy controllers (SMC & WDC) may
be enabled in config
RCZ80 w/ KIO (RCZ80_kio.rom):
- Assumes CPU oscillator of 7.3728 MHz
- Requires 512K RAM/ROM module
- Requires KIO module
- Console on KIO primary serial port at 115200 baud
- Includes support for RC2014 Compact Flash Module
- Includes support for RC2014 PPIDE Module
- Support for Scott Baker SIO board may be enabled in config
- Support for Scott Baker floppy controllers (SMC & WDC) may
be enabled in config
RCZ180 (RCZ180_nat.rom & RCZ180_ext.rom):
- Assumes CPU oscillator of 18.432 MHz
- Console on Z180 onboard primary ASCI serial port at 115200 baud
- Includes support for RC2014 Compact Flash Module
- Includes support for RC2014 PPIDE Module
- Support for alternative serial modules may be enabled in config
- Support for Scott Baker floppy controllers (SMC & WDC) may
be enabled in config
- You must pick the _nat or _ext variant depending on which
memory module you are using:
- RCZ180_nat.rom uses the built-in Z180 memory manager
for use with memory modules allow direct physical
addressing of memory, such as the SC119
- RCZ180_ext.rom uses external bank management to access
memory, such as the 512K RAM/ROM module.
SCZ180 (SCZ180_126.rom, SCZ180_130.rom, SCZ180_131.rom):
- Assumes CPU oscillator of 18.432 MHz
- Console on Z180 onboard primary ASCI serial port at 115200 baud
- Includes support for RC2014 Compact Flash Module
- Includes support for RC2014 PPIDE Module
- Support for alternative serial modules may be enabled in config
- Support for Scott Baker floppy controllers (SMC & WDC) may
be enabled in config
- The 3 different variants of SCZ180 are provided to match the
3 corresponding systems (SC126, SC130, and SC131) designed by
Stephen Cousins.
EZZ80 (EZZ80_std.rom):
- Assumes CPU oscillator of 10.000 MHz
- Console on primary SIO serial port at 115200 baud
- Includes support for on-board SIO
- Includes support for RC2014 Compact Flash Module
- Includes support for RC2014 PPIDE Module
DYNO (DYNO_std.rom):
- Assumes CPU oscillator of 18.432 MHz
- Console on Z180 onboard serial ports at 38400 baud
- Includes support for BQ4842 RTC
- Includes support for onboard PPIDE
- Support for Dyno floppy controllers may be enabled in config

10
Binary/ZPM3/Clean.cmd

@ -0,0 +1,10 @@
@echo off
setlocal
if exist *.spr del *.spr
if exist *.com del *.com
if exist *.sys del *.sys
if exist *.pat del *.pat
if exist *.dat del *.dat
if exist *.zpm del *.zpm
if exist *.spr del *.spr

7
Binary/ZPM3/Makefile

@ -0,0 +1,7 @@
TOOLS = ../../Tools
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.spr)
include $(TOOLS)/Makefile.inc
clean::
@rm -f *.spr *.com *.sys *.dat *.zpm

17
Binary/ZPM3/ReadMe.txt

@ -0,0 +1,17 @@
***********************************************************************
*** ***
*** R o m W B W ***
*** ***
*** Z80/Z180 System Software ***
*** ***
***********************************************************************
This directory contains the ZPM3 system files for the RomWBW ZPM3
adaptation. All of these files are already included on the ZPM3
boot disk images. However if you are creating a CP/M 3 boot disk
manually, you should copy all of these files to the boot disk.
These files should also be copied to any ZPM3 boot disks on your
system when you upgrade your ROM firmware. Some of these files
*must* match the version of the RomWBW firmware you are using for
proper operation of your system.

6
Build.cmd

@ -0,0 +1,6 @@
@echo off
setlocal
pushd Source && call Build %* || exit /b & popd
if "%*" == "" pause

42
CONTRIBUTING.md

@ -0,0 +1,42 @@
# Contributing to RomWBW
> **WARNING**: The `dev` branch of RomWBW has been deprecated as of v3.4. All Pull Requests should now target the `master` branch.
Contributions of all kinds to RomWBW are welcomed and greatly appreciated.
- Reporting bug(s) and suggesting new feature(s)
- Discussing the current state of the code
- Submitting a fixes and enhancements
## RomWBW GitHub Repository
The [RomWBW GitHub Repository](https://github.com/wwarthen/RomWBW) is the primary location for developing, supporting, and distributing RomWBW. Although input is gladly accepted from almost any channel, the GitHub Repository is preferred.
- Use **Issues** to report bugs, request enhancements, or ask usage questions.
- Use **Discussions** to interact with others
- Use **Pull Requests** to submit content (code, documentation, etc.)
## Submitting Content
This RomWBW Project uses the standard [GitHub Flow](https://docs.github.com/en/get-started/quickstart/github-flow). Submission of content changes (including code) are ideally done via Pull Requests.
- Submitters are advised to contact [Wayne Warthen](mailto:wwarthen@gmail.com) or start a GitHub Discussion prior to starting any significant work. This is simply to ensure that submissions are consistent
with the overall goals and intentions of RomWBW.
- All submissions should be based on the `master` branch. To create your submission, fork the RomWBW repository and create your branch from `master`. Make (and test) your changes in your personal fork.
- Please update relevant documentation and the `ChangeLog` found in the `Doc` folder.
- You are encouraged to comment your submissions to ensure your work is properly attributed.
- When ready, submit a Pull Request to merge your forked branch into the RomWBW master branch.
## Coding Style
Due to the nature of the project, you will find a variety of coding styles. When making changes to existing code, please try to be consistent with the existing coding style. You may not like the current style, but no one likes mixed styles
in one file/module.
Be careful with white space. RomWBW is primarily assembly langauge code. The use of tab stops at every 8 characters is pretty standard for assembler. If you use something else, then your code will look odd when viewed by others.
In most cases, the use of `<cr><lf>` line endings is preferred. This is standard for the operating systems of the era that RomWBW provides. Also note that CP/M text files should end with a ctrl-Z (0x1A). This is not magically added by the
tools that generate the disk images.
## License
RomWBW is licensed under GPLv3. When you submit code changes, your submissions are understood to be under the same [GPLv3 License](https://www.gnu.org/licenses/gpl-3.0.html) that covers the project.

5
Clean.cmd

@ -0,0 +1,5 @@
@echo off
setlocal
pushd Binary && call Clean || exit /b 1 & popd
pushd Source && call Clean || exit /b 1 & popd

BIN
Doc/Aztec_C_1.06_User_Manual_Mar84.pdf

Binary file not shown.

218
Doc/ChangeLog.txt

@ -1,3 +1,187 @@
Version 3.5
-----------
- M?F: Fix for hours display in HBRTC application
- M?F: Fix for assembly error in DS1501RTC driver
- WBW: Add VT-100 graphics char selection to Propeller firmware
- WBW: Allow all lines of VGA display to be used on Propeller firmware
- WBW: Allow front panel LED/Switch bits to be inverted in config
- WBW: Add API to expose application banks available
- WBW: Added console takeover at boot loader prompt
- L?N: Fixed Propeller font vertical line character to align properly
- L?S: EF9345 video display controller driver
- WBW: Added Cowgol disk image based on the work of Ladislau Szilagyi
- WBW: Added support for CP/NET on Duodyne Disk I/O
- DDW: Added support for Duodyne Media board
Version 3.4
-----------
NOTE: Changes require HBIOS/CBIOS/Apps sync, version bump to 3.4 to ensure integrity
- WBW: Device type number moved from upper nibble to full byte
- A?C: Support for EP ITX-Mini Z180 Platform
- M?R: Significant improvement in User Guide document
- J?P: Preliminary support for Monsputer (MON)
- JLC: Standardize TMS driver memory map for compatibility
- WBW: Improved IDE device detection
- WBW: Fixed decompression when run on Z280
- K?B: WDATE generic HBIOS date/time utility
- WBW: Create new DSKY framework with simple driver style interface
- JBL: Added ColecoVision config in TMS driver
- WBW: Added support for interrupt mode 1 on Z180
- WBW: Added S100 platform
- WBW: Added Duodyne platform
- WBW: Incorporated John Monahan's S100 Monitor in S100 platform build
- WBW: Support ESP32 on Duodyne
- M?C: Fixed port specification when using XM.COM send transfers
- PMS: Support for Duodyne DMA
- WBW: Added Serial ROM (SROM.COM) utility
- WBW: Support S100 Propeller Console
- SCC: Added support for SC700
- WBW: Added Heath H8 platform
- D?J: Enhanced build to run on Raspberry Pi 4
- WBW: Complete overhaul of ROMless boot operation
- WBW: Prevent access to slices outside of partition
- T?P: Contributed the HTALK utility
- WBW: CTS stall detection
- W?S: Updated FLASH utility to v1.3.7
- L?N: Updated UNARC to new OS universal version
- B?C: Added support for Z1RCC
- M?R: User Guide enhancements and corrections
- D?H: Added support for specification of secondary console
- WBW: Added platform for Monsputer
- WBW: Added FAT.COM to standard ROM Disk (removed RMAC.COM & LINK.COM)
Version 3.3
-----------
NOTE: v3.3 was never released
- WBW: Support Front Panel switches
- A?C: Preliminary support for Z80-Retro
- A?C: Support for SD PIO
- A?C: Support for Z80-Retro SD interface
- WBW: Support per-drive floppy configuration
- WBW: Support for Bill Shen's VGARC
- WBW: Support for MG014 Parallel Port module + printer
- WBW: Support for IMM Zip Drive on PPI interface (much inspiration from Alan Cox)
- WBW: Support for PPA Zip Drive on PPI interface (much inspiration from Alan Cox)
- WBW: Support for SyQuest SparQ Drive on PPI interface (much inspiration from Alan Cox)
- WBW: Support for ATAPI Disk Drives (not CD-ROMs) on IDE and PPIDE interfaces
- R?P: Added new disk images: Aztec C, MS BASIC Compiler, MS Fortran, Games, HiTech-C, Turbo Pascal, SLR Z80ASM
- JBL: Added RCZ80 configuration for ColecoVision
- WBW: Support for Z180 running interrupt mode 1
- WBW: Preliminary support for S100 Computers Z180
- WBW: Preliminary support for Dan Werner's ESP32 MBC Module
- WBW: Early support for Duodyne base system (CPU/UART/ROM/RAM/RTC/SPK)
- M?C: Fixed XM to allow specifying HBIOS port for send operations
- WBW: Fix S100 Z180 LED operation (credit to Jay Cotton for finding this issue)
- WBW: QPM system image is now combined with current CBIOS during build
- WBW: Added framework for Heath platform
- WBW: Support for USB Disks via CH375/CH376
- D?J: Support for Raspberry Pi build process
Version 3.2.1
-------------
- M?P: Fixed Zeta 2 FDD and CPUSPD config settings
- WBW: Fixed SURVEY.COM (again)
- DDW: Updates to DOS/65 binaries in disk images
- PMS: Updates to VGMPLAY including support for YM2151
- WBW: Fix for quark delay adjustment being trashed
Version 3.2
-----------
- WBW: Version bump for release
Version 3.1.1
-------------
- WBW: Version bumped due to pervasive changes
- WBW: Preliminary hard disk partition support (backward compatible)
- WBW: Change Propeller VGA signal timings to 60Hz refresh
- WBW: Enhanced SYSTEM RESET function to allow a warm start back to boot loader
- C?O: Add DUART driver
- WBW: Early Z280 support (requires 512K RAM/ROM board)
- HCS: ZRC memory manager support
- S?K: Support for Tiny Z80 by Sergey
- E?B: Support for v6 YM/AY sound card
- C?M: Support for RCBus bus PropIO V2
- W?S: Updated FLASH software to v1.3.4
- PMS: Preliminary support for writing to FLASH ROMs
- PMS: Creation of process to update ROM system area w/o updating ROM disk contents
- PMS: Added "updater.asm" which allows uploading and updating ROM in one step
- WBW: Support for Z280 w/ native memory and interrupt mode 3
- WBW: Support for Z280 UART (interrupt driven only in interrupt mode 3)
- WBW: Add support Z80-512K (watchdog and LED)
- WBW: Add support for ZZ80MB address map
- PLS: Add support for Z180 invalid opcode trap
- WBW: Add support for ZZRCC
- WBW: Allow selection of RAM/ROM disk individually in build
- WBW: Support 256KB ROM size
- WBW: CP/M 3 RTC support is now complete (reads and writes RTC date/time)
- WBW: Add config to allow swapping logical order of MT011 SPI ports
- WBW: COPY.COM updated from v1.72 -> v1.73 throughout distribution
- D?M: CP/NET for CP/M 2.2 and CP/M 3 (requires MT011)
- D?M: SD driver fixes for MT011
- J?C: Added FIND application from Jay Cotton
- PMS: Preliminary support for I2C-based DS1307 clock
- WBW: FD driver auto hardware detect (thanks Alan Cox)
- D?N: Added support for TMS V9958 VDU
- D?N: Added support for MSX keyboard
- D?N: Added support for RP5C01 RTC
- L?N: Slightly enhanced ZCPRD&J w/ a couple bug fixes
- L?N: UNZIPZ4 which handles most modern ZIP file compression algorithms
- AJL: Preliminary support for MBC systems
- WBW: Added preliminary support for DSKYng
- WBW: Elevated MBC to a platform
- WBW: Added support for MBC user LEDs
- PMS: Early DMA support
- W?S: Updated FLASH software to v1.3.5 (supports 128KB A29010B, 512KB A29040B)
- DDW: Support for DSKYng capabitlities
- WBW: Added Phil Summers' ROM Updater into ROM Loader
- AJL: Added ramtest app (requires SBC and MBC for now)
- L?N: Provided SCOPY, XSUB01, and EX applications
- WBW: Added support for MBC FDC to FDU application
- WBW: Added support for MBC FDC to HBIOS
- WBW: Refactored make process
- WBW: Added ROM verification to boot process
- WBW: Added Z80 instruction test apps to user area 5 in CP/M & ZSDOS
- WBW: Add support for LINC sound card
- WBW: Add interrupt receive support to UART driver
- PMS: Add XModem transfer within Debug Monitor
- PMS & AJL: Add DMAMON test application
- PMS: Add ZMP adaptation
- LWN: Substantial BPBIOS cleanup
- AJL: Add ZMD adaptation
- D?T: Substantial update to TastyBasic incuding a .COM executable
- PMS: Added VGM audio file player
- WBW: ZPMLDR and ZPM3 fixes, credit to Lars Nelson for finding ZPM3 source!
- DDW: Add support for MBC sound card
- WBW: Add support for "romless" booting
- L?N: Fixes for ZCPR-D&J (buffer overflow, default drive/user)
- J?P: Add support for DS1501 RTC
- LLS: Added a user defined mode for SD Card interfaces (not complete)
- L?N: Updated ZDE to v1.8 including time stamp preservation fixes
- D?M: Minor update to CP/NET client files, fix to CPNBOOT
- WBW: Added p-System IV.0 Z80 implementation
- WBW: Hacked SURVEY to work around bank switching crash
Version 3.1
-----------
- WBW: Refactored ROM Loader
- WBW: INTRTC periodic timer based clock
- WBW: FDISK80 updated to allow reserving up to 256 slices
- WBW: Added support dual 16C550 UART on RCBus platform
- WBW: Made .com images smaller (contain only Z-System now)
- WBW: Support automatic clock hardware detection and fallback
- WBW: Support use of CTC for SIO baud rate divisors
- WBW: Updated IDE and PPIDE drivers to improve old CF Card compatibility
- WBW: Support TIMER mode in CTC driver
- DEN: Added sound driver support
- DEN: Added SN76489 sound chip driver
- M?O: RomWBW Disk Catalog document
- DEN: Updated TMS to optionally trigger SYSTIMER interrupt (TMSTIMENABLE)
- J?M: Updated KERMIT applications with VT100 terminal support
- A?C: Added support for EPFDC
- PMS: Added AY driver with new sound API support
- DEN: Allow immediate autoboot startup
- DEN: Support for floppy device count parameter
Version 3.0.1
-------------
- WBW: Increase XModem timeout waiting for host to start sending
@ -20,8 +204,8 @@ Version 2.9.2
- WBW: Support two SIO modules w/ auto-detection
- PMS: Support ECB USB-FIFO board
- WBW: Fixed ASSIGN issue with incorrect DPB selection
- WBW: Add RC2014 Z180 AY sound support to TUNE app
- WBW: Add RC2014 AY sound support to AY driver
- WBW: Add RCBus Z180 AY sound support to TUNE app
- WBW: Add RCBus AY sound support to AY driver
- WBW: Add SC126 platform
- WBW: Config files cleanup
- WBW: Add interrupt support to ASCI driver
@ -40,7 +224,7 @@ Version 2.9.2
- PMS: Add sound support to NASCOM BASIC
- WBW: Updated FAT to add MD and FORMAT commands
- WBW: Add CP/M 3 (experimental)
- M?T: Support Shift register SPI WIZNET for RC2014
- M?T: Support Shift register SPI WIZNET for RCBus
- PLS: Added seconds register in HBIOS
- WBW: More flexible table-driven config in TUNE.COM
- PMS: Added timer support for Zilog Peripherals ECB Board
@ -68,7 +252,7 @@ Version 2.9.2
Version 2.9.1
-------------
- E?B: Added support for RC2014 RTC
- E?B: Added support for RCBus RTC
- WBW: Converted PTXPLAY to TUNE (now plays PT2/PT3/MYM sounds files)
- WBW: Updated Win32DiskImager to v1.0
- WBW: Implemented character attributes on Propeller based consoles
@ -78,7 +262,7 @@ Version 2.9.1
- WBW: Update default IOBYTE so that LST:=LPT: by default
- WBW: Fixed missing drive/head setup for writes in PPIDE
- WBW: Fixed XModem HBIOS console driver for file send operations
- WBW: Preliminary support for RC180 platform (Z180 module in RC2014)
- WBW: Preliminary support for RC180 platform (Z180 module in RCBus)
- WBW: Added NZCOM distribution files to third slice of hard disk image
- WBW: Fixed getnum32 bug in MODE command (found by Phil Summers)
- PMS: Added serial support for Zilog Peripherals Baord
@ -90,32 +274,32 @@ Version 2.9.1
- PMS: Added Forth, Nascom BASIC, and Tasty BASIC to ROM
- PMS: Refactored ROM Loader to support more ROM images, now table driven
- WBW: Refactored DSKY code
- SK: Initial support for Easy Z80
- S?K: Initial support for Easy Z80
- PMS: Enhance VDU driver to support alternative screen dimensions
- WBW: DDT and DDTZ modified to use RST 30 instead of RST 38 to avoid conflicts with IM 1 interrupts
- WBW: Added timer interrupt support for CTC under Zeta 2 and Easy Z80
- WBW: Support LBA style access in floppy driver
- WBW: Added beta version of FAT filesystem utility (copy, dir, del, ren)
- SCC: Added support for native memory addressing on Z180-based RC2014
- SCC: Added support for native memory addressing on Z180-based RCBus
- PMS: Dynamically discover and display processor type at boot
- J?L: Added German keyboard support to PPK and KBD drivers
Version 2.9.0
-------------
- WBW: Implemented multi-sector I/O in all disk drivers
- WBW: Added support for RC2014 SMB Floppy controller modules (SMC and WDC)
- WBW: Added support for RCBus SMB Floppy controller modules (SMC and WDC)
- WBW: New function dispatching for character/disk/video drivers
- WBW: Updated FDU app to support RC2014 floppy controllers
- WBW: Updated FDU app to support RCBus floppy controllers
- WBW: Added TIMER app to display system timer value
- WBW: Refactored interrupt management code
- WBW: Added PTXPLAY application and sample tunes
Version 2.8.6
-------------
- WBW: Added support for RC2014 (SIO and ACIA drivers primarily)
- WBW: Added support for RCBus (SIO and ACIA drivers primarily)
- WBW: Automatically detect and run PROFILE.SUB on boot drive if it exists
- WBW: Fixed Dual SD Board detection
- WBW: Added console support to XModem (for RC2014 primarily)
- WBW: Added console support to XModem (for RCBus primarily)
- E?B: Fixed IDE/PPIDE when used with non-CF drives
- WBW: Patched SUBMIT.COM so that it always puts temp file on A: for immediate execution
- WBW: Accommodate spin up time for true IDE hard disks (IDE or PPIDE)
@ -268,7 +452,7 @@ Version 2.0
- DWG: Entire new suite of Apps written in Aztec C
- DWG: BANKER.COM - displays bank identification and version information
- DWG: CPMNAME.COM - displays CBIOS header data and SYSCFG data, names and vaues
- DWG: CHARS.COM - displays ascii map as reference
- DWG: CHARS.COM - displays ascii map as reference
- DWG: CLS.COM - clears screen
- DWG: LABEL.COM - displays and changes drive labels for drives with reserved tracks
- DWG: MAP.COM - like old map command, displays drives and logical unit labels and changes LU values
@ -300,7 +484,7 @@ Version 1.5.1
- WBW: Added ZSDOS clock drivers (see Support\Clock)
- WBW: Overhaul of ZSystem ROM Disk (see Doc\ZSystem.txt)
- WBW: Update PropIO ANSI emulation for compatiblity with ASSIGN
- DWG: Added version tags to all applications, and IDENT program to
- DWG: Added version tags to all applications, and IDENT program to
check version of utilities.
- DWG: Added MULTIFMT program which prepares new media for use by
initializing the metadata and clearing the directory sectors of
@ -310,8 +494,8 @@ Version 1.5.1
- DWG: ANALYSE and HELLO programs removed from ROM due space concerns
- DWG: Additional macro librarties added supporting program identification
(IDENTITY.LIB/ASM) and access to drive metadata (METADATA.LIB/ASM),
and realtime selection of logical units from within new application
programs (LOGICALS.LIB/ASM).
and realtime selection of logical units from within new application
programs (LOGICALS.LIB/ASM).
- DWG: Added TERM_VT52 for VDU compatbility, all apps now compliant
- DGG: Contributed Linux build (see Doc\BuildLinux.txt)
@ -339,7 +523,7 @@ Version 1.4
- DWG: Add various .SUB files used for application maintenance
- DWG: Enhanced utility building .SUB files to only contain libs utilitized
- DWG: Add BUILD.SUB to build all applications and DEVFILES.LBR
- DWG: Add/update RMAC macro libraries used in Apps -
- DWG: Add/update RMAC macro libraries used in Apps -
- DWG: BIOSHDR, STDLIB, STRCPY, STRLEN, CPMBIOS, CPMBDOS, TERMINAL, HARDWARE,
- DWG: CPMAPPL, GLOBALS, ATOI, LUBIND, APPLVERS, MEMORY(memcpy,memset), PORTAB
- DWG: Add/Repair BIOS support for Boot Drive login during CP/M Coldstart
@ -358,7 +542,7 @@ Version 1.4
- DWG: Add LABEL utility to insert label into drive/slice metadata
- DWG: Add 16 char label field to metadata
- DWG: ASSIGN utility displays and manipulates DPH/DPB & logical unit parameters
- DWG/WBW: Collaborated on design of Logical Unit DPH enhancemnt
- DWG/WBW: Collaborated on design of Logical Unit DPH enhancemnt
- WBW: Proposed MAP utility functionality
- WBW: Implement slice selection API for DSK devices
- WBW: Record boot drive in config memory at load time

186
Doc/Contrib/Flash4.txt

@ -1,186 +0,0 @@
FLASH4 (c) 2014 William R Sowerbutts <will@sowerbutts.com>
http://sowerbutts.com/8bit/
= Warning =
FLASH4 has been tested and confirmed working on:
* N8VEM SBCv2
* N8VEM N8-2312
* N8VEM Mark IV SBC
* DX-Designs P112
* ZETA SBC v2
However it remains somewhat experimental. If it works for you, please let me
know. If it breaks please also let me know so I can fix it!
= Introduction =
FLASH4 is a CP/M program which can read, write and verify Flash ROM contents to
or from an image file stored on a CP/M filesystem. It is intended for in-system
programming of Flash ROM chips on Z80 and Z180 systems.
FLASH4 aims to support a range of Flash ROM chips. Ideally I would like to
support all Flash ROM chips that are in use in Z80/Z180 N8VEM machines. If
FLASH4 does not support your chip please let me know and I will try to add
support.
When writing to the Flash ROM chip, FLASH4 will only reprogram the sectors
whose contents have changed. This helps to reduce wear on the flash memory,
makes the reprogram operation faster, and reduces the risk of leaving the
system unbootable if power fails during a reprogramming operation. FLASH4
always performs a full verify operation after writing to the chip to confirm
that the correct data has been loaded.
FLASH4 is reasonably fast. Reprogramming and verifying every sector on a 512KB
SST 39F040 chip takes 21 seconds on my Mark IV SBC, versus 45 seconds to
perform the same task using a USB MiniPro TL866 EEPROM programmer under Linux
on my PC. If only a subset of sectors require reprogramming FLASH4 will be
even faster.
FLASH4 works with binary ROM image files, it does not support Intel Hex format
files. Hex files can be easily converted to or from binaries using "hex2bin" or
the "srec_cat" program from SRecord:
$ srec_cat image.hex -intel -fill 0xFF 0 0x80000 -output image.bin -binary
$ srec_cat image.bin -binary -output image.hex -intel
FLASH4 can use several different methods to access the Flash ROM chip. The best
available method is determined automatically at run time. Alternatively you may
provide a command-line option to force the use of a specific method.
The first two methods use bank switching to map sections of the ROM into the
CPU address space. FLASH4 will detect the presence of RomWBW or UNA BIOS and
use the bank switching methods they provide.
On P112 systems the P112 B/P BIOS is detected and P112 bank switching is used.
If no bank switching method can be auto-detected, and the system has a Z180
CPU, FLASH4 will use the Z180 DMA engine to access the Flash ROM chip. This
does not require any bank switching but it is slower and will not work on all
platforms.
Z180 DMA access requires the flash ROM to be linearly mapped into the lower
region of physical memory, as it is on the Mark IV SBC (for example). The
N8-2312 has additional memory mapping hardware, consequently Z180 DMA access on
the N8-2312 is NOT SUPPORTED and if forced will corrupt the contents of RAM;
use one of the supported bank switching methods instead.
Z180 DMA access requires the Z180 CPU I/O base control register configured to
locate the internal I/O addresses at 0x40 (ie ICR bits IOA7, IOA6 = 0, 1).
= Usage =
The three basic operations are:
FLASH4 WRITE filename [options]
This will rewrite the flash ROM contents from the named file. The file size
must exactly match the size of the ROM chip. After the write operation, a
verify operation will be performed automatically.
FLASH4 VERIFY filename [options]
This will read out the flash ROM contents and report if it matches the contents
of the named file. The file size must exactly match the size of the ROM chip.
FLASH4 READ filename [options]
This will read out the entire flash ROM contents and write it to the named
file.
If your ROM chip is larger than the image you wish to write, use the "/PARTIAL"
(or "/P") command line option. To avoid accidentally flashing the wrong file,
the image file must be an exact multiple of 32KB in length. The portion of the
ROM not occupied by the image file is left either unmodified or erased.
If you are using an ROM/EPROM/EEPROM chip which cannot be programmed in-system,
FLASH4 will not be able to recognise it, however the software can still
usefully READ and VERIFY the chip. Use the "/ROM" command line option to enable
"READ" or "VERIFY" mode with unrecognised chips. This mode assumes a 512K ROM
is fitted; smaller ROMs will be treated as a 512K ROM with the data repated
multiple times -- with a 256K chip the data is repeated twice, four times for a
128K chip, etc.
One of the following optional command line arguments may be specified at the
end of the command line to force FLASH4 to use a particular method to access
the flash ROM chip:
BIOS interfaces:
/ROMWBW For ROMWBW BIOS version 2.6 and later
/ROMWBWOLD For ROMWBW BIOS version 2.5 and earlier
/UNABIOS For UNA BIOS
Direct hardware interfaces:
/Z180DMA For Z180 DMA
/P112 For DX-Designs P112
/N8VEMSBC For N8VEM SBC (v1, v2), Zeta (v1) SBC
If no option is specified FLASH4 attempts to determine the best available
method automatically.
= Supported chips and features =
FLASH4 will interrogate your flash ROM chip to identify it automatically.
FLASH4 assumes that you have a single flash ROM device and it is located at the
bottom of the physical memory map.
FLASH4 does not support setting or resetting the protection bits on individual
sectors within Flash ROM devices. If your Flash ROM chip has protected sectors
you will need to unprotect them by other means before FLASH4 can erase and
reprogram them.
AT29C series chips employ an optional "software data protection" feature. This
is supported by FLASH4 and is left activated after programming the chip to
prevent accidental reprogramming of sectors.
The following chips are supported:
AT29F010
AT29F040
M29F010
M29F040
MX29F040
SST 39F010
SST 39F020
SST 39F040
AT29C512
AT29C040
AT29C010
AT29C020
The following chips are supported but have unequal sector sizes; FLASH4 will
only erase and reprogram the entire chip at once rather than its normal
sector-by-sector operation:
AT49F001NT
AT49F001N
AT49F002N
AT49F002NT
AT49F040
If you use a flash ROM chip that is not listed above please email me
(will@sowerbutts.com) and I will try to add support for it.
= Compiling =
The software is written in a mix of C and assembler. It builds using the SDCC
toolchain and the SRecord tools. A Makefile is provided to build the executable
in Linux and I imagine it can be easily modified to build in Windows.
You may need to adjust the path to the SDCC libraries in the Makefile if your
sdcc installation is not in /usr/local
= License =
FLASH4 is licensed under the The GNU General Public License version 3 (see
included "LICENSE.txt" file).
FLASH4 is provided with NO WARRANTY. In no event will the author be liable for
any damages. Use of this program is at your own risk. May cause rifts in space
and time.

BIN
Doc/Contrib/How to Make Disk Images in Linux with DD Command.pdf

Binary file not shown.

BIN
Doc/Contrib/Microsoft NASCOM BASIC.docx

Binary file not shown.

39
Doc/Contrib/PPI_Bus.txt

@ -0,0 +1,39 @@
PPI Signal PPIDE PPISD DSKY DSKYNG (PROTO) DSKYNG (FINAL)
---------- ----- ----- ----- ----- -----
PA0 <>D0 >ID0 <>D0 <>D0
PA1 <>D1 >ID1 <>D1 <>D1
PA2 <>D2 >ID2 <>D2 <>D2
PA3 <>D3 >ID3 <>D3 <>D3
PA4 <>D4 >ID4 /SHUTDOWN <>D4 <>D4
PA5 <>D5 >ID5 /DECODE <>D5 <>D5
PA6 <>D6 >ID6 HEXA/CODEB <>D6 <>D6
PA7 <>D7 >ID7 DAT_COMING <>D7 <>D7
PB0 <>D8 +<ROW5
PB1 <>D9 +<ROW4
PB2 <>D10 +<ROW3
PB3 <>D11 +<ROW2
PB4 <>D12 +<ROW1
PB5 <>D13 +<ROW0
PB6 <>D14 +
PB7 <>D15 <MISO +
PC0 >DA0 >MOSI >COL0 >A0 >A0
PC1 >DA1 >CLK >COL1 >/WR
PC2 >DA2 >COL2 >/RD
PC3 >CS0* >COL3 >CS&* >CS&*
PC4 >CS1* >/CS >CS&* >CS&*
PC5 >DIOW* >/WR
PC6 >DIOR* >/WR >/RD
PC7 >RESET* >MODE >RESET >RESET
* Inverted by adapter
+ Pullup
& Both signals must be asserted
Compatibility:
- PPISD & DSKY
- PPIDE & DSKYNG
- PPISD & DSKYNG

BIN
Doc/Cowgol Language.pdf

Binary file not shown.

564
Doc/DDTZ.doc

@ -1,564 +0,0 @@
DDTZ v2.7
by C.B. Falconer
edited by George A. Havach
Introduction:
============
DDTZ v2.7 is a complete replacement for DDT, Digital Research's
famous Dynamic Debugging Tool, with improved functionality, bug
extermination, and full Z80 support. In general, DDTZ is fully
compatible with the original utility, but it has extra and
extended commands and many fewer quirks. All Z80-specific
instructions can be (dis)assembled, though in Intel rather then
Zilog format. Furthermore, DDTZ will correctly trace ('T' and 'U'
commands) both 8080 and Z80 instructions, depending on which CPU
is operating. On startup, the program announces which CPU it is
running on.
DDTZ v2.7 now handles the 64180 added opcodes. It does NOT test
for a 64180 CPU, since this cannot be done without executing
illegal Z80 instructions, which in turn will crash some
simulators. However v2.7 does not execute any 64180 instructions
internally, only in the subject program.
This issue supplies the "M" version assembled, to avoid errors
when switching between MSDOS and CPM systems. The command table
is updated accordingly. Most CPM users are also MSDOS users, but
not vice-versa.
The program is invoked by typing
ddtz<ret>
or
ddtz [d:]filespec<ret>
In the second form, DDTZ will load the specified file into
memory starting at 0100H, unless it's a .HEX file that sets its
own load address. Besides reporting the NEXT free address and
the PC (program counter) after a successful load, DDTZ also shows
the number of memory pages needed for a SAVE. Instead of having
to write all this down, just use the 'X' command at any time to
redisplay these three values for the current application.
NOTE: loading more code above the NEXT pointer revises these
values.
As in DDT, when a program is loaded above the area holding the
'A' and 'U' (and now 'W') command code, these commands are
disabled, and the extra memory is released to the user. Thus,
DDTZ can occupy as little as 3K total memory space. Unlike DDT,
however, DDTZ will not overwrite itself or the system on program
loads (except .HEX files).
At initialization, the stack pointer (SP) points to a return to
DDTZ, just like for the CCP. Thus, programs that normally return
to the CCP will be returned to DDTZ. The 'B' command
reinitializes this condition.
The intercept vector copies the BDOS version number, etc., so
an object program does not know that DDTZ is running (except
for BIOS-BDOS vector size). Thus, programs that check the version
number should execute correctly under DDTZ.
All input parameters can now be entered in any of three formats:
(1) hexadecimal (as in DDT),
(2) decimal, by adding a leading '#' character,
(3) ASCII, by enclosing between either single or double
quotes; either one or two characters are allowed.
Leading blanks in command lines and parameters are absorbed.
Either a comma or a (single) space is a valid delimiter.
Either uppercase or lowercase input is accepted.
The default command (for anything not otherwise recognizable)
is 'H'. This allows convenient calculation, along with the other
features described below. So, to convert a number, just enter
it!
As in DDT, the prompt character is '-', and the only error
message is the query ('?'), which generally kicks you back to
command mode.
New Commands (Over DDT):
=======================
NOTE: letters in parenthesis, e.g. "(U)", show the equivalent
command for DDTZM version (compatible with MSDOS debug).
@ Sets or shows (with no parameter) the internally stored
"base" value. Also used with the 'S' and 'D' commands as
an optional parameter (though without the '@') to display
memory from an arbitrary base marker (offset). When set to
zero (the default), it does not affect any screen displays.
B B)egin: resets the USER stack pointer to its initial value,
such that any program that exits by an RET will return to
DDTZ. DDTZ provides a default stack space of
approximately 24 bytes for user programs.
C C)ompare first_address,last_address,against_address: shows
all the byte differences between two memory areas, in the
format
XXXX aa YYYY bb
where XXXX and YYYY are the comparative memory addresses,
and aa and bb are the corresponding byte values. Can be
used to verify the identity of two files by first
loading them into different memory areas with the 'R'
command (see below).
W Write: stores the modified memory area to disk under the
(K) filename specified by the 'I' command, overwriting the
original file from which it was loaded (the user is queried
before doing so). By default, the image of memory from
0100H through the "NEXT" value -1 is saved. "K first_addr,
last_address" overrides this and allows writing ANY memory
area to a file. Almost a necessity for CPM 3.0 (no SAVE!).
K)eep on DDTZ
X eXamine: redisplays the "NEXT PC SAVE" report at any time.
(Q) Q)uery size on DDTZ.
S S)earch first_address, last_addr, value: searches the
(W) specified memory area for the value (a 16-bit word, not a
byte) and shows the locations of all such. Very useful for
finding CALL's or JMP's to a particular address, etc.
W)here on DDTZ
Y Y)our_option parm1,parm2,address: executes an arbitrary
routine at the specified address, with the BC and DE
registers set to parm1 and parm2, respectively.
Z Displays (but does not alter) the Z80's alternate register
set, including the index registers (disabled if running on
an 8080). On Z80's, automatically included as the last
part of the display by the 'X' command.
Based (Offset) Displays:
=======================
The 'D' and 'E' commands can use a stored base value (offset),
as set by the '@' command. The current @ value may be
overridden for a single execution of these commands by adding the
base as an extra parameter in the command line. The effect is
to add this value to the first/last address and display
accordingly. The address listing on the left becomes XXXX:YYYY,
where XXXX is the offset address and YYYY is the actual memory
address being displayed. For example, if you have a data area
located at 42B7H and wish to preserve easy access, just enter
"@42b7". Now, "d0,3f" will dump memory starting at 4237H.
Further Changes from DDT:
========================
A A)ssemble now accepts the full Z80 as well as 8080
instruction set, although it expects them in Intel rather
than Zilog format (see notes below under the 'L'
command). When in doubt, see the mnemnonic list below.
D D)isplay or D)ump will accept an optional third parameter
to set the base value for a single execution only. Format
has been cleaned up.
H H)ex_arithmetic on two values also shows their
difference in decimal. With only one value, converts to
hexadecimal, decimal, and ASCII (low-order byte only).
N N)ame now allows drive specification (d:...) and sets up
(I) the complete command line, including both FCB's (at
addresses 005CH and 006CH). The tail (stored at 0081H up)
is NOT upshifted.
I)nput on DDTZ
U U)nassemble now displays the raw hexcode, especially handy
(L) when examining non-code areas. Intel (8080 style) mnemonics
are used, so some disassembled instructions may look
strange. E.g., the Z80's 'IN B,(C)' and 'OUT (C),B' become
'INP B' and 'OUTP B', respectively; 'LD (nnnn),BC' becomes
'SBCD nnnn', 'ADD IX, BC' becomes 'DADX B', and 'JP (IX)'
becomes 'PCIX'.
L)ist on DDTZ
L L)oad now permits loading a file into memory with an
(R) offset, which is added to the default load address of
0100H. When reading in a .HEX file with a preset bias,
the 'R' command will not transfer control to an invalid
execution point. Another execution of the 'R' command will
reread the input file, e.g.:
n blah<ret>
l<ret>
...modify the code and generally mess about...
l<ret>
The original file is reloaded, and the modifications are
removed.
R)ead on DDTZ
E E)nter, like D)isplay, now accepts an optional second
(S) parameter to set the base value for a single execution
only.
S)ubstitute or S)et on DDTZ
T T)rap/trace on termination now shows the complete CPU
state. Traps and traces no longer lock up when a user RST
7 instruction is executed. Tracing of BDOS/BIOS calls is
heavily trun cated, avoiding clutter and preventing system
crashes.
NOTE: Most of the UNDOCUMENTED Z80 op-codes are handled. Others
can crash the system.
R R)egisters also shows what two-byte values the HL and SP
(X) registers are actually pointing to. On Z80's, displays the
alternate register set.
eX)amine on DDTZ
NOTE: Any use of the 'W' or 'L' command resets the system DMA
transfer address to the standard default value of 0080H.
; This is the output of DDTZ when disassembling OPTYPE.TRY
NOP LDA 06A4 MOV M,H
LXI B,06A4 DCX SP MOV M,L
STAX B INR A HLT
INX B DCR A MOV M,A
INR B MVI A,20 MOV A,B
DCR B CMC MOV A,C
MVI B,20 MOV B,B MOV A,D
RLC MOV B,C MOV A,E
EXAF MOV B,D MOV A,H
DAD B MOV B,E MOV A,L
LDAX B MOV B,H MOV A,M
DCX B MOV B,L MOV A,A
INR C MOV B,M ADD B
DCR C MOV B,A ADD C
MVI C,20 MOV C,B ADD D
RRC MOV C,C ADD E
DJNZ 0134 MOV C,D ADD H
LXI D,06A4 MOV C,E ADD L
STAX D MOV C,H ADD M
INX D MOV C,L ADD A
INR D MOV C,M ADC B
DCR D MOV C,A ADC C
MVI D,20 MOV D,B ADC D
RAL MOV D,C ADC E
JR 0134 MOV D,D ADC H
DAD D MOV D,E ADC L
LDAX D MOV D,H ADC M
DCX D MOV D,L ADC A
INR E MOV D,M SUB B
DCR E MOV D,A SUB C
MVI E,20 MOV E,B SUB D
RAR MOV E,C SUB E
JRNZ 0134 MOV E,D SUB H
LXI H,06A4 MOV E,E SUB L
SHLD 06A4 MOV E,H SUB M
INX H MOV E,L SUB A
INR H MOV E,M SBB B
DCR H MOV E,A SBB C
MVI H,20 MOV H,B SBB D
DAA MOV H,C SBB E
JRZ 0134 MOV H,D SBB H
DAD H MOV H,E SBB L
LHLD 06A4 MOV H,H SBB M
DCX H MOV H,L SBB A
INR L MOV H,M ANA B
DCR L MOV H,A ANA C
MVI L,20 MOV L,B ANA D
CMA MOV L,C ANA E
JRNC 0134 MOV L,D ANA H
LXI SP,06A4 MOV L,E ANA L
STA 06A4 MOV L,H ANA M
INX SP MOV L,L ANA A
INR M MOV L,M XRA B
DCR M MOV L,A XRA C
MVI M,20 MOV M,B XRA D
STC MOV M,C XRA E
JRC 0134 MOV M,D XRA H
DAD SP MOV M,E XRA L
XRA M JPE 06A4 SLAR M
XRA A XCHG SLAR A
ORA B CPE 06A4 SRAR B
ORA C XRI 20 SRAR C
ORA D RST 5 SRAR D
ORA E RP SRAR E
ORA H POP PSW SRAR H
ORA L JP 06A4 SRAR L
ORA M DI SRAR M
ORA A CP 06A4 SRAR A
CMP B PUSH PSW SLLR B
CMP C ORI 20 SLLR C
CMP D RST 6 SLLR D
CMP E RM SLLR E
CMP H SPHL SLLR H
CMP L JM 06A4 SLLR L
CMP M EI SLLR M
CMP A CM 06A4 SLLR A
RNZ CPI 20 SRLR B
POP B RST 7 SRLR C
JNZ 06A4 RLCR B SRLR D
JMP 06A4 RLCR C SRLR E
CNZ 06A4 RLCR D SRLR H
PUSH B RLCR E SRLR L
ADI 20 RLCR H SRLR M
RST 0 RLCR L SRLR A
RZ RLCR M BIT 0,B
RET RLCR A BIT 0,C
JZ 06A4 RRCR B BIT 0,D
CZ 06A4 RRCR C BIT 0,E
CALL 06A4 RRCR D BIT 0,H
ACI 20 RRCR E BIT 0,L
RST 1 RRCR H BIT 0,M
RNC RRCR L BIT 0,A
POP D RRCR M BIT 1,B
JNC 06A4 RRCR A BIT 1,C
OUT 20 RALR B BIT 1,D
CNC 06A4 RALR C BIT 1,E
PUSH D RALR D BIT 1,H
SUI 20 RALR E BIT 1,L
RST 2 RALR H BIT 1,M
RC RALR L BIT 1,A
EXX RALR M BIT 2,B
JC 06A4 RALR A BIT 2,C
IN 20 RARR B BIT 2,D
CC 06A4 RARR C BIT 2,E
SBI 20 RARR D BIT 2,H
RST 3 RARR E BIT 2,L
RPO RARR H BIT 2,M
POP H RARR L BIT 2,A
JPO 06A4 RARR M BIT 3,B
XTHL RARR A BIT 3,C
CPO 06A4 SLAR B BIT 3,D
PUSH H SLAR C BIT 3,E
ANI 20 SLAR D BIT 3,H
RST 4 SLAR E BIT 3,L
RPE SLAR H BIT 3,M
PCHL SLAR L BIT 3,A
BIT 4,B RES 3,D SET 2,H
BIT 4,C RES 3,E SET 2,L
BIT 4,D RES 3,H SET 2,M
BIT 4,E RES 3,L SET 2,A
BIT 4,H RES 3,M SET 3,B
BIT 4,L RES 3,A SET 3,C
BIT 4,M RES 4,B SET 3,D
BIT 4,A RES 4,C SET 3,E
BIT 5,B RES 4,D SET 3,H
BIT 5,C RES 4,E SET 3,L
BIT 5,D RES 4,H SET 3,M
BIT 5,E RES 4,L SET 3,A
BIT 5,H RES 4,M SET 4,B
BIT 5,L RES 4,A SET 4,C
BIT 5,M RES 5,B SET 4,D
BIT 5,A RES 5,C SET 4,E
BIT 6,B RES 5,D SET 4,H
BIT 6,C RES 5,E SET 4,L
BIT 6,D RES 5,H SET 4,M
BIT 6,E RES 5,L SET 4,A
BIT 6,H RES 5,M SET 5,B
BIT 6,L RES 5,A SET 5,C
BIT 6,M RES 6,B SET 5,D
BIT 6,A RES 6,C SET 5,E
BIT 7,B RES 6,D SET 5,H
BIT 7,C RES 6,E SET 5,L
BIT 7,D RES 6,H SET 5,M
BIT 7,E RES 6,L SET 5,A
BIT 7,H RES 6,M SET 6,B
BIT 7,L RES 6,A SET 6,C
BIT 7,M RES 7,B SET 6,D
BIT 7,A RES 7,C SET 6,E
RES 0,B RES 7,D SET 6,H
RES 0,C RES 7,E SET 6,L
RES 0,D RES 7,H SET 6,M
RES 0,E RES 7,L SET 6,A
RES 0,H RES 7,M SET 7,B
RES 0,L RES 7,A SET 7,C
RES 0,M SET 0,B SET 7,D
RES 0,A SET 0,C SET 7,E
RES 1,B SET 0,D SET 7,H
RES 1,C SET 0,E SET 7,L
RES 1,D SET 0,H SET 7,M
RES 1,E SET 0,L SET 7,A
RES 1,H SET 0,M DADX B
RES 1,L SET 0,A DADX D
RES 1,M SET 1,B LXI X,06A4
RES 1,A SET 1,C SIXD 06A4
RES 2,B SET 1,D INX X
RES 2,C SET 1,E DADX X
RES 2,D SET 1,H LIXD 06A4
RES 2,E SET 1,L DCX X
RES 2,H SET 1,M INR [X+05]
RES 2,L SET 1,A DCR [X+05]
RES 2,M SET 2,B MVI [X+05],20
RES 2,A SET 2,C DADX SP
RES 3,B SET 2,D MOV B,[X+05]
RES 3,C SET 2,E MOV C,[X+05]
MOV D,[X+05] DSBC B DADY B
MOV E,[X+05] SBCD 06A4 DADY D
MOV H,[X+05] NEG LXI Y,06A4
MOV L,[X+05] RETN SIYD 06A4
MOV [X+05],B IM0 INX Y
MOV [X+05],C LDIA DADY Y
MOV [X+05],D INP C LIYD 06A4
MOV [X+05],E OUTP C DCX Y
MOV [X+05],H DADC B INR [Y+05]
MOV [X+05],L LBCD 06A4 DCR [Y+05]
MOV [X+05],A RETI MVI [Y+05],2
MOV A,[X+05] LDRA DADY SP
ADD [X+05] INP D MOV B,[Y+05]
ADC [X+05] OUTP D MOV C,[Y+05]
SUB [X+05] DSBC D MOV D,[Y+05]
SBB [X+05] SDED 06A4 MOV E,[Y+05]
ANA [X+05] IM1 MOV H,[Y+05]
XRA [X+05] LDAI MOV L,[Y+05]
ORA [X+05] INP E MOV [Y+05],B
CMP [X+05] OUTP E MOV [Y+05],C
POP X DADC D MOV [Y+05],D
XTIX LDED 06A4 MOV [Y+05],E
PUSH X IM2 MOV [Y+05],H
PCIX LDAR MOV [Y+05],L
SPIX INP H MOV [Y+05],A
RLCR [X+05] OUTP H MOV A,[Y+05]
RRCR [X+05] DSBC H ADD [Y+05]
RALR [X+05] shld 06A4 ADC [Y+05]
RARR [X+05] RRD SUB [Y+05]
SLAR [X+05] INP L SBB [Y+05]
SRAR [X+05] OUTP L ANA [Y+05]
SRLR [X+05] DADC H XRA [Y+05]
BIT 0,[X+05] lhld 06A4 ORA [Y+05]
BIT 1,[X+05] RLD CMP [Y+05]
BIT 2,[X+05] INP M POP Y
BIT 3,[X+05] OUTP M XTIY
BIT 4,[X+05] DSBC SP PUSH Y
BIT 5,[X+05] SSPD 06A4 PCIY
BIT 6,[X+05] INP A SPIY
BIT 7,[X+05] OUTP A RLCR [Y+05]
RES 0,[X+05] DADC SP RRCR [Y+05]
RES 1,[X+05] LSPD 06A4 RALR [Y+05]
RES 2,[X+05] LDI RARR [Y+05]
RES 3,[X+05] CCI SLAR [Y+05]
RES 4,[X+05] INI SRAR [Y+05]
RES 5,[X+05] OTI SRLR [Y+05]
RES 6,[X+05] LDD BIT 0,[Y+05]
RES 7,[X+05] CCD BIT 1,[Y+05]
SET 0,[X+05] IND BIT 2,[Y+05]
SET 1,[X+05] OTD BIT 3,[Y+05]
SET 2,[X+05] LDIR BIT 4,[Y+05]
SET 3,[X+05] CCIR BIT 5,[Y+05]
SET 4,[X+05] INIR BIT 6,[Y+05]
SET 5,[X+05] OTIR BIT 7,[Y+05]
SET 6,[X+05] LDDR RES 0,[Y+05]
SET 7,[X+05] CCDR RES 1,[Y+05]
INP B INDR RES 2,[Y+05]
OUTP B OTDR RES 3,[Y+05]
RES 4,[Y+05] SET 0,[Y+05] SET 4,[Y+05]
RES 5,[Y+05] SET 1,[Y+05] SET 5,[Y+05]
RES 6,[Y+05] SET 2,[Y+05] SET 6,[Y+05]
RES 7,[Y+05] SET 3,[Y+05] SET 7,[Y+05]
; These are the result of disassembling 64180OPS.TRY
; These opcodes are available ONLY on the 64180 CPU
; DDTZ will both assemble and disassemble these.
IN0 B,20 TST E MLT B
OUT0 20,B IN0 H,20 MLT D
TST B OUT0 20,H TSTI 20
IN0 C,20 TST H MLT H
OUT0 20,C IN0 L,20 TSIO 20
TST C OUT0 20,L SLP
IN0 D,20 TST L MLT SP
OUT0 20,D TST M OTIM
TST D IN0 A,20 OTDM
IN0 E,20 OUT0 20,A OIMR
OUT0 20,E TST A ODMR
; The following are UNDOCUMENTED z80 opcodes from XTDOPS.TRY.
; DDTZ will disassemble these, but will not assemble them.
; They use xh/xl (or yh/yl) as separate byte registers.
; Use these at your own risk.
INRX H ACXR H MOVY H,B
DCRX H ACXR L MOVY H,C
MVIX H,20 SUXR H MOVY H,D
INRX L SUXR L MOVY H,E
DCRX L SBXR H MOVY H,A
MVIX L,20 SBXR L MOVY L,B
MOVX B,H NDXR H MOVY L,C
MOVX B,L NDXR L MOVY L,D
MOVX C,H XRXR H MOVY L,E
MOVX C,L XRXR L MOVY L,A
MOVX D,H ORXR H MOVY A,H
MOVX D,L ORXR L MOVY A,L
MOVX E,H CPXR H ADYR H
MOVX E,L CPXR L ADYR L
MOVX H,B INRY H ACYR H
MOVX H,C DCRY H ACYR L
MOVX H,D MVIY H,20 SUYR H
MOVX H,E INRY L SUYR L
MOVX H,A DCRY L SBYR H
MOVX L,B MVIY L,20 SBYR L
MOVX L,C MOVY B,H NDYR H
MOVX L,D MOVY B,L NDYR L
MOVX L,E MOVY C,H XRYR H
MOVX L,A MOVY C,L XRYR L
MOVX A,H MOVY D,H ORYR H
MOVX A,L MOVY D,L ORYR L
ADXR H MOVY E,H CPYR H
ADXR L MOVY E,L CPYR L
Command Summary:
===============
DDTZM command DDTZ command
============= ============
@ (base)
A)ssemble first_address A
B)egin {i.e., initialize stack and return} B
C)ompare first_address,last_address,against_address C
D)ump first_address[,last_address[,base]] D
E)nter_in_memory first_address[,base] S)ubstitute
F)ill first_address,last_address,value F
G)o_to [address][,trap1[,trap2]] G
H)ex_arithmetic value1(,value2) H
L)oad_file (offset) R)ead
M)ove first_address,last_address,destination M
N)nput FCBs_command_line I)nput
Q)uit (not avail)
R)egister examine/change [register|flag] X)amine
S)earch first_address,last_address,word W)hereis
T)race_execution [count] T
Untrace_execution [count] (i.e. do count instr) U)ntrace
U)nassemble_code first_address[,last_address] L)ist code
W)rite [first_address,last_address] K)eep
X)amine {i.e. display memory parameters for application} Q)uery
Y)our_option BC:=parm1,DE:=parm2,call_address Y
Z)80_register_display Z
If you find this program useful, contributions will be gratefully
accepted and will encourage further development and release of
useful CPM programs. My practice is to include source.
C.B. Falconer
680 Hartford Turnpike,
Hamden, Conn. 06517 (203) 281-1438
DDTZ and its associated documentation and other files are
copyright (c) 1980-1988 by C.B. Falconer. They may be freely
copied and used for non-commercial purposes ONLY.
ôÙ

514
Doc/FDU.txt

@ -1,514 +0,0 @@
================================================================
Floppy Disk Utility (FDU) v5.3 for RetroBrew Computers
Disk IO / Zeta / Dual-IDE / N8 / RC2014 / SmallZ80 / Dyno
================================================================
Updated January 5, 2020
by Wayne Warthen (wwarthen@gmail.com)
Application to test the hardware functionality of the Floppy
Disk Controller (FDC) on the ECB DISK I/O, DISK I/O V3, ZETA
SBC, Dual IDE w/ Floppy, or N8 board.
The intent is to provide a testbed that allows direct testing
of all possible media types and modes of access. The
application supports read, write, and format by sector, track,
and disk as well as a random read/write test.
The application supports access modes of polling, interrupt,
INT/WAIT, and DRQ/WAIT. At present, it supports 3.5" media at
DD (720KB) and HD (1.44MB) capacities. It also now supports
5.25" media (720KB and 1.2MB) and 8" media (1.11MB) as well.
Additional media will be added when I have time and access to
required hardware. Not all modes are supported on all
platforms and some modes are experimental in all cases.
In many ways this application is merely reinventing the wheel
and performs functionality similar to existing applications,
but I have not seen any other applications for RetroBrew
Computers hardware that provide this range of functionality.
While the application is now almost entirely new code, I would
like to acknowledge that much was derived from the previous
work of Andrew Lynch and Dan Werner. I also want to credit
Sergio Gimenez with testing the 5.25" drive support and Jim
Harre with testing the 8" drive support. Support for Zeta 2
comes from Segey Kiselev. Thanks!
General Usage
-------------
In general, usage is self explanatory. At invocation, you
must select the floppy disk controller (FDC) that you are
using. Subsequently, the main menu allows you to set the
unit, media, and mode to test. These settings MUST match your
situation. Read, write, format, and verify functions are
provided. A sub-menu will allow you to choose sector, track,
disk, or random tests.
The verify function requires a little explanation. It will
take the contents of the current in-memory disk buffer, save
it, and compare it to the selected sectors. So, you must
ensure that the sectors to be verified already have been
written with the same pattern as the buffer contains. I
typically init the buffer to a pattern, write the pattern to
the entire disk, then verify the entire disk.
Another submenu is provided for FDC commands. This sub-menu
allows you to send low-level commands directly to FDC. You
*must* know what you are doing to use this sub-menu. For
example, in order to read a sector using this sub-menu, you
will need to perform specify, seek, sense int, and read
commands specifying correct values (nothing is value checked
in this menu).
Required Hardware/BIOS
----------------------
Of course, the starting point is to have a supported hardware
configuration. The following Z80 / Z180 based CPU boards are
supported:
- SBC V1/2
- Zeta
- Zeta 2
- N8
- Mark IV
- RC2014 w/ SMC
- RC2014 w/ WDC
- SmallZ80
- Dyno
You must be using either a RomWBW or UBA based OS version.
You must have one of the following floppy disk controllers:
- Disk IO ECB Board FDC
- Disk IO 3 ECB Board FDC
- Dual-IDE ECB Board FDC
- Zeta SBC onboard FDC
- Zeta 2 SBC onboard FDC
- N8 SBC onboard FDC
- RC2014 Scott Baker SMC-based Floppy Module
- RC2014 Scott Baker WDC-based Floppy Module
Finally, you will need a floppy drive connected via an
appropriate cable:
Disk IO - no twist in cable, drive unit 0/1 must be selected by jumper on drive
DISK IO 3, Zeta, Zeta 2, RC2014, Dyno - cable with twist, unit 0 after twist, unit 1 before twist
DIDE, N8, Mark IV, SmallZ80 - cable with twist, unit 0 before twist, unit 1 after twist
Note that FDU does not utilize your systems ROM or OS to
access the floppy system. FDU interacts directly with
hardware. Upon exit, you may need to reset your OS to get the
floppy system back into a state that is expected.
The Disk I/O should be jumpered as follows:
J1: depends on use of interrupt modes (see interrupt modes below)
J2: pins 1-2, & 3-4 jumpered
J3: hardware dependent timing for DMA mode (see DMA modes below)
J4: pins 2-3 jumpered
J5: off
J6: pins 2-3 jumpered
J7: pins 2-3 jumpered
J8: off
J9: off
J10: off
J11: off
J12: off
Note that J1 can be left on even when not using interrupt
modes. As long as the BIOS is OK with it, that is fine. Note
also that J3 is only relevant for DMA modes, but also can be
left in place when using other modes.
The Disk I/O 3 board should be jumpered at the default settings:
JP2: 3-4
JP3: 1-2 for int mode support, otherwise no jumper
JP4: 1-2, 3-4
JP5: 1-2
JP6: 1-2
JP7: 1-2, 3-4
Zeta & Zeta 2 do not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
The Dual-IDE board should be jumpered as follows:
K3 (DT/R or /RD): /RD
P5 (bd ID): 1-2, 3-4 (for $20-$3F port range)
There are no specific N8 jumper settings, but the default
I/O range starting at $80 is assumed in the published code.
The RC2014 Scott Baker SMC-based floppy module should be jumpered
for I/O base address 0x50 (SV1: 11-12), JP1 (TS) shorted,
JP2 (/FAULT) shorted, JP3 (MINI): 2-3, JP4 (/DC/RDY): 2-3.
The RC2014 Scott Baker WDC-based floppy module should be jumpered
for I/O base address 0x50 (SV1: 11-12), JP1 (/DACK): 1-2,
JP2 (TC): 2-3.
SmallZ80 does not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
Dyno does not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
Modes of Operation
------------------
You can select the following test modes. Please refer to the
chart that follows to determine which modes should work with
combinations of Z80 CPU speed and media format.
WARNING: In general, only the polling mode is considered fully
reliable. The other modes are basically experimental and
should only be used if you know exactly what you are doing.
Polling: Traditional polled input/output. Works well and very
reliable with robust timeouts and good error recovery. Also,
the slowest performance which precludes it from being used
with 1.44MB floppy on a 4MHz Z80. This is definitely the mode
you want to get working before any others. It does not require
J1 (interrupt enable) on DISK I/O and does not care about the
setting of J3.
Interrupt: Relies on FDC interrupts to determine when a byte
is ready to be read/written. It does *not* implement a
timeout during disk operations. For example, if there is no
disk in the drive, this mode will just hang until a disk is
inserted. This mode *requires* that the host has interrupts
active using interrupt mode 1 (IM1) and interrupts attached to
the FDC controller. The BIOS must be configured to handle
these interrupts safely.
Fast Interrupt: Same as above, but sacrifices additional
reliability for faster operation. This mode will allow a
1.44MB floppy to work with a 4MHz Z80 CPU. However, if any
errors occur (even a transient read error which is not
unusual), this mode will hang. The same FDC interrupt
requirements as above are required.
INT/WAIT: Same as Fast Interrupt, but uses CPU wait instead of
actual interrupt. This mode is exclusive to the original Disk
IO board. It is subject to all the same issues as Fast
Interrupt, but does not need J1 shorted. J3 is irrelevant.
DRQ/WAIT: Uses pseudo DMA to handle input/output. Does not
require that interrupts (J1) be enabled on the DISK I/O.
However, it is subject to all of the same reliability issues
as "Fast Interrupt". This mode is exclusive to the original
Disk IO board. At present, the mode is *not* implemented!
The chart below attempts to describe the combinations that
work for me. By far, the most reliable mode is Polling, but
it requires 8MHz CPU for HD disks.
DRQ/WAIT --------------------------------+
INT/WAIT -----------------------------+ |
Fast Interrupt --------------------+ | |
Interrupt ----------------------+ | | |
Polling ---------------------+ | | | |
| | | | |
CPU Speed --------------+ | | | | |
| | | | | |
| | | | | |
3.5" DD (720K) ------ 4MHz Y Y Y Y X
8MHz+ Y Y Y Y X
3.5" HD (1.44M) ----- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
5.25" DD (360K) ----- 4MHz Y Y Y Y X
8MHz+ Y Y Y Y X
5.25" HD (1.2M) ----- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
8" DD (1.11M) ------- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
Y = Yes, works
N = No, does not work
X = Experimental, probably won't work
Tracing
-------
Command/result activity to/from the FDC will be written out if
the trace setting is changed from '00' to '01' in setup.
Additionally, if a command failure is detected on any command,
that specific comand and results are written regardless of the
trace setting.
The format of the line written is:
<OPERATION>: <COMMAND BYTES> --> <RESULT BYTES> [<RESULT>]
For example, this is the output of a normal read operation:
READ: 46 01 00 00 01 02 09 1B FF --> 01 00 00 00 00 02 02 [OK]
Please refer to the i8272 data sheet for information on the
command and result bytes.
Note that the sense interrupt command can return a non-OK
result. This is completely normal in some cases. It is
necessary to "poll" the drive for seek status using sense
interrupt. If there is nothing to report, then the result
will be INVALID COMMAND. Additionally, during a recalibrate
operation, it may be necessary to issue the command twice
because the command will only step the drive 77 times looking
for track 0, but the head may be up to 80 tracks away. In
this case, the first recalibrate fails, but the second should
succeed. Here is what this would look like if trace is turned
on:
RECALIBRATE: 07 01 --> <EMPTY> [OK]
SENSE INTERRUPT: 08 --> 80 [INVALID COMMAND]
...
...
...
SENSE INTERRUPT: 08 --> 80 [INVALID COMMAND]
SENSE INTERRUPT: 08 --> 71 00 [ABNORMAL TERMINATION]
RECALIBRATE: 07 01 --> <EMPTY> [OK]
SENSE INTERRUPT: 08 --> 21 00 [OK]
Another example is when the FDC has just been reset. In this
case, you will see up to 4 disk change errors. Again these
are not a real problem and to be expected.
When tracing is turned off, the application tries to be
intelligent about error reporting. The specific errors from
sense interrupt documented above will be suppressed because
they are not a real problem. All other errors will be
displayed.
Error Handling
--------------
There is no automated error retry logic. This is very
intentional since the point is to expose the controller and
drive activity. Any error detected will result in a prompt to
abort, retry, or continue. Note that some number of errors is
considered normal for this technology. An occasional error
would not necessarily be considered a problem.
CPU Speed
---------
Starting with v5.0, the application adjusts it's timing loops
to the actual system CPU speed by querying the BIOS for the
current CPU speed.
Interleave
----------
The format command now allows the specification of a sector
interleave. It is almost always the case that the optimal
interleave will be 2 (meaning 2:1).
360K Media
----------
The 360K media definition should work well for true 360K
drives. However, it will generally not work with 1.2M
drives. This is because these drives spin at 360RPM instead
of the 300RPM speed of true 360K drives. Additionally, 1.2M
drives are 80 tracks and 360K drives are 40 tracks and, so
far, there is no mechanism in FD to "double step" as a way to
use 40 track media in 80 track drives.
With this said, it is possible to configure some 1.2M 5.25"
drives to automatically spin down to 300RPM based on a density
select signal (DENSEL). This signal is asserted by FD for
360K media, so IF you have configured your drive to react to
this signal correctly, you will be able to use the 360K media
defintion. Most 1.2M 5.25" drives are NOT configured this way
by default. TEAC drives are generally easy to modify and have
been tested by the author and do work in this manner. Note
that this does not address the issue of double stepping above;
you will just be using the first 40 of 80 tracks.
Support
-------
I am happy to answer questions as fast and well as I am able.
Best contact is wwarthen@gmail.com or post something on the
RetroBrew Computers Forum
https://www.retrobrewcomputers.org/forum/.
Changes
-------
WW 8/12/2011
Removed call to pulse TC in the FDC initialization after
determining that it periodically caused the FDC to write bad
sectors. I am mystified by this, but definitely found it to
be true. Will revisit at some point -- probably a timing
issue between puslsing TC and whatever happens next.
Non-DMA mode was being set incorrectly for FAST-DMA mode. It
was set for non-DMA even though we were doing DMA. It is
interesting that it worked fine anyway. Fixed it anyway.
DIO_SETMEDIA was not clearing DCD_DSKRDY as it should. Fixed.
WW 8/26/2011: v1.1
Added support for Zeta. Note that INT/WAIT and DRQ/WAIT are
not available on Zeta. Note that Zeta provides the ability to
perform a reset of the FDC independent of a full CPU reset.
This is VERY useful and the FDC is reset anytime a drive reset
is required.
Added INT/WAIT support.
WW 8/28/2011: V1.2
All changes in this version are Zeta specific. Fixed FDC
reset logic and motor status display for Zeta (code from
Sergey).
Modified Zeta disk change display to include it in the command
output line. This makes more sense because a command must be
issued to select the desired drive first. You can use the
SENSE INT command id you want to check the disk change value
at any time. It will also be displayed with any other command
output display.
WW 9/1/2011: V1.3
Added CPUFREQ configuration setting to tune delays based on
cpu speed. The build app is set for 8MHz which also seems to
work well for 4MHz CPU's. Faster CPU speeds will probably
require tuning this setting.
WW 9/5/2011: V1.4
Changed the polling execution routines to utilize CPUFREQ
variable to optimize timeout counter. Most importantly, this
should allow the use of faster CPUs (like 20MHz).
WW 9/19/2011: V1.5
Zeta changes only. Added a call to FDC RESET after any
command failure. This solves an issue where the drive remains
selected if a command error occurs. Also added FDC RESET to
FDC CONTROL menu.
WW 10/7/2011: V2.0
Added support for DIDE. Only supports polling IO and it does
not appear any other modes are possible given the hardware
constraints.
WW 10/13/2011: V2.1
Modified to support N8. N8 is essentially identical to Dual
IDE. The only real change is the IO addresses. In theory, I
should be able to support true DMA on N8 and will work on that.
WW 10/20/2011: v2.2
I had some problems with the results being read were sometimes
missing a byte. Fixed this by taking a more strict approach
to watching the MSR for the exact bits that are expected.
WW 10/22/2011: V2.3
After spending a few days trying to track down an intermittent
data corruption issue with my Dual IDE board, I added a verify
function. This helped me isolate the problem very nicely
(turned out to be interference from the bus monitor).
WW 11/25/2011: V2.4
Preliminary support for DISKIO V3. Basically just assumed
that it operates just like the Zeta. Needs to be verified
with real hardware as soon as I can.
WW 1/9/2012: V2.5
Modified program termination to use CP/M reset call so that a
warm start is done and all drives are logged out. This is
important because media may have been formatted during the
program execution.
WW 2/6/2012: v2.6
Added support for 5.25" drives as tested by Sergio.
WW 4/5/2012: v2.7
Added support for 8" drives as tested by Jim Harre.
WW 4/6/2012: v2.7a
Fixed issue with media selection menu to remove duplicate
entries.
WW 4/8/2012: v2.7b
Corrected the handling of the density select signal.
WW 5/22/2012: v2.8
Added new media definitions (5.25", 320K).
WW 6/1/2012: v2.9
Added interleave capability on format.
WW 6/5/2012: v3.0
Documentation cleanup.
WW 7/1/2012: v3.1
Modified head load time (HLT) for 8" media based on YD-180
spec. Now set to 50ms.
WW 6/17/2013: v3.2
Cleaned up SRT, HLT, and HUT values.
SK 2/10/2015: v3.3
Added Zeta SBC v2 support (Sergey Kiselev)
WW 3/25/2015: v4.0
Renamed from FDTST --> FD
WW 9/2/2017: v5.0
Renamed from FD to FDU.
Added runtime selection of FDC hardware.
Added runtime timing adjustment.
WW 12/16/2017: v5.1
Improved polling version of read/write to fix occasional overrun errors.
WW 1/8/2018: v5.2
Added support for RC2014 hardware:
- Scott Baker SMC 9266 FDC module
- Scott Baker WDC 37C65 FDC module
WW 9/5/2018: v5.3
- Removed use of pulsing TC to end R/W operations after one sector and
instead set EOT = R (sector number) so that after desired sector is
read, R/W stops with end of cylinder error which is a documented
method for controling number of sectors R/W. This specific termination
condition is no longer considered an error, but a successful end of
operation.
- Added support for SmallZ80
WW 5/1/2020: v5.4
- Added support for Dyno (based on work by Steve Garcia)

11351
Doc/HI-TECH Z80 C Compiler Manual.txt

File diff suppressed because it is too large

BIN
Doc/Hard Disk Anatomy.pdf

Binary file not shown.

BIN
Doc/Microsoft Basic-80 Reference Manual v5.0.pdf

Binary file not shown.

4090
Doc/Microsoft_FORTRAN-80_Users_Manual_1977.pdf

File diff suppressed because one or more lines are too long

129
Doc/ReadMe.txt

@ -6,17 +6,37 @@
*** ***
***********************************************************************
This directory ("Doc") is part of the RomWBW System Software
distribution archive. It contains documentation for components of
This directory ("Doc") is part of the RomWBW System Software
distribution archive. It contains documentation for components of
the system.
ChangeLog.txt
-------------
Log of changes in RomWBW by version.
RomWBW User Guide ("RomWBW User Guide.pdf")
RomWBW System Guide ("RomWBW System Guide.pdf")
RomWBW Applications ("RomWBW Applications.pdf")
RomWBW ROM Applications ("RomWBW ROM Applications.pdf")
RomWBW Disk Catalog ("RomWBW Disk Catalog.pdf")
RomWBW Errata ("RomWBW Errata.pdf")
-------------------------------------------------------
Documentation set for RomWBW. The primary document is the
User Guide. The System Guide explains internal system operation
and has a reference for the HBIOS API. Use of included tools
and utilities are detailed in the Applications and
ROM Applications documents.
CPM Manual ("CPM Manual.pdf")
-----------------------------
The original DRI CP/M 2.x Operating System Manual. This should be
considered the primary reference for system operation. The section
on CP/M 2 Alteration can be ignored since this work has already been
The original DRI CP/M 2.x Operating System Manual. This should be
considered the primary reference for system operation. The section
on CP/M 2 Alteration can be ignored since this work has already been
completed as part of the RomWBW distribution.
@ -39,16 +59,10 @@ Manual for the DDTZ v2.7 debug tool included on the ROM drive.
FDisk Manual ("FDisk Manual.pdf")
---------------------------------
The operational manual for John Coffman's hard disk partitioning
The operational manual for John Coffman's hard disk partitioning
program. This program is included in RomWBW as FDISK80.
Floppy Disk Utility Documentation ("FDU.tst")
---------------------------------------------
Operational documentation for the RomWBW FDU application.
Hard Disk Anatomy ("Hard Disk Anatomy.pdf")
-------------------------------------------
@ -61,11 +75,46 @@ NZCOM User's Manual ("NZCOM Users Manual.pdf")
NZCOM operating system operation manual.
RomWBW Architecture ("RomWBW Architecture.pdf")
-----------------------------------------------
ZCPR Manual ("ZCPR Manual.pdf")
-------------------------------
ZCPR is the command proccessor portion of Z-System. This is the
manual for ZCPR 1.x as included in RomWBW. The installation
instructions can be ignored since that work has already been
completed as part of the RomWBW distribution.
ZCPR D&J Manual ("ZCPR-DJ.doc")
-------------------------------
ZCPR D&J User Manual. This manual supplements the ZCPR Manual.
ZSDOS Manual ("ZSDOS Manual.pdf")
---------------------------------
ZSDOS is the DOS portion of Z-System. This is the manual for ZSDOS
1.x as included in RomWBW. The installation instructions can be
ignored since that work has already been completed as part of the
RomWBW distribution.
Microsoft Basic-80 Reference Manual v5.0 (Microsoft Basic-80 Reference Manual v5.0.pdf)
---------------------------------------------------------------------------------------
Official manual for Microsoft BASIC as included in RomWBW.
Document describing the architecture of the RomWBW HBIOS. It
includes reference information for the HBIOS calls.
QP/M 2.7 Installation Guide and Supplements ("qpm27.pdf")
QP/M 2.7 Interface Guide ("qdos27.pdf")
QP/M 2.7 Features and Facilities ("qcp27.pdf")
--------------------------------------------
Official documentation set for QP/M 2.7 from original QP/M distribution.
SIO+CTC Baud Rate Options (SIO+CTC Baud Rate Options.pdf)
---------------------------------------------------------
Documents possible baud rates available based on different baud
clock rates for Zilog SIO using CTC for baud rate clock generation.
Z180 ASCI Baud Rate Options ("Z180 ASCI Baud Rate Options.pdf")
@ -77,19 +126,43 @@ clock rate. This document provides a list of the possible
baud rates for typical CPU clock rates.
ZCPR Manual ("ZCPR Manual.pdf")
-------------------------------
UCSD p-System Users Manual ("UCSD p-System Users Manual.pdf")
-------------------------------------------------------------
ZCPR is the command proccessor portion of Z-System. This is the
manual for ZCPR 1.x as included in RomWBW. The installation
instructions can be ignored since that work has already been
completed as part of the RomWBW distribution.
Official user manual for p-System operating system included with
RomWBW.
ZSDOS Manual ("ZSDOS Manual.pdf")
---------------------------------
Z80 Assembler User Manual (z80asm (SLR Systems).pdf)
----------------------------------------------------
Official user manual for the Z80 Macro Assembler by SLR Systems
included in the z80asm disk image.
HI-TECH C Compiler User Manual (HI-TECH Z80 C Compiler Manual.txt)
------------------------------------------------------------------
Official user manual for the HI-TECH C Compiler included in the
hitechc disk image.
Borland TurboPascal User Manual (Turbo_Pascal_Version_3.0_Reference_Manual_1986.pdf)
------------------------------------------------------------------------------------
Official user manual Borland TurboPascal included in the pascal disk image.
Aztec C Compiler User Manual (Aztec_C_1.06_User_Manual_Mar84.pdf)
-----------------------------------------------------------------
Official user manual for the Aztec C Compiler included in the aztecc disk image.
FORTRAN-80 User Manual (Microsoft_FORTRAN-80_Users_Manual_1977.pdf)
---------------------------------------------------------------
Official user manual for Microsoft's FORTRAN-80 compiler included in the fortran
disk image.
ZSDOS is the DOS portion of Z-System. This is the manual fo ZSDOS
1.x as included in RomWBW. The installation instructions can be
ignored since that work has already been completed as part of the
RomWBW distribution.
--WBW 5:18 PM 6/14/2023

BIN
Doc/RomWBW Applications.pdf

Binary file not shown.

BIN
Doc/RomWBW Architecture.pdf

Binary file not shown.

BIN
Doc/RomWBW Disk Catalog.pdf

Binary file not shown.

BIN
Doc/RomWBW Errata.pdf

Binary file not shown.

BIN
Doc/RomWBW Getting Started.pdf

Binary file not shown.

BIN
Doc/RomWBW ROM Applications.pdf

Binary file not shown.

BIN
Doc/RomWBW System Guide.pdf

Binary file not shown.

BIN
Doc/RomWBW User Guide.pdf

Binary file not shown.

BIN
Doc/SIO+CTC Baud Rate Options.pdf

Binary file not shown.

25
Doc/Testing Notes.txt

@ -23,7 +23,7 @@ Zeta 2 (X)
- Test FD driver
- Test FDU app
RC2014 (X)
RCBus (X)
------
- Test SIO driver (Serial Module)
- Test ACIA driver (Dual Serial Module)
@ -40,7 +40,7 @@ N8-2312 (X)
- Test FDU app
- Test TMS driver (video & kbd)
N8-2511 ( )
N8-2511 (X)
-------
- Test ASCI driver
- Test SD driver (Juha mode)
@ -139,27 +139,6 @@ GENERAL (X)
- ASSIGN app
- MODE app
- SYSCOPY app
- OSLDR app
- FDU app
- FDISK80 app
- TUNE app
RESULTS
-------
- Missing HBIOS startup banner (X)
- PANIC while printing Serial device inventory (X)
- Unexpected interrupt signals not handled well (X)
- Fix IT_??? usage (X)
- Fix HB_DI/HB_EI in PEEK/POKE/BNKCPY (X)
- Fix SIMH timer interrupt setup (X)
- Move DI/EI in PEEK/POKE/BNKCPY to API layer? (X)
- RETI vs. JP in page zero when INTMODE = 0 (X)
- Check interrupt stack space (X)
- If an early INT fires, we return with INTs enabled (not good) (X)
- PPPCON init should display ANSI 80x25 or similar (X)
- Add INT MODE X message to early boot messages (X)
- OSLDR fails when LDDS is loaded (X)
- Add "!!!" to force assembly error as needed ( )
- TIMER app should check for HBIOS active (X)
- Halt system after bad interrupt??? ( )
- Adapt and bundle PLAYER.COM (X)

BIN
Doc/The Cowgol language.pdf

Binary file not shown.

49495
Doc/Turbo_Pascal_Version_3.0_Reference_Manual_1986.pdf

File diff suppressed because one or more lines are too long

BIN
Doc/UCSD p-System Users Manual.pdf

Binary file not shown.

BIN
Doc/Z180 ASCI Baud Rate Options.pdf

Binary file not shown.

765
Doc/ZCPR-DJ.doc

@ -0,0 +1,765 @@
A Personal Note
===============
Somehow, I've managed to get by for the last 14 years using just ZCPR.
But like some of you, I have fiddled with the standard ZCPR and
modified it to suit my tastes. As I added new commands or enriched old
ones, I've always remained compatible with existing programs, all the
BDOS replacements, and, most important of all, stayed within the 800H
space allocation of the original Digital Research CCP. Here are the
fruits of my labors, I hope you enjoy this CCP replacement as much as I
do.
Don Kirkpatrick
17595 S.W. Pheasant Lane
Beaverton, Oregon 97006
<Donald.C.Kirkpatrick@tek.com>
Introduction
============
This console replacement is designed to run under CP/M 2.2 or any of
the 2.2 BDOS replacements. It requires a Z80 or better. If you are
running DRI's CCP or older versions of ZCPR1, this program is a
significant improvement. If you are running ZCPR3, CP/M 3.0, CP/M
Plus, or MP/M, this will probably be a disappointment.
If you are familiar with ZCPR3, you will recognize many of the
enhancements here: comments on a command line, search path for the .com
file, drive/user change with simple du:, CLEVEL3 command processing,
proper SUBMIT file facility, and so on. Nothing has been removed from
DRI's CCP, only new features added. AND IT ALL STILL FITS IN THE
ORIGINAL 800H, THE SAME SPACE AS THE DIGITAL RESEARCH FIVE COMMAND
CCP.
Many of the standard commands have been enhanced. For example, TYPE
and LIST now have options to turn on or off page breaks. Moreover, the
console check for abort has been improved.
Two commands have been added for use in submit files - SAK and BELL.
These commands allow you to pause or ring the bell during submit file
execution.
Before you install this version of ZCPR onto your boot disks, try it by
running it as a .com file. Just edit the few customizing options and
assemble the source. After you decide it really is better, load it
onto your boot track and make it your standard. Complete instructions
are located at the end of this document.
The complete built-in command list is:
DIR - directory command enhanced to list optionally all user areas
REN - standard rename command
USER- move to new user number area on same drive
SAVE- save specified number of TPA pages or records in a file
TYPE- display a file on the console with optional page break pauses
LIST- print command plus optional form feed insertion
PAGE- send form feed to list device
ERA - standard file erase command
ERAQ- file erase with confirmation query at each file
DFU - set default user number for .com search path
BELL- send a bell character to the console
SAK - pause until a key is struck on the console (Strike Any Key)
SCL - toggle multiple commands per line (Single Command on a Line)
GET - load a file into the TPA at any specified location
JUMP- process command tail and execute program at specified address
GO - process command tail and execute program loaded at 100H
PEEK- display hexadecimal byte string starting with specified address
POKE- load hexadecimal byte string starting with specified address
BOOT- execute BIOS cold boot routine
Filename Processing
===================
The standard ZCPR3 du: drive/user file specification has been
implemented. Any filename can be in the du:fn.ft form. For example:
A>era c4:junk*.*
erases files on the C drive, user area 4 without leaving drive A user
0. When a user number is found in a filename, that user number is
placed in S1 of the default FCB. Bit 7 of S1 is set to inform the
program using the FCB a user number was found.
The * in an ambiguous file name has been improved. Now a trailing *
causes the remainder of the ambiguous name to be filled with '?', not
just the fn field. For example:
A>era c4:junk*
is the same as the example above. Previously, junk* was defined as
'junk????. '. If you need the ft field blank, type 'junk*.'. The
question mark still works as a single character wild card.
Command Line Processing
=======================
The current user number is included as part of the command prompt for
all non-zero user numbers. The prompt is of the form du>, for example
A2> or B10>. If the SUPRES equate is true, the user number is
suppressed for user 0 only.
Multiple commands are typed on a single line separated by a command
separator character. Occasionally, you need to type the separator
character in a command tail. The SCL command toggles the multiple
command enable. The CMDCHR equate determines the command separator
character. A ';' has been chosen as the separator character in this
distribution version.
Comments are allowed on a command line. When the comment separator
character is encountered as the first character of a command, the
remainder of the line is ignored. The COMCHR equate determines the
comment separator character. A ';' has been chosen as the separator
character in this distribution version. Here is an example containing
comments and multiple commands on a single line:
A>get 100 junk;peek 100;;this is a comment.
A>;this is also a comment.
There exists a built-in search path for transient commands. First, the
current drive/user is searched. Next, the current drive/default user
is searched. Last, drive A/default user is searched. The DEFUSR
equate determines the default user number, currently set to user 0 in
this distribution version. The default user is temporarily changed
with the DFU command. If a drive is specified in the transient
command, the current and default user areas on the specified drive are
searched. If a user number is specified, that user area on the current
and default drive are searched. If both the drive and user number are
specified, no search is performed. The same drive/user area is never
searched twice.
Transient commands are always "called." If a program terminates via a
return rather than a warm boot, subsequent multiple commands on the
command line are executed. Any program exiting by a warm boot reloads
ZCPR and the subsequent commands lost.
A default command can be placed in the command buffer and control
passed to ZCPR for processing. The only thing required, besides
placing the command in the buffer and jumping to CPRLOC, is to
initialize the command character counter at the start of the buffer.
The procedure is compatible with the original DRI CCP default command
processing. If ZCPR is entered at CPRLOC+3 jump, default command
processing is suppressed. Either way, register C must contain a valid
drive/user, just like the original CCP.
Submit File Processing
======================
A basic design choice had to be made in the design of ZCPR concerning
the execution of submit files. The original CCP had a problem. It
ALWAYS looked for the $$$.SUB file on drive A and the submit program
would place it on the current default drive. When the you were logged
onto drive B and you issued a submit command, the $$$.SUB was placed on
drive B and not executed.
After much debate it was decided to have ZCPR perform the same type of
function as CCP (look for the $$$.SUB file on drive A), but the problem
with SUBMIT.COM still exists. Hence, RGF designed SuperSUB and RLC
took his SuperSUB and designed SUB from it; both programs are set up to
allow the selection at assembly time of creating the $$$.SUB on the
default drive or on drive A. If you don't have one of these newer
submit programs, a procedure for patching the standard SUBMIT.COM has
been included at the end.
The fixed drive choice permits a submit file to contain a series of
commands exactly as they would be entered from a CP/M console. This
permits things like:
A>dir
A>b:
B>dir
to be executed, even though the currently default drive is changed
during execution. If the $$$.SUB file were present on the default
drive, the above series of commands would not work. ZCPR would be
looking for $$$.SUB on the default drive, and switching default drives
without moving the $$$.SUB file would cause processing to abort. Note
that the same problem occurs if the user number of the $$$.SUB file is
not predefined. ZCPR assumes that the $$$.SUB file is located on user 0
of drive A.
The trick of using the $ flag returned by the BDOS disk reset is used
to speed the search for a $*.* file on drive A. This trick will not
work if the $$$.SUB file were located on another drive.
The '>' prompt character is replaced by a special character while a
submit file is in execution. The SPRMPT equate defines this special
character, currently set to '$' in this distribution version.
Command Syntax
==============
Multiple commands can be placed on one line. If the comment character
is encountered where a command should start, the rest of the line is
ignored. Any command can be renamed by editing the command table.
Command names can be up to eight characters long and are terminated by
bit 7 high. If there is a conflict between an internal ZCPR command
and a transient program of the same name, the internal command is
executed. Type the command with the du: included if the external
transient command is the one desired. Here is a complete alphabetized
list of all the resident commands with their syntax:
=============================================================================
Command: BELL
Function: To ring terminal bell.
Forms: BELL
Options: None.
Uses: This command is designed to be placed in a submit file to
ring the bell to indicate significant checkpoints.
=============================================================================
Command: BOOT
Function: To execute BIOS cold boot routine.
Forms: BOOT
Options: REBOOT equate controls the inclusion/exclusion of this command.
Uses: Reboots the system without pushing the reset button. The
cold boot entry point in the BIOS must be supported for this
command to work.
=============================================================================
Command: DFU
Function: To set the Default User Number for transient commands.
Forms: DFU <usrnum>
Options: DEFUSR equate defines the default user choice until this
command is entered.
NUMBASE equate defines the character that specifies a
hexadecimal number. The distribution version is set to 'H'.
Uses: The default user area is searched after a transient command
cannot be found in the current user area. If the transient
command still has not been found, the default user on the
default drive is searched last. The new default user number
is in decimal, but hexadecimal numbers are entered by
appending an 'H'. The next warm boot will restore the
original default user number.
=============================================================================
Command: DIR
Function: To display a directory listing of the files on a drive.
Forms: DIR <afn> Display the DIR files
DIR <afn> S Display the SYS files
DIR <afn> B Display both DIR and SYS files
DIR <afn> A Display both DIR and SYS files for all user areas
Options: TWOCOL equate controls the number of columns in the display.
Forty-column terminals are limited to two-column displays.
WIDE equate controls the spacing between the columns and
change the horizontal width of a directory display.
FENCE equate specifies the character separator between the
directory columns.
USRDLM equate specifies the character between the user number
and the filename.
USRFLG, SYSFLG, and SOFLG equates specify the command line
tail character that control the display of system and
non-system files.
Uses: Displays a directory listing of files in specific drive/user
area.
=============================================================================
Command: ERA
Function: To erase files.
Forms: ERA <afn>
Options: None.
Uses: Deletes files. Names of erased files are displayed.
=============================================================================
Command: ERAQ
Function: To erase files with individual query.
Forms: ERAQ <afn>
<afn>? y File erased
<afn>? <CR> File not erased
Options: None.
Uses: Deletes a subset of a set of ambiguously specified files.
Any answer other than 'Y' (either case) will cause the file
to be skipped and not erased.
=============================================================================
Command: GET
Function: To load the specified file from disk to the specified address.
Forms: GET <hexadr> <ufn>
Options: None.
Uses: Loads a file into the TPA for patching purposes. This command
searches for the specified file along the same search path as
the transient command loader.
=============================================================================
Command: GO
Function: To call the program in the TPA without loading from disk.
Forms: GO <command tail>
Options: None.
Uses: Most useful to rerun a program already loaded into the TPA.
Saves time and wear on disk drives. The command tail is
entered exactly as it would appear if GO were replaced by the
program name. Same as JUMP 100H, but more convenient,
especially when used with parameters for programs like STAT.
=============================================================================
Command: JUMP
Function: To call the program at a specified address.
Forms: JUMP <hexadr> <command tail>
Options: None.
Uses: Executes code not located at 100H. For example, JUMP 0
warm boots. The code must already reside at the specified
address.
=============================================================================
Command: LIST
Function: To print specified file on list device.
-
Forms: LIST <ufn> Print file
LIST <ufn> P Print file without default paging
Options: NLINEP equate determines the number of lines per page.
FFKILL equate controls the suppression of form feeds before
printable text.
PGDFLG equate determines the command line tail character that
toggles the default form feed insertion every NLINEP lines.
NOSTAT equate controls the use of the BIOS list status call.
Uses: Prints files with/without pagination on LST: device. A
listing is aborted by a console ^C. Any submit file in
process is terminated and control is returned gracefully to
the console prompt.
=============================================================================
Command: PAGE
Function: To eject a page on list device via a form feed.
Forms: PAGE
Options: NOSTAT equate controls the use of the BIOS list status call.
Uses: Sends a form feed to the LST: device. The page eject can
be aborted by a console ^C if the system hangs because the
printer is not ready. If aborted, any submit file in process
is terminated and control is returned gracefully to the
console prompt.
=============================================================================
Command: PEEK
Function: To display hex values beginning at a specified address.
Forms: PEEK <hexadr> [<hexcnt>]
Options: None.
Uses: Displays hexadecimal values anywhere in the entire address
space. The maximum value for <hexcnt> is 0FFH, but the
default <hexcnt> is 256.
=============================================================================
Command: POKE
Function: To poke a string of hex values into a set of consecutive
addresses.
Forms: POKE <hexadr> <hexval> [...<hexval>]
Options: None.
Uses: Modifies values anywhere in the entire address space. Each
<hexval> represents one byte and is separated from the next
by a space. The number of <hexval> are limited only by the
size of the command line buffer. The address is incremented
for each <hexval>. Excellent for hand patching code.
=============================================================================
Command: REN
Function: To change the name of an existing file.
Forms: REN <newufn>=<oldufn>
REN <newufn>=<oldufn> Existing <newufn>
Delete? y File deleted
Options: None.
Uses: Changes the names of files. Any du: on <oldufn> is ignored;
the optional du: is on <newufn>. If there already exists a
<newufn>, the console is queried for conformation. Any
response except 'Y' (either case) aborts the command, kills
any submit file in process, and returns gracefully to the
command prompt.
=============================================================================
Command: SAK
Function: To pause until a key is struck.
Forms: SAK
? <any key>
Options: None.
Uses: Pauses a submit file until a keystroke is entered. Any
character other than a ^C will resume execution. A ^C kills
the submit file, any commands remaining on the command the
line are ignored, and control returns gracefully to the
prompt.
=============================================================================
Command: SAVE
Function: To save the contents of TPA onto disk as a file.
Forms: SAVE <Number of Pages> <ufn>
SAVE <Number of Records> <ufn> R
Options: RECFLG equate determines the command tail character that
specifies records rather than pages.
NUMBASE equate defines the character that specifies a
hexadecimal number. The distribution version is set to 'H'.
Uses: Saves the TPA to a file. Records are 128 bytes long, pages
are 256 bytes long. Number of pages or records is in
decimal, but a hexadecimal number is entered by appending an
'H'. Saved area begins at 100H.
=============================================================================
Command: SCL
Function: To force ZCPR to parse only a single command per line.
Forms: SCL
Options: MULTPL equate determines the inclusion/exclusion of this
command and whether or not multiple commands are allowed.
CMDCHR equate determines the character separating multiple
commands.
Uses: Some transient commands require the command separator in the
command tail. This command turns off multiple command
parsing so the entire command tail is sent to the transient
program. Multiple command format is reset at the next warm
boot. SCL toggles.
=============================================================================
Command: TYPE
Function: To display specified file on console.
Forms: TYPE <ufn> Display file
TYPE <ufn> P Display file without default paging
Options: NLINES equate determines the number of lines per screen.
FFKILL equate controls the suppression of form feeds before
printable text.
PGDFLG equate determines the command line tail character that
toggles the default form feed insertion every NLINEP lines.
Uses: Displays files with/without pagination on CON: device. A
display is aborted by a console ^C. If aborted, any submit
file in process terminates and control returns gracefully to
the console prompt. When page breaks are enabled, any
console character except ^C will display the next page of
text.
=============================================================================
Command: USER
Function: To change current user number.
Forms: USER <usrnum>
Options: SUPRES equate controls the display of the user number in the
prompt when the user number is zero.
MAXUSR equate controls the maximum allowable user number.
NUMBASE equate defines the character that specifies a
hexadecimal number. The distribution version is set to 'H'.
Uses: This command changes the current user number. The new user
number is in decimal, but a hexadecimal number is entered by
appending an 'H'. This command has been retained for
compatibility purposes only. It is far easier to change
disk/user by typing du:.
=============================================================================
Error Messages
==============
If any error is encountered as a command line is being parsed, a
message will be printed and, for serious errors, the remainder of the
line is ignored. Below is a complete list of all ZCPR error messages.
Any error message encountered that is not on this list came from some
program other than ZCPR.
"?"
An error was detected in the command. The an item on the command
line was not what was expected. The command line is echoed up to
the position where the error was detected, as close as can be
determined, and the "?" printed. Any commands remaining on the
command the line are ignored and any $$$.SUB file erased.
"Full"
If ZCPR was attempting to load a transient program, one of two
things has gone wrong: either the program is so large that it won't
fit into the TPA or a read error was returned from the BDOS. If
ZCPR was attempting to save a file, the BDOS write call returned
failure. Either the disk or the directory is full. Any commands
remaining on the command line are ignored and any $$$.SUB file
erased.
"No File"
No file could be found matching the filename specified in the
command. This message is also be printed if the BDOS read command
returns failure. If ZCPR was looking for a transient command, any
commands remaining on the command line are ignored and any $$$.SUB
file erased.
"Name Error"
The specified filename has a user number larger than the allowable
maximum or an ambiguous filename was entered where only an
unambiguous filename is permitted. Any commands remaining on the
command line are ignored and any $$$.SUB file erased.
"Delete?"
Not really an error, but there already exists a file with the same
name as the requested new name in the REN command. Any response
except 'Y' (either case) aborts the command, any commands remaining
on the command line are ignored, and any $$$.SUB file erased.
"All?"
Not really an error, but a check to verify that all files on the
drive/user area are to be erased. Any response except 'Y' (either
case) aborts the command and any commands remaining on the command
line are ignored.
Installation Instructions
=========================
1) The first task is to determine the location of your BDOS because you
MUST set the P2DOS equate to this value. If you do not know the
location of your BDOS, use ZCPRDEMO to find it. If you do not
already have ZCPRDEMO.COM, assemble ZCPR with the TEST equate true
to make it. A bootstrap loader will be included and you can run the
.com file. This program assembles without errors using Microsoft's
M80/L80:
A>m80 =zcpr
A>l80 zcpr,zcprdemo/n/e
Other assemblers can be used, but ZCPR.MAC will probably require
editing to convert it to a form compatible. The major decision in
converting is to determine how the .PHASE pseudo is to be handled.
Probably the best solution to the .PHASE is to generate a .hex
file and load it with an offset using DDT/SID/ZSID. Consult the
"r" command in the DDT/SID/ZSID manaul.
Run ZCPRDEMO and peek at low memory:
A>zcprdemo
A<peek 0 10
0000 C3 03 F2 00 00 C3 06 E4 00 00 00 00 00 00 00 00
A<^C
Notice the prompt character has changed from a '>' to a '<'. This
tells you the special debug version of ZCPR is running. See the
debug section at the end for details. Address 0 contains a jump 3
beyond the start of the BIOS and address 5 contains a jump 6 beyond
the start of the BDOS.
Be careful if you attempt to execute a transient program from
ZCPRDEMO. Some transient programs, like NSWP, return rather than
warm boot when done. These programs don't know that ZCPRDEMO is at
address 8000H rather than just under the BDOS. If they overwrite
ZCPRDEMO, then the return is to random code. Of course, this is not
a problem when ZCPR is installed just under the BDOS.
2) You MUST edit the code to place your BDOS/P2DOS/Z80DOS/ZRDOS start
address in the P2DOS equate. Set COMLD true (and TEST false if you
set it true in step 1 above) and make ZCPR.COM. A bootstrap loader
will be included.
Assuming you successfully assemble it, just type "zcpr" to run it.
However, every time there is a warm boot, it will be replaced by
the boot track CCP. If you like what you see, place a copy on the
boot track to make it available all the time.
3) Reassemble, this time with COMLD false to make ZCPRNBLD.COM (ZCPR
No Boot LoaDer).
4) Run SYSGEN to load a copy of the boot track into memory.
B>; Sample terminal session for integrating ZCPR
B>sysgen
SYSGEN VER 2.2
SOURCE DRIVE NAME (OR RETURN TO SKIP)a
SOURCE ON A, THEN TYPE RETURN <cr>
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr>
5) Run SAVE to save a track image to a file (eg: SAVE 32 BOOTFILE).
The number on the save command depends on the size of your boot
track loader; it can be as small as 31 and as large as 44. If you
have extra disk space or are not sure, play it safe and use 44.
B>save 44 cpm56.com <-- We now have a SYSGEN image of CP/M
6) Find the location of the stock CCP by peeking at the boot file. It
is normally located at address 980H in the file. Using ZCPR:
B>zcpr <-- Reload zcpr.com version
B>get 100 cpm56.com
and search for the start of the console processor:
B>peek 980
0980 C3 xx xx C3 xx xx 7F 00 43 4F 50 59 52 49 47 48
0990 54 20 ...
If you don't find the start of the CCP at 980H, don't be
discouraged. It is there, but at a higher address. Keep looking.
7) When you find the location of the CCP, patch it with the new ZCPR
image.
B>get 980 zcprnbld.com
8) Place the new file onto the boot track of a test disk, not your
original, using SYSGEN, and try it out.
B>sysgen
SYSGEN VER 2.2
SOURCE DRIVE NAME (OR RETURN TO SKIP) <cr> <-- Use memory image
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)b <-- Load onto drive B
DESTINATION ON B, THEN TYPE RETURN <cr>
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr>
You should now have a ZCPR system boot disk. Notice you did all
your work on drive B so you wouldn't destroy the original.
This may seem like a great number of steps, but each is only a single
CP/M command line, total time is only 5 minutes or so after you get
ZCPR to run as a .com file.
Debugging ZCPR
==============
Special provisions have been make to ease the debugging of ZCPR.
Setting the TEST equate true causes the assembler to build a version of
ZCPR that executes in the TPA. This allows the use of a debugger like
DDT, ZSID, or Z8E to load and monitor execution. To identify the debug
version, the prompt character is changed from '>' to '<' when it runs.
CPRLOC for the test version is 8000H. A bootstrap loader is included
at the beginning to move the image to this address. Do not try to set
a breakpoint until after the loader has moved ZCPR. The easiest way to
accomplish this is to single-step through the loader and then set your
breakpoints. Change the execution address to something lower if 8000H
does not leave enough space for the debugger.
A small amount of code is also added at the end of the debug version to
compute the BIOS list status and cold boot entry points at run time.
This permits the demo version to execute properly without setting the
BDOS location equate.
Patching SUBMIT.COM
===================
SUBMIT.COM is patched to run with ZCPR by the following procedure.
This is recommended if the user does not have one of the newer public
domain versions of submit. This patch simply makes SUBMIT.COM always
place the $$$.SUB file on drive A. Illustrative terminal session
follows:
A>get 100 submit.com;peek 5bb 2
05BB 00 24 <-- Patch is at 5BB Hex
A>poke 5bb 1 <-- Change 0 (default drive) to 1 (drive A)
A>peek 5b0 20 <-- Let's check just to make sure
05B0 00 00 00 00 00 00 30 30 31 20 24 01 24 24 24 20
05C0 20 20 20 20 53 55 42 00 00 00 1A 1A 1A 1A 1A 1A
A>save 5 newsubmt.com <-- Save new SUBMIT.COM file
Pretty simple, huh?
ny error message encountered that is not on this list came from some
prog

BIN
Doc/qcp27.pdf

Binary file not shown.

BIN
Doc/qdos27.pdf

Binary file not shown.

BIN
Doc/qpm27.pdf

Binary file not shown.

BIN
Doc/z80asm (SLR Systems).pdf

Binary file not shown.

38
Makefile

@ -1,19 +1,31 @@
all:
cd Tools/unix ; make
cd Source ; make
cd Source/Images ; make
.PHONY: tools source clean clobber diff dist
.ONESHELL:
.SHELLFLAGS = -cex
all: tools source
tools:
$(MAKE) --directory Tools
source:
$(MAKE) --directory Source
clean:
cd Tools/unix ; make clean
cd Source ; make clean
cd Binary ; make clean
$(MAKE) --directory Tools clean
$(MAKE) --directory Source clean
$(MAKE) --directory Binary clean
rm -f make.log
clobber:
cd Tools/unix ; make clobber
cd Source ; make clobber
cd Binary ; make clobber
rm -f typescript
clobber: clean
diff:
cd Source ; make diff
$(MAKE) --directory Source diff
dist:
$(MAKE) ROM_PLATFORM=dist
$(MAKE) --directory Tools clean
$(MAKE) --directory Source clean
distlog:
$(MAKE) dist 2>&1 | tee make.log

1308
ReadMe.md

File diff suppressed because it is too large

1280
ReadMe.txt

File diff suppressed because it is too large

49
Readme.unix

@ -1,49 +0,0 @@
this tree now contains makefiles and tools to build on Linux and MacosX
Linux is rather more thoroughly tested compared to os-x.
to get here, TASM and the propeller generation tools needed to be replaced,
and since the unix filesystem is usually case-sensitive, and CP/M and windows
are not, the cpm tools were made case-insensitive.
TASM was replaced with uz80as, which implements a subset of TASM and fixes some
bugs. however, I needed to add some functionality to make it build the sources
as they exist in this tree. in particular, one thing to be very careful of is
that TASM is not entirely consistent with respect to the .DS directive.
it's usually a bad idea to mix .DS, .FILL, .DB with .ORG.
.DS n is best thought of as .ORG $ + n
.ORG changes the memory pointer, but does not change the file output point.
it works a lot more like M80, SLR* .phase
it assumes that you have some standard system tools and libraries installed
specifically: gcc, gnu make, libncurses
to build:
cd to the top directory and type make.
heavy use is made of make's include facility and pattern rules.
the master rule set is in Tools/Makefile.inc. changes here will affect
almost every Makefile, and where exceptions are needed, the overrides are
applied in the lower Makefiles.
these tools can run a windows-linux regression test, where all the binaries are
compared to a baseline windows build.
Credit:
uz80as was written by Jorge Giner Cordero, jorge.giner@hotmail.com,
and the original source can be found at https://github.com/jorgicor/uz80as
the propeller tools use bstc and openspin, parallax tools from
http://www.fnarfbargle.com/bst.html https://github.com/parallaxinc/OpenSpin
note that bst is not open source or even currently maintained, so I could
not generate a version for 64 bit osx.
cpmtools were the most current I could find, and it has been hacked to do
case-insensitivity. these are not marked, and are not extensive.
zx is from distributed version, and also has local hacks for case insensitivity.
both zx and cpmtools ship with an overly complicated makefile generation system
and this is ignored.
this whole linux build framework is the work of Curt Mayer, curt@zen-room.org.
use it for whatever you like; this is not my day job.

1899
Source/Apps/Assign.asm

File diff suppressed because it is too large

62
Source/Apps/Build.cmd

@ -1,48 +1,48 @@
@echo off
setlocal
set TOOLS=../../Tools
set TOOLS=..\..\Tools
set APPBIN=..\..\Binary\Apps
set PATH=%TOOLS%\tasm32;%TOOLS%\zx;%PATH%
set PATH=%TOOLS%\tasm32;%TOOLS%\zxcc;%PATH%
set TASMTABS=%TOOLS%\tasm32
set ZXBINDIR=%TOOLS%/cpm/bin/
set ZXLIBDIR=%TOOLS%/cpm/lib/
set ZXINCDIR=%TOOLS%/cpm/include/
call :asm SysCopy || goto :eof
call :asm Assign || goto :eof
call :asm Format || goto :eof
call :asm Talk || goto :eof
call :asm Mode || goto :eof
call :asm RTC || goto :eof
call :asm Timer || goto :eof
call :asm180 IntTest || goto :eof
zx Z80ASM -SYSGEN/F
zx MAC SURVEY.ASM -$PO
zx MLOAD25 -SURVEY.COM=SURVEY.HEX
setlocal & cd XM && call Build || exit /b 1 & endlocal
setlocal & cd FDU && call Build || exit /b 1 & endlocal
setlocal & cd Tune && call Build || exit /b 1 & endlocal
setlocal & cd FAT && call Build || exit /b 1 & endlocal
copy *.com %APPBIN%\
set CPMDIR80=%TOOLS%/cpm/
call :asm syscopy || exit /b
call :asm assign || exit /b
call :asm format || exit /b
call :asm talk || exit /b
call :asm mode || exit /b
call :asm rtc || exit /b
call :asm timer || exit /b
call :asm rtchb || exit /b
zxcc Z80ASM -SYSGEN/F || exit /b
pushd XM && call Build || exit /b & popd
pushd FDU && call Build || exit /b & popd
pushd Tune && call Build || exit /b & popd
pushd FAT && call Build || exit /b & popd
pushd Test && call Build || exit /b & popd
pushd ZMP && call Build || exit /b & popd
pushd ZMD && call Build || exit /b & popd
pushd Dev && call Build || exit /b & popd
pushd VGM && call Build || exit /b & popd
pushd cpuspd && call Build || exit /b & popd
pushd Survey && call Build || exit /b & popd
pushd HTalk && call Build || exit /b & popd
copy *.com %APPBIN%\ || exit /b
goto :eof
:asm
echo.
echo Building %1...
tasm -t80 -g3 -fFF %1.asm %1.com %1.lst
tasm -t80 -g3 -fFF %1.asm %1.com %1.lst || exit /b
goto :eof
:asm180
echo.
echo Building %1...
tasm -t180 -g3 -fFF %1.asm %1.com %1.lst
tasm -t180 -g3 -fFF %1.asm %1.com %1.lst || exit /b
goto :eof

16
Source/Apps/Clean.cmd

@ -7,7 +7,15 @@ if exist *.lst del *.lst
if exist *.hex del *.hex
if exist *.prn del *.prn
setlocal & cd XM && call Clean || exit /b 1 & endlocal
setlocal & cd FDU && call Clean || exit /b 1 & endlocal
setlocal & cd Tune && call Clean || exit /b 1 & endlocal
setlocal & cd FAT && call Clean || exit /b 1 & endlocal
pushd XM && call Clean || exit /b 1 & popd
pushd FDU && call Clean || exit /b 1 & popd
pushd Tune && call Clean || exit /b 1 & popd
pushd FAT && call Clean || exit /b 1 & popd
pushd Test && call Clean || exit /b 1 & popd
pushd ZMP && call Clean || exit /b 1 & popd
pushd ZMD && call Clean || exit /b 1 & popd
pushd Dev && call Clean || exit /b 1 & popd
pushd VGM && call Clean || exit /b 1 & popd
pushd cpuspd && call Clean || exit /b 1 & popd
pushd Survey && call Clean || exit /b 1 & popd
pushd HTalk && call Clean || exit /b 1 & popd

14
Source/Apps/Dev/Build.cmd

@ -0,0 +1,14 @@
@echo off
setlocal
set TOOLS=../../../Tools
set PATH=%TOOLS%\tasm32;%PATH%
set TASMTABS=%TOOLS%\tasm32
echo Building Dev...
tasm -t80 -g3 -fFF dev.asm dev.com %dev.lst || exit /b
copy /Y dev.com ..\..\..\Binary\Apps\ || exit /b
rem copy /Y *.ovr ..\..\..\Binary\Apps\ || exit /b
rem copy /Y *.hlp ..\..\..\Binary\Apps\ || exit /b
rem copy /Y *.doc ..\..\..\Binary\Apps\ || exit /b

7
Source/Apps/Dev/Clean.cmd

@ -0,0 +1,7 @@
@echo off
setlocal
if exist dev.com del dev.com
if exist *.hex del *.hex
if exist *.lst del *.lst
if exist *.zip del *.zip

10
Source/Apps/Dev/Makefile

@ -0,0 +1,10 @@
OBJECTS = dev.com
#DOCS = dev.txt
DEST = ../../../Binary/Apps
DOCDEST = ../../../Binary/Apps
TOOLS = ../../../Tools
include $(TOOLS)/Makefile.inc
%.com: USETASM=1

1
Source/Apps/Dev/ReadMe.txt

@ -0,0 +1 @@
THE DEV DIRECTORY IS A SKELETON DIRECTORY TO AID SETTING UP A BUILD PROCESS FOR A NEW PROGRAM

32
Source/Apps/Dev/dev.asm

@ -0,0 +1,32 @@
;===============================================================================
; Dev - Developement Stub
;===============================================================================
;
; AUTHOR:
;
; Usage:
;
;_______________________________________________________________________________
;
; Change Log:
;
;_______________________________________________________________________________
;
; ToDo:
;
;_______________________________________________________________________________
;
;===============================================================================
; Definitions
;===============================================================================
;
;
;===============================================================================
; Code Section
;===============================================================================
;
;
.org $100
ret
.end

2
Source/Apps/FAT/Build.cmd

@ -4,4 +4,4 @@ setlocal
REM FAT.com is currently distributed as a binary application, so
REM it is not built here.
copy /Y FAT.com ..\..\..\Binary\Apps\
copy /Y fat.com ..\..\..\Binary\Apps\ || exit /b

BIN
Source/Apps/FAT/FAT.com

Binary file not shown.

4
Source/Apps/FAT/Makefile

@ -1,5 +1,5 @@
OBJECTS = FAT.com
NODELETE = FAT.com
OBJECTS = fat.com
NODELETE = fat.com
DEST = ../../../Binary/Apps
TOOLS=../../../Tools

125
Source/Apps/FAT/ReadMe.md

@ -0,0 +1,125 @@
# RomWBW HBIOS CP/M FAT Utility ("FAT.COM")
Author: Wayne Warthen \
Updated: 6-Jan-2024
This application allows copying files between CP/M filesystems and FAT
filesystems (DOS, Windows, Mac, Linux, etc.). The application runs on
RomWBW hosted CP/M (and compatible) operating systems. The application
also has limited file management capabilities on FAT filesystems
including directory listing, renaming, deleting, and sub-directory
creation.
### Usage:
```
FAT DIR <path>
FAT COPY <src> <dst>
FAT REN <from> <to>
FAT DEL <path>[<file>|<dir>]
FAT MD <path>
FAT FORMAT <drv>
```
CP/M filespec: \<d\>:FILENAME.EXT (\<d\> is CP/M drive letter A-P) \
FAT filespec: \<u\>:/DIR/FILENAME.EXT (\<u\> is disk unit #)
### Notes:
- Partitioned or non-partitioned media is handled automatically.
A floppy drive is a good example of a non-partitioned FAT
filesystem and will be recognized. Larger media will typically
have a partition table which will be recognized by the
application to find the FAT filesystem.
- Although RomWBW-style CP/M media does not know anything about
partition tables, it is entirely possible to have media that
has both CP/M and FAT file systems on it. This is accomplished
by creating a FAT filesystem on the media that starts on a track
beyond the last track used by CP/M. Each CP/M slice can occupy
up to 8MB. So, make sure to start your FAT partition beyond
(slice count) * 9MB.
- The application infers whether you are attempting to reference
a FAT or CP/M filesystem via the drive specifier (char before ':').
A numeric drive character specifies the HBIOS disk unit number
for FAT access. An alpha (A-P) character indicates a CP/M
file system access targeting the specified drive letter. If there
is no drive character specified, the current CP/M filesystem and
current CP/M drive is assumed. For example:
`2:README.TXT` refers to FAT file README.TXT on disk unit #2 \
`C:README.TXT` refers to CP/M file README.TXT on CP/M drive C: \
`README.TXT` refers to CP/M file README.TXT on current CP/M drive
- FAT files with SYS, HIDDEN, or R/O attributes are not given
any special treatment. Such files are found and processed
like any other file. However, any attempt to write to a
read-only file will fail and the application will abort.
- It is not currently possible to reference CP/M user areas other
than the current user. To copy files to alternate user areas,
you must switch to the desired user number first or use an
additional step to copy the file to the desired user area.
- Accessing FAT filesystems on a floppy requires the use of
RomWBW HBIOS v2.9.1-pre.13 or greater.
- Only the first 8 RomWBW disk units (0-7) can be referenced.
- Files written are not verified.
- Wildcard matching in FAT filesystems is a bit unusual as
implemented by FatFs. See FatFs documentation.
### License:
GNU GPLv3 (see file LICENSE.txt)
### Build Notes:
- Source is maintained on GitHub at <https://github.com/wwarthen/FAT>.
- Application is based on FatFs. FatFs source is included. See
<http://elm-chan.org/fsw/ff/>.
- SDCC compiler v4.3 or greater is required to build. New calling
conventions introduced in v4.3 are assumed.
- See Build.cmd for sample build script under Windows. References
to SDCC must be updated for your environment.
- Note that ff.c (core FatFs code) generates quite a few compiler
warnings (all appear to be benign).
### To Do:
- Allow ^C to abort any operation in progress.
- Allow referencing more than the first 8 RomWBW disk units.
- Handle wildcards in destination, e.g.:
`FAT REN 2:/*.TXT 2:/*.BAK`
- Do something intelligent with R/O and SYS file attributes
- Support UNA
### History:
| Date | Version | Notes |
|------------:|-------- |-------------------------------------------------------------|
| 2-May-2019 | v0.9 | (beta) initial release |
| 7-May-2019 | v0.9.1 | (beta) added REN and DEL |
| 8-May-2019 | v0.9.2 | (beta) handle file collisions w/ user prompt |
| 8-Oct-2019 | v0.9.3 | (beta) fixed incorrect filename buffer size (MAX_FN) |
| 10-Oct-2019 | v0.9.4 | (beta) upgraded to FatFs R0.13c |
| 10-Oct-2019 | v0.9.5 | (beta) added MD (make directory) |
| 10-Oct-2019 | v0.9.6 | (beta) added FORMAT |
| 11-Oct-2019 | v0.9.7 | (beta) fix FORMAT to use existing partition table entries |
| | | add attributes to directory listing |
| 12-Apr-2021 | v0.9.8 | (beta) support CP/NET drives |
| 12-Oct-2023 | v0.9.9 | (beta) handle updated HBIOS Disk Device call |
| 6-Jan-2024 | v1.0.0 | updated to latest FsFat (v0.15) |
| | | updated to latest SDCC (v4.3) |

101
Source/Apps/FAT/ReadMe.txt

@ -1,101 +0,0 @@
RomWBW HBIOS CP/M FAT Utility ("FAT.COM")
Author: Wayne Warthen
Updated: 11-Oct-2019
Application to manipulate and exchange files with a FAT (DOS)
filesystem. Runs on any HBIOS hosted CP/M implementation.
USAGE:
FAT DIR <path>
FAT COPY <src> <dst>
FAT REN <from> <to>
FAT DEL <path>[<file>|<dir>]
FAT MD <path>
FAT FORMAT <drv>
CP/M filespec: <d>:FILENAME.EXT (<d> is CP/M drive letter A-P)
FAT filespec: <u>:/DIR/FILENAME.EXT (<u> is disk unit #)
LICENSE:
GNU GPLv3 (see file LICENSE.txt)
NOTES:
- Partitioned or non-partitioned media is handled automatically.
A floppy drive is a good example of a non-partitioned FAT
filesystem and will be recognized. Larger media will typically
have a partition table which will be recognized by the
application to find the FAT filesystem.
- Although RomWBW-style CP/M media does not know anything about
partition tables, it is entirely possible to have media that
has both CP/M and FAT file systems on it. This is accomplished
by creating a FAT filesystem on the media that starts on a track
beyond the last track used by CP/M. Each CP/M slice on a
media will occupy a little over 8MB. So, make sure to start
your FAT partition beyond (slice count) * 8MB.
- The application infers whether you are attempting to reference
a FAT or CP/M filesystem via the drive specifier (char before ':').
A numeric drive character specifies the HBIOS disk unit number
for FAT access. An alpha (A-P) character indicates a CP/M
file system access targeting the specified drive letter. If there
is no drive character specified, the current CP/M filesystem and
current CP/M drive is assumed. For example:
"2:README.TXT" refers to FAT file README.TXT on disk unit #2
"C:README.TXT" refers to CP/M file README.TXT on CP/M drive C
"README.TXT" refers to CP/M file README.TXT on current CP/M drive
- Files with SYS, HIDDEN, or R/O only attributes are not given
any special treatment. Such files are found and processed
like any other file. However, any attempt to write to a
read-only file will fail and the application will abort.
- It is not currently possible to reference CP/M user areas other
than the current user. To copy files to alternate user areas,
you must switch to the desired user number first or use an
additional step to copy the file to the desired user area.
- Accessing FAT filesystems on a floppy requires the use of
RomWBW HBIOS v2.9.1-pre.13 or greater.
- Files written are not verified.
- Wildcard matching in FAT filesystems is a bit unusual as
implemented by FatFs. See FatFs documentation.
BUILD NOTES:
- Source is maintained on GitHub at https://github.com/wwarthen/FAT
- Application is based on FatFs. FatFs source is included.
- SDCC compiler is required to build (v3.9.0 known working).
- ZX CP/M emulator is required to build (from RomWBW distribution).
- See Build.cmd for sample build script under Windows. References
to SDCC and ZX must be updated for your environment.
- Note that ff.c (core FatFs code) generates quite a few compiler
warnings (all appear to be benign).
TO DO:
- Allow ^C to abort any operation in progress.
- Handle wildcards in destination, e.g.:
"FAT REN 2:/*.TXT 2:/*.BAK"
- Do something intelligent with R/O and SYS files on FAT
HISTORY:
2-May-2019: v0.9 (beta) initial release
7-May-2019: v0.9.1 (beta) added REN and DEL
8-May-2019: v0.9.2 (beta) handle file collisions w/ user prompt
8-Oct-2019: v0.9.3 (beta) fixed incorrect filename buffer size (MAX_FN)
10-Oct-2019: v0.9.4 (beta) upgraded to FatFs R0.13c
10-Oct-2019: v0.9.5 (beta) added MD (make directory)
10-Oct-2019: v0.9.6 (beta) added FORMAT
11-Oct-2019: v0.9.7 (beta) fix FORMAT to use existing partition table entries
add attributes to directory listing

BIN
Source/Apps/FAT/fat.com

Binary file not shown.

8
Source/Apps/FDU/Build.cmd

@ -5,9 +5,7 @@ set TOOLS=../../../Tools
set PATH=%TOOLS%\tasm32;%PATH%
set TASMTABS=%TOOLS%\tasm32
tasm -t80 -b -fFF FDU.asm FDU.com FDU.lst
tasm -t80 -b -fFF fdu.asm fdu.com fdu.lst || exit /b
if errorlevel 1 goto :eof
copy /Y FDU.com ..\..\..\Binary\Apps\
copy /Y FDU.txt ..\..\..\Doc\
copy /Y fdu.com ..\..\..\Binary\Apps\ || exit /b
copy /Y fdu.doc ..\..\..\Binary\Apps\ || exit /b

4613
Source/Apps/FDU/FDU.asm

File diff suppressed because it is too large

514
Source/Apps/FDU/FDU.txt

@ -1,514 +0,0 @@
================================================================
Floppy Disk Utility (FDU) v5.3 for RetroBrew Computers
Disk IO / Zeta / Dual-IDE / N8 / RC2014 / SmallZ80 / Dyno
================================================================
Updated January 5, 2020
by Wayne Warthen (wwarthen@gmail.com)
Application to test the hardware functionality of the Floppy
Disk Controller (FDC) on the ECB DISK I/O, DISK I/O V3, ZETA
SBC, Dual IDE w/ Floppy, or N8 board.
The intent is to provide a testbed that allows direct testing
of all possible media types and modes of access. The
application supports read, write, and format by sector, track,
and disk as well as a random read/write test.
The application supports access modes of polling, interrupt,
INT/WAIT, and DRQ/WAIT. At present, it supports 3.5" media at
DD (720KB) and HD (1.44MB) capacities. It also now supports
5.25" media (720KB and 1.2MB) and 8" media (1.11MB) as well.
Additional media will be added when I have time and access to
required hardware. Not all modes are supported on all
platforms and some modes are experimental in all cases.
In many ways this application is merely reinventing the wheel
and performs functionality similar to existing applications,
but I have not seen any other applications for RetroBrew
Computers hardware that provide this range of functionality.
While the application is now almost entirely new code, I would
like to acknowledge that much was derived from the previous
work of Andrew Lynch and Dan Werner. I also want to credit
Sergio Gimenez with testing the 5.25" drive support and Jim
Harre with testing the 8" drive support. Support for Zeta 2
comes from Segey Kiselev. Thanks!
General Usage
-------------
In general, usage is self explanatory. At invocation, you
must select the floppy disk controller (FDC) that you are
using. Subsequently, the main menu allows you to set the
unit, media, and mode to test. These settings MUST match your
situation. Read, write, format, and verify functions are
provided. A sub-menu will allow you to choose sector, track,
disk, or random tests.
The verify function requires a little explanation. It will
take the contents of the current in-memory disk buffer, save
it, and compare it to the selected sectors. So, you must
ensure that the sectors to be verified already have been
written with the same pattern as the buffer contains. I
typically init the buffer to a pattern, write the pattern to
the entire disk, then verify the entire disk.
Another submenu is provided for FDC commands. This sub-menu
allows you to send low-level commands directly to FDC. You
*must* know what you are doing to use this sub-menu. For
example, in order to read a sector using this sub-menu, you
will need to perform specify, seek, sense int, and read
commands specifying correct values (nothing is value checked
in this menu).
Required Hardware/BIOS
----------------------
Of course, the starting point is to have a supported hardware
configuration. The following Z80 / Z180 based CPU boards are
supported:
- SBC V1/2
- Zeta
- Zeta 2
- N8
- Mark IV
- RC2014 w/ SMC
- RC2014 w/ WDC
- SmallZ80
- Dyno
You must be using either a RomWBW or UBA based OS version.
You must have one of the following floppy disk controllers:
- Disk IO ECB Board FDC
- Disk IO 3 ECB Board FDC
- Dual-IDE ECB Board FDC
- Zeta SBC onboard FDC
- Zeta 2 SBC onboard FDC
- N8 SBC onboard FDC
- RC2014 Scott Baker SMC-based Floppy Module
- RC2014 Scott Baker WDC-based Floppy Module
Finally, you will need a floppy drive connected via an
appropriate cable:
Disk IO - no twist in cable, drive unit 0/1 must be selected by jumper on drive
DISK IO 3, Zeta, Zeta 2, RC2014, Dyno - cable with twist, unit 0 after twist, unit 1 before twist
DIDE, N8, Mark IV, SmallZ80 - cable with twist, unit 0 before twist, unit 1 after twist
Note that FDU does not utilize your systems ROM or OS to
access the floppy system. FDU interacts directly with
hardware. Upon exit, you may need to reset your OS to get the
floppy system back into a state that is expected.
The Disk I/O should be jumpered as follows:
J1: depends on use of interrupt modes (see interrupt modes below)
J2: pins 1-2, & 3-4 jumpered
J3: hardware dependent timing for DMA mode (see DMA modes below)
J4: pins 2-3 jumpered
J5: off
J6: pins 2-3 jumpered
J7: pins 2-3 jumpered
J8: off
J9: off
J10: off
J11: off
J12: off
Note that J1 can be left on even when not using interrupt
modes. As long as the BIOS is OK with it, that is fine. Note
also that J3 is only relevant for DMA modes, but also can be
left in place when using other modes.
The Disk I/O 3 board should be jumpered at the default settings:
JP2: 3-4
JP3: 1-2 for int mode support, otherwise no jumper
JP4: 1-2, 3-4
JP5: 1-2
JP6: 1-2
JP7: 1-2, 3-4
Zeta & Zeta 2 do not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
The Dual-IDE board should be jumpered as follows:
K3 (DT/R or /RD): /RD
P5 (bd ID): 1-2, 3-4 (for $20-$3F port range)
There are no specific N8 jumper settings, but the default
I/O range starting at $80 is assumed in the published code.
The RC2014 Scott Baker SMC-based floppy module should be jumpered
for I/O base address 0x50 (SV1: 11-12), JP1 (TS) shorted,
JP2 (/FAULT) shorted, JP3 (MINI): 2-3, JP4 (/DC/RDY): 2-3.
The RC2014 Scott Baker WDC-based floppy module should be jumpered
for I/O base address 0x50 (SV1: 11-12), JP1 (/DACK): 1-2,
JP2 (TC): 2-3.
SmallZ80 does not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
Dyno does not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
Modes of Operation
------------------
You can select the following test modes. Please refer to the
chart that follows to determine which modes should work with
combinations of Z80 CPU speed and media format.
WARNING: In general, only the polling mode is considered fully
reliable. The other modes are basically experimental and
should only be used if you know exactly what you are doing.
Polling: Traditional polled input/output. Works well and very
reliable with robust timeouts and good error recovery. Also,
the slowest performance which precludes it from being used
with 1.44MB floppy on a 4MHz Z80. This is definitely the mode
you want to get working before any others. It does not require
J1 (interrupt enable) on DISK I/O and does not care about the
setting of J3.
Interrupt: Relies on FDC interrupts to determine when a byte
is ready to be read/written. It does *not* implement a
timeout during disk operations. For example, if there is no
disk in the drive, this mode will just hang until a disk is
inserted. This mode *requires* that the host has interrupts
active using interrupt mode 1 (IM1) and interrupts attached to
the FDC controller. The BIOS must be configured to handle
these interrupts safely.
Fast Interrupt: Same as above, but sacrifices additional
reliability for faster operation. This mode will allow a
1.44MB floppy to work with a 4MHz Z80 CPU. However, if any
errors occur (even a transient read error which is not
unusual), this mode will hang. The same FDC interrupt
requirements as above are required.
INT/WAIT: Same as Fast Interrupt, but uses CPU wait instead of
actual interrupt. This mode is exclusive to the original Disk
IO board. It is subject to all the same issues as Fast
Interrupt, but does not need J1 shorted. J3 is irrelevant.
DRQ/WAIT: Uses pseudo DMA to handle input/output. Does not
require that interrupts (J1) be enabled on the DISK I/O.
However, it is subject to all of the same reliability issues
as "Fast Interrupt". This mode is exclusive to the original
Disk IO board. At present, the mode is *not* implemented!
The chart below attempts to describe the combinations that
work for me. By far, the most reliable mode is Polling, but
it requires 8MHz CPU for HD disks.
DRQ/WAIT --------------------------------+
INT/WAIT -----------------------------+ |
Fast Interrupt --------------------+ | |
Interrupt ----------------------+ | | |
Polling ---------------------+ | | | |
| | | | |
CPU Speed --------------+ | | | | |
| | | | | |
| | | | | |
3.5" DD (720K) ------ 4MHz Y Y Y Y X
8MHz+ Y Y Y Y X
3.5" HD (1.44M) ----- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
5.25" DD (360K) ----- 4MHz Y Y Y Y X
8MHz+ Y Y Y Y X
5.25" HD (1.2M) ----- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
8" DD (1.11M) ------- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
Y = Yes, works
N = No, does not work
X = Experimental, probably won't work
Tracing
-------
Command/result activity to/from the FDC will be written out if
the trace setting is changed from '00' to '01' in setup.
Additionally, if a command failure is detected on any command,
that specific comand and results are written regardless of the
trace setting.
The format of the line written is:
<OPERATION>: <COMMAND BYTES> --> <RESULT BYTES> [<RESULT>]
For example, this is the output of a normal read operation:
READ: 46 01 00 00 01 02 09 1B FF --> 01 00 00 00 00 02 02 [OK]
Please refer to the i8272 data sheet for information on the
command and result bytes.
Note that the sense interrupt command can return a non-OK
result. This is completely normal in some cases. It is
necessary to "poll" the drive for seek status using sense
interrupt. If there is nothing to report, then the result
will be INVALID COMMAND. Additionally, during a recalibrate
operation, it may be necessary to issue the command twice
because the command will only step the drive 77 times looking
for track 0, but the head may be up to 80 tracks away. In
this case, the first recalibrate fails, but the second should
succeed. Here is what this would look like if trace is turned
on:
RECALIBRATE: 07 01 --> <EMPTY> [OK]
SENSE INTERRUPT: 08 --> 80 [INVALID COMMAND]
...
...
...
SENSE INTERRUPT: 08 --> 80 [INVALID COMMAND]
SENSE INTERRUPT: 08 --> 71 00 [ABNORMAL TERMINATION]
RECALIBRATE: 07 01 --> <EMPTY> [OK]
SENSE INTERRUPT: 08 --> 21 00 [OK]
Another example is when the FDC has just been reset. In this
case, you will see up to 4 disk change errors. Again these
are not a real problem and to be expected.
When tracing is turned off, the application tries to be
intelligent about error reporting. The specific errors from
sense interrupt documented above will be suppressed because
they are not a real problem. All other errors will be
displayed.
Error Handling
--------------
There is no automated error retry logic. This is very
intentional since the point is to expose the controller and
drive activity. Any error detected will result in a prompt to
abort, retry, or continue. Note that some number of errors is
considered normal for this technology. An occasional error
would not necessarily be considered a problem.
CPU Speed
---------
Starting with v5.0, the application adjusts it's timing loops
to the actual system CPU speed by querying the BIOS for the
current CPU speed.
Interleave
----------
The format command now allows the specification of a sector
interleave. It is almost always the case that the optimal
interleave will be 2 (meaning 2:1).
360K Media
----------
The 360K media definition should work well for true 360K
drives. However, it will generally not work with 1.2M
drives. This is because these drives spin at 360RPM instead
of the 300RPM speed of true 360K drives. Additionally, 1.2M
drives are 80 tracks and 360K drives are 40 tracks and, so
far, there is no mechanism in FD to "double step" as a way to
use 40 track media in 80 track drives.
With this said, it is possible to configure some 1.2M 5.25"
drives to automatically spin down to 300RPM based on a density
select signal (DENSEL). This signal is asserted by FD for
360K media, so IF you have configured your drive to react to
this signal correctly, you will be able to use the 360K media
defintion. Most 1.2M 5.25" drives are NOT configured this way
by default. TEAC drives are generally easy to modify and have
been tested by the author and do work in this manner. Note
that this does not address the issue of double stepping above;
you will just be using the first 40 of 80 tracks.
Support
-------
I am happy to answer questions as fast and well as I am able.
Best contact is wwarthen@gmail.com or post something on the
RetroBrew Computers Forum
https://www.retrobrewcomputers.org/forum/.
Changes
-------
WW 8/12/2011
Removed call to pulse TC in the FDC initialization after
determining that it periodically caused the FDC to write bad
sectors. I am mystified by this, but definitely found it to
be true. Will revisit at some point -- probably a timing
issue between puslsing TC and whatever happens next.
Non-DMA mode was being set incorrectly for FAST-DMA mode. It
was set for non-DMA even though we were doing DMA. It is
interesting that it worked fine anyway. Fixed it anyway.
DIO_SETMEDIA was not clearing DCD_DSKRDY as it should. Fixed.
WW 8/26/2011: v1.1
Added support for Zeta. Note that INT/WAIT and DRQ/WAIT are
not available on Zeta. Note that Zeta provides the ability to
perform a reset of the FDC independent of a full CPU reset.
This is VERY useful and the FDC is reset anytime a drive reset
is required.
Added INT/WAIT support.
WW 8/28/2011: V1.2
All changes in this version are Zeta specific. Fixed FDC
reset logic and motor status display for Zeta (code from
Sergey).
Modified Zeta disk change display to include it in the command
output line. This makes more sense because a command must be
issued to select the desired drive first. You can use the
SENSE INT command id you want to check the disk change value
at any time. It will also be displayed with any other command
output display.
WW 9/1/2011: V1.3
Added CPUFREQ configuration setting to tune delays based on
cpu speed. The build app is set for 8MHz which also seems to
work well for 4MHz CPU's. Faster CPU speeds will probably
require tuning this setting.
WW 9/5/2011: V1.4
Changed the polling execution routines to utilize CPUFREQ
variable to optimize timeout counter. Most importantly, this
should allow the use of faster CPUs (like 20MHz).
WW 9/19/2011: V1.5
Zeta changes only. Added a call to FDC RESET after any
command failure. This solves an issue where the drive remains
selected if a command error occurs. Also added FDC RESET to
FDC CONTROL menu.
WW 10/7/2011: V2.0
Added support for DIDE. Only supports polling IO and it does
not appear any other modes are possible given the hardware
constraints.
WW 10/13/2011: V2.1
Modified to support N8. N8 is essentially identical to Dual
IDE. The only real change is the IO addresses. In theory, I
should be able to support true DMA on N8 and will work on that.
WW 10/20/2011: v2.2
I had some problems with the results being read were sometimes
missing a byte. Fixed this by taking a more strict approach
to watching the MSR for the exact bits that are expected.
WW 10/22/2011: V2.3
After spending a few days trying to track down an intermittent
data corruption issue with my Dual IDE board, I added a verify
function. This helped me isolate the problem very nicely
(turned out to be interference from the bus monitor).
WW 11/25/2011: V2.4
Preliminary support for DISKIO V3. Basically just assumed
that it operates just like the Zeta. Needs to be verified
with real hardware as soon as I can.
WW 1/9/2012: V2.5
Modified program termination to use CP/M reset call so that a
warm start is done and all drives are logged out. This is
important because media may have been formatted during the
program execution.
WW 2/6/2012: v2.6
Added support for 5.25" drives as tested by Sergio.
WW 4/5/2012: v2.7
Added support for 8" drives as tested by Jim Harre.
WW 4/6/2012: v2.7a
Fixed issue with media selection menu to remove duplicate
entries.
WW 4/8/2012: v2.7b
Corrected the handling of the density select signal.
WW 5/22/2012: v2.8
Added new media definitions (5.25", 320K).
WW 6/1/2012: v2.9
Added interleave capability on format.
WW 6/5/2012: v3.0
Documentation cleanup.
WW 7/1/2012: v3.1
Modified head load time (HLT) for 8" media based on YD-180
spec. Now set to 50ms.
WW 6/17/2013: v3.2
Cleaned up SRT, HLT, and HUT values.
SK 2/10/2015: v3.3
Added Zeta SBC v2 support (Sergey Kiselev)
WW 3/25/2015: v4.0
Renamed from FDTST --> FD
WW 9/2/2017: v5.0
Renamed from FD to FDU.
Added runtime selection of FDC hardware.
Added runtime timing adjustment.
WW 12/16/2017: v5.1
Improved polling version of read/write to fix occasional overrun errors.
WW 1/8/2018: v5.2
Added support for RC2014 hardware:
- Scott Baker SMC 9266 FDC module
- Scott Baker WDC 37C65 FDC module
WW 9/5/2018: v5.3
- Removed use of pulsing TC to end R/W operations after one sector and
instead set EOT = R (sector number) so that after desired sector is
read, R/W stops with end of cylinder error which is a documented
method for controling number of sectors R/W. This specific termination
condition is no longer considered an error, but a successful end of
operation.
- Added support for SmallZ80
WW 5/1/2020: v5.4
- Added support for Dyno (based on work by Steve Garcia)

6
Source/Apps/FDU/Makefile

@ -1,7 +1,7 @@
OBJECTS = FDU.com
DOCS = FDU.txt
OBJECTS = fdu.com
DOCS = fdu.doc
DEST = ../../../Binary/Apps
DOCDEST = ../../../Doc
DOCDEST = ../../../Binary/Apps
TOOLS = ../../../Tools
include $(TOOLS)/Makefile.inc

4774
Source/Apps/FDU/fdu.asm

File diff suppressed because it is too large

545
Source/Apps/FDU/fdu.doc

@ -0,0 +1,545 @@
================================================================
Floppy Disk Utility (FDU) v5.9 for RetroBrew Computers
Disk IO / Zeta / Dual-IDE / N8 / RCBus / SmallZ80 / Dyno / Nhyodyne / Duodyne
================================================================
Updated December 12, 2023
by Wayne Warthen (wwarthen@gmail.com)
Application to test the hardware functionality of the Floppy
Disk Controller (FDC) on the ECB DISK I/O, DISK I/O V3, ZETA
SBC, Dual IDE w/ Floppy, N8, RCBus, SmallZ80, Dyno, Nhyodyne,
Duodyne systems.
The intent is to provide a testbed that allows direct testing
of all possible media types and modes of access. The
application supports read, write, and format by sector, track,
and disk as well as a random read/write test.
The application supports access modes of polling, interrupt,
INT/WAIT, and DRQ/WAIT. At present, it supports 3.5" media at
DD (720KB) and HD (1.44MB) capacities. It also now supports
5.25" media (720KB and 1.2MB) and 8" media (1.11MB) as well.
Additional media will be added when I have time and access to
required hardware. Not all modes are supported on all
platforms and some modes are experimental in all cases.
In many ways this application is merely reinventing the wheel
and performs functionality similar to existing applications,
but I have not seen any other applications for RetroBrew
Computers hardware that provide this range of functionality.
While the application is now almost entirely new code, I would
like to acknowledge that much was derived from the previous
work of Andrew Lynch and Dan Werner. I also want to credit
Sergio Gimenez with testing the 5.25" drive support and Jim
Harre with testing the 8" drive support. Support for Zeta 2
comes from Sergey Kiselev. Thanks!
General Usage
-------------
In general, usage is self explanatory. At invocation, you
must select the floppy disk controller (FDC) that you are
using. Subsequently, the main menu allows you to set the
unit, media, and mode to test. These settings MUST match your
situation. Read, write, format, and verify functions are
provided. A sub-menu will allow you to choose sector, track,
disk, or random tests.
The verify function requires a little explanation. It will
take the contents of the current in-memory disk buffer, save
it, and compare it to the selected sectors. So, you must
ensure that the sectors to be verified already have been
written with the same pattern as the buffer contains. I
typically init the buffer to a pattern, write the pattern to
the entire disk, then verify the entire disk.
Another submenu is provided for FDC commands. This sub-menu
allows you to send low-level commands directly to FDC. You
*must* know what you are doing to use this sub-menu. For
example, in order to read a sector using this sub-menu, you
will need to perform specify, seek, sense int, and read
commands specifying correct values (nothing is value checked
in this menu).
Required Hardware/BIOS
----------------------
Of course, the starting point is to have a supported hardware
configuration. The following Z80 / Z180 based CPU boards are
supported:
- SBC V1/2
- Zeta
- Zeta 2
- N8
- Mark IV
- RCBus
- SmallZ80
- Dyno
- Nhyodyne (MBC)
- Duodyne (DUO)
You must be using either a RomWBW or UNA based OS version.
You must have one of the following floppy disk controllers:
- Disk IO ECB Board FDC
- Disk IO 3 ECB Board FDC
- Dual-IDE ECB Board FDC
- Zeta SBC onboard FDC
- Zeta 2 SBC onboard FDC
- N8 SBC onboard FDC
- RCBus Scott Baker SMC-based Floppy Module
- RCBus Scott Baker WDC-based Floppy Module
- SmallZ80 FDC
- Dyno FDC
- Nhyodyne (MBC) FDC
- Duodyne (DUO) FDC
Finally, you will need a floppy drive connected via an
appropriate cable:
Disk IO - no twist in cable, drive unit 0/1 must be selected by jumper on drive
DISK IO 3, Zeta, Zeta 2, RCBus, Dyno - cable with twist, unit 0 after twist, unit 1 before twist
DIDE, N8, Mark IV, SmallZ80 - cable with twist, unit 0 before twist, unit 1 after twist
Note that FDU does not utilize your systems ROM or OS to
access the floppy system. FDU interacts directly with
hardware. Upon exit, you may need to reset your OS to get the
floppy system back into a state that is expected.
The Disk I/O should be jumpered as follows:
J1: depends on use of interrupt modes (see interrupt modes below)
J2: pins 1-2, & 3-4 jumpered
J3: hardware dependent timing for DMA mode (see DMA modes below)
J4: pins 2-3 jumpered
J5: off
J6: pins 2-3 jumpered
J7: pins 2-3 jumpered
J8: off
J9: off
J10: off
J11: off
J12: off
Note that J1 can be left on even when not using interrupt
modes. As long as the BIOS is OK with it, that is fine. Note
also that J3 is only relevant for DMA modes, but also can be
left in place when using other modes.
The Disk I/O 3 board should be jumpered at the default settings:
JP2: 3-4
JP3: 1-2 for int mode support, otherwise no jumper
JP4: 1-2, 3-4
JP5: 1-2
JP6: 1-2
JP7: 1-2, 3-4
Zeta & Zeta 2 do not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
The Dual-IDE board should be jumpered as follows:
K3 (DT/R or /RD): /RD
P5 (bd ID): 1-2, 3-4 (for $20-$3F port range)
There are no specific N8 jumper settings, but the default
I/O range starting at $80 is assumed in the published code.
The RCBus Scott Baker SMC-based floppy module should be jumpered
for I/O base address 0x50 (SV1: 11-12), JP1 (TS) shorted,
JP2 (/FAULT) shorted, JP3 (MINI): 2-3, JP4 (/DC/RDY): 2-3.
The RCBus Scott Baker WDC-based floppy module should be jumpered
for I/O base address 0x50 (SV1: 11-12), JP1 (/DACK): 1-2,
JP2 (TC): 2-3. Note that pin 1 of JPX jumpers is toward the bottom
of the board.
The RCBus FDC by Alan Cox (Etched Pixels) needs to be strapped
for base I/O address 0x48.
SmallZ80 does not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
Dyno does not have any relevant jumper settings. The
hardwired I/O ranges are assumed in the code.
The Nhyodyne (MBC) FDC is expected to be strapped to use neither INT
nor NMI. It is also not expected to use DMA.
The Duodyne (DUO) FDC is expected to be strapped to use neither INT
nor NMI. It is also not expected to use DMA.
Modes of Operation
------------------
You can select the following test modes. Please refer to the
chart that follows to determine which modes should work with
combinations of Z80 CPU speed and media format.
WARNING: In general, only the polling mode is considered fully
reliable. The other modes are basically experimental and
should only be used if you know exactly what you are doing.
Polling: Traditional polled input/output. Works well and very
reliable with robust timeouts and good error recovery. Also,
the slowest performance which precludes it from being used
with 1.44MB floppy on a 4MHz Z80. This is definitely the mode
you want to get working before any others. It does not require
J1 (interrupt enable) on DISK I/O and does not care about the
setting of J3.
Interrupt: Relies on FDC interrupts to determine when a byte
is ready to be read/written. It does *not* implement a
timeout during disk operations. For example, if there is no
disk in the drive, this mode will just hang until a disk is
inserted. This mode *requires* that the host has interrupts
active using interrupt mode 1 (IM1) and interrupts attached to
the FDC controller. The BIOS must be configured to handle
these interrupts safely.
Fast Interrupt: Same as above, but sacrifices additional
reliability for faster operation. This mode will allow a
1.44MB floppy to work with a 4MHz Z80 CPU. However, if any
errors occur (even a transient read error which is not
unusual), this mode will hang. The same FDC interrupt
requirements as above are required.
INT/WAIT: Same as Fast Interrupt, but uses CPU wait instead of
actual interrupt. This mode is exclusive to the original Disk
IO board. It is subject to all the same issues as Fast
Interrupt, but does not need J1 shorted. J3 is irrelevant.
DRQ/WAIT: Uses pseudo DMA to handle input/output. Does not
require that interrupts (J1) be enabled on the DISK I/O.
However, it is subject to all of the same reliability issues
as "Fast Interrupt". This mode is exclusive to the original
Disk IO board. At present, the mode is *not* implemented!
The chart below attempts to describe the combinations that
work for me. By far, the most reliable mode is Polling, but
it requires 8MHz CPU for HD disks.
DRQ/WAIT --------------------------------+
INT/WAIT -----------------------------+ |
Fast Interrupt --------------------+ | |
Interrupt ----------------------+ | | |
Polling ---------------------+ | | | |
| | | | |
CPU Speed --------------+ | | | | |
| | | | | |
| | | | | |
3.5" DD (720K) ------ 4MHz Y Y Y Y X
8MHz+ Y Y Y Y X
3.5" HD (1.44M) ----- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
5.25" DD (360K) ----- 4MHz Y Y Y Y X
8MHz+ Y Y Y Y X
5.25" HD (1.2M) ----- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
8" DD (1.11M) ------- 4MHz N N Y Y X
8MHz+ Y Y Y Y X
Y = Yes, works
N = No, does not work
X = Experimental, probably won't work
Tracing
-------
Command/result activity to/from the FDC will be written out if
the trace setting is changed from '00' to '01' in setup.
Additionally, if a command failure is detected on any command,
that specific comand and results are written regardless of the
trace setting.
The format of the line written is:
<OPERATION>: <COMMAND BYTES> --> <RESULT BYTES> [<RESULT>]
For example, this is the output of a normal read operation:
READ: 46 01 00 00 01 02 09 1B FF --> 01 00 00 00 00 02 02 [OK]
Please refer to the i8272 data sheet for information on the
command and result bytes.
Note that the sense interrupt command can return a non-OK
result. This is completely normal in some cases. It is
necessary to "poll" the drive for seek status using sense
interrupt. If there is nothing to report, then the result
will be INVALID COMMAND. Additionally, during a recalibrate
operation, it may be necessary to issue the command twice
because the command will only step the drive 77 times looking
for track 0, but the head may be up to 80 tracks away. In
this case, the first recalibrate fails, but the second should
succeed. Here is what this would look like if trace is turned
on:
RECALIBRATE: 07 01 --> <EMPTY> [OK]
SENSE INTERRUPT: 08 --> 80 [INVALID COMMAND]
...
...
...
SENSE INTERRUPT: 08 --> 80 [INVALID COMMAND]
SENSE INTERRUPT: 08 --> 71 00 [ABNORMAL TERMINATION]
RECALIBRATE: 07 01 --> <EMPTY> [OK]
SENSE INTERRUPT: 08 --> 21 00 [OK]
Another example is when the FDC has just been reset. In this
case, you will see up to 4 disk change errors. Again these
are not a real problem and to be expected.
When tracing is turned off, the application tries to be
intelligent about error reporting. The specific errors from
sense interrupt documented above will be suppressed because
they are not a real problem. All other errors will be
displayed.
Error Handling
--------------
There is no automated error retry logic. This is very
intentional since the point is to expose the controller and
drive activity. Any error detected will result in a prompt to
abort, retry, or continue. Note that some number of errors is
considered normal for this technology. An occasional error
would not necessarily be considered a problem.
CPU Speed
---------
Starting with v5.0, the application adjusts it's timing loops
to the actual system CPU speed by querying the BIOS for the
current CPU speed.
Interleave
----------
The format command now allows the specification of a sector
interleave. It is almost always the case that the optimal
interleave will be 2 (meaning 2:1).
360K Media
----------
The 360K media definition should work well for true 360K
drives. However, it will generally not work with 1.2M
drives. This is because these drives spin at 360RPM instead
of the 300RPM speed of true 360K drives. Additionally, 1.2M
drives are 80 tracks and 360K drives are 40 tracks and, so
far, there is no mechanism in FD to "double step" as a way to
use 40 track media in 80 track drives.
With this said, it is possible to configure some 1.2M 5.25"
drives to automatically spin down to 300RPM based on a density
select signal (DENSEL). This signal is asserted by FD for
360K media, so IF you have configured your drive to react to
this signal correctly, you will be able to use the 360K media
defintion. Most 1.2M 5.25" drives are NOT configured this way
by default. TEAC drives are generally easy to modify and have
been tested by the author and do work in this manner. Note
that this does not address the issue of double stepping above;
you will just be using the first 40 of 80 tracks.
Support
-------
I am happy to answer questions as fast and well as I am able.
Best contact is wwarthen@gmail.com or post something on the
RetroBrew Computers Forum
https://www.retrobrewcomputers.org/forum/.
Changes
-------
WW 8/12/2011
Removed call to pulse TC in the FDC initialization after
determining that it periodically caused the FDC to write bad
sectors. I am mystified by this, but definitely found it to
be true. Will revisit at some point -- probably a timing
issue between puslsing TC and whatever happens next.
Non-DMA mode was being set incorrectly for FAST-DMA mode. It
was set for non-DMA even though we were doing DMA. It is
interesting that it worked fine anyway. Fixed it anyway.
DIO_SETMEDIA was not clearing DCD_DSKRDY as it should. Fixed.
WW 8/26/2011: v1.1
Added support for Zeta. Note that INT/WAIT and DRQ/WAIT are
not available on Zeta. Note that Zeta provides the ability to
perform a reset of the FDC independent of a full CPU reset.
This is VERY useful and the FDC is reset anytime a drive reset
is required.
Added INT/WAIT support.
WW 8/28/2011: V1.2
All changes in this version are Zeta specific. Fixed FDC
reset logic and motor status display for Zeta (code from
Sergey).
Modified Zeta disk change display to include it in the command
output line. This makes more sense because a command must be
issued to select the desired drive first. You can use the
SENSE INT command id you want to check the disk change value
at any time. It will also be displayed with any other command
output display.
WW 9/1/2011: V1.3
Added CPUFREQ configuration setting to tune delays based on
cpu speed. The build app is set for 8MHz which also seems to
work well for 4MHz CPU's. Faster CPU speeds will probably
require tuning this setting.
WW 9/5/2011: V1.4
Changed the polling execution routines to utilize CPUFREQ
variable to optimize timeout counter. Most importantly, this
should allow the use of faster CPUs (like 20MHz).
WW 9/19/2011: V1.5
Zeta changes only. Added a call to FDC RESET after any
command failure. This solves an issue where the drive remains
selected if a command error occurs. Also added FDC RESET to
FDC CONTROL menu.
WW 10/7/2011: V2.0
Added support for DIDE. Only supports polling IO and it does
not appear any other modes are possible given the hardware
constraints.
WW 10/13/2011: V2.1
Modified to support N8. N8 is essentially identical to Dual
IDE. The only real change is the IO addresses. In theory, I
should be able to support true DMA on N8 and will work on that.
WW 10/20/2011: v2.2
I had some problems with the results being read were sometimes
missing a byte. Fixed this by taking a more strict approach
to watching the MSR for the exact bits that are expected.
WW 10/22/2011: V2.3
After spending a few days trying to track down an intermittent
data corruption issue with my Dual IDE board, I added a verify
function. This helped me isolate the problem very nicely
(turned out to be interference from the bus monitor).
WW 11/25/2011: V2.4
Preliminary support for DISKIO V3. Basically just assumed
that it operates just like the Zeta. Needs to be verified
with real hardware as soon as I can.
WW 1/9/2012: V2.5
Modified program termination to use CP/M reset call so that a
warm start is done and all drives are logged out. This is
important because media may have been formatted during the
program execution.
WW 2/6/2012: v2.6
Added support for 5.25" drives as tested by Sergio.
WW 4/5/2012: v2.7
Added support for 8" drives as tested by Jim Harre.
WW 4/6/2012: v2.7a
Fixed issue with media selection menu to remove duplicate
entries.
WW 4/8/2012: v2.7b
Corrected the handling of the density select signal.
WW 5/22/2012: v2.8
Added new media definitions (5.25", 320K).
WW 6/1/2012: v2.9
Added interleave capability on format.
WW 6/5/2012: v3.0
Documentation cleanup.
WW 7/1/2012: v3.1
Modified head load time (HLT) for 8" media based on YD-180
spec. Now set to 50ms.
WW 6/17/2013: v3.2
Cleaned up SRT, HLT, and HUT values.
SK 2/10/2015: v3.3
Added Zeta SBC v2 support (Sergey Kiselev)
WW 3/25/2015: v4.0
Renamed from FDTST --> FD
WW 9/2/2017: v5.0
Renamed from FD to FDU.
Added runtime selection of FDC hardware.
Added runtime timing adjustment.
WW 12/16/2017: v5.1
Improved polling version of read/write to fix occasional overrun errors.
WW 1/8/2018: v5.2
Added support for RCBus hardware:
- Scott Baker SMC 9266 FDC module
- Scott Baker WDC 37C65 FDC module
WW 9/5/2018: v5.3
- Removed use of pulsing TC to end R/W operations after one sector and
instead set EOT = R (sector number) so that after desired sector is
read, R/W stops with end of cylinder error which is a documented
method for controling number of sectors R/W. This specific termination
condition is no longer considered an error, but a successful end of
operation.
- Added support for SmallZ80
WW 1/5/2020: v5.4
- Added support for Dyno (based on work by Steve Garcia)
WW 4/29/2020: v5.5
- Added support for Etched Pixels FDC
WW 12/12/2020: v5.6
- Updated SmallZ80 support for new I/O map
WW 3/24/2021: v5.7
- Added support for a few single-sided formats
WW 7/26/2021: v5.8
- Added support for Nhyodyne (MBC) FDC
WW 12/10/2023: v5.9
- Added support for Duodyne (DUO) FDC

214
Source/Apps/Format.asm

@ -1,214 +0,0 @@
;===============================================================================
; FORMAT - DISK FORMAT UTILITY FOR ROMWBW ADAPTATION OF CP/M 2.2
;===============================================================================
;
; AUTHOR: WAYNE WARTHEN (wwarthen@gmail.com)
;_______________________________________________________________________________
;
; Usage:
; FORMAT D:
; ex: FORMAT (display version and usage)
; FORMAT /? (display version and usage)
; FORMAT C: (format drive C:)
;_______________________________________________________________________________
;
; Change Log:
;_______________________________________________________________________________
;
; ToDo:
; 1) Actually implement this
;_______________________________________________________________________________
;
;===============================================================================
; Definitions
;===============================================================================
;
stksiz .equ $40 ; Working stack size
;
restart .equ $0000 ; CP/M restart vector
bdos .equ $0005 ; BDOS invocation vector
;;
;stamp .equ $40 ; loc of RomWBW CBIOS zero page stamp
;
rmj .equ 3 ; CBIOS version - major
rmn .equ 0 ; CBIOS version - minor
;
;===============================================================================
; Code Section
;===============================================================================
;
;
.org $100
;
; setup stack (save old value)
ld (stksav),sp ; save stack
ld sp,stack ; set new stack
;
; initialization
call init ; initialize
jr nz,exit ; abort if init fails
;
; do the real work
call process ; parse and process command line
jr nz,exit ; done if error or no action
;
exit: ; clean up and return to command processor
call crlf ; formatting
ld sp,(stksav) ; restore stack
jp restart ; return to CP/M via restart
ret ; return to CP/M w/o restart
;
; Initialization
;
init:
;
; locate start of cbios (function jump table)
ld hl,(restart+1) ; load address of CP/M restart vector
ld de,-3 ; adjustment for start of table
add hl,de ; HL now has start of table
ld (bioloc),hl ; save it
;
; check for UNA (UBIOS)
ld a,($FFFD) ; fixed location of UNA API vector
cp $C3 ; jp instruction?
jr nz,initx ; if not, not UNA
ld hl,($FFFE) ; get jp address
ld a,(hl) ; get byte at target address
cp $FD ; first byte of UNA push ix instruction
jr nz,initx ; if not, not UNA
inc hl ; point to next byte
ld a,(hl) ; get next byte
cp $E5 ; second byte of UNA push ix instruction
jr nz,initx ; if not, not UNA
ld hl,unamod ; point to UNA mode flag
ld (hl),$FF ; set UNA mode flag
;
initx:
;
xor a
ret
;
; Process command line
;
process:
jr usage
;
xor a
ret
;
usage:
;
call crlf ; formatting
ld de,msgban1 ; point to version message part 1
call prtstr ; print it
ld a,(unamod) ; get UNA flag
or a ; set flags
ld de,msghb ; point to HBIOS mode message
call z,prtstr ; if not UNA, say so
ld de,msgub ; point to UBIOS mode message
call nz,prtstr ; if UNA, say so
call crlf ; formatting
ld de,msgban2 ; point to version message part 2
call prtstr ; print it
call crlf2 ; blank line
ld de,msguse ; point to usage message
call prtstr ; print it
xor a ; signal success
ret ; and return
;
; Print character in A without destroying any registers
;
prtchr:
push bc ; save registers
push de
push hl
ld e,a ; character to print in E
ld c,$02 ; BDOS function to output a character
call bdos ; do it
pop hl ; restore registers
pop de
pop bc
ret
;
; Print a zero terminated string at (HL) without destroying any registers
;
prtstr:
push de
;
prtstr1:
ld a,(de) ; get next char
or a
jr z,prtstr2
call prtchr
inc de
jr prtstr1
;
prtstr2:
pop de ; restore registers
ret
;
; Start a new line
;
crlf2:
call crlf ; two of them
crlf:
push af ; preserve AF
ld a,13 ; <CR>
call prtchr ; print it
ld a,10 ; <LF>
call prtchr ; print it
pop af ; restore AF
ret
;
; Invoke CBIOS function
; The CBIOS function offset must be stored in the byte
; following the call instruction. ex:
; call cbios
; .db $0C ; offset of CONOUT CBIOS function
;
cbios:
ex (sp),hl
ld a,(hl) ; get the function offset
inc hl ; point past value following call instruction
ex (sp),hl ; put address back at top of stack and recover HL
ld hl,(bioloc) ; address of CBIOS function table to HL
call addhl ; determine specific function address
jp (hl) ; invoke CBIOS
;
; Add the value in A to HL (HL := HL + A)
;
addhl:
add a,l ; A := A + L
ld l,a ; Put result back in L
ret nc ; if no carry, we are done
inc h ; if carry, increment H
ret ; and return
;
; Jump indirect to address in HL
;
jphl:
jp (hl)
;
;===============================================================================
; Storage Section
;===============================================================================
;
bioloc .dw 0 ; CBIOS starting address
;
unamod .db 0 ; $FF indicates UNA UBIOS active
;
stksav .dw 0 ; stack pointer saved at start
.fill stksiz,0 ; stack
stack .equ $ ; stack top
;
msgban1 .db "FORMAT v0.1a for RomWBW CP/M 2.2, 02-Sep-2017",0
msghb .db " (HBIOS Mode)",0
msgub .db " (UBIOS Mode)",0
msgban2 .db "Copyright (C) 2017, Wayne Warthen, GNU GPL v3",0
msguse .db "FORMAT command is not yet implemented!",13,10,13,10
.db "Use FDU command to physically format floppy diskettes",13,10
.db "Use CLRDIR command to (re)initialize directories",13,10
.db "Use SYSCOPY command to make disks bootable",13,10
.db "Use FDISK80 command to partition mass storage media",0
;
.end

14
Source/Apps/HTalk/Build.cmd

@ -0,0 +1,14 @@
@echo off
setlocal
set TOOLS=../../../Tools
set PATH=%TOOLS%\tasm32;%PATH%
set TASMTABS=%TOOLS%\tasm32
echo Building HTalk...
tasm -t80 -g3 -fFF htalk.asm htalk.com %htalk.lst || exit /b
copy /Y htalk.com ..\..\..\Binary\Apps\ || exit /b
rem copy /Y *.ovr ..\..\..\Binary\Apps\ || exit /b
rem copy /Y *.hlp ..\..\..\Binary\Apps\ || exit /b
rem copy /Y *.doc ..\..\..\Binary\Apps\ || exit /b

5
Source/Apps/HTalk/Clean.cmd

@ -0,0 +1,5 @@
@echo off
setlocal
if exist *.com del *.com
if exist *.lst del *.lst

10
Source/Apps/HTalk/Makefile

@ -0,0 +1,10 @@
OBJECTS = htalk.com
#DOCS = htalk.txt
DEST = ../../../Binary/Apps
DOCDEST = ../../../Binary/Apps
TOOLS = ../../../Tools
include $(TOOLS)/Makefile.inc
%.com: USETASM=1

725
Source/Apps/HTalk/htalk.asm

@ -0,0 +1,725 @@
;===============================================================================
;HTALK - BARE MINIMUM TERMINAL INTERFACE
;
; CONSOLE TALKS TO ARBITRARY CHARACTER DEVICE.
;===============================================================================
;
; AUTHOR: TOM PLANO (TOMPLANO@PROTON.ME)
;
; USAGE:
; HTALK $<CHAR_DEVICE_NUM>
;
;_______________________________________________________________________________
;
; CHANGE LOG:
; I'VE NOTATED SECTIONS OF CODE THAT ARNT REQUIRED IF THIS APP IS
; INCORPORATED INTO DBGMOD WITH A <OPT> TAG
;
;_______________________________________________________________________________
;
; TODO:
; SEE ENUM_DEV1 TODO
;
;
;_______________________________________________________________________________
;
;===============================================================================
; DEFINITIONS
;===============================================================================
;
STKSIZ .EQU $FF
;
; HBIOS SYSTEM CALLS AND ID STRING ADDRESS
;
ROMWBW_ID .EQU $FFFE ; ROMWBW ID STRING ADDRESS
HBIOS_SYS .EQU $FFF0 ; HBIOS SYSCALL ADDRESS
H_SYSGET .EQU $F8 ; GET SYSTEM INFO
H_CIOCNT .EQU $00 ; GET CHAR DEV COUNT SUBFUNCTION
BF_CIOIN .EQU $00 ; HBIOS CHAR INPUT
BF_CIOOUT .EQU $01 ; HBIOS CHAR OUTPUT
BF_CIOIST .EQU $02 ; HBIOS CHAR INPUT STATUS
BF_CIOOST .EQU $03 ; HBIOS CHAR OUTPUT STATUS
BF_CIOINIT .EQU $04 ; HBIOS CHAR I/O INIT
BF_CIOQUERY .EQU $05 ; HBIOS CHAR I/O QUERY
BF_CIODEVICE .EQU $06 ; HBIOS CHAR I/O DEVICE
;
; SUPPORTED HBIOS CIO DEVICE TYPES
;
CIODEV_UART .EQU $00 ; 16C550 FAMILY SERIAL INTERFACE UART.ASM
CIODEV_ASCI .EQU $10 ; Z180 BUILT-IN SERIAL PORTS ASCI.ASM
CIODEV_TERM .EQU $20 ; TERMINAL ANSI.ASM
CIODEV_PRPCON .EQU $30 ; PROPIO SERIAL CONSOLE INTERFACE PRP.ASM
CIODEV_PPPCON .EQU $40 ; PARPORTPROP SERIAL CONSOLE INTERFACE PPP.ASM
CIODEV_SIO .EQU $50 ; ZILOG SERIAL PORT INTERFACE SIO.ASM
CIODEV_ACIA .EQU $60 ; MC68B50 ASYNCHRONOUS INTERFACE ACIA.ASM
CIODEV_PIO .EQU $70 ; ZILOG PARALLEL INTERFACE CONTROLLER PIO.ASM
CIODEV_UF .EQU $80 ; FT232H-BASED ECB USB FIFO UF.ASM
CIODEV_DUART .EQU $90 ; SCC2681 FAMILY DUAL UART DUART.ASM
CIODEV_Z2U .EQU $A0 ; ZILOG Z280 BUILT-IN SERIAL PORTS Z2U.ASM
CIODEV_LPT .EQU $B0 ; PARALLEL I/O CONTROLLER LPT.ASM
; HBIOS CURRENT CONSOLE NUMBER
CIO_CONSOLE .EQU $80
; SPECIAL CHARS
CTRLC .EQU $03
CHR_BEL .EQU $07
CHR_CR .EQU $0D
CHR_LF .EQU $0A
CHR_BS .EQU $08
CHR_ESC .EQU $1B
CHR_DEL .EQU $7F
;
;===============================================================================
; BEGIN MAIN PROGRAM
;===============================================================================
;
.ORG $0100
;
; SETUP STACK (SAVE OLD VALUE)
; <OPT> HANDLED BY DBGMON
LD (STKSAV),SP
LD SP,STACK
;
; INITIALIZATION + STARTUP MESSAGE + HBIOS DETECT
; <OPT> HANDLED BY DBGMON
CALL INIT_PROG
JP NZ,EXIT
;
; LIST HBIOS DEV OPTIONS FOR REFERENCE
; ALSO GETS MAX CONN
;
; <OPT> THIS IS OPTIONAL BECAUSE IF A CHAR DEVICE DOESNT EXIST, WE NEVER READ OR
; WRITE TO IT, WE SIMPLY CALL CIOIST AND CIOOST OVER AND OVER ON IT, WITHOUT
; EVER PUSHING DATA TO IT
CALL ENUM_DEV
JP NZ,EXIT
;
; PARSE COMMAND LINE
;
CALL PARSE
JP NZ,EXIT
;
; RUN CONVERSTION WITH CHAR DEVICE
;
CALL TALK
;
; DONE
JP EXIT
;
; CLEAN UP AND RETURN TO CALLING PROCESS
;
EXIT:
CALL NEWLINE ; ...
LD HL,STR_EXITMSG ; LOAD EXIT STRING
CALL PRTSTR ; PRINT IT
CALL NEWLINE ; ...
LD SP,(STKSAV) ; RESET STACK
RET ; RETURN TO CALLER
;
;===============================================================================
; END MAIN PROGRAM
;===============================================================================
;
;
;===============================================================================
; BEGIN MAIN PROGRAM SUBROUTINES
;===============================================================================
;
INIT_PROG:
LD HL, STR_BANNER ; LOAD WELCOME BANNER
CALL PRTSTR ; PRINT IT
CALL NEWLINE ; ...
LD HL,(ROMWBW_ID) ; GET FIRST BYTE OF ROMWBW MARKER
LD A,(HL) ; ... THROUGH HL
CP 'W' ; MATCH?
JP NZ,NOTHBIOS ; ABORT WITH INVALID CONFIG BLOCK
INC HL ; NEXT BYTE (MARKER BYTE 2)
LD A,(HL) ; LOAD IT
CP ~'W' ; MATCH?
JP NZ,NOTHBIOS ; ABORT WITH INVALID CONFIG BLOCK
LD HL,STR_HBIOS ; POINT TO HBIOS STR
CALL PRTSTR ; PRINT IT
CALL NEWLINE ; ...
RET
;
; HBOIS NOT DETECTED, BAIL OUT W/ ERROR
;
NOTHBIOS:
LD HL,STR_BIOERR ; LOAD HBIOS NOT FOUND STR
CALL PRTSTR ; PRINT IT
CALL NEWLINE ; ...
AND $FF ; SET FLAGS
RET
ENUM_DEV:
;
; CHAR COUNT HEADER
;
LD HL,STR_DEVS_FOUND
CALL PRTSTR
;
;GET COUNT OF CHAR UNITS
;
LD B,H_SYSGET ; LOAD SYSGET HBIOS FUNCTION
LD C,H_CIOCNT ; LOAD SYSGET CHAR DEV COUNT SUBFUNCTION
CALL HBIOS_SYS ; JUMP TO HBIOS
OR A ; SET FLAGS
JP NZ, EXIT ; JUMP TO EXIT ON FAILED
LD A,E ; NUM CHAR DEVICES NOW IN A
DEC A ; DEC NUM DEVICES TO BE 0 INDEXED
LD (CIODEV_CNT), A ; STORE BEFORE PRINT
LD (CIODEV_MAX), A ; STORE BEFORE PRINT
INC A ; RESTORE NUM DEVICES VALUE
CALL PRTHEX ; PRINT NUMBER OF UNITS FOUND
CALL NEWLINE ; ...
ENUM_DEV1:
LD IX, TGT_DEV
; TODO: H AND L DONT ALWAYS GET SET BY THE DRIVERS. FIND SOME WAY TO MASK
; THEM OUT IF THEY ARE THE SAME BEFORE AND AFTER THE CALL?
LD B, BF_CIODEVICE ; LOAD HBIOS FUNCTION TO QUERRY DEVICE INFO
LD HL, CIODEV_CNT ; REQUEST A CHAR DEVICE
LD C, (HL) ; ...
LD (IX), C ; REMEMBER WHAT DEVICE WE ASKED FOR BEFORE BE
CALL HBIOS_SYS ; EXECUTE HBIOS SUBROUTINE
OR A ; SET FLAGS
RET NZ ; RETURN FAILED
;
; STORE RESULTS OF HBOIS DEVICE QUERRY
;
LD A,C ; MOVE C TO A
LD (IX+1), A ; STORE A DEVICE ATTRIBUTES, SKIP FIRST ENTRY
LD A,D
LD (IX+2), A
LD A,E
LD (IX+3), A
LD A,H
LD (IX+4), A
LD A,L
LD (IX+5), A
;
; PRINT FORMATED DATA LOOP
;
LD B, $06 ; PRINT THE 5 ELEMENTS OF DEV_STR_TBL
LD HL,DEV_STR_TBL ; TABLE BASE PTR
PLOOP_BASE:
CALL PRTSTR ; PTRSTR INCREMENTS HL FOR US
LD A, (IX)
CALL PRTHEX
LD A, '|'
CALL COUT
INC IX
DJNZ PLOOP_BASE
CALL NEWLINE
LD A, (CIODEV_CNT)
DEC A
LD (CIODEV_CNT), A
JP P, ENUM_DEV1 ; JUMP WHILE CIODEV_CNT >=0
AND $00
RET
;
; RUN CONVERSTION WITH CHAR DEVICE
;
TALK:
;
; INIT PING PONG DEVICE POINTERS
;
LD IX, USER_CON ; LOAD VALUE AT ADDR USER_CON
LD A, (IX) ; LOAD VALUE AT ADDR USER_CON
LD (RF_DEV), A ; STORE TO ADDR RF_DEV
LD A, (IX+1) ; LOAD VALUE AT ADDR TARGET_CON
LD (WT_DEV), A ; STORE TO ADDR WT_DEV
;
; READ FROM RF_DEV -> WRITE TO WT_DEV
;
TALK_LOOP:
;
; CHECK FOR DATA ON RF_DEV
;
LD B,BF_CIOIST ; SET HBIOS FUNCTION TO RUN
LD HL, RF_DEV
LD C,(HL)
CALL HBIOS_SYS ; CHECK FOR CHAR PENDING ON INPUT BUFFER USING HBIOS
OR A ; SET FLAGS
JP Z,TALK_NEXT ; JUMP NO CHARACTERS READY
JP M,TALK_NEXT ; JUMP ERROR ON READ
;
; EXEC READ FROM RF_DEV
;
LD B,BF_CIOIN ; SET FUNCTION TO RUN
LD HL, RF_DEV
LD C,(HL) ; RETRIEVE CON_DEV_NUM TO READ/WRITE FROM ACTIVE CONSOLE
CALL HBIOS_SYS ; CHECK FOR CHAR PENDING USING HBIOS
LD A,E ; MOVE RESULT TO A
CP CTRLC ; CHECK FOR EXIT REQUEST (CTRL+C)
RET Z ; IF SO, BAIL OUT
PUSH AF ; SAVE THE CHAR WE READ
;
; CHECK FOR SPACE ON WT_DEV
;
LD B,BF_CIOOST ; SET HBIOS FUNCTION TO RUN
LD HL, WT_DEV
LD C,(HL)
CALL HBIOS_SYS ; CHECK FOR SPACE IN OUTPUT BUFFER USING HBIOS
OR A ; 0 OR 1 IS A VALID RETURN
JP Z,TALK_NEXT ; JUMP NO SPACE
JP M,TALK_NEXT ; JUMP ERROR ON WRITE
;
; EXEC WRITE TO WT_DEV
;
LD B,BF_CIOOUT ; SET HBIOS FUNCTION TO RUN
LD HL, WT_DEV
LD C,(HL) ; RETRIEVE TGT_DEV_NUM TO READ/WRITE FROM TARGET CHAR DEVICE
;
POP AF ; RECOVER THE CHARACTER
LD E,A ; MOVE CHARACTER TO E
CALL HBIOS_SYS ; WRITE CHAR USING HBIOS
TALK_NEXT:
;
; SWAP RF_DEV AND WT_DEV
;
LD IX, RF_DEV ; LOAD VALUE AT ADDR USER_CON
LD A, (IX) ; LOAD VALUE AT ADDR RF_DEV
LD B, (IX+1) ; LOAD VALUE AT ADDR WT_DEV
LD (IX+1), A ; STORE TO OLD RF_DEV TO ADDR WT_DEV
LD A, B ; MOVE OLD WT_DEV TO A
LD (IX), A ; STORE TO OLD WT_DEF TO ADDR RF_DEV
JP TALK_LOOP ; LOOP
;
;===============================================================================
; END MAIN PROGRAM SUBROUTINES
;===============================================================================
;
;
;===============================================================================
; BEGIN ROUTINES THAT ARE NOT COMPATIBLE WITH DBGMON
;===============================================================================
;
PARSE:
;
LD HL,$81 ; POINT TO START OF COMMAND TAIL (AFTER LENGTH BYTE)
CALL NONBLANK ; SKIP LEADING BLANKS,
CALL HEXBYTE
JP C,ERRHEXRD ; IF NOT, ERR
LD (TARGET_CON),A ; REQUESTED TARGET CONN
LD B,A ; MOVE TO B
LD HL,CIODEV_MAX ; GRAB MAX VALUE OF TARGETCON
LD A,(HL)
CP B ; CHECK IF B<=A
JP M, ERROOR ; IF B>A, and both are less then 80 then S SET, ERR
JP C, ERROOR ; IF B> 80 carry set instead (signed numbers problem)
; swap A and B
JP PE, ERROOR ; IF B>A, C SET, ERR
LD HL, MSGTALKING ; PRINT TARGET DEVICE
CALL PRTSTR
LD A, B ; RETRIEVE TARGET CON
CALL PRTHEX
CALL NEWLINE
AND $00
RET
;
;NOT COMPATIBLE WITH THE DBGMON FUNCTION OF THE SAME NAME
;
NONBLANK:
LD A,(HL) ; LOAD NEXT CHARACTER
OR A ; STRING ENDS WITH A NULL
RET Z ; IF NULL, RETURN POINTING TO NULL
CP ' ' ; CHECK FOR BLANK
RET NZ ; RETURN IF NOT BLANK
INC HL ; IF BLANK, INCREMENT CHARACTER POINTER
JR NONBLANK ; AND LOOP
;
;
;===============================================================================
; END ROUTINES THAT ARE NOT COMPATIBLE WITH DBGMON
;===============================================================================
;
;
;===============================================================================
; BEGIN ROUTINES THAT ARE LIFTED FROM DBGMON
;===============================================================================
;
;
; PRINT THE VALUE IN A IN HEX WITHOUT DESTROYING ANY REGISTERS
;
PRTHEX:
PUSH DE ; SAVE DE
CALL HEXASCII ; CONVERT VALUE IN A TO HEX CHARS IN DE
LD A,D ; GET THE HIGH ORDER HEX CHAR
CALL COUT ; PRINT IT
LD A,E ; GET THE LOW ORDER HEX CHAR
CALL COUT ; PRINT IT
POP DE ; RESTORE DE
RET ; DONE
;
; CONVERT BINARY VALUE IN A TO ASCII HEX CHARACTERS IN DE
;
HEXASCII:
LD D,A ; SAVE A IN D
CALL HEXCONV ; CONVERT LOW NIBBLE OF A TO HEX
LD E,A ; SAVE IT IN E
LD A,D ; GET ORIGINAL VALUE BACK
RLCA ; ROTATE HIGH ORDER NIBBLE TO LOW BITS
RLCA
RLCA
RLCA
CALL HEXCONV ; CONVERT NIBBLE
LD D,A ; SAVE IT IN D
RET ; DONE
;
; CONVERT LOW NIBBLE OF A TO ASCII HEX
;
HEXCONV:
AND $0F ; LOW NIBBLE ONLY
ADD A,$90
DAA
ADC A,$40
DAA
RET
;
;
; ADD THE VALUE IN A TO HL (HL := HL + A)
;
ADDHL:
ADD A,L ; A := A + L
LD L,A ; PUT RESULT BACK IN L
RET NC ; IF NO CARRY, WE ARE DONE
INC H ; IF CARRY, INCREMENT H
RET ; AND RETURN
;
;__________________________________________________________________________________________________
;
; UTILITY PROCS TO PRINT SINGLE CHARACTERS WITHOUT TRASHING ANY REGISTERS
;
;__________________________________________________________________________________________________
;
PC_SPACE:
PUSH AF
LD A,' '
JR PC_PRTCHR
PC_COLON:
PUSH AF
LD A,':'
JR PC_PRTCHR
PC_CR:
PUSH AF
LD A,CHR_CR
JR PC_PRTCHR
PC_LF:
PUSH AF
LD A,CHR_LF
JR PC_PRTCHR
PC_PRTCHR:
CALL COUT
POP AF
RET
NEWLINE2:
CALL NEWLINE
NEWLINE:
CALL PC_CR
CALL PC_LF
RET
PRTSTR:
LD A,(HL)
INC HL
CP '$'
RET Z
CALL COUT
JR PRTSTR
;
;__COUT_______________________________________________________________________
;
; OUTPUT CHARACTER FROM A
;_____________________________________________________________________________
;
COUT:
; SAVE ALL INCOMING REGISTERS
PUSH AF
PUSH BC
PUSH DE
PUSH HL
;
; OUTPUT CHARACTER TO CONSOLE VIA HBIOS
LD E,A ; OUTPUT CHAR TO E
LD C,CIO_CONSOLE ; CONSOLE UNIT TO C
LD B,BF_CIOOUT ; HBIOS FUNC: OUTPUT CHAR
CALL HBIOS_SYS ; HBIOS OUTPUTS CHARACTER
;
; RESTORE ALL REGISTERS
POP HL
POP DE
POP BC
POP AF
RET
;
;__CIN________________________________________________________________________
;
; INPUT CHARACTER TO A
;_____________________________________________________________________________
;
CIN:
; SAVE INCOMING REGISTERS (AF IS OUTPUT)
PUSH BC
PUSH DE
PUSH HL
;
; INPUT CHARACTER FROM CONSOLE VIA HBIOS
LD C,CIO_CONSOLE ; CONSOLE UNIT TO C
LD B,BF_CIOIN ; HBIOS FUNC: INPUT CHAR
CALL HBIOS_SYS ; HBIOS READS CHARACTER
LD A,E ; MOVE CHARACTER TO A FOR RETURN
;
; RESTORE REGISTERS (AF IS OUTPUT)
POP HL
POP DE
POP BC
RET
;
;__CST________________________________________________________________________
;
; RETURN INPUT STATUS IN A (0 = NO CHAR, !=0 CHAR WAITING)
;_____________________________________________________________________________
;
CST:
; SAVE INCOMING REGISTERS (AF IS OUTPUT)
PUSH BC
PUSH DE
PUSH HL
;
; GET CONSOLE INPUT STATUS VIA HBIOS
LD C,CIO_CONSOLE ; CONSOLE UNIT TO C
LD B,BF_CIOIST ; HBIOS FUNC: INPUT STATUS
CALL HBIOS_SYS ; HBIOS RETURNS STATUS IN A
;
; RESTORE REGISTERS (AF IS OUTPUT)
POP HL
POP DE
POP BC
RET
;
;
;__ISHEX______________________________________________________________________
;
; CHECK BYTE AT (HL) FOR HEX CHAR, RET Z IF SO, ELSE NZ
;_____________________________________________________________________________
;
ISHEX:
LD A,(HL) ; CHAR TO AS
CP '0' ; < '0'?
JR C,ISHEX1 ; YES, NOT 0-9, CHECK A-F
CP '9' + 1 ; > '9'
JR NC,ISHEX1 ; YES, NOT 0-9, CHECK A-F
XOR A ; MUST BE 0-9, SET ZF
RET ; AND DONE
ISHEX1:
CP 'A' ; < 'A'?
JR C,ISHEX2 ; YES, NOT A-F, FAIL
CP 'F' + 1 ; > 'F'
JR NC,ISHEX2 ; YES, NOT A-F, FAIL
XOR A ; MUST BE A-F, SET ZF
RET ; AND DONE
ISHEX2:
OR $FF ; CLEAR ZF
RET ; AND DONE
;
;__HEXBYTE____________________________________________________________________
;
; GET ONE BYTE OF HEX DATA FROM BUFFER IN HL, RETURN IN A
;_____________________________________________________________________________
;
HEXBYTE:
LD C,0 ; INIT WORKING VALUE
HEXBYTE1:
CALL ISHEX ; DO WE HAVE A HEX CHAR?
JR NZ,HEXBYTE3 ; IF NOT, WE ARE DONE
LD B,4 ; SHIFT WORKING VALUE (C := C * 16)
HEXBYTE2:
SLA C ; SHIFT ONE BIT
RET C ; RETURN W/ CF SET INDICATING OVERFLOW ERROR
DJNZ HEXBYTE2 ; LOOP FOR 4 BITS
CALL NIBL ; CONVERT HEX CHAR TO BINARY VALUE IN A & INC HL
OR C ; COMBINE WITH WORKING VALUE
LD C,A ; AND PUT BACK IN WORKING VALUE
JR HEXBYTE1 ; DO ANOTHER CHARACTER
HEXBYTE3:
LD A,C ; WORKING VALUE TO A
OR A ; CLEAR CARRY
RET
;
;__NIBL_______________________________________________________________________
;
; GET ONE BYTE OF HEX DATA FROM BUFFER IN HL, RETURN IN A
;_____________________________________________________________________________
;
NIBL:
LD A,(HL) ; GET K B. DATA
INC HL ; INC KB POINTER
CP 40H ; TEST FOR ALPHA
JR NC,ALPH
AND 0FH ; GET THE BITS
RET
ALPH:
AND 0FH ; GET THE BITS
ADD A,09H ; MAKE IT HEX A-F
RET
;
;===============================================================================
; END ROUTINES THAT ARE LIFTED FROM DBGMON
;===============================================================================
;
;
;===============================================================================
; ERROR RESPONCES
;===============================================================================
;
ERROOR: ; REQUESTED DEV OUT OF RANGE (SYNTAX)
CALL NEWLINE
LD A, 'R'
CALL COUT
LD HL,TARGET_CON
LD A,(HL)
CALL PRTHEX
LD A, ':'
CALL COUT
LD A, 'M'
CALL COUT
LD HL,CIODEV_MAX
LD A,(HL)
CALL PRTHEX
LD HL,MSGOOR
JR ERROR
ERRHEXRD: ; COMMAND HEX READ ERROR (SYNTAX)
LD HL,MSGHEXRD
JR ERROR
ERRUSE: ; COMMAND USAGE ERROR (SYNTAX)
LD HL,MSGUSE
JR ERROR
ERRPRM: ; COMMAND PARAMETER ERROR (SYNTAX)
LD HL,MSGPRM
JR ERROR
ERROR: ; PRINT ERROR STRING AND RETURN ERROR SIGNAL
CALL NEWLINE ; PRINT NEWLINE
CALL PRTSTR ; PRINT ERROR STRING
OR $FF ; SIGNAL ERROR
RET ; DONE
;===============================================================================
; STORAGE SECTION
;===============================================================================
;
; CHAR DEV COUNT
CIODEV_CNT .DB $0
CIODEV_MAX .DB $0
;TALK LOOP DATA, DEFAULT TO LOOPBACK
USER_CON .DB $80
TARGET_CON .DB $80
; PING PONG POINTERS
RF_DEV .DB 0
WT_DEV .DB 0
; TARGET CHARACTER DEVICE DATA
TGT_DEV:
.DB 0 ; HBIOS CHAR NUM
.DB 0 ; C: DEVICE ATTRIBUTES
.DB 0 ; D: DEVICE TYPE
.DB 0 ; E: DEVICE NUMBER
.DB 0 ; H: DEVICE MODE
.DB 0 ; L: DEVICE I/O BASE ADDRESS
; STRING LITERALS
MSGUSE .TEXT "USAGE: HTALK <CIO_DEV_ID>$"
MSGPRM .TEXT "PARAMETER ERROR$"
MSGOOR .TEXT "CIO VAL TOO LARGE$"
MSGHEXRD .TEXT "HEX READ ERR$"
MSGTALKING .TEXT "CONNECTING TO CHAR:$"
DEV_STR_TBL:
.TEXT "CHAR:$"
.TEXT "ATTR:$"
.TEXT "TYPE:$"
.TEXT "NUMB:$"
.TEXT "MODE:$"
.TEXT "ADDR:$"
STR_DEVS_FOUND .TEXT "NUM CHAR DEVICES FOUND - $"
STR_EXITMSG .TEXT "HTALK DONE$"
STR_BANNER .TEXT "HTALK V1.0 (CTRL-C TO EXIT)$"
STR_HBIOS .TEXT "HBIOS DETECTED$"
STR_BIOERR .TEXT "*** UNKNOWN BIOS - BAILING OUT ***$"
STKSAV .DW 0 ; STACK POINTER SAVED AT START
.FILL STKSIZ,0 ; STACK
STACK .EQU $ ; STACK TOP
;
.END

11
Source/Apps/Makefile

@ -1,14 +1,9 @@
OBJECTS = SysGen.com Survey.com \
SysCopy.com Assign.com Format.com Talk.com Mode.com RTC.com \
Timer.com IntTest.com
OTHERS = *.hex *.com
SUBDIRS = XM FDU FAT Tune
OBJECTS = sysgen.com syscopy.com assign.com format.com talk.com \
mode.com rtc.com timer.com rtchb.com
SUBDIRS = HTalk XM FDU FAT Tune Test ZMP ZMD Dev VGM cpuspd Survey
DEST = ../../Binary/Apps
TOOLS =../../Tools
include $(TOOLS)/Makefile.inc
USETASM = 1
Survey.com: USETASM=0

1040
Source/Apps/Mode.asm

File diff suppressed because it is too large

1732
Source/Apps/RTC.asm

File diff suppressed because it is too large

725
Source/Apps/Survey.asm

@ -1,725 +0,0 @@
;***************************************;
; ;
; S U R V E Y ;
; ;
;***************************************;
;By Michael Friese 9/22/79
;* Lists Kbytes used and remaining plus number of files
; on all logged disks (up to 8)
;* Prints Memory map and synopsis of all machine memory
;* Lists all active I/O Ports
;* Uses disk allocation block for all disk calculations
;
;VERSION LIST - Most recent version first.
;
;16/Dec/17 - Handle 16-bit port addressing using
; Z80 IN A,(C) instruction. Wayne Warthen
;
;06/Jul/82 - Added Godbout DISK 1 equate and added SKIP equate
; Bill Bolton - Software Tools, Australia
;
;01/Jun/82 - Tidied up and fixed port display, added display
; of contents of low memory. David Bennett - Alfred
; Hospital, Australia
;
;29/Jun/80 - Added version number test and calculations for CP/M
; version 2 compatibility. This program should now work
; properly on all versions 1.4 and later. BRR
;
;28/Jun/80 - Added IMS400 equate (prevents Industrial Micro Systems
; controller from hanging up during port scan). BRR
;
;24/Jun/80 - Removed MACLIB statement, included required macros
; in source. Bruce R. Ratoff
;
;*******************************;
; SYSTEM MACROS ;
;*******************************;
;Increments 16 bit memory location X
INXI MACRO X
LOCAL JUST8
PUSH H
LXI H,X
INR M
JNZ JUST8
INX H
INR M
JUST8:
POP H
ENDM
;..............................................................
;
; SAVE MACRO SAVE SPECIFIED REGISTERS
;
; SAVE R1,R2,R3,R4
;
; R1-R4 MAY BE B,D,H OR PSW SAVED IN ORDER SPECIFIED
; IF REGS ARE OMITTED SAVE B,D AND H
;
SAVE MACRO R1,R2,R3,R4
IF NOT NUL R1&R2&R3&R4
IRP R,<<R1>,<R2>,<R3>,<R4>>
IF NUL R
EXITM
ENDIF
PUSH R
ENDM
ELSE
IRPC REG,BDH
PUSH REG
ENDM
ENDIF
ENDM
;
; . . . . . . . . . . . . . . . . . . . . . . . . . . . .
;
; RESTORE MACRO RESTORE REGISTERS (INVERSE OF SAVE)
;
; RESTORE R1,R2,R3,R4
;
; R1-R4 MAY BE B,D,H OR PSW RESTORED IN ORDER SPECIFIED
; IF REGS OMITTED RESTORE H,D AND B
;
RESTORE MACRO R1,R2,R3,R4
IF NOT NUL R1&R2&R3&R4
IRP R,<<R1>,<R2>,<R3>,<R4>>
IF NUL R
EXITM
ENDIF
POP R
ENDM
ELSE
IRPC REG,HDB
POP REG
ENDM
ENDIF
ENDM
;
;..............................................................
;
; CHAROUT MACRO CONSOLE OUTPUT FROM A
;
; CHAROUT ADDR
;
CHAROUT MACRO ADDR
IF NOT NUL ADDR
LDA ADDR
ENDIF
MVI C,2 ;;CONOUT
MOV E,A ;;CHAR TO E
CALL 5 ;;CALL BDOS
ENDM
;
;
;.............................................................
;
; DECOUT MACRO CONVERT A POSITIVE INTEGER TO DECIMAL AND OUTPUT
; TO THE CONSOLE.
;
; DECOUT ADDR
;
; IF ADDR OMITTED, NUMBER ASSUMED TO BE IN HL, ELSE LOADED TO HL
; LEADING ZEROS SUPRESSED. MAXIMUM NUMBER 65,767
;
DECOUT MACRO ADDR
LOCAL ENDDEC,DX
JMP ENDDEC
@DECOUT:
SAVE ;;PUSH STACK
LXI B,-10 ;;RADIX FOR CONVERSION
LXI D,-1 ;;THIS BECOMES NO DIVIDED BY RADIX
DX:
DAD B ;;SUBTRACT 10
INX D
JC DX
LXI B,10
DAD B ;;ADD RADIX BACK IN ONCE
XCHG
MOV A,H
ORA L ;;TEST FOR ZERO
CNZ @DECOUT ;;RECURSIVE CALL
MOV A,E
ADI '0' ;;CONVERT FROM BCD TO HEX
MOV E,A ;;TO E FOR OUTPUT
CHAROUT ;;CONSOLE OUTPUT
RESTORE ;;POP STACK
RET
ENDDEC:
DECOUT MACRO ?ADDR
IF NOT NUL ?ADDR
LHLD ?ADDR
ENDIF
CALL @DECOUT ;;CALL THE SUBROUTINE
ENDM
DECOUT ADDR
ENDM
;
;
;..............................................................
;
; HEXOUT MACRO CONVERT BINARY NO AND OUTPUT TO CONSOLE
;
; HEXOUT ADDR
;
; NUMBER ASSUMED IN A IF NO ARGUMENT
;
HEXOUT MACRO ADDR
LOCAL OUTCHR,HEXEND
JMP HEXEND
HEXPRN:
SAVE PSW
RRC
RRC
RRC
RRC ;;SHIFT RIGHT 4
CALL OUTCHR
RESTORE PSW
OUTCHR:
ANI 0FH ;;MASK 4 BITS
ADI 90H ;;ADD OFFSET
DAA ;;DEC ADJUST
ACI 40H ;;ADD OFFSET
DAA ;;DEC ADJUST
MOV E,A ;;TO E FOR OUTPUT
MVI C,2 ;;CONOUT
JMP 5 ;;CALL BDOS
HEXEND:
HEXOUT MACRO ?ADDR
IF NOT NUL ?ADDR
LDA ?ADDR
ENDIF
CALL HEXPRN
ENDM
HEXOUT ADDR
ENDM
;
;
;*******************************;
; SYSTEM EQUATES ;
;*******************************;
TRUE EQU -1
FALSE EQU NOT TRUE
TARBEL EQU FALSE ; Tarbell FDC dmb 31-may-82
IMS400 EQU FALSE ; Industrial Micro Systems FDC
GODBOUT EQU FALSE ; Godbout Disk 1 FDC
GODBAS EQU 0C0H ; Base of Godbout FDC
TARBAS EQU 0F8H ; Base of Tarbell
SKIP EQU TARBEL OR IMS400 OR GODBOUT ; Will be true
; if any skip needed
IF TARBEL
SKIPORT EQU TARBAS+4 ; Port # to skip if Tarbell FDC
ENDIF
IF IMS400
SKIPORT EQU 08FH ; Port # to skip if IMS FDC
ENDIF
IF GODBOUT
SKIPORT EQU GODBAS+1 ; Port # to skip if Disk 1 FDC
ENDIF
BDOS EQU 5 ; jump to BDOS
bios equ 0 ; jump to BIOS dmb 1-jun-82
CRLF EQU 0A0DH ; CR LF sequence
CRLFE EQU 8A0DH ; CR LF with EOL
EOL EQU 80H ; End of line
TAB EQU 'I'-40H ; Tab character
ESC EQU 1BH ; Escape character
TABS EQU 9 ; Tab columns
;***********************;
; MAIN PROGRAM ;
;***********************;
;
ORG 100H
;
START:
LXI H,0 ; Save stack pointer
DAD SP
SHLD OLDSP
LXI SP,FINIS+64
CALL TYPE ; Type initial CRLF
DB TAB,TAB,'*** System Survey (December 17) ***'
DW CRLF,CRLFE
;DISK SURVEY
LXI H,8 ; Init drive counter
MVI C,24 ; Get login vector
PUSH H
CALL BDOS
POP H
ROTBIT:
RAR ; RAR login bit to C
JNC NOTLOG ; Drive not logged
PUSH PSW ; Save login
PUSH H ; and counter
;Print drive letter
CALL TYPE
DB 'Drive'
DB ' '+EOL
MVI A,'A' ; Get ASCII bias
ADD H ; Add to drive #
MOV E,A ; Print drive letter
CALL TCHR
CALL TYPE ; and colon
DB ':',' '+EOL
POP H ; Restore drive #
PUSH H
;Print K already allocated
MOV E,H
MVI C,14 ; Log drive
CALL BDOS
MVI C,27 ; Index allocation vect
CALL BDOS
MOV L,A ; Put in decent regs
MOV H,B
PUSH H ; save for later
MVI C,12 ; get version #
CALL BDOS
MOV A,L ; zero if version 1
ORA A
JNZ V2X ; otherwise, use 2.x style params
LHLD BDOS+1 ; get vers 1 style params
MVI L,3CH
MOV A,M ; get block shift factor
STA BLKSHF
INX H
INX H
MOV L,M ; get max. block number
MVI H,0
SHLD MAXALL
MVI B,32 ; assume 32 bytes in block map
JMP GETALC ; continue
V2X:
MVI A,'?' ; Use wild user #
STA FCB ; in filename search
MVI C,31 ; Get 2.x parameter block
CALL BDOS
INX H
INX H
MOV A,M ; Get and save ablock shift factor
STA BLKSHF
INX H
INX H
INX H
MOV A,M ; Get maximum block number
INX H ; (double precision)
MOV H,M
MOV L,A
SHLD MAXALL
INX H
MVI B,3 ; map size is (MAXALL+1)/8
V2SH:
MOV A,H
ORA A ; do 16 bit right shift
RAR
MOV H,A
MOV A,L
RAR
MOV L,A
DCR B ; 3 times
JNZ V2SH
MOV B,L
LDA MAXALL ; allow for leftover bits if any
ANI 3
JZ GETALC
INR B
GETALC:
POP H
LXI D,0 ; Init group counter
NXBYTE:
MVI C,8 ; Bit counter for byte
MOV A,M ; Get map byte
NXBIT:
RAR ; Rotate to C
JNC NOBIT ; No group allocated
INX D ; Inc group counter
NOBIT:
DCR C ; Dec bit counter
JNZ NXBIT
INX H ; Index next byte
DCR B
JNZ NXBYTE
CALL SHF16
PUSH H
CALL BINDEC
CALL TYPE
DB 'K bytes in',' '+EOL
;Print number of files
LXI D,FCB ; Fake file cont block
MVI C,17 ; Search for 1st file
CALL BDOS
LXI H,0 ; File counter
LOOK:
CPI 255 ; Failure
JZ PFILE
ADD A ; File offset times 2
ADD A ; 4
ADD A ; 8
ADD A ; 16
ADD A ; 32
ADI 80H ; Make sure it's not a deleted file
MOV E,A
MVI D,0
LDAX D
CPI 0E5H
JZ LOOK1
INX H ; Bump file counter
LOOK1:
LXI D,FCB ; Restore FCB
MVI C,18 ; Look for addtl files
PUSH H ; Save file counter
CALL BDOS
POP H
JMP LOOK
PFILE:
CALL BINDEC ; Print # of files
CALL TYPE
DB ' files with',' '+EOL
;Print K remaining
LHLD MAXALL ; Get number of blocks
XCHG
INX D ; Inc for actual value
CALL SHF16
XCHG
POP H
MOV A,H ; Ones comp & move
CMA
MOV H,A
MOV A,L
CMA
MOV L,A
INX H ; Twos complement
DAD D ; and subtract
CALL BINDEC ; K remaining
CALL TYPE
DB 'K bytes remaining'
DW CRLFE
;Set up to print next drive
POP H ; Restore bit counter
POP PSW ; and bitmap byte
NOTLOG:
INR H ; Bump drive counter
DCR L ; Dec bit counter
JNZ ROTBIT
;MEMORY SURVEY
;Create header
MSURV:
CALL TYPE
DW CRLF
DB 'Memory map:'
DW CRLF
DB '0',TAB,'8',TAB,'16',TAB,'24',TAB,'32'
DB TAB,'40',TAB,'48',TAB,'56',TAB,'64'
DW CRLF
REPT 8
DB '|',TAB
ENDM
DB '|'
DW CRLF
db ' ' ; dmb 31-May-82
DB 'T'+EOL
LXI H,RAM
MVI M,LOW 1023 ; Init RAM counter
INX H
MVI M,HIGH 1023
MVI B,4 ; Clear ROM, EMP
CLREG:
INX H
MVI M,0
DCR B
JNZ CLREG
LXI H,1024 ; Init memory pointer
MVI C,63 ; K to be checked
;Start of analysis loop
BEGANA:
LXI D,1024 ; Byte counter
XRA A ; Clear flag bytes
STA RAMF
STA EMPF
ANALP:
MOV A,M ; Get test byte and
MOV B,A ; store for later
CMA
MOV M,A ; Put invertd tst byte
SUB M ; Check for good write
MOV M,B ; Restore orignl data
JNZ NOTMEM ; Wasn't good write
INXI RAM ; Bump memory counter
JMP NEXT ; To next byte
NOTMEM:
STA RAMF ; Not considered RAM
MVI A,0FFH ; Is it empty space?
SUB B
JNZ NOTEMP ; Inc ROM, set flag
LDA EMPF ; Any non empty space
ANA A ; before here?
JZ NEXT
JMP NOTEM ; To next byte
NOTEMP:
STA EMPF ; Set no empty flag
NOTEM:
INXI ROM
NEXT:
INX H ; Index next byte
DCX D ; Decrement K counter
XRA A
ORA D
ORA E
JNZ ANALP ; K counter not 0
PUSH B
PUSH H
LDA RAMF ; Is it RAM?
ANA A
JNZ NOTRAM ; No
dcr h ; drop H to make compares right
LDA BDOS+2 ; Is it under BDOS ?
CMP H
JC NOTTPA ; No
CALL TYPE ; Yes, it's TPA
DB 'T'+EOL
JMP NEXTK
NOTTPA:
lda bios+2 ; is it under bios ?
cmp h
jc nbdos
call type ; yes, it's BDOS
db 'C'+eol
jmp nextk
nbdos:
CALL TYPE ; Assume it's BIOS
DB 'B'+EOL
JMP NEXTK
;
NOTRAM:
LDA EMPF ; Is it empty?
ANA A
JZ NOMEM ; Yes, no memory
CALL TYPE ; No, must be ROM
DB 'R'+EOL
JMP NEXTK
NOMEM:
CALL TYPE
DB ' '+EOL
NEXTK:
POP H
POP B
DCR C ; Decrement K counter
JNZ BEGANA
CALL TYPE
DW CRLF
DB 'T=TPA',TAB,'C=CPM',TAB,'B=BIOS or unassigned'
DB TAB,'R=ROM or bad'
DW CRLFE
;
; contents of first page
call type
db 'BIOS at',' '+eol
hexout bios+2
hexout bios+1
call type
db tab,'iobyte',' '+eol
hexout bios+3
call type
db tab,'drive',' '+eol
hexout bios+4
call type
db tab,'BDOS at',' '+eol
hexout bdos+2
hexout bdos+1
call type
dw crlf,crlfe
;
;MEMORY SYNOPSIS
LHLD RAM
PUSH H ; Save RAM
CALL BINDEC ; Type RAM
CALL TYPE
DB ' Bytes RAM',TAB,TAB+EOL
LHLD ROM
PUSH H
CALL BINDEC ; Type ROM
CALL TYPE
DB ' Bytes ROM',TAB,TAB+EOL
LHLD BDOS+1
CALL BINDEC
CALL TYPE
DB ' Bytes in TPA'
DW CRLFE
POP D ; Get RAM
POP H ; Get RAM
DAD D ; Add 'em
PUSH H ; and save result
LXI D,0 ; Subtract from this
MOV A,H ; Complement 16 bits
CMA
MOV H,A
MOV A,L
CMA
MOV L,A ; 2s comp bias in D
DAD D ; Subtract
CALL BINDEC
CALL TYPE
DB ' Bytes Empty ',TAB+EOL
POP H ; Restore RAM+ROM
CALL BINDEC
CALL TYPE
DB ' Total Active Bytes'
DW CRLF,CRLF
;PORT SURVEY
DB 'Active I/O ports',':'+EOL
LXI H,1000H ; DELAY SO MESSAGE OUTPUT
PDLY:
DCX H ; DOESN'T GIVE A FALSE READING
MOV A,H ; ON CONSOLE STATUS PORT
ORA L
JNZ PDLY
LXI H,0 ; Init active port counter
mvi d,0 ; Init port counter
mvi e,0ffh ; init port group variable
PORTLP:
MOV A,D
IF SKIP ; Single port mask
CPI SKIPORT
JZ ISPORT ; Print mask port
ENDIF
mov c,a ; port number to reg c
mvi b,0 ; for 16 bit port addressing
db 0edh,078h ; z80: in a,(c)
; inactive port could return 0xFF or 0x78
CPI 0FFH
JZ NEXTPT
cpi 078h
jz nextpt
ISPORT:
mov a,d ; got a live one, probably
ani 0f0h ; is port in same group as last ?
cmp e
jz nocrlf
call type ; no, start a new line
dw crlfe
mov a,d ; save for next time
ani 0f0h
mov e,a
nocrlf:
MOV A,D ; Get port #
PUSH D
PUSH H
HEXOUT
POP H
POP D
INX H ; count another one found
call type
db ' '+eol
NEXTPT:
INR D ; Bump port counter
JNZ PORTLP ; Not done
CALL TYPE ; Done
DW CRLFE
CALL BINDEC
CALL TYPE ; Type Active Ports
DB ' Ports active'
DW CRLFE
CCP:
LHLD OLDSP
SPHL
RET
;***********************;
; SUBROUTINES ;
;***********************;
;Binary to decimal conversion
BINDEC:
DECOUT ; From LIB
RET
;Types a string of text terminated with bit 7 high
TYPE:
XTHL ; Get string address
PUSH D
TYPELP:
MOV A,M ; Get type data
MOV D,A ; Save for later
ANI 7FH ; Mask ASCII
MOV E,A
PUSH H
PUSH D
CALL TCHR
POP D
POP H
INX H
MVI A,EOL ; End of line bit
ANA D
JP TYPELP ; Not done
POP D
XTHL ; Get return address
RET
;Types a single character on console
TCHR:
MVI C,2
JMP BDOS
;Checks sectors per block and multiplies or divides block size
;Enter with data in D. Result returned in H,L
;
SHF16:
LDA BLKSHF ; Get shift factor (gives block size)
CPI 3 ; Is it 1K (std)?
JNZ NOT3
MOV L,E ; Yes, use present #
ZH:
MVI H,0
RET
;
NOT3:
CPI 2 ; Is it minifloppy?
JNZ NOT2
MOV A,E ; Yes, divide by 2
RRC
ANI 7FH
MOV L,A
JMP ZH
NOT2:
SUI 3 ; Must be something
MOV B,A ; larger like double
XCHG ; sided or double dens
BITSHF:
DAD H ; 16 bit 2^(B-1)
DCR B
JNZ BITSHF
RET
;***********************;
; DATA STORAGE ;
;***********************;
FCB: DB 0,'???????????',0,0,0 ; File control block
DS 17 ; Extra FCB workspace
OLDSP: DS 2 ; Old stack pointer
RAM: DS 2 ; RAM counter
ROM: DS 2 ; ROM counter
RAMF: DS 1 ; RAM good flag
EMPF: DS 1 ; Empty so far flag
BLKSHF: DS 1 ; block shift factor
MAXALL: DS 2 ; maximum block number
FINIS EQU $ ; End of program
END


16
Source/Apps/Survey/Build.cmd

@ -0,0 +1,16 @@
@echo off
setlocal
set TOOLS=..\..\..\Tools
set PATH=%TOOLS%\zxcc;%PATH%
set CPMDIR80=%TOOLS%/cpm/
:: zxcc MAC survey.asm -$PO || exit /b
:: zxcc MLOAD25 survey || exit /b
zxcc M80 -,=survey/L/R
zxcc L80 -survey,survey/N/E
copy /Y survey.com ..\..\..\Binary\Apps\ || exit /b

8
Source/Apps/Survey/Clean.cmd

@ -0,0 +1,8 @@
@echo off
setlocal
if exist *.hex del *.hex
if exist *.rel del *.rel
if exist *.prn del *.prn
if exist *.lst del *.lst
if exist *.com del *.com

Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save