Microsoft BASIC-80 Reference Manual

BASIC-80 Reference Manual

This manual is a reference for Microsoft’s BASIC-80 language, release 5.0 and later. There are
significant differences between the 5.0 release of BASIC-80 and the previous releases (release
4.51and earlier).

If you have programs written under a previous release of BASIC-80, check Appendix A for new
features in 5.0 that may affect execution.

Editor’s NOTE: This updated edition of the BASIC-80 Reference Manual was produced as an
effort to improve upon a source document found in the Internet Archive at this URL:
https://archive.org/details/bitsavers_microsoftc.0Reference1979 5972376/mode/1up.

It is the Editor’s belief that presence of this document on the Internet Archive argues for a good
faith belief that it is in the Public Domain. This present edition is not intended to represent a
threat to any existing copyrights or trademarks. It is hoped the present edition will be of use to a
growing community of retro-computing enthusiasts who choose to code in MBASIC/BASIC-80.

https://archive.org/details/bitsavers_microsoftc.0Reference1979_5972376/mode/1up

BASIC-80 Reference Manual

CONTENTS

INTRODUCTION

CHAPTER 1 General Information About BASIC-80
CHAPTER 2 BASIC-80 Commands and Statements
CHAPTER 3 BASIC-80 Functions

APPENDIX A New Features in BASIC-80, Release 5.0
APPENDIX B BASIC-80 Disk 1/O

APPENDIX C Assembly Language Subroutines

APPENDIX D BASIC-80 with the CP/M Operating System
APPENDIX E BASIC-80 with the ISIS-1l Operating System
APPENDIX F BASIC-80 with the TEKDOS Operating System
APPENDIX G BASIC-80 with the Intel SBC and MDS Systems
APPENDIX H Standalone Disk BASIC

APPENDIX | Converting Programs to BASIC-80

APPENDIX | Summary of Error Codes and Error Messages
APPENDIX K Mathematical Functions

APPENDIX L Microsoft BASIC Compiler

APPENDIX M ASCII Character Codes

INDEX Index to this Edition

{Editor’s Note: Those Appendices shown IN ITALICS above are not included in this edition of
the manual because they do not pertain to CP/M. If there is interest in adding Appendices E, F,
and G, we may add them in a future revision.}

Introduction

BASIC-80 is the most extensive implementation of BASIC available for the 8080 and Z80
microprocessors. In its fifth major release (Release 5.0), BASIC-80 meets the ANSI qualifications
for BASIC, as set forth in document BSRX3. 60-1978.

Each release of BASIC-80 consists of three upward compatible versions: 8K, Extended and Disk.
This manual is a reference for all three versions of BASIC-80, release 5.0 and later.

This manual is also a reference for Microsoft BASIC-86 and the Microsoft BASIC Compiler.
BASIC-86 is currently available in Extended and Disk Standalone versions, which are
comparable to the BASIC-80 Extended and Disk Standalone versions. There are significant
differences between the 5.0 release of BASIC-80 and the previous releases (release 4.51 and
earlier). If you have programs written under a previous release of BASIC-80, check Appendix A
for new features in 5.0 that may affect execution.

The manual is divided into three large chapters plus a number of appendices.

Chapter 1 covers a variety of topics, largely pertaining to information representation when using
BASIC-80.

Chapter 2 contains the syntax and semantics of every command and statement in BASIC-80,
ordered alphabetically.

Chapter 3 describes all of BASIC-80 s intrinsic functions, also ordered alphabetically.
The appendices contain information pertaining to individual operating systems; plus lists of error

messages, ASCIlI codes, and math functions; and helpful information on assembly language
subroutines and disk I/O.

CHAPTER 1: GENERAL INFORMATION ABOUT BASIC-80
1.1 INITIALIZATION

The procedure for initialization will vary with different implementations of BASIC-80. Check the
appropriate appendix at the back of this manual to determine how BASIC-80 is initialized with
your operating system.

1.2 MODES OF OPERATION

When BASIC-80 is initialized, it types the prompt "0k". "Ok" means BASIC-80 is at command
level, that is, it is ready to accept commands. At this point, BASIC-80 may be used in either of
two modes: the direct mode or the indirect mode.

In the direct mode, BASIC statements and commands are not preceded by line numbers. They
are executed as they are entered. Results of arithmetic and logical operations may be displayed
immediately and stored for later use, but the instructions themselves are lost after execution.
This mode is useful for debugging and for using BASIC as a "calculator" for quick computations
that do not require a complete program.

The indirect mode is the mode used for entering programs. Program lines are preceded by line
numbers and are stored in memory. The program stored in memory is executed by entering the
RUN command.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-2

1.3 LINE FORMAT
Program lines in a BASIC program have the following format (square brackets indicate optional):
nnnnn BASIC statement [:BASIC statement...] <carriage return>

At the programmer’s option, more than one BASIC statement may be placed on a line, but each
statement on a line must be separated from the last by a colon. A BASIC program line always
begins with a line number, ends with a carriage return, and may contain a maximum of;

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a logical line over more than one physical
line by use of the terminal’s <line feed> key. <Line feed> lets you continue typing a logical line
on the next physical line without entering a <carriage return>.

(In the 8K version, <line feed> has no effect.)

1.3.1 Line Numbers

Every BASIC program line begins with a line number. Line numbers indicate the order in which
the program lines are stored in memory and are also used as references when branching and

editing. Line numbers must be in the range 0 to 65529. In the Extended and Disk versions, a
period (.) may be used in EDIT, LIST, AUTO and DELETE commands to refer to the current line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-3

1.4 CHARACTER SET

The BASIC-80 character set is comprised of alphabetic characters, numeric characters and
special characters. The alphabetic characters in BASIC-80 are the upper case and lower case
letters of the alphabet. The numeric characters in BASIC-80 are the digits O through 9.

The following special characters and terminal keys are recognized by BASIC-80:
Character Name

Blank

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis

Right parenthesis

o Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

, Comma

Period or decimal point

Single quotation mark (apostrophe)

— A 0T T > TS % 4

~ e

; Semicolon

: Colon

& Ampersand

? Question mark

< Less than

> Greater than

\ Backslash or integer division symbol

@ At-sign

B Underscore

<rubout> Deletes last character typed.

<escape> Escapes Edit Mode subcommands.
See Section 2.6.

<tab> Moves print position to next tab stop
Tab stops are every eight columns.

<line feed> Moves to next physical line.

<carriage return> Terminates input of a line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-4

1.4.1 Control Characters

The following control characters are in BASIC-80:

Control-A Enters Edit Mode on the line being typed.

Control-C Interrupts program execution and returns to BASIC-80 command level

Control-G Rings the bell at the terminal.

Control-H Backspace. Deletes the last character typed.

Control-I Tab. Tab stops are every eight columns.

Control-O Halts program output while execution continues.
A second Control-O restarts output.

Control-R Retypes the line that is currently being typed.

Control-S Suspends program execution.

Control-Q Resumes program execution after a Control-S.

Control-U Deletes the line that is currently being typed

1.5 CONSTANTS

Constants are the actual values BASIC uses during execution. There are two types of constants:
string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters enclosed in double
quotation marks.

Examples of string constants:
"HELLO"
"$25,000.00"

"Number of Employees"”

Numeric constants are positive or negative numbers. Numeric constants in BASIC cannot
contain commas. There are five types of numeric constants:

1. Integer constants Whole numbers between -32768 and +32767.
Integer constants do not have decimal points.

2. Fixed Point constants. Positive or negative real numbers, i.e., numbers that contain
decimal points.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-5

3. Floating Point constants

4. Hex constants

5. Octal constants

Positive or negative numbers represented in exponential form
(similar to scientific notation)

A floating point constant consists of an optionally signed
integer or fixed point number (the mantissa) followed by the

letter E and an optionally signed integer (the exponent) .

The allowable range for floating point constants is 10-38 to
10+38.

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating point constants use the letter D
instead of E. See Section 1-5.1.)

Hexadecimal numbers use the prefix &H.
Examples:

&H76
'&H32F

Octal numbers use the prefix &0 or &.
Examples:

&0347
&1234

1.5.1 Single And Double Precision Form For Numeric Constants

In the 8K version of BASIC-80, all numeric constants are single precision numbers. They are
stored with 7 digits of precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric constants may be either single precision

or double precision numbers.

With double precision, the numbers are stored with 16 digits of precision, and printed with up

to 16 digits.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6
A single precision constant is any numeric constant that has:

1. seven or fewer digits, or
2. exponential form using E, or
3. atrailing exclamation point (!)

A double precision constant is any numeric constant that has:
1. eight or more digits, or
2. exponential form using D, or
3. atrailing number sign (#)

Examples:
Single Precision Constants: Double Precision Constants
46.8 345692811
-1,09E-06 -1.09432D-06
3489.0 3489.0#
22.5! 7654321.1234

1.6 VARIABLES

Variables are names used to represent values that are used in a BASIC program. The value of a
variable may be assigned explicitly by the programmer, or it may be assigned as the result of
calculations in the program.

Before a variable is assigned a value, its value is assumed to be zero.
1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the 8K version, only the first two
characters are significant.

In the Extended and Disk versions, up to 40 characters are significant. The characters allowed
in a variable name are letters and numbers, and the decimal point is allowed in Extended and
Disk variable names.

The first character must be a letter. Special type declaration characters are also allowed —
see below.

A variable name may not be a reserved word. The Extended and Disk versions allow embedded
reserved words; the 8K version does not. If a variable begins with FN, it is assumed to be a call
to a user -defined function.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7
Reserved words include all BASIC-80 commands, statements, function names and operator
names. Variables may represent either a numeric value or a string. String variable names are
written with a dollar sign ($) as the last character.

For example:

A$ = "SALES REPORT".

The dollar sign is a variable type declaration character, that is, it "declares" that the variable will
represent a string. In the Extended and Disk versions, numeric variable names may declare

integer, single or double precision values. (All numeric values in 8K are single precision.)

The type declaration characters for these variable names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name is single precision.
Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

PIx declares a double precision value
MINIMUM! declares a single precision value
LIMIT% declares an integer value

In 8K, Extended and Disk versions:

N$ declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a second method by which variable
types may be declared. The BASIC-80 statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may
be included in a program to declare the types for certain variable names. These statements are
described in detail in Section 2.12.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8
1.6.2 Array Variables

An array is a group or table of values referenced by the same variable name. Each element in
an array is referenced by an array variable that is subscripted with an integer or an integer
expression. An array variable name has as many subscripts as there are dimensions in the
array. For example V(10) would reference a value in a one-dimensional array, T(1,4) would
reference a value in a two-dimensional array, and so on. The maximum number of dimensions
for an array is 255. The maximum number of elements per dimension is 32767.

1.6.3 Space Requirements

VARIABLES: BYTES
INTEGER 2
SINGLE PRECISION 4
DOUBLE PRECISION 8

ARRAYS: BYTES
INTEGER 2 per element
SINGLE PRECISION 4 per element
DOUBLE PRECISION 8 per element

STRINGS: 3 bytes overhead plus the present contents of the string

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from one type to another. The
following rules and examples should be kept in mind:

1. If a numeric constant of one type is set equal to a numeric variable of a different type, the
number will be stored as the type declared in the variable name. (If a string variable is set equal
to a numeric value or vice versa, a "Type mismatch" error occurs.

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

1.7 TYPE CONVERSION (continued)

2. During expression evaluation, all of the operands in an arithmetic or relational operation are
converted to the same degree of precision, i.e., that of the most precise operand. Also, the
result of an arithmetic operation is returned to this degree of precision.

Examples:
10 D# = 65/7 The arithmetic was performed in double precision and the
20 PRINT D# result was returned in D# as a double precision value.
RUN

.8571428571428571
10 D = 6#/7 The arithmetic was performed in double precision and the
20 PRINT D result was returned to D (single precision variable), rounded
RUN and printed as a single precision value.

.857143

3. Logical operators (see Section 1-8.3) convert their operands to integers and return an integer
result. Operands must be in the range -32768 to 32767 or an "Overflow" error occurs.

4. When a floating point value is converted to an integer, the fractional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

If a double precision variable is assigned a single precision value, only the first seven digits,
rounded, of the converted number will be valid. This is because only seven digits of accuracy
were supplied with the single precision value. The absolute value of the difference between the
printed double precision number and the original single precision value will be less than 6.3E-8
times the original single precision value.

Example:

10 A = 2.04
20 B# = A

30 PRINT A;B#
RUN

2-04

2.0 39 999961853027

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may combine
constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators provided by
BASIC-80 may be divided into four categories:

1. Arithmetic
2. Relational
3. Logical

4. Functional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
A Exponentiation XY
- Negation -X
x,/ Multiplication, Floating Point Division XxY, X/Y
+/- Addition, Subtraction X+Y, X-Y

To change the order in which the operations are performed, use parentheses. Operations within
parentheses are performed first. Inside parentheses, the usual order of operations is maintained.

Here are some sample algebraic expressions and their BASIC counterparts.

Algebraic Expression BASIC Expression
X+2Y X+Y*2
X-Y X-Y/Z

Z
XY X*Y/Z
yA
X+Y (X+Y)/Z
Z
X% (X*2)1Y
z
X XA (YAZ)
X(-Y) X*(-Y)

Two consecutive operators must be separated by parentheses.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-11

1.8.1.1 Integer Division And Modulus Arithmetic

Two additional operators are available in Extended and Disk versions of BASIC-80: Integer
division and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are rounded to integers (which
must be in the range -32768 to 32767) before the division is performed, and the quotient is

truncated to an integer.

For example: 10\4 = 2
25.68\6.99 = 3

The precedence of integer division is just after multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives the integer value that is the
remainder of an integer division.

For example: 10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6-99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer division.

1.8.1.2 Overflow And Division By Zero

If, during the evaluation of an expression, a division by zero is encountered, the "Division by
zero" error message is displayed, machine infinity with the sign of the numerator is supplied as
the result of the division, and execution continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by zero" error message is displayed,
positive machine infinity is supplied as the result of the exponentiation, and execution
continues.

If overflow occurs, the "Overflow" error message is displayed, machine infinity with the
algebraically correct sign is supplied as the result, and execution continues.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-12
1.8.2 Relational Operators
Relational operators are used to compare two values. The result of the comparison is either

"true" (-1) or "false" (). This result may then used to make a decision regarding program flow.
(See IF, Section 2.26.)

Operator Relation Tested Expression
= Equality X=Y
<> Inequality X<>Y
< Less than X<Y
> Greater than xX>Y
<= Less than or equal to X<=Y
>= Greater than or equal to xX>=Y

(The equal sign is also used to assign a value to a variable. See LET, Section 2.30.)

When_arithmetic and relational operators are combined in one expression, the arithmetic is
always performed first. For example, the expression

X+Y < (T-1)/2
is true if the value of X plus Y is less than the value of T-1 divided by Z. More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J <> @ THEN K=K+1

GENERAL INFORMATION ABOUT BASIC-80 Page 1-13
1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or Boolean operations.
The logical operator returns a bitwise result which is either "true" (not zero) or "false" (zero). In
an expression, logical operations are performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the following table. The operators are
listed in order of precedence.

NOT

>

NOT X
0
1

S —

AND
X AND Y

e = 1 X
==

OR

e = 1 X
==

XOR

e = 1 X
==

IMP
X IMP Y

e = 1 X
==
o=

EQV
X EQV Y

e = 1 X
==
)

GENERAL INFORMATION ABOUT BASIC-80 Page 1-14

Just as the relational operators can be used to make decisions regarding program flow, logical
operators can connect two or more relations and return a true or false value to be used in a
decision (see IF, Section 2.26). For example:

IF D<20@ AND F<4 THEN 8@
IF I>10 OR K<@ THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to sixteen bit, signed, two’s complement
integers in the range -32768 to +32767. (If the operands are not in this range, an error results.) If
both operands are supplied as @ or -1, logical operators return @ or -1, The given operation is
performed on these integers in bitwise fashion, i.e., each bit of the result is determined by the
corresponding bits in the two operands. Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND operator may be used to "mask" all but one of
the bits of a status byte at a machine I/O port- The OR operator may be used to "merge" two
bytes to create a particular binary value. The following examples will help demonstrate how
the logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 AND 8=8 -1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8=8
4 OR 2=6 4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)
10 OR 10=10 10 = binary 1010, so 1010 OR 1010=1010 (10)
-1 OR -2=-1 -1 = binary 1111111111111111 and
-2 = binary 1111111111111110,
so -1 OR -2 = -1. The bit complement of sixteen
zeros is sixteen ones, which is the two's
complement representation of -1.
NOT X=-(X+1) The two’s complement of any integer

is the bit complement plus one.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-15
1.8.4 Functional Operators

A function is used in an expression to call a predetermined operation that is to be performed on
an operand. BASIC-80 has "intrinsic" functions that reside in the system, such as SQR (square

root) or SIN (sine). All of BASIC-80’s intrinsic functions are described in Chapter 3.

BASIC-80 also allows "user defined" functions that are written by the programmer.
See DEF_FN, Section 2.11.

1.8.5 String Operations
Strings may be concatenated using +. For example:

10 A$="FILE”: B$ = "NAME"
20 PRINT A$ + B$

30 PRINT "NEW " + A$ + B$
RUN

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators that are used with numbers:
= <> < > <= >=

String comparisons are made by taking one character at a time from each string and comparing
the ASCII codes. If all the ASCII codes are the same, the strings are equal. If the ASCII codes
differ, the lower code number precedes the higher. If, during string comparison, the end of one
string is reached, the shorter string is said to be smaller. Leading and trailing blanks are
significant. Examples:

"AA" < "AB"
"FILENAME" = "FILENAME"

"Y&" > "X#"

"CcL " > "CL"

n kg "o wKGH

"SMYTH" < "SMYTHE"

B$ < "9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values or to alphabetize strings. All string
constants used in comparison expressions must be enclosed in quotation marks.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-16
1.9 INPUT EDITING

If an incorrect character is entered as a line is being typed, it can be deleted with the RUBOUT key
or with Control-H. Rubout surrounds the deleted character(s) with backslashes, and Control-H
has the effect of backspacing over a character and erasing it. Once a character(s) has been
deleted, simply continue typing the line as desired. To delete a line that is in the process of
being typed, type Control-U. A carriage return is executed automatically after the line is
deleted. To correct program lines for a program that is currently in memory, simply retype the
line using the same line number. BASIC-80 will automatically replace the old line with the
new line.

More sophisticated editing capabilities are provided in the Extended and Disk versions of
BASIC-80. See EDIT, Section 2.16.

To delete the entire program that is currently residing in memory, enter the NEW command. (See
Section 2.41.) NEW is usually used to clear memory prior to entering a new program.

1.10 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution to terminate, an error message is
printed.

In the 8K version, only the error code is printed.
In the Extended and Disk versions, the entire error message is printed.

For a complete list of BASIC-80 error codes and error messages, see Appendix |.

CHAPTER 2: BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in this chapter. Each description is
formatted as follows:

Format: Shows the correct format for the instruction. See below for format notation.
Versions: Lists the versions of BASIC-80 in which the instruction is available.
Purpose: Tells what the instruction is used for.

Remarks: Describes in detail how the instruction is used.

Example: Shows sample programs or program segments that demonstrate the use of

the instruction.

Format Notation

Wherever the format for a statement or command is given, the following rules apply:
1. Items in CAPITAL LETTERS must be input as shown.

2. Items in lower case letters enclosed in angle brackets (< >) are to be supplied by
the user.

3. ltems in square brackets ([]) are optional.

4. All punctuation except angle brackets and square brackets (i.e., commas, parentheses,
semicolons, hyphens, equal signs) must be included where shown.

5. ltems followed by an ellipsis (. . .) may be repeated any number of times (up to the
length of the line)

BASIC-80 COMMANDS AND STATEMENTS Page 2-2

2.1

Format:

Versions:

Purpose:

Remarks:

Example:

AUTO

AUTO [<line number> {, < increment> 1}

Extended, Disk

To generate a line number automatically after every carriage return.

AUTO begins numbering at <line number > and increments each subsequent
line number by <increment>. The default for both values is 10.

If <line number> is followed by a comma but <increment> is not specified, the
last increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk is printed
after the number to warn the user that any input will replace the existing line.
However, typing a carriage return immediately after the asterisk will save the line
and generate the next line number.

AUTO is terminated by typing Control-C. The line in which Control-C is typed
is not saved. After Control-C is typed, BASIC returns to command level.

AUTO 100,50 Generates line numbers 100,150, 200 ...
AUTO Generates line numbers 10, 20, 30, 40...

BASIC-80 COMMANDS AND STATEMENTS Page 2-3

2.2
Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

CALL

CALL <variable name> [(<argument list>)]
Extended, Disk

To call an assembly language subroutine.

The CALL statement is one way to transfer program flow to an external subroutine.
(See also the USR function, Section 3.40)

<variable name> contains an address that is the starting point in memory of the
subroutine. <variable name> may not be an array variable name. <argument
list> contains the arguments that are passed to the external subroutine.
<argument list>may contain only variables.

The CALL statement generates the same calling sequence used by Microsoft’s
FORTRAN, COBOL and BASIC compilers.

110 MYROUT=&HD00®
120 CALL MYROUT(I,J,K)

For a BASIC Compiler program, line 110 is not needed because the address of
MYROUT will be assigned by the linking loader at load time.

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

2.3

Format:

Version:

Purpose:

Remarks:

CHAIN

CHAIN [MERGE] <filename> [,[<line number exp>]
[,ALL],DELETE<range>]]

Disk
To call a program and pass variables to it from the current program.
<filename> is the name of the program that is called. Example:
CHAIN "PROG1"
<line number exp> is a line number or an expression that evaluates to a line
number in the called program. It is the starting point for execution of the called
program. If it is omitted, execution begins at the first line. Example:
CHAIN"PROG1",1000

<line number exp> is not affected by a RENUM command.

With the ALL option, every variable in the current program is passed to the called
program. If the ALL option is omitted, the current program must contain a COMMON
statement to list the variables that are passed. See Section 2.7. Example:

CHAIN"PROG1", 1000, ALL

If the MERGE option is included, it allows a subroutine to be brought into the BASIC
program as an overlay. That is, a MERGE operation is performed with the current
program and the called program. The called program must be an ASCII file if it is
to be MERGEd. Example:

CHAIN MERGE"OVRLAY", 1000

After an overlay is brought in, it is usually desirable to delete it so that a new
overlay may be brought in. To do this use the DELETE option. Example:

CHAIN MERGE"OVRLAY2", 1000, DELETE 1000-5000

The line numbers in <range> are affected by the RENUM command.

BASIC-80 COMMANDS AND STATEMENTS Page 2-5

NOTE:

NOTE:

NOTE:

The CHAIN statement with MERGE option leaves the files open and preserves the
current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve variable types or user-
defined functions for use by the chained program. That is, any DEFINT, DEFSNG,
DEFDBL, DEFSTR, or DEFFN statements containing shared variables must be restated
in the chained program.

The Microsoft BASIC compiler does not support the ALL, MERGE, DELETE, and
<LINE number exp> optionsto CHAIN. Thus, the statement format is:

CHAIN FILENAME>
If you wish to maintain compatibility with the BASIC compiler, it is recommended

that COMMON be used to pass variables and that overlays not be used. The CHAIN
statement leaves the files open during CHAINing.

BASIC-80 COMMANDS AND STATEMENTS Page 2-6

2.4
Format:
Versions:

Purpose:

Remarks:

NOTE:

NOTE:

Examples:

CLEAR
CLEAR [,[<expressionl>] [,<expression2>]]
8K, Extended, Disk

To set all numeric variables to zero, all string variables to null, and to close all
open files; and, optionally, to set the end of memory and the amount of stack
space

<expression1>is a memory location which, if specified, sets the highest
location available for use by BASIC-80.

<expression2> sets aside stack space for BASIC. The default is 256 bytes or one-
eighth of the available memory, whichever is smaller.

In previous versions of BASIC-80, <expressionl> set the amount of string

space, and <expression2> set the end of memory. BASIC-80 release 5.0 and later,
allocates string space dynamically. An "Out of string space error" occurs only
if there is no free memory left for BASIC to use.

The BASIC Compiler supports the CLEAR statement with the restriction that
EXPRESSION1> and EXPRESSION2> must be integer expressions. If a value of O is
given for either expression, the appropriate default is used. The default stack size
is 256 bytes, and the default top of memory is the current top of memory. The
CLEAR statement performs the following actions:

Closes all files

Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

CLEAR
CLEAR ,32768
CLEAR , , 2000

CLEAR ,32768,2000

BASIC-80 COMMANDS AND STATEMENTS Page 2-7

2.5

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CLOAD

CLOAD <filename>
CLOAD? <filename>
CLOAD* < array name>

8K (cassette), Extended (cassette)

To load a program or an array from cassette tape into memory. CLOAD

executes a NEW command before it loads the program from cassette tape.
<filename> is the string expression or the first character of the string expression
that was specified when the program was CSAVEd.

CLOAD? verifies tapes by comparing the program currently in memory with the

file on tape that has the same filename. If they are the same, BASIC-80 prints Ok. If
not, BASIC-80 prints NO GOOD.

CLOAD* loads a numeric array that has been saved on tape. The data on tape is
loaded into the array called <array name> specified when the array was CSAVEd.

CLOAD and CLOAD? are always entered at command level as direct mode
commands. CLOAD* may be entered at command level or used as a program
statement. Make sure the array has been DIMensioned before it is loaded.
BASIC-80 always returns to command level after a CLOAD, CLOAD? or CLOAD* is
executed. Before a CLOAD is executed, make sure the cassette recorder is properly
connected and in the Play mode, and the tape is positioned correctly.

See also CSAVE, Section 2.9.

CLOAD and CSAVE are not included in all implementations of BASIC-80.

CLOAD “MAX2"

Loads file "M**" into memory.

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6

Format:
Version:

Purpose:

Remarks:

Example:

CLOSE

CLOSE[L[#] <file number> [,[#] <file number...>]1]
Disk.
To conclude 1/O to a disk file.

<file number > is the number under which the file was OPENed. A CLOSE
with no arguments closes all open files.

The association between a particular file and file number terminates upon
execution of a CLOSE. The file may then be reOPENed using the same or a different
file number; likewise, that file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the final buffer of output. The END

statement and the NEW command always CLOSE all disk files automatically. (STOP
does not close disk files.)

See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-9

2.7
Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

COMMON

COMMON <list of variables>

Disk

To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with the CHAIN statement. COMMON
statements may appear anywhere in a program, though it is recommended that
they appear at the beginning.

The same variable cannot appear in more than one COMMON statement. Array
variables are specified by appending " ()" to the variable name. If all variables are
to be passed, use CHAIN with the ALL option and omit the COMMON statement.

100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10

The BASIC Compiler supports a modified version of the COMMON statement.

The COMMON statement must appear in a program before any executable
statements. The current non-executable statements are:

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR, DIM
OPTION BASE

REM

%INCLUDE

Arrays in COMMON must be declared in preceding DIM statements. The standard
form of the COMMON statement is referred to as blank COMMON. FORTRAN style
named COMMON areas are also supported; however, the variables are not preserved
across CHAINs. The syntax for named COMMON is as follows:

COMMON /NAME>/ LIST of variables>

where NAME> is 1 to 6 alphanumeric characters starting with a letter. This is useful
for communicating with FORTRAN and assembly language routines without
having to explicitly pass parameters in the CALL statement.

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

The blank COMMON size and order of variables must be the same in the CHAINing
and CHAINed-to programs. With the BASIC Compiler, the best way to ensure this is

to place all blank COMMON declarations in a single include file and use the %INCLUDE
statement in each program. For example:

MENU.BAS

190 %INCLUDE COMDEF

. 1000 CHAIN "PROG1"

PROG1.BAS

10 %INCLUDE COMDEF

. 2000 CHAIN "MENU"

COMDEF.BAS

100 DIM A(100),B$(200)
110 COMMON I,J,K,A,
120 COMMON A?,B$,(),X,Y,Z

BASIC-80 COMMANDS AND STATEMENTS Page 2-11

2.8

Format:

Versions:

Purpose:

Remarks:

Example:

CONT
CONT
8K, Extended, Disk

To continue program execution after a Control-C has been typed, or a STOP or
END statement has been executed.

Execution resumes at the point where the break occurred. If the break occurred
after a prompt from an INPUT statement, execution continues with the reprinting
of the prompt (2 or prompt string).

CONT is usually used in conjunction with STOP for debugging. When execution is
stopped intermediate values may be examined and changed using direct mode
statements. Execution may be resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.

With the Extended and Disk versions, CONT may be used to continue execution
after an error.

CONT is invalid if the program has been edited during the break. In 8K BASIC-80,
execution cannot be CONTinued if a direct mode error has occurred during the
break.

See example Section 2.61, STOP.

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

29

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CSAVE

CSAVE <string expression)
CSAVE* <array variable name>

8K (cassette), Extended (cassette)

To save the program or an array currently in memory on cassette tape.

Each program or array saved on tape is identified by a filename.

When the command CSAVE <string expression> is executed, BASIC-80 saves
the program currently in memory on tape and uses the first character in <string
expression> as the filename. <string expression> may be more than one
character, but only the first character is used for the filename.

When the command CSAVE* <array variable name> is executed, BASIC-80 saves
the specified array on tape. The array must be a numeric array. The elements of a
multidimensional array are saved with the leftmost subscript changing fastest.
CSAVE may be used as a program statement or as a direct mode command. Before
a CSAVE or CSAVEx is executed, make sure the cassette recorder is properly
connected and in the Record mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included in all implementations of BASIC-80.

CSAVE "TIMER"

Saves the program currently in memory on cassette under filename "T".

BASIC-80 COMMANDS AND STATEMENTS Page 2-13

2.10
Format:
Versions:

Purpose:

Remarks:

Example:

DATA
DATA <list of constants>
8K, Extended, Disk

To store the numeric and string constants that are accessed by the program’s READ
statement (s). (See READ, Section 2.54)

DATA statements are nonexecutable and may be placed anywhere in the program.
A DATA statement may contain as many constants as will fit on a line (separated by
commas) , and any number of DATA statements may be used in a program.

The READ statements access the DATA statements in order (by line number) and the
data contained therein may be thought of as one continuous list of items,
regardless of how many items are on a line or where the lines are placed in the
program.

<list of constants> may contain numeric constants in any format, i.e., fixed
point, floating point, or integer. (No numeric expressions are allowed in the list.)
String constants in DATA statements must be surrounded by double quotation marks
only if they contain commas, colons or significant leading or trailing spaces.
Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must agree with
the corresponding constant in the DATA statement. DATA statements may be reread

from the beginning by use of the RESTORE statement (Section 2.57).

See examples in Section 2.54, READ.

BASIC-80 COMMANDS AND STATEMENTS Page 2-14

2.1
Format:
Versions:
Purpose:

Remarks:

Example:

DEF FN

DEF FN<name> [{<parameter list>)]=<function definition>
8K, Extended, Disk

To define and name a function that is written by the user.

<name> must be a legal variable name. This name, preceded by FN, becomes the
name of the function. <parameter list> is comprised of those variable names in
the function definition that are to be replaced when the function is called. The
items in the list are separated by commas. <function definition> is an
expression that performs the operation of the function. It is limited to one line.

Variable names that appear in this expression serve only to define the function;
they do not affect program variables that have the same name. A variable name
used in a function definition may or may not appear in the parameter list. If it
does, the value of the parameter is supplied when the function is called.
Otherwise, the current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the argument
variables or values that will be given in the function call, (Remember, in the 8K
version only one argument is allowed in a function call, therefore the DEF FN
statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined functions may be numeric or string;
in 8K, user-defined string functions are not allowed. If a type is specified in the
function name , the value of the expression is forced to that type before it is
returned to the calling statement. If a type is specified in the function name and
the argument type does not match, a "Type mismatch"” error occurs.

A DEF FN statement must be executed before the function it defines may be called.

If a function is called before it has been defined, an "Undefined user function”
error occurs. DEF FN is illegal in the direct mode.

410 DEF FNAB(X,Y)=XA3/YA2
420 T=FNAB(I,J)

Line 410 defines the function FNAB. The function is called in line 420.

BASIC-80 COMMANDS AND STATEMENTS Page 2-15

{This page is blank intentionally. All text previously here is now shown on Page 2-14. The
blank page was preserved so as to preserve page references in the original text. [Ed.]}

BASIC-80 COMMANDS AND STATEMENTS Page 2-16

2.12

Format:

Versions:
Purpose:

Remarks:

Examples:

DEFINT/SNG/DBL/STR

DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Extended, Disk

To declare variable types as integer, single precision, double precision, or string.

A DEFtype statement declares that the variable names beginning with the letter(s)
specified will be that type variable. However, a type declaration character always

takes precedence over a DEFtype statement in the typing of a variable.

If no type declaration statements are encountered, BASIC-80 assumes all variables
without declaration characters are single precision variables.

10 DEFDBL L-P All variables beginning with the letters L, M, N, O, and
P will be double precision variables.

10 DEFSTR A All variables beginning with the letter A will be string
variables.

10 DEFINT I-N,W-2 All variable beginning with the letters |, J, K, L, M,

N, W, X, Y, 2 will be integer variables.

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.13

Format:

Versions:

Purpose:

Remarks:

Example:

DEF USR

DEF USR[<digit>]=<integer expression>

Extended, Disk

To specify the starting address of an assembly language subroutine.

<digit> may be any digit from 0 to 9. The digit corresponds to the number of

the USR routine whose address is being specified. If <digit> is omitted, DEF USR®
is assumed. The value of <integer expression> is the starting address of the USR
routine. See Appendix C, Assembly Language Subroutines.

Any number of DEF USR statements may appear in a program to redefine

subroutine starting addresses, thus allowing access to as many subroutines as
necessary.

200 DEF USR0=24000
210 X=USR0O{Y*2/2.89)

BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2.14
Format:
Versions:
Purpose:

Remarks:

Examples:

DELETE

DELETE[<line number>] [-<line number>]
Extended, Disk

To delete program lines.

BASIC-80 always returns to command level after a DELETE command is executed.
If <line number> does not exist, an "I1llegal function call” error occurs.

DELETE 40 Deletes line 40
DELETE 40-100 Deletes lines 40 through100, inclusive

DELETE-40 Deletes all lines up to and including line 40

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2.15

Format:

Versions:

Purpose:

Remarks:

Example:

DIM
DIM <list of subscripted variables>
8K, Extended, Disk

To specify the maximum values for array variable subscripts and allocate storage
accordingly.

If an array variable name is used without a DIM statement, the maximum value of
its subscript(s) is assumed to be 10, If a subscript is used that is greater than the
maximum specified, a "Subscript out of range" error occurs. The minimum
value for a subscript is always @, unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the specified arrays to an initial value of
zero.

10 DIM A(20)

20 FOR I=0 TO 20
30 READ A(I)

40 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

2.16

Format:

Versions:

Purpose:

Remarks:

NOTE:

EDIT

EDIT <line number>

Extended, Disk

To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of a line without retyping the entire

line. Upon entering Edit Mode, BASIC-80 types the line number of the line to be
edited, then it types a space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the cursor or to insert, delete, replace,
or search for text within a line. The subcommands are not echoed. Most of the
Edit Mode subcommands may be preceded by an integer which causes the
command to be executed that number of times. When a preceding integer is not
specified, it is assumed to be 1.

Edit Mode subcommands may be categorized according to the following
functions:

1. Moving the cursor
2. Inserting text
3. Deleting text

4. Finding text

5. Replacing text

6. Ending and restarting Edit Mode

In the descriptions that follow, <ch> represents any character, <text> represents

a string of characters of arbitrary length, [i] represents an optional integer (the
default is 1), and $ represents the Escape (or Alt mode) key.

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

1. Moving the Cursor

Space Use the space bar to move the cursor to the right. [1] Space moves the
cursor i spaces to the right. Characters are printed as you space over them.

Rubout In Edit Mode, [iJRubout moves the cursor I spaces to the left
(backspaces) . Characters are printed as you backspace over them.

2. Inserting Text

I I<text>$ inserts <text> at the current cursor position. The inserted
characters are printed on the terminal. To terminate insertion, type the
Escape key. |If Carriage Return is typed during an Insert command, the
effect is the same as typing Escape and then Carriage Return. During an
Insert command, the Rubout, Delete, or Underscore key on the terminal
may be used to delete characters to the left of the cursor.

Rubout will print out the characters as you backspace over them. Delete
and Underscore will print an Underscore for each character that you
backspace over. If an attempt is made to insert a character that will make
the line longer than 255 characters, a bell (Control-G) is typed and the
character is not printed.

X The X subcommand is used to extend the line. X moves the cursor to the
end of the line, goes into insert mode, and allows insertion of text as if an
Insert command had been given. When you are finished extending the
line, type Escape or Carriage Return.

3. Deleting Text

D [i1D deletes i characters to the right of the cursor. The deleted characters
are echoed between backslashes, and the cursor is positioned to the right of
the last character deleted. If there are fewer than i characters to the right of
the cursor, iD deletes the remainder of the line.

H H deletes all characters to the right of the cursor and then automatically
enters insert mode. H is useful for replacing statements at the end of a line.

4. Finding Text

S The subcommand [1]S<ch> searches for the ith occurrence of <ch> and
positions the cursor before it. The character at the current cursor position is
not included in the search. If <ch> is not found, the cursor will stop at the
end of the line. All characters passed over during the search are printed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

K

Finding Text (continued)

The subcommand [i]K<ch> is similar to [1]S<ch>, except all the
characters passed over in the search are deleted. The cursor is positioned
before <ch>, and the deleted characters are enclosed in backslashes.

5. Replacing Text

C

The subcommand C<ch> changes the next character to <ch>. If you wish

to change the next i characters, use the subcommand iC, followed by i
characters. After the ith new character is typed, change mode is exited
and you will return to Edit Mode.

6. Ending and Restarting Edit Mode

<cr>

Typing Carriage Return prints the remainder of the line, saves the
changes you made and exits Edit Mode.

The E subcommand has the same effect as Carriage Return, except the
remainder of the line is not printed.

The Q subcommand returns to BASIC-80 command level, without saving
any of the changes that were made to the line during Edit Mode.

The L subcommand lists the remainder of the line (saving any changes
made so far) and repositions the cursor at the beginning of the line, still in
Edit Mode. L is usually used to list the line when you first enter Edit Mode.

The A subcommand lets you begin editing a line over again. It restores the
original line and repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable command or illegal character
while in Edit Mode, it prints a bell (Control-G) and the command or
character is ignored.

BASIC-80 COMMANDS AND STATEMENTS Page 2-23

Syntax Errors

When a Syntax Error is encountered during the execution of a program,
BASIC-80 automatically enters Edit Mode at the line that caused the error.
For example:

10 K = 2(4)

RUN

?Syntax error in 10
10

When you finish editing the line and type Carriage Return (or the E
subcommand) , BASIC-80 reinserts the line, which causes all variable
values to be lost. To preserve the variable values for examination , first exit
Edit Mode with the Q subcommand. BASIC-80 will return to command
level, and all variable values will be preserved.

Control-A

To enter Edit Mode on the line you are currently typing, type Control-A.
BASIC-80 responds with a carriage return, an exclamation point (!) and a
space. The cursor will be positioned at the first character in the line.
Proceed by typing an Edit Mode subcommand.

NOTE

Remember, if you have just entered a line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode at the current line. (The line
number symbol " . " always refers to the current line.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-24

217

Format:

Versions:

Purpose:

Remarks:

Example:

END

END

8K, Extended, Disk

To terminate program execution, close all files and return to command level.

END statements may be placed anywhere in the program to terminate execution.
Unlike the STOP statement, END does not cause a BREAK message to be printed. An
END statement at the end of a program is optional. BASIC-80 always returns to

command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

BASIC-80 COMMANDS AND STATEMENTS Page 2-25

2.18

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

ERASE

ERASE <list of array variables>

Extended, Disk

To eliminate arrays from a program.

Arrays may be redimensioned after they are ERASEd, or the previously allocated
array space in memory may be used for other purposes. If an attempt is made to
redimension an array without first ERASEing it, a "Redimensioned array" error
occurs.

The Microsoft BASIC compiler does not support ERASE.

450 ERASE A,B
460 DIM B(99)

BASIC-80 COMMANDS AND STATEMENTS Page 2-26

2.

19

ERR AND ERL VARIABLES

When an error handling subroutine is entered, the variable ERR contains the error
code for the error and the variable ERL contains the line number of the line in
which the error was detected. The ERR and ERL variables are usually used in IF
THEN statements to direct program flow in the error trap routine.

If the statement that caused the error was a direct mode statement, ERL will
contain 65535. To test if an error occurred in a direct statement, use IF 65535 =
ERL THEN ... Otherwise, use

IF ERR
IF ERL

= error code THEN ...

= line number THEN ...

If the line number is not on the right side of the relational operator, it cannot be
renumbered by RENUM. Because ERL and ERR are reserved variables, neither may
appear to the left of the equal sign in a LET (assignment) statement. Error codes for
BASIC-80 are listed in Appendix |. (For Standalone Disk BASIC error codes, see

Appendix H.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-27

2.20 ERROR
Format: ERROR <integer expression>
Versions: Extended, Disk

Purpose: 1) To simulate the occurrence of a BASIC-80 error; or
2) to allow error codes to be defined by the user.

Remarks: The value of <integer expression> must be greater than 0 and less than
255. If the value of <integer expression> equals an error code already in use by
BASIC-80 (see Appendix J), the ERROR statement will simulate the occurrence of
that error, and the corresponding error message will be printed. (See Example 1.)

To define your own error code, use a value that is greater than any error code
values used by BASIC-80. (It is preferable to use the highest available values, so
compatibility may be maintained when more error codes are added to BASIC-80.)
This user-defined error code may then be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which no error message has been
defined, BASIC-80 responds with the message UNPRINTABLE ERROR. Execution of
an ERROR statement for which there is no error trap routine causes an error
message to be printed and execution to halt.

Example 1: LIST
19 S =1
20 T =5
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

)

Or, in direct mode:

ok

ERROR 15 (you type this line)
String too long (BASIC-80 types this line)
ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-28
Example 2:

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL =130 THEN RESUME 120

BASIC-80 COMMANDS AND STATEMENTS Page 2-29

2.21
Format:
Version:
Purpose:

Remarks:

Example:

NOTE:

FIELD

FIELD[#] <file number>,<field width> AS <string variable>
Disk

To allocate space for variables in a random file buffer.

To get data out of a random buffer after a GET or to enter data before a PUT, a
FIELD statement must have been executed.

<file number> is the number under which the file was OPENed. <field width> is
the number of characters to be allocated to <string variable>. For example,

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file buffer to the string variable
N$, the next 10 positions to ID$, and the next 40 positions to ADD$. FIELD does
NOT place any data in the random file buffer. (See LSET/RSET and GET.)

The total number of bytes allocated in a FIELD statement must not exceed the
record length that was specified when the file was OPENed. Otherwise, a "Field
overflow" error occurs, (The default record length is 128.)

Any number of FIELD statements may be executed for the same file, and all FIELD
statements that have been executed are in effect at the same time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT or LET statement . Once a
variable name is FIELDed, it points to the correct place in the random file buffer. If
a subsequent INPUT or LET statement with that variable name is executed, the
variable’s pointer is moved to string space.

BASIC-80 COMMANDS AND STATEMENTS Page 2-30

2,22

Format:

Versions:

Purpose:

Remarks:

FOR...NEXT

FOR <variable>=x TO y [STEP z]

NEXT [<variable>] [,<variable>]
where x, y and z are numeric expressions.
8K, Extended, Disk

To allow a series of instructions to be performed in a loop a given number of
times.

<variable> is used as a counter. The first numeric expression (x) is the initial
value of the counter. The second numeric expression (y)is the final value of the
counter. The program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the counter is incremented by the amount
specified by STEP. A check is performed to see if the value of the counter is now
greater than the final value (y). If it is not greater, BASIC-80 branches back to the
statement after the FOR statement and the process is repeated. If it is greater,
execution continues with the statement following the NEXT statement. This is a
FOR. . .NEXT loop. If STEP is not specified, the increment is assumed to be one. If
STEP is negative, the final value of the counter is set to be less than the initial
value. The counter is decremented each time through the loop, and the loop is
executed until the counter is less than the final value.

The body of the loop is skipped if the initial value of the loop times the sign of the
step exceeds the final value times the sign of the step.

Nested Loops

FOR. . .NEXT loops may be nested, that is, a FOR. . .NEXT loop may be placed within
the context of another FOR. . .NEXT loop. When loops are nested, each loop must
have a unique variable name as its counter. The NEXT statement for the inside
loop must appear before that for the outside loop. If nested loops have the same
end point, a single NEXT statement may be used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the NEXT
statement will match the most recent FOR statement. If a NEXT statement is
encountered before its corresponding FOR statement, a "NEXT without FOR" error
message is issued and execution is terminated.

BASIC-80 COMMANDS AND STATEMENTS Page 2-31

Example 1: 10 K=10

20 FOR I=1 TO K STEP 2

30 PRINT I;

40 K=K+10

50 PRINT K

60 NEXT

RUN

1 20

30

5 40
7 50
9 60
0

Example 2: 10 J=0
20 FOR I=1 TO J
30 PRINT I
40 NEXT I

In this example, the loop does not execute because the initial value of the loop
exceeds the final value.

Example 3: 10 I=5
20 FOR 1=1 TO I+5
30 PRINT I;
40 NEXT
RUN
1 2 3 45 6 7 8 9 10
Ok

In this example, the loop executes ten times. The final value for the loop variable
is always set before the initial value is set. (Note: Previous versions of BASIC-80
set the initial value of the loop variable before setting the final value; i.e., the
above loop would have executed six times.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-32

2.23
Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

GET

GET [#]<file number>[,<record number>]

Disk

To read a record from a random disk file into a random buffer.
<file number> is the number under which the file was OPENed.

If <record number> is omitted, the next record (after the last GET) is read into the
buffer. The largest possible record number is 32767.

See Appendix B.

After a GET statement, INPUT# and LINE INPUT# may be done to read
characters from the random file buffer.

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.24

Format:

Versions:

Purpose:

Remarks:

Example:

GOSUB...RETURN

GOSUB <line number>

RETURN

8K, Extended, Disk
To branch to and return from a subroutine.
<line number> is the first line of the subroutine

A subroutine may be called any number of times in a program, and a subroutine
may be called from within another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement (s) in a subroutine cause BASIC-80 to branch back to the
statement following the most recent GOSUB statement. A subroutine may contain
more than one RETURN statement, should logic dictate a return at different points
in the subroutine, Subroutines may appear anywhere in the program, but it is
recommended that the subroutine be readily distinguishable from the main
program. To prevent inadvertent entry into the subroutine, it may be preceded by
a STOP, END, or GOTO statement that directs program control around the
subroutine.

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";

50 PRINT " IN";

60 PRINT " PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-34

2-25

Format:

Versions:

Purpose:

Remarks:

Example:

GOTO
GOTO <line number>
8K, Extended, Disk

To branch unconditionally out of the normal program sequence to a specified line
number.

If <line number> is an executable statement, that statement and those following
are executed. If it is a non-executable statement, execution proceeds at the first
executable statement encountered after <line number>.

LIST

10 READ R

20 PRINT "R =";R,
30 A = 3-14%R'42

40 PRINT "AREA =";A
50 GOTO 10

60 DATA 5,7,12

Ok

RUN

R 5 AREA
R 7 AREA
R 12 AREA
?20ut of data in 10
Ok

78.5
153.86
452.16

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

2.26

Format:

Format:

Versions:

NOTE:

Purpose:

Remarks:

IF. ..THENI...ELSE] and IF...GOTO

IF <expression> THEN <statement> | <line number>
[ELSE <statement(s)> | <line number>]

IF <expression> GOTO <line number>
[ELSE <statement(s)> | <line number>]

8K, Extended, Disk
The ELSE clause is allowed only in Extended and Disk versions.

To make a decision regarding program flow based on the result returned by an
expression.

If the result of <expression> is not zero, the THEN or GOTO clause is executed,
THEN may be followed by either a line number for branching or one or more
statements to be executed. GOTO is always followed by a line number. If the result
of <expression> is zero, the THEN or GOTO clause is ignored and the ELSE clause, if
present, is executed. Execution continues with the next executable statement.
(ELSE is allowed only in Extended and Disk versions.) Extended and Disk versions
allow a comma before THEN.

Nesting of IF Statements

In the Extended and Disk versions, IF...THEN...ELSE statements may be nested.
Nesting is limited only by the length of the line. For example

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the same number of ELSE
and THEN clauses, each ELSE is matched with the closest unmatched THEN. For
example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.
If an IF...THEN statement is followed by a line number in the direct mode, an

"Undefined line" error results unless a statement with the specified line number
had previously been entered in the indirect mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-36

NOTE:

Example 1:

Example 2:

Example 3:

When using IF totest equality for avalue thatis the result of a floating point
computation, remember that the internal representation of the value may not be
exact. Therefore, the test should be against the range over which the accuracy of
the value may vary. For example, to test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...
This test returns true if the value of A is 1.0 with a relative error less than 1.0E-6.
200 IF I THEN GET#1,I
This statement GETs record number I if I is not zero.

100 IF (I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE”

In this example, a test determines if I is greater than 1@ and less than 20. If I is in
this range, DB is calculated and execution branches to line 300. If I is not in this
range, execution continues with line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$
This statement causes printed output to go either to the terminal or the line printer,

depending on the value of a variable (IOFLAG). If IOFLAG is zero, output goes to
the line printer, otherwise output goes to the terminal.

BASIC-80 COMMANDS AND STATEMENTS Page 2-37

2.27

Format:

Versions:

Purpose:

Remarks:

INPUT

INPUTL ;] [<"prompt string”">;] <list of variables>
8K, Extended, Disk

To allow input from the terminal during program execution.

When an INPUT statement is encountered, program execution pauses and a
question mark is printed to indicate the program is waiting for data.

If <"prompt string"> is included, the string is printed before the question mark.
The required data is then entered at the terminal.

A comma may be used instead of a semicolon after the prompt string to suppress
the question mark. For example, the statement INPUT "ENTER BIRTH DATE”,B$
will print the prompt with no question mark.

If INPUT is immediately followed by a semicolon, then the carriage return typed by
the user to input data does not echo a carriage return/line feed sequence.

The data that is entered is assigned to the variable(s) given in <variable list>.
The number of data items supplied must be the same as the number of variables in
the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names (including
subscripted variables). The type of each data item that is input must agree with
the type specified by the variable name. (Strings input to an INPUT statement need
not be surrounded by quotation marks. Responding to INPUT with too many or too
few items, or with the wrong type of value (numeric instead of string, etc.) causes
the message "?Redo from start" to be printed. No assignment of input values is
made until an acceptable response is given.

In the 8K version, INPUT is illegal in the direct mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-38

Examples: 10 INPUT X
20 PRINT X "SQUARED IS" X*2
30 END
RUN
?5 (The 5 was typed in by the user in response to the question mark.)
5 SQUARED IS 25
ok

LIST
10 PI=3.14

20 INPUT "WHAT IS THE RADIUS";R

30 A=PI*R*2

40 PRINT "THE AREA OF THE CIRCLE IS";A

50 PRINT

60 GOTO 20

ok

RUN

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?

etc.

BASIC-80 COMMANDS AND STATEMENTS Page 2-39

2.28
Format:
Version;

Purpose:

Remarks:

Example:

INPUT#
INPUT# <file number>, <variable list>
Disk

To read data items from a sequential disk file and assign them to program
variables.

<file number> is the number used when the file was OPENed for input.

<variable list> contains the variable names that will be assigned to the items in
the file. (The variable type must match the type specified by the variable name.)
With INPUT#, no question mark is printed, as with INPUT.

The data items in the file should appear just as they would if data were being
typed in response to an INPUT statement. With numeric values, leading spaces,
carriage returns and line feeds are ignored.

The first character encountered that is not a space, carriage return or line feed is
assumed to be the start of a number. The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file for a string item, leading spaces,
carriage returns and line feeds are also ignored. The first character encountered
that is not a space, carriage return, or line feed is assumed to be the start of a string
item. If this first character is a quotation mark ("), the string item will consist of all
characters read between the first quotation mark and the second. Thus, a quoted
string may not contain a quotation mark as a character. If the first character of the
string is not a quotation mark, the string is an unquoted string , and will terminate
on a comma carriage or line feed (or after 255 characters have been read). If end
of file is reached when a numeric or string item is being INPUT, the item is
terminated.

See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.29
Format:
Version:

Purpose:

Remarks:

Example:

KILL

KILL <filename>

Disk

To delete a file from disk.

If a KILL statement is given for a file that is currently OPEN, a "File already open"
error occurs. KILL is used for all types of disk files: program files, random data

files and sequential data files.

200 KILL "DATA1"
See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-41

2.30 LET

Format: [LET] <variable>=<expression>

Versions: 8K, Extended, Disk

Purpose: To assign the value of an expression to a variable.

Remarks: Notice the word LET is optional, i.e., the equal sign is sufficient when assigning an
expression to a variable name.

Example: 110 LET D=12
120 LET E=12%2
130 LET F=12%4
140 LET SUM=D+E+F

or

110 D=12
120 E=122
130 F=12%4
140 SUM=D+E+F

BASIC-80 COMMANDS AND STATEMENTS Page 2-42

2.31

Format:

Versions:

Purpose:

Remarks:

Example:

LINE INPUT
LINE INPUTL;][< "prompt string’'#>;] <string variable>
Extended, Disk

To input an entire line (up to 254 characters) to a string variable, without the use
of delimiters.

The prompt string is a string literal that is printed at the terminal before input is
accepted.

A question mark is not printed unless it is part of the prompt string. All input from
the end of the prompt to the carriage return is assigned to <string variable>.
However, if a line feed/carriage return sequence (this order only) is encountered,
both characters are echoed; but the carriage return is ignored, the line feed is put
into <string variable>, and data input continues.

If LINE INPUT is immediately followed by a semicolon, then the carriage return
typed by the user to end the input line does not echo a carriage return/line feed
sequence at the terminal. A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type Ok. Typing CONT resumes
execution at the LINE INPUT.

See Example, Section 2.32, LINE INPUT#.

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.32
Format:
Version:

Purpose:

Remarks:

Example:

LINE INPUT#
LINE INPUT#<file number>, <string variable>
Disk

To read an entire line (up to 254 characters), without delimiters, from a sequential
disk data file to a string variable.

<file number> is the number under which the file was OPENed. <string
variable> is the variable name to which the line will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage return. It
then skips over the carriage return/line feed sequence, and the next LINE INPUT#
reads all characters up to the next carriage return. (If a line feed/carriage return
sequence is encountered, it is preserved.)

LINE INPUT# is especially useful if each line of a data file has been broken into
fields, or if a BASIC-80 program saved in ASCIl mode is being read as data by
another program.

10 OPEN "0",1,"LIST"

20 LINE INPUT "CUSTOMER INFORMATION? “;C$
30 PRINT #1, C$

40 CLOSE 1

50 OPEN "I", 1, "LIST"

60 LINE INPUT #1, C$

70 PRINT C$

80 CLOSE 1

RUN

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-44

2.33 LIST

Format 1: LIST [<line number>]

Versions: 8K, Extended, Disk

Format 2: LIST [<line number> [-[<line number>]]]

Versions: Extended, Disk

Purpose: To list all or part of the program currently in memory at the terminal. BASIC-80
always returns to command level after a LIST is executed.

Remarks: Format 1: If <line number> is omitted, the program is listed beginning at the
lowest line number. (Listing is terminated either by the end of the program or by
typing Control-C). If <line number> is included, the 8K version will list the
program beginning at that line; and the Extended and Disk versions will list only
the specified line.

Format 2: This format allows the following options:

1. If only the first number is specified, that line and all higher-numbered lines are
listed.

2. If only the second number is specified, all lines from the beginning of the
program through that line are listed,

3. If both numbers are specified, the entire range is listed.

Examples:
Format1: LIST Lists the program currently in memory.
LIST 500 In the 8K version, lists all programs lines from 500 to
the end.

In Extended and Disk lists line 500.

Format 2: LIST 150- Lists all lines from 150 to the end.

LIST -1000 Lists all lines from the lowest number through 1000

LIST 150-1000 Lists lines 150 through 1000, inclusive.

BASIC-80 COMMANDS AND STATEMENTS Page 2-45

(This page left intentionally blank. In previous editions, this page held the examples for LIST
given in this present edition on the preceding page.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-46
2.34 LLIST

Format: LLIST [<line number> [- [<line number>]]]

Versions: Extended, Disk

Purpose: To list all or part of the program currently in memory at the line printer.

Remarks: LLIST assumes a 132-character wide printer.

BASIC-80 always returns to command level after an LLIST is executed. The
options for LLIST are the same as for LIST, Format 2.

NOTE: LLIST and LPRINT are not included in all implementations of BASIC-80.

Example: See the examples for LIST, Format 2.

BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.35
Format:
Version:

Purpose:

Remarks:

Example:

LOAD

LOAD <filename>[,R]

Disk

To load a file from disk into memory.

<filename> is the name that was used when the file was SAVEd. (With CP/M,
the default extension .BAS is supplied.)

LOAD closes all open files and deletes all variables and program lines currently
residing in memory before it loads the designated program. However, if the "R"
option is used with LOAD, the program is RUN after it is LOADed, and all open data
files are kept open. Thus, LOAD with the "R" option may be used to chain several
programs (or segments of the same program). Information may be passed between
the programs using their disk data files.

LOAD "STRTRK",R

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2.36 LPRINT and LPRINT USING

Format: LPRINT [<list of expressions>]
LPRINT USING <string exp>;<list of expressions>

Versions: Extended, Disk
Purpose: To print data at the line printer.

Remarks: Same as PRINT and PRINT USING, except output goes to the line printer. See
Section 2.49 and Section 2.50.

LPRINT assumes a 132-character-wide printer.

NOTE: LPRINT and LLIST are not included in all implementations of BASIC-80.

BASIC-80 COMMANDS AND STATEMENTS Page 2-49

2.37

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

LSET and RSET

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

Disk

To move data from memory to a random file buffer
(in preparation for a PUT statement)

If <string expression> requires fewer bytes than were FIELDed to
<string variable>, LSET left-justifies the string in the field, and
RSET right-justifies the string. (Spaces are used to pad the extra positions.)

If the string is too long for the field, characters are dropped from the right.
Numeric values must be converted to strings before they are LSET or RSET. See the
MKI$, MKS$, and MKD$ functions in Section 3.25.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

See also Appendix B.

LSET or RSET may also be used with a non-fielded string variable to left-justify or
right-justify a string in a given field. For example, the program lines

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character field. This can be very handy for
formatting printed output.

BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.38
Format:
Version:

Purpose:

Remarks:

Example:

MERGE

MERGE <filename>

Disk

To merge a specified disk file into the program currently in memory.

To merge a specified disk file into the program currently in memory. <filename> is
the name used when the file was SAVEd. (With CP/M, the default extension .BAS is
supplied.) The file must have been SAVEd in ASCIl format. (If not, a "Bad file
mode" error occurs.)

If any lines in the disk file have the same line numbers as lines in the program in
memory, the lines from the file on disk will replace the corresponding lines in
memory. (MERGEing may be thought of as "inserting" the program lines on disk Into
the program in memory.)

BASIC-80 always returns to command level after executing a MERGE command.

MERGE "NUMBRS”

BASIC-80 COMMANDS AND STATEMENTS Page 2-51

2.39

Format:

Versions:

Purpose:

Remarks:

Example:

MID$

MID$(<string exp1>,p[,d] = <string exp2>)
where p and d are integer expressions and < string exp1> and
< string exp2> are string expressions.

Extended, Disk
To replace a portion of one string with another string.

The characters in <string exp1>, beginning at position p, are replaced by the
characters in <string exp2>. The optional d refers to the number of characters
(displacement) from <string exp2> that will be used in the replacement.

If d is omitted, all of <string exp2> is used. However, regardless of whether d is
omitted or included, the replacement of characters never goes beyond the original
length of <string exp1>.

MIDS$ is also a function that returns a substring of a given string. See Section 3.24.

10 A$="KANSAS CITY, MO"
20 MID$(AS$,14) = "KS”
30 PRINT A$

RUN

KANSAS CITY, KS

BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.40 NAME

Format: NAME <old filename> AS <new filename>

Version: Disk

Purpose: To change the name of a disk file.

Remarks: <old filename> must exist and <new filename> must not exist; otherwise

an error will result. After a NAME command, the file exists on the same disk, in the
same area of disk space, with the new name.

Example: 0Ok
NAME "ACCTS"” AS "LEDGER"
ok

In this example, the file that was formerly named ACCTS will now be named
LEDGER.

BASIC-80 COMMANDS AND STATEMENTS Page 2-53

241 NEW

Format: NEW

Versions: 8K, Extended, Disk

Purpose: To delete the program currently in memory and clear all variables.

Remarks: ~ NEW is entered at command level to clear memory before entering a new program.
BASIC-80 always returns to command level after a NEW is executed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2.42

Format:

Versions:

Purpose:

Remarks:

Example:

NULL

NULL <integer expression>

8K, Extended, Disk

To set the number of nulls to be printed at the end of each line.

For 10-character-per-second tape punches, <integer expression>
should be >= 3.

When tapes are not being punched, <integer expression> should be 0 or 1 for
Teletypes and Teletype-compatible CRTs.

<integer expression> should be 2 or 3 for 30 cps hard copy printers.
The default value is O.

ok

NULL 2

ok

100 INPUT X

200 IF X<50 GOTO 800

Two null characters will be printed after each line.

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.43

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR
ON ERROR GOTO <line number>

Extended, Disk
To enable error trapping and specify the first line of the error handling subroutine.

Once error trapping has been enabled all errors detected, including direct mode
errors (e.g. Syntax errors), will cause a jump to the specified error handling
subroutine. If <line number> does not exist, an "Undefined line" error results.

To disable error trapping, execute an ON ERROR GOTO @. Subsequent errors will
print an error message and halt execution.

An ON ERROR GOTO statement that appears in an error trapping subroutine
causes BASIC-80 to stop and print the error message for the error that caused the
trap. It is recommended that all error trapping subroutines execute an

ON ERROR GOTO ©

if an error is encountered for which there is no recovery action. If an error occurs
during execution of an error handling subroutine, the BASIC error message is
printed and execution terminates. Error trapping does not occur within the error
handling subroutine.

10 ON ERROR GOTO 1000

BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.44

Format:

Versions:

Purpose:

Remarks:

Example:

ON...GOSUB and ON...GOTO

ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

8k, Extended, Disk

To branch to one of several specified line numbers, depending on the value
returned when an expression is evaluated.

The value of <expression> determines which line number in the list will be
used for branching. For example, if the value if three, the third line number in the
list will be the destination of the branch.

(If the value is a non-integer, the fractional portion is rounded.)

In the ON...GOSUB statement, each line number in the list must be the first line
number of a subroutine.

If the value of <expression> is zero or greater than the number of items in the list
(but less than or equal to 255), BASIC continues with the next executable

statement.

If the value of <expression> is negative or greater than 255, an "Illegal
function call” error occurs.

100 ON L-1 GOTO 150,300,320,390

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.45 OPEN

Format: OPEN <mode>,[#] <file number >,<filename>,[<reclen>]
Version: Disk

Purpose: To allow I/O to a disk file.

Remarks: A disk file must be OPENed before any disk 1/O operation can be performed on
that file. OPEN allocates a buffer for I/O to the file and determines the mode of
access that will be used with the buffer.

<mode> is a string expression whose first character is one of the following:

0 specifies sequential output mode
I specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose value is between one and fifteen.
The number is then associated with the file for as long as it is OPEN and is used to
refer other disk I/O statements to the file.

<filename> is a string expression containing a name that conforms to your
operating system’s rules for disk filenames.

<reclen> is an integer expression which, if included, sets the record length for
random files. The default record length is 128 bytes. See also page A-3.

NOTE: A file can be OPENed for sequential input or random access on more than one file
number at a time. A file may be OPENed for output, however, on only one file

number at a time.

Example: 10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.46 OPTION BASE

Format: OPTION BASE n
wherenis1or@

Versions: 8K, Extended, Disk
Purpose: To declare the minimum value for arraysubscripts.
Remarks: The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

BASIC-80 COMMANDS AND STATEMENTS Page 2-59

2.47 OuT

Format: ouT I1,7J
where I and J are integer expressions in the range @ to 255.

Versions: 8K, Extended, Disk
Purpose: To send a byte to a machine output port.

Remarks: The integer expression I is the port number, and the integer expression J is the
data to be transmitted.

Example: 100 OUT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-60

2.48 POKE

Format: POKE I,J
where I and J are integer expressions

Versions: 8K, Extended, Disk
Purpose: To write a byte into a memory location.

Remarks: The integer expression I is the address of the memory location to be POKEd. The
integer expression J is the data to be POKEd. J must be in the range @ to 255.

In the 8K version, I must be less than 32768. In the Extended and Disk versions, I
must be in the range 0 to 65536.

With the 8K version, data may be POKEd into memory locations above 32768 by
supplying a negative number for I. The value of I is computed by subtracting
65536 from the desired address. For example, to POKE data into location 45000, I
= 45000-65536, or -20536.

The complementary function to POKE is PEEK. The argument to PEEK is an address
from which a byte is to be read. See Section 3.27.

POKE and PEEK are useful for efficient data storage, loading assembly language
subroutines, and passing arguments and results to and from assembly language
subroutines.

Example: 10 POKE &H5AQ0,&HFF

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

2.49

Format:

Versions:

Purpose:

Remarks:

PRINT

PRINT [<list of expressions>]

8K, Extended, Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank line is printed.

If <list of expressions> is included, the values of the expressions are printed at
the terminal. The expressions in the list may be numeric and/or string expressions.

(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined by the punctuation used to
separate the items in the list. BASIC-80 divides the line into print zones of 14
spaces each. In the list of expressions, a comma causes the next value to be
printed at the beginning of the next zone. A semicolon causes the next value to
be printed immediately after the last value. Typing one or more spaces between
expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next PRINT
statement begins printing on the same line, spacing accordingly. If the list of
expressions terminates without a comma or a semicolon, a carriage return is
printed at the end of the line. If the printed line is longer than the terminal width,
BASIC-80 goes to the next physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers are preceded
by a space. Negative numbers are preceded by a minus sign. Single precision
numbers that can be represented with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in the scaled format, are output using
the unscaled format. For example, 1E-7 is output as .0000001 and 1E-8(-7)is
output as 1E-08. Double precision numbers that can be represented with 16 or
fewer digits in the unscaled format no less accurately than they can be represented
in the scaled format, are output using the unscaled format. For example, 1D-15 is
output as.0000000000000001 and 1D-16

is output as 1D-16.

BASIC-80 COMMANDS AND STATEMENTS Page 2-62

Example 1:

Example 2:

Example 3:

A question mark may be used in place of the word PRINT in a PRINT statement.

10 X-5

20 PRINT X+5, X-5, X*(-5), X*5

30 END

RUN

10 0 -25 3125
ok

In this example, the commas in the PRINT statement cause each value to be
printed at the beginning of the next print zone.

LIST

10 INPUT X

20 PRINT X "SQUARED IS" X*2 "AND";
30 PRINT X "CUBED IS" X*3

40 PRINT

50 GOTO 10

Ok

RUN

?79

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

In this example, the semicolon at the end of line 20 causes both this and the next
PRINT statement (line 30) to be printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

10 FOR X == 1 TO 5

20 J=J+5

30 K=K+10

40 ?J;K;

50 NEXT X

Ok

RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT statement cause each value to be
printed immediately after the preceding value. (Don’t forget, a number is always
followed by a space and positive numbers are preceded by a space.) In line 40, a
question mark is used instead of the word PRINT.

BASIC-80 COMMANDS AND STATEMENTS Page 2-63

2.50 PRINT USING

Format: PRINT USING <string exp>;<list of expressions>
Versions: Extended, Disk

Purpose: To print strings or numbers using a specified format.

Remarks: <list of expressions>is comprised of the string expressions or numeric
expressions that are to be printed, separated by semicolons. <string exp> is a
string literal (or variable) comprised of special formatting characters. These
formatting characters (see below) determine the field and the format of the printed
strings or numbers.

String Fields

When PRINT USING is used to print strings, one of three formatting characters
may be used to format the string field:

"y Specifies that only the first character in the given string is to
be printed.

"\n spaces\"” Specifies that 2+n characters from the string are to be printed.
If the backslashes are typed with no spaces, two characters
will be printed; with one space, three characters will be
printed, and so on. If the string is longer than the field, the
extra characters are ignored.

If the field is longer than the string, the string will be left-
justified in the field and padded with spaces on the right.

Example: 10 A$="LOOK":B$="OUT"
30 PRINT USING "!";A$;B$
40 PRINT USING "\ \";A$;B$
50 PRINT USING "\ \";A$;B$;"!!"
RUN
LO
LOOKOUT
LOOK OuT !!

BASIC-80 COMMANDS AND STATEMENTS Page 2-64

Example:

Example:

& Specifies a variable length string field. When the field is specified with "&",
the string is output exactly as input.

10 AS="LOOK":B$="0UT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$
RUN

LouT

Numeric Fields

When PRINT USING is used to print numbers, the following special characters may
be used to format the numeric field:

A number sign is used to represent each digit position. Digit positions are always
filled. If the number to be printed has fewer digits than positions specified, the
number will be right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the field. If the format string
specifies that a digit is to precede the decimal point, the digit will always be
printed (as @ if necessary). Numbers are rounded as necessary.

PRINT USING "#i.## ";.78

0.78

PRINT USING "#it#.##",987.654

987.65

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of the format string to
separate the printed values on the line.

A plus sign at the beginning or end of the format string will cause the sign of the
number (plus or minus) to be printed before or after the number

BASIC-80 COMMANDS AND STATEMENTS Page 2-65

*%

$$

**$

A minus sign at the end of the format field will cause negative numbers to be
printed with a trailing minus sign.

PRINT USING "+ H.## ";-68.95,2.4,55.6,-.9
-68,95 +2-40 +55,60 -0.90

PRINT USING "#i.##- ",-68.95,22.449,-7.01
68.95- 22,45 7.01-

A double asterisk at the beginning of the format string causes leading spaces in the
numeric field to be filled with asterisks. The ** also specifies positions for two
more digits.

PRINT USING "*x#,# ";12.39, -0.9, 765.1
%12.4 %-0.9 765.1

A double dollar sign causes a dollar sign to be printed to the immediate left of the
formatted number. The $$ specifies two more digit positions, one of which is the
dollar sign. The exponential format cannot be used with $$. Negative numbers
(cannot be used unless the minus sign trails to the right.

PRINT USING '$$#i##. ##",456.78
$456.78

The **$ at the beginning of a format string combines the effects of the above two
symbols. Leading spaces will be asterisk-filled and a dollar sign will be printed
before the number. **$ specifies three more digit positions, one of which is the
dollar sign.

PRINT USING "*x$##. ##";2.34
*%%x$2 .34

A comma that is to the left of the decimal point in a formatting string causes a
comma to be printed to the left of every third digit to the left of the decimal point.
A comma that is at the end of the format string is printed as part of the string. A
comma specifies another digit position. The comma has no effect if used with the
exponential (AM-'A) format.

PRINT USING "####, .##";1234.
1,234.50

PRINT USING "#it##. ##,";1234,
1234.50,

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

AAAA

Four carats (or up-arrows) may be placed after the digit position characters to
specify exponential format. The four carats allow space for E+xx to be printed.

Any decimal point position may be specified. The significant digits are left-
justified, and the exponent is adjusted. Unless a leading + or trailing + or - is
specified, one digit position will be used to the left of the decimal point to print a
space or a minus sign.

PRINT USING "#i.##"**+";234.56
2.35E+02

PRINT USING ".##it#++~+-",888888
.8889E+06

PRINT USING "+.##A24~":123
+.12E+03

An underscore in the format string causes the next character to be output as a
literal character.

PRINT USING "_!##. ##_1";12.34

112.34!

The literal character itself may be an underscore by placing "__" (two
underscores) in the format string. If the number to be printed is larger than the
specified numeric field, a percent sign is printed in front of the number. If
rounding causes the number to exceed the field, a percent sign will be printed in
front of the rounded number.

PRINT USING "##.##"; 111. 22
%111.22

PRINT USING ".##"?. 999
%1-00

If the number of digits specified exceeds 24, an "Illegal function call” error
will result.

BASIC-80 COMMANDS AND STATEMENT Page 2-67

2.51
Format:
Version:

Purpose:

Remarks:

PRINT# and PRINT# USING

PRINT#<filenumber,[USING<string exp>;]<list of expressions>
Disk

To write data to a sequential disk file.

<file number> is the number used when the file was OPENed for output.

<string exp> is comprised of formatting characters as described in Section 2.50,
PRINT USING. The expressions in <list of expressions> are the numeric and/or
string expressions that will be written to the file.

PRINT# does not compress data on the disk. An image of the data is written to the
disk, just as it would be displayed on the terminal with a PRINT statement. For this
reason, care should be taken to delimit the data on the disk, so that it will be input
correctly from the disk. In the list of expressions, numeric expressions should be
delimited by semicolons. For example,

PRINT#1,A;B;C;X;y;Z

(If commas are used as delimiters, the extra blanks that are inserted between print
fields will also be written to disk.)

String expressions must be separated by semicolons in the list. To format the string
expressions correctly on the disk, use explicit delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-1". The statement

PRINT#1,A$;B$
would write CAMERA93604-1 to the disk. Because there are no delimiters, this
could not be input as two separate strings. To correct the problem, insert explicit
delimiters into the PRINT# statement as follows:

PRINT#1,A$;",";B$
The image written to disk is

CAMERA, 93604-1

which can be read back into two string variables.

BASIC-80 COMMANDS AND STATEMENT Page 2-68

If the strings themselves contain commas, semicolons, significant leading blanks,
carriage returns, or line feeds, write them to disk surrounded by explicit quotation
marks, CHR$(34).
For example, let A$="CAMERA, AUTOMATIC" and B$=" 93604-1". The statement
PRINT#1,A$;B$
would write the following image to disk:
CAMERA, AUTOMATIC 93604-1
and the statement
INPUT#1,A$,B$
would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to B$.
To separate these strings properly on the disk, write double quotes to the disk
image using CHRS(34). The statement
PRINT#1,CHR$(34) ; A$; CHR${ 34) ; CHR$ (34) ; B$; CHR$ (34)
writes the following image to disk:
"CAMERA, AUTOMATIC"" 93604-1"
and the statement
INPUT#1,A$,B$

would input "CAMERA, AUTOMATIC” to A$ and " 93604-1" to BS.

The PRINT# statement may also be used with the USING option to control the
format of the disk file. For example:

PRINT#1,USING" $$### . ##,"; J;K;L
For more examples using PRINT#, see Appendix B.

See also WRITE#, Section 2.68,

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.52
Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

PUT

PUT [#]<file number>[,<record number>]

Disk

To write a record from a random buffer to a random disk file.

<file number> is the number under which the file was OPENed.

If <record number> is omitted, the record will have the next available record
number (after the last PUT). The largest possible record number is 32767. The
smallest record number is 1.

See Appendix B.

PRINT#, PRINT# USING, and WRITE# may be used to put characters in the

random file buffer before a PUT statement. In the case of WRITE#, BASIC-80 pads

the buffer with spaces up to the carriage return. Any attempt to read or write past
the end of the buffer causes a "Field overflow” error.

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2.53 RANDOMIZE

Format: RANDOMIZE [<expression>]

Versions: Extended, Disk

Purpose: To reseed the random number generator.

Remarks: If <expression> is omitted, BASIC-80 suspends program execution and asks for
a value by printing Random Number Seed (-32768 to 32767)? before executing
RANDOMIZE. If the random number generator is not reseeded, the RND function
returns the same sequence of random numbers each time the program is ran. To
change the sequence of random numbers every time the program is ran, place a
RANDOMIZE statement at the beginning of the program and change the argument for
each RUN.

Example: 10 RANDOMIZE

20 FOR I=1 TO 5

30 PRINT RND;

40 NEXT I

RUN

Random Number Seed (-32768 to 32767)? 3 (user types 3)
.88598 .484668 .586328 .119426 .709225

ok

RUN

Random Number Seed (-32768 to 32767)? 4 (usertypes 4 for new seq.)
.803506 .162462 .929364 .292443 .322921

ok

RUN

Random Number Seed (-32768 to 32767)? 3 (same sequence as 1* run)
.88598 .484668 .586328 .119426 .709225

ok

BASIC-80 COMMANDS AND STATEMENT Page 2-71

2.54
Format:
Versions:

Purpose:

Remarks:

Example 1:

READ
READ <list of variables>
8K, Extended, Disk

To read values from a DATA statement and assign them to variables.
(See DATA, Section 2.10.)

A READ statement must always be used in conjunction with a DATA statement. READ
statements assign variables to DATA statement values on a one-to-one basis. READ
statement variables may be numeric or string, and the values read must agree with
the variable types specified. If they do not agree, a "Syntax error” will result.

A single READ statement may access one or more DATA statements (they will be
accessed in order) , or several READ statements may access the same DATA statment.
If the number of variables in <list of variables> exceeds the number of
elements in the DATA statement (s), an OUT OF DATA message is printed. If the
number of variables specified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements will begin reading data at the first unread
element. If there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.
(See RESTORE, Section 2.57)

80 FOR 1=1 TO 10

90 READ A (I)

100 NEXT I

110 DATA 3.08,5.19,3.12,
120 DATA 5.08,5.55,4.00,

This program segment READS the values from the DATA Statements into the array A. After
execution, the value of A(1) will be 3.08, and so on.

BASIC-80 COMMANDS AND STATEMENTS Page 2-72

Example 2: LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,”, COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY
STATE
ZIP
DENVER,
COLORADO
80211
Ok

This program READs string and numeric data from the DATA statement in line 30.

BASIC-80 COMMANDS AND STATEMENTS Page 2-73

2.55

Format:

Versions:

Purpose:

Remarks:

Example:

REM

REM <remark>

8K, Extended, Disk

To allow explanatory remarks to be inserted in a program.

REM statements are not executed but are output as entered when the program is
listed. REM statements may be branched into (from a GOTO or GOSUB statement), and
execution will continue with the first executable statement after the REM statement.

In the Extended and Disk versions, remarks may be added to the end of a line by
preceding the remark with a single quotation mark (¢) instead of REM.

WARNING! Do not use a single quote in a DATA statement as it would be
considered legal data.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 20
140 SUM=SUM + V(I)

or, with Extended and Disk versions:

120 FOR 1=1 TO 20

130 SUM=SUM+VU)

140 WEXT I

"CALCULATE AVERAGE VELOCITY

BASIC-80 COMMANDS AND STATEMENTS Page 2-74

2.56
Format:
Versions:
Purpose:

Remarks:

NOTE:

Examples:

RENUM

RENUM [[<new number >][, I<old number>][,<increment>]]1]
Extended, Disk

To renumber program lines.

<new number> is the first line number to be used in the new sequence.
The default is 10.

<old number> is the line in the current program where renumbering is to begin.
The default is the first line of the program.

<increment> is the increment to be used in the new sequence. The default is 10.

RENUM also changes all line number references following GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB and ERL statements to reflect the new line numbers. If a
nonexistent line number appears after one of these statements, the error message
"Undefined line xxxxx in yyyyy” is printed. The incorrect line number
reference (xxxxx) is not changed by RENUM, but line number yyyyy may be
changed.

RENUM cannot be used to change the order of program lines! (Ex: RENUM 15,30
when the program has three lines numbered 10, 20 and 30). RENUM also cannot
create line numbers greater than 65529. An "Illegal function call” error will
result in either case.

RENUM Renumbers the entire program. The first new line number
will be 10, Lines will increment by 10.

RENUM 300, ,50 Renumbers the entire program. The first new line number
will be 300. Lines will increment by 50.

RENUM 1000,900,20 Renumbers the lines from 900 up so they start with line
number 1000 and increment by 20.

BASIC-80 COMMANDS AND STATEMENTS Page 2-75

2.57

Format:

Versions:

Purpose:

Remarks:

Example:

RESTORE

RESTORE [<line number>]

8K, Extended, Disk

To allow DATA statements to be reread from a specified line.

After a RESTORE statement is executed, the next READ statement accesses the first
item in the first DATA statement in the program. If <line number> is specified, the
next READ statement accesses the first item in the specified DATA statement.

10 READ A,B,C

20 RESTORE

30 READ D,E,F
40 DATA 57, 68, 79

BASIC-80 COMMANDS AND STATEMENTS Page 2-76

2.58

Formats:

Versions:

Purpose:

Remarks:

Example:

RESUME

RESUME

RESUME @

RESUME NEXT

RESUME <line number>
Extended, Disk

To continue program execution after an error recovery procedure has been
performed.

Any one of the four formats shown above may be used, depending upon where
execution is to resume:

RESUME or RESUME @ Execution resumes at the statement which caused the
error.
RESUME NEXT Execution resumes at the statement immediately

following the one which caused the error.
RESUME <line number> Execution resumes at <line number>.

A RESUME statement that is not in an error trap routine causes a "RESUME without
error' message to be printed.

10 ON ERROR GOTO 900

900 IF (ERR=230) AND(ERL=90) THEN PRINT "TRY AGAIN”: RESUME 8@

BASIC-80 COMMANDS AND STATEMENTS Page 2-77

2.59
Format:

Versions:
Purpose:

Remarks:

Example:
Format 2:

Version 2:

Purpose 2:

Remarks 2:

Example 2:

NOTE:

RUN
RUN [<line number>]

8K, Extended, Disk
To execute the program currently in memory.

If <line number> is specified, execution begins on that line. Otherwise, execution
begins at the lowest line number. BASIC-80 always returns to command level
after a RUN is executed.

RUN

RUN <filename>[,R]

Disk

To load a file from disk into memory and run it.

<filename> is the name used when the file was SAVEd. (With CP/M and ISIS-1I, the
default extension, .BAS, is supplied.) RUN closes all open files and deletes the
current contents of memory before loading the designated program. However,
with the "R" option, all data files remain OPEN.

RUN "NEWFIL",R
See also Appendix B,

The BASIC Compiler supports the RUN and RUN [<line number>] forms of the RUN
statement. The BASIC Compiler does not support the "R" option with RUN. If you
want this feature, the CHAIN statement should be used.

BASIC-80 COMMANDS AND STATEMENTS Page 2-78

2.60 SAVE

Format: SAVE <filename>[,A],P]

Version: Disk

Purpose: To save a program file on disk.

Remarks: <filename> is a quoted string that conforms to your operating system’s

requirements for filenames. (With CP/M, the default extension, .BAS, is supplied.)
If <filename> already exists, the file will be written over.

Use the A option to save the file in ASCII format. Otherwise, BASIC saves the file
in a compressed binary format. ASCIl format takes more space on the disk, but
some disk access requires that files be in ASCII format. For instance, the MERGE
command requires an ASCIl format file, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving it in an encoded binary format.
When a protected file is later RUN (or LOADed), any attempt to list or edit it will fail.

Examples: ~ SAVE"COM2",A
SAVE"PROG" ,P

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-79

2.61

Format:

Versions:

Purpose:

Remarks:

Example:

STOP

STOP

8K, Extended, Disk

To terminate program execution and return to command level.

STOP statements may be used anywhere in a program to terminate execution.
When a STOP is encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not close files. BASIC-80
always returns to command level after a STOP is executed. Execution is resumed
by issuing a CONT command (see Section 2.8).

10 INPUT A,B,C
20 K=A*2%5.3:L=B*3/-26
30 STOP

40 M=C*K+100:PRINT M
RUN

21,2,3

BREAK IN 30

ok

PRINT L

30.7692

ok

CONT

115.9

ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-80

2.62

Format:

Versions:

Purpose:

Remarks:

Example:

SWAP

SWAP <variable>,<variable>
Extended, Disk

To exchange the values of two variables.

Any type variable may be SWAPped (integer, single precision, double precision,
string), but the two variables must be of the same type or a "Type mismatch” error
results.

LIST

10 A$=" ONE " : B$=" ALL " : C$="FOR"
20 PRINT A$ C$ B$

30 SWAP A$, B$

40 PRINT A$ C$ B$

RUN

ok

ONE FOR ALL

ALL FOR ONE

ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-81

2.63

Format:

Versions:

Purpose:

Remarks:

Example:

TRON/TROFF
TRON
TROFF

Extended, Disk
To trace the execution of program statements.

As an aid in debugging, the TRON statement (executed in either direct or indirect
mode) enables a trace flag that prints each line number of the program as it is
executed. The numbers appear enclosed in square brackets. The trace flag is
disabled with the TROFF statement (or when a NEW command is executed).

TRON
ok

LIST

10 K=10

20 FOR J=1 TO 2

30 L=K + 10

40 PRINT J;K;I,

50 K=K+10

60 NEXT

70 END

ok

RUN

[10][20]1[301[40] 1 10 20
[50][60]1[30][40] 2 20 30
[50]1[60]1[70]

ok

TROFF

ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-82

2.64

Format:

Versions:

Purpose:

Remarks:

CAUTION:

Example:

WAIT

WAIT <port number>, I[,J]
where I and J are integer expressions

8K, Extended, Disk

To suspend program execution while monitoring the status of a machine input
port.

The WAIT statement causes execution to be suspended until a specified machine
input port develops a specified bit pattern. The data read at the port is exclusive
ORed with the integer expression J, and then ANDed with I.

If the result is zero, BASIC-80 loops back and reads the data at the port again.

If the result is nonzero, execution continues with the next statement.

If] is omitted, it is assumed to be zero.

It is possible to enter an infinite loop with the WAIT statement, in which case it
will be necessary to manually restart the machine.

100 WAIT 32,2

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2.65

Format:

Versions:

Purpose:

Remarks:

Example:

WHILE... WEND

WHILE <expression>

[<loop statements>]

WEND

Extended, Disk
To execute a series of statements in a loop as long as a given condition is true.

If <expression> is not zero (i.e., true), <loop statements> are executed until the
WEND statement is encountered. BASIC then returns to the WHILE statement and
checks <expression>. If it is still true, the process is repeated. If it is not true,
execution resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match the most
recent WHILE. An unmatched WHILE statement causes a "WHILE without WEND”
error, and an unmatched WEND statement causes a "WEND without WHILE” error.

90 'BUBBLE SORT ARRAY A$

100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=0
120 FOR 1=1 TO J-1
130 IF A${I)>A$(I+1) THEN
SWAP A$(I) ,A$(I+1) :FLIPS=T
140 NEXT I

150 WEND

BA5IC-80 COMMANDS AND STATEMENTS Page 2-84

2.66

Format:

Versions:

Purpose:

Remarks:

Example:

WIDTH
WIDTH [LPRINT] <integer expression>

Extended, Disk
To set the line width in number of characters for the terminal or line printer.

If the LPRINT option is omitted, the line width is set at the terminal. If LPRINT is
included, the line width is set at the line printer.

<integer expression> must have a value in the range 15 to 255. The default
width is 72 characters.

If <integer expression> is 255, the line width is "infinite," that is, BASIC never
inserts a carriage return. However, the position of the cursor or the print head, as
given by the POS or LPOS function, returns to zero after position 255.

10 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXY2"
RUN

ABCDEFGHI JKLMNOPQRSTUVWXY2

ok

WIDTH 18

ok

RUN

ABCDEFGHIJKLMNOPQR

STUVWXYZ

ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.67
Format:
Version:

Purpose:

Remarks:

Example:

WRITE

WRITE[<list of expressions>]

Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank line is output.

If <list of expressions> is included, the values of the expressions are output at
the terminal. The expressions in the list may be numeric and/or string expressions,
and they must be separated by commas.

When the printed items are output, each item will be separated from the last by a
comma. Printed strings will be delimited by quotation marks. After the last item
in the list is printed, BASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as the PRINT statement,
Section 2.49.

10 A=80 :B=90 :C$="THAT'S ALL"
20 WRITE A,B,C$

RUN

80, 90,"THAT'S ALL"

ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-86

2.68
Format:
Version:

Purpose:

Remarks:

Example:

WRITE#

WRITE# < file number >,< list of expressions>

Disk

To write a sequential data file.

<file number> is the number under which the file was OPENed in "0" mode. The
expressions in the list are string or numeric expressions, and they must be
separated by commas.

The difference between WRITE# and PRINT# is that WRITE# inserts commas between
the items as they are written to disk and delimits strings with quotation marks.

Therefore, it is not necessary for the user to put explicit delimiters in the list.

A carriage return/line feed sequence is inserted after the last item in the list is
written to disk.

Let A$="CAMERA" and B$="93604-1". The statement:
WRITE#1,A$,B$

writes the following image to disk:

"CAMERA", "93604-1"

A subsequent INPUT* statement, such as:
INPUT#1,A$,B$

would input "CAMERA” to A$ and "93604-1" to B$.

CHAPTER 3: BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented in this chapter. The functions may
be called from any program without further definition. Arguments to functions are always
enclosed in parentheses. In the formats given for the functions in this chapter, the arguments
have been abbreviated as follows:

XandY Represent any numeric expressions
IandJ Represent integer expressions
X$ and Y$ Represent string expressions

If a floating point value is supplied where an integer is required, BASIC-80 will round the
fractional portion and use the resulting integer.

NOTE:

With the BASIC-80 and BASIC-86 interpreters, only integer and single precision results are
returned by functions. Double precision functions are supported only by the BASIC compiler.

BASIC-80 FUNCTIONS Page 3-2

3.1 ABS

Format: ABS(X)

Versions: 8K, Extended, Disk

Action: Returns the absolute value of the expression X.

Example: ~ PRINT ABS{7*(-5))

35
Ok
3.2 ASC
Format: ASC(X$)

Versions: 8K, Extended, Disk

Action: Returns a numerical value that is the ASCII code of the first character of the string
X$, (See Appendix M for ASCII codes.) If X$ is null, an "Illegal function call”
error is returned.

Example: 10 X$ = "TEST”
20 PRINT ASC{X$)
RUN
84
Ok

See the CHRS$ function for ASClI-to-stringconversion.

BASIC-80 FUNCTIONS Page 3-3

3.3 ATN
Format: ATN(X)
Versions: 8K, Extended, Disk
Action: Returns the arctangent of X in radians. The result is in the range -pi/2 to pi/2. The
expression X may be any numeric type, but the evaluation of ATN is always
performed in single precision.
Example: 10 INPUT X
20 PRINT ATN(X)
RUN
?3
1.24905
ok
3.4 CDBL
Format: CDBL (X)
Versions: Extended, Disk
Action: Converts X to a double precision number.
Example: 10 A = 454,67
20 PRINT A;CDBL(A)
RUN

454.67 454.6700134277344
Ok

BASIC-80 FUNCTIONS Page 3-4

3.5 CHRS$

Format: CHR$(I)

Versions: 8K, Extended, Disk

Action: Returns a string whose one element has ASCII code I. (ASCII codes are listed in
Appendix M.) CHR$ is commonly used to send a special character to the terminal.
For instance, the BEL character could be sent (CHR$(7)) as a preface to an error
message, or a form feed could be sent (CHR$(12)) to clear a CRT screen and return
the cursor to the home position.

Example: PRINT CHR$(66)
B
Ok
See the ASC function (3.2, above) for ASCll-to-numeric conversion.

3.6 CINT

Format: CINT(X)

Versions: Extended, Disk

Action: Converts X to an integer by rounding the fractional portion. If X is not in the range
-32768 to 32767, an "Overflow” error occurs.

Example: PRINT CINT(45.67)

46
ok

See the CDBL and CSNG functions for converting numbers to the double precision
and single precision data type. See also the FIX and INT functions, both of which
return integers.

BASIC-80 FUNCTIONS Page 3-5

3.7 cos
Format: CoS(X)
Versions: 8K, Extended, Disk

Action: Returns the cosine of X in radians. The calculation of COS(X) /s performed in
single precision.

Example: 10 X = 2%C0S(.4)
20 PRINT X
RUN
1.84212
Ok

3.8 CSNG

Format: CSNG(X)

Versions: Extended, Disk

Action: Converts X to a single precision number.

Example: 10 A# = 975.34214#
20 PRINT A#; CSNG(A#)
RUN
975.3421 975.342
ok

See the CINT and CDBL functions for converting numbers to the integer and
double precision data types.

BASIC-80 FUNCTIONS Page 3-6

3.9 CVi, CVS, CVD

Format: CVI(<2-byte string>)
CVS(<4-byte string>)
CVD(<8-byte string>)

Version: Disk

Action: Convert string values to numeric values.
Numeric values that are read in from a random disk file must be converted from
strings back into numbers. CVI converts a 2-byte string to an integer. CVS converts
a 4-byte string to a single precision number. CVD converts an 8-byte string to a
double precision number.

Example:
70 FIELD #1,4 AS N$, 12 AS BS,
80 GET #1
90 Y=CVS(N$)
See also MKI$, MKS$, MKD$, Section 3.26 and Appendix B.

3.10 EOF

Format: EOF (<file number>)

Version: Disk

Action: Returns -1 (true) if the end of a sequential file has been reached. Use EOF to test
for end-of-file while INPUT-ing to avoid "Input past end" errors. (See also EOF
and LOF in Appendix D.)

Example: 10 OPEN "I",1,"DATA"

20 C=0

30 IF EOF(1) THEN 100
40 INPUT #1,M(C)

50 C=C+1:GOTO 30

(and so forth...)

BASIC-80 FUNCTIONS Page 3-7

3.11 EXP
Format: EXP (X)
Versions: 8K, Extended, Disk
Action: Returns e to the power of X. X must be <=87.3365. |If EXP overflows, the
"Overflow” error message is displayed, machine infinity with the appropriate sign
is supplied as the result, and execution continues.
Example: 10 X =5
20 PRINT EXP(X-1)
RUN
54.5982
Ok
3.12 FIX
Format: FIX(X)
Versions: Extended, Disk
Action: Returns the truncated integer part of X.
FIX(X) is equivalent to SGN(X)*INT(ABS(X)). The major difference between FIX
and INT is that FIX does not return the next lower number for negative X.
Examples: PRINT FIX(58.75)

58
Ok

PRINT FIX(-58.75)
-58
ok

BASIC-80 FUNCTIONS Page 3-8

3.13 FRE

Format: FRE (0)
FRE (X$)

Versions: 8K, Extended, Disk

Action: Arguments to FRE are dummy arguments. FRE returns the number of bytes in
memory not being used by BASIC-80.
FRE("") forces a garbage collection before returning the number of free bytes. BE
PATIENT: garbage collection may take 1 to 1-1/2 minutes. BASIC will not initiate
garbage collection until all free memory has been used up. Therefore, using
FRE("") periodically will result in shorter delays for each garbage collection.

Example: PRINT FRE(Q)
14542
Ok

3.14 HEX$

Format: HEXS (X)

Versions: Extended, Disk

Action: Returns a string which represents the hexadecimal value of the decimal argument.
X is rounded to an integer before HEX$ (X) is evaluated.

Example: 10 INPUT X

20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL”
RUN
?
32
32 DECIMAL IS 20 HEXADECIMAL
ok

See the OCT$ function for octal conversion.

BASIC-80 FUNCTIONS Page 3-9

3.15

Format:

Action:

Example:

INKEY$
INKEY$

Returns either a one-character string containing a character read from the terminal
or a null string if no character is pending at the terminal. No characters will be
echoed and all characters are passed through to the program except Control-C,
which terminates the program. (With the BASIC Compiler, Control-C is also
passed through to the program.)

1000 'TIMED INPUT SUBROUTINE

1010 RESPONSE$=""

1020 FOR I%=1 TO TIMELIMIT%

1030 A$=INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+A$

1060 NEXT I%

1070 TIMEQUT%=1 : RETURN

3.16

Format:

Versions:

Action:

Example:

INP
INP(I)
8K, Extended, Disk

Returns the byte read from port I. I must be in the range 0 to 255. INP is the
complementary function to the OUT statement. See Section 2.47.

100 A=INP(255)

BASIC-80 FUNCTIONS Page 3-10

3.17

Format:

Version:

Action:

Example 1:

Example 2:

INPUTS
INPUTS (XL, [#YD)
Disk

Returns a string of X characters, read from the terminal or from file number Y. If
the terminal is used for input, no characters will be echoed and all control
characters are passed through except Control-C, which is used to interrupt the
execution of the INPUT$ function.

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN HEXADECIMAL
10 OPEN"I",1,"DATA”

20 IF EOF(1) THEN 50

30 PRINT HEX$(ASC(INPUTS (1, #1)));

40 GOTO 20

50 PRINT

60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP”
110 X$=INPUTS(1)

120 IF X?="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

BASIC-80 FUNCTIONS Page 3-11

3.18

Format:

Versions:

Action:

Example:

NOTE:

INSTR

INSTR(LI,]X$,Y$)

Extended, Disk

Searches for the first occurrence of string Y$ in X$ and returns the position at
which the match is found. Optional offset I sets the position for starting the
search. I must be in the range 1 to 255.

If I>LEN(X$) or if X$ is null or if Y$ cannot be found, INSTR returns @. If Y$ is null,

INSTR returns I or 1. X$ and Y$ may be string variables, string expressions or string
literals.

10 X$ = "ABCDEB”
20 Y$ = "B"
30 PRINT INSTR(X$,Y$) :INSTR(4,X$,Y$)
RUN
2 6
ok

If I=0 is specified, error message ILLEGAL ARGUMENT IN <line number >" will
be returned.

BASIC-80 FUNCTIONS Page 3-12

3-19 INT
Format: INT(X)
Versions: 8K, Extended, Disk
Action: Returns the largest integer <= X.
Examples: PRINT INT(99.89)
99

Ok

PRINT INT(-12.11)

=13

Ok

See the FIX and CINT functions which also return integer values.

3.20 LEFTS$
Format: LEFT$ (X$,I)
Versions: 8K, Extended, Disk

Action: Returns a string comprised of the leftmost I characters of X$. I must be in the
range 0 to 255.

If I is greater than LEN(X$), the entire string (X$) will be returned.
If I=0, the null string (length zero) is returned.

Example: 10 AS = "BASIC-80"
20 B$ = LEFT$(AS$,5)
30 PRINT B$
BASIC
ok

Also see the MID$ and RIGHT$ functions.

BASIC-80 FUNCTIONS Page 3-13

3.21 LEN
Format: LEN(X$)
Versions: 8K, Extended, Disk
Action: Returns the number of characters in X$. Non-printing characters and blanks are
counted.
Example: 10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)
16
Ok
3.22 LOC
Format: LOC(<file number>)
Version: Disk
Action: With random disk files, LOC returns the record number just read or written from a

Example:

GET or PUT. If the file was opened but no disk I/O has been performed yet, LOC
returns a @.

With sequential files, LOC returns the number of sectors (128 byte blocks) read
from or written to the file since it was OPENed.

200 IF LOC(1)>50 THEN STOP

BASIC-80 FUNCTIONS Page 3-14

3.23 LOG

Format: LOG(X)

Versions: 8K, Extended, Disk

Action: Returns the natural logarithm of X. X must be greater than zero.

Example: PRINT LOG (45/7)

1.86075
Ok
3.24 LPOS
Format: LPOS(X)

Versions: Extended, Disk

Action: Returns the current position of the line printer print head within the line printer
buffer. Does not necessarily give the physical position of the print head.

X is a dummy argument.

Example: 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

BASIC-80 FUNCTIONS Page 3-15

3.25 MID$

Format: MID$(X$,I[,J1)

Versions: 8K, Extended, Disk

Action: Returns a string of length J characters from X$ beginning with the Ith character. I
and J must be in the range 1 to 255. If J is omitted or if there are fewer than J
characters to the right of the Ith character, all rightmost characters beginning with
the Ith character are returned. If I>LEN(X$), MID$ returns a null string.

Example: LIST
10 A$="GOOD "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A?;MIDS(BS$,9,7)
ok
RUN
GOOD EVENING
ok
Also see the LEFT$ and RIGHT$ functions.

NOTE: If I=0 is specified, error message "ILLEGAL ARGUMENT IN <line number>" will be
returned.

3.26 MKI$, MKS$, MKD$

Format: MKI$(<integer expression>)
MKS$(<single precision expression>)
MKD$ (<double precision expression>)

Version: Disk

Action: Convert numeric values to string values. Any numeric value placed in a random
file buffer with an LSET or RSET statement must be converted to a string. MKI$
converts an integer to a 2-byte string. MKS$ converts a single precision number to
a 4-byte string. MKD$ converts a double precision number to an 8-byte string.

Example: 90 AMT=(K+T)

100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET DS = MKSS(AMT)

120 LSET NS = A$

130 PUT #1

BASIC-80 FUNCTIONS Page 3-16

3.27 OCT$
Format: OCT$(X)
Versions: Extended, Disk
Action: Returns a string which represents the octal value of the decimal argument. X /s
rounded to an integer before OCT$(X) is evaluated.
Example: PRINT OCT$(24)
30
Ok
See the HEX$ function (page 3-8) for hexadecimal conversion.
3-28 PEEK
Format: PEEK(I)
Versions: 8K, Extended, Disk
Action: Returns the byte (decimal integer in the range @ to 255) read from memory

Example:

location I. With the 8K version of BASIC-80, I must be less than 32768.

To PEEK at a memory location above 32768, subtract 65536 from the desired
address.

With Extended and Disk BASIC-80, I must be in the range to 65536.

PEEK is the complementary function to the POKE statement, Section 2.48.

A=PEEK (8H5A00)

BASIC-80 FUNCTIONS Page 3-17

3.29 POS

Format: POS(I)

Versions: 8K, Extended, Disk

Action: Returns the current cursor position. The leftmost position is 1. X is a dummy
argument.

Example: IF POS(X)>60 THEN PRINT CHR$(13)
Also see the LPOS function (on page 3-14).

3.30 RIGHTS$

Format: RIGHT$(X$,I)

Versions: 8K, Extended, Disk

Action: Returns the rightmost | characters of string X$. If I=LEN(X$), returns X$. If I=0, the
null string (length zero) is returned.

Example: 10 A$="DISK BASIC-80"

20 PRINT RIGHT$(A5, 8)
RUN

BASIC-80

ok

Also see the MID$ and LEFT$ functions.

BASIC-80 FUNCTIONS Page 3-18

3.31 RND
Format: RNDL (X)]
Versions: 8K, Extended, Disk
Action: Returns a random number between 0 and 1. The same sequence of random
numbers is generated each time the program is RUN unless the random number
generator is reseeded (see RANDOMIZE, Section 2.53). However, X<0 always
restarts the same sequence for any given X. X>0 or X omitted generates the next
random number in the sequence. X=0 repeats the last number generated.
Example: 10 FOR 1=1 TO 5
20 PRINT INT(RND*100)
30 NEXT
RUN
24 30 31 51 5
ok
3.32 SGN
Format: SGN(X)
Versions: 8K, Extended, Disk
Action: If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X<@, SGN(X) returns -1.
Example: ON SGN(X)+2 GOTO 100,200,300

This line branches to 100 if X is negative, 200 if X is @, and 300 if X is positive.

BASIC-80 FUNCTIONS Page 3-19

3.33 SIN
Format: SIN(X)
Versions: 8K, Extended, Disk

Action: Returns the sine of X in radians. SIN(X) is calculated in single precision.
COS(X)=SIN(X+3.14159/2).

Example: ~ PRINT SIN (1.5)

.997495
Ok
3.34 SPACES
Format: SPACES$ (X)

Versions: Extended, Disk

Action: Returns a string of spaces of length X. The expression X is rounded to an integer
and must be in the range 0 to 255.

Example: 10 FORI =1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$:I
40 NEXT I
RUN

1
2
3
4
5
ok

Also see the SPC function, page 3-20, which follows.

BASIC-80 FUNCTIONS Page 3-20

3.35 SPC

Format: SPC(I)

Versions: 8K, Extended, Disk

Action: Prints I blanks on the terminal. SPC may only be used with PRINT and LPRINT
statements. I must be in the range @ to 255. A ’;’ is assumed to follow the
SPC(I) command.

Example: PRINT "OVER" SPC (15) "THERE"
OVER THERE
Ok

Also see the SPACE$ function on the previous page.

3.36 SQR

Format: SQR(X)

Versions: 8K, Extended, Disk

Action: Returns the square root of X. X must be >=0.
Example:

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT

RUN

10 3.16228
15 3.87298
20 4.47214
25 5

ok

{Editor’s Note: SQR(X) will only give the positive square root. Be aware there is also a negative
square root that exists, equal in magnitude, but opposite in sign to the positive square root.}

BASIC-80 FUNCTIONS Page 3-21

3.37 STR$

Format: STR$(X)

Versions: 8K, Extended, Disk

Action: Returns a string representation of the value of X.
Example: 5 REM ARITHMETIC FOR KIDS

10 INPUT "TYPE A NUMBER" ;N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

Also see the VAL function.

3.38 STRING$

Formats: STRING$(I,J)
STRINGS$ (I, X$)

Versions: Extended, Disk

Action: Returns a string of length I whose characters all have ASCII code J or the first
character of X$.

Example: 10 X$ = STRING$ (10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

BASIC-80 FUNCTIONS Page 3-22

3.39 TAB
Format: TAB(I)
Versions: 8K, Extended, Disk
Action: Spaces to position I on the terminal. If the current print position is already beyond
space I, TAB goes to that position on the next line. Space 1 is the leftmost
position, and the rightmost position is the width minus one. I must be in the
range 1to 255. TAB may only be used in PRINT and LPRINT statements.
Example: 10 PRINT "NAME" TAB (25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB (25) B$
40 DATA "G. T. JONES" , "$25.00"
RUN
NAME AMOUNT
G. T. JONES $25.00
ok
3.40 TAN
Format: TAN(X)
Versions: 8K, Extended, Disk
Action: Returns the tangent of X in radians. TAN (X) is calculated in single precision. If

Example:

TAN overflows, the "Overflow” error message is displayed, machine infinity with
the appropriate sign is supplied as the result, and execution continues.

10 Y = Q*xTAN(X)/2

BASIC-80 FUNCTIONS Page 3-23

3.41 USR

Format: USR[<digit>]1(X)

Versions: 8K, Extended, Disk

Action: Calls the user’s assembly language subroutine with the argument X. <digit> is
allowed in the Extended and Disk versions only. <digit> is in the range @ to 9
and corresponds to the digit supplied with the DEF USR statement for that routine.
If <digit> is omitted, USR@ is assumed. See Appendix C.

Example: 40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)

3.42 VAL

Format: VAL(X$)

Versions: 8K, Extended, Disk

Action: Returns the numerical value of string X$. The VAL function also strips leading
blanks, tabs, and linefeeds from the argument string. For example,
VAL(" -3)
returns -3.

Example: 10 READ NAME$,CITY$,STATES,ZIP$

20 IF VAL(2IP$)<90000 OR VAL (ZIP$) >96699 THEN
PRINT NAME$ TAB (25) "OUT OF STATE"

30 IF VAL(ZIP$) >=90801 AND VAL (ZIP$) <=90815 THEN
PRINT NAME$ TAB (25) "LONG BEACH"

See the STR$ function for numeric to string conversion.

BASIC-80 FUNCTIONS Page 3-24

3.43

Format 1:

Versions:

Format 2:

Version:

Action:

NOTE:

Format 2:

Example:

VARPTR

VARPTR (<variable name>)
Extended, Disk

VARPTR (#<file number>)
Disk

Format 1: Returns the address of the first byte of data identified with <variable
name>. A value must be assigned to <variable name> prior to execution of
VARPTR. Otherwise an "Illegal function call” error results. Any type variable
name may be used (numeric, string, array) , and the address returned will be an
integer in the range 32767 to -32768. If a negative address is returned, add it to
65536 to obtain the actual address.

VARPTR is usually used to obtain the address of a variable or array so it may be
passed to an assembly language subroutine. A function call of the form
VARPTR(A(@)) is usually specified when passing an array, so that the lowest-
addressed element of the array is returned.

All simple variables should be assigned before calling VARPTR for an array, because
the addresses of the arrays change whenever a new simple variable is assigned.

For sequential files, returns the starting address of the disk I/O buffer assigned to
<file number>. For random files, returns the address of the FIELD buffer assigned
to <file number>.

In Standalone Disk BASIC, VARPTR(#<file number>) returns the first byte of the
file block. See Appendix H.

100 X=USR(VARPTR(Y)

APPENDIX A

New Features in BASIC-80, Release 5.0

The execution of BASIC programs written under Microsoft BASIC, release 4.51 and earlier may
be affected by some of the new features in release 5.0. Before attempting to run such programs,
check for the following:

1.

New reserved words:
CALL, CHAIN, COMMON, WHILE, WEND, WRITE, OPTION BASE, RANDOMIZE.

. Conversion from floating point to integer values results in rounding, as opposed

to truncation. This affects not only assignment statements (e.g., I%=2.5 results in I%=3),
but also affects function and statement evaluations (e.g., TAB(4.5) goes to the 5th
position, A(1.5) yields A(2), and X=11.5 MOD 4 yields @ for X).

. The body of a FOR. . .NEXT loop is skipped if the initial value of the loop times the sign of

the step exceeds the final value times the sign of the step. See Section 2.22.

Division by zero and overflow no longer produce fatal errors. See Section 1.8.1.2.

The RND function has been changed so that RND with no argument is the same as RND
with a positive argument. The RND function generates the same sequence of random
numbers with each RUN, unless RANDOMIZE is used. See Sections 2.53 and 3.30.

The rules for PRINTing single precision and double precision numbers have been
changed. See Section 2.49.

String space is allocated dynamically, and the first argument in a two-argument CLEAR
statement sets the end of memory. The second argument sets the amount of stack space.
See Section 2.4.

Responding to INPUT with too many or too few items, or with non-numeric
characters instead of digits, causes the message "?Redo from start” to be printed. If a
single variable is requested, a carriage return may be entered to indicate the default
values of @ for numeric input or null for string input. However, if more than one
variable is requested, entering a carriage return will cause the "?Redo from start”
message to be printed because too few items were entered. No assignment of input
values is made until an acceptable response is given.

There are two new field formatting characters for use with PRINT USING. An ampersand
(&) is used for variable length string fields, and an underscore signifies a literal character
in a format string.

Page A-2

10. If the expression supplied with the WIDTH statement is 255, BASIC uses an "infinite" line
width, that is, it does not insert carriage returns. WIDTH LPRINT may be used to set the
line width at the line printer. See Section 2.66.

11. The at-sign (@) and underscore (_) are no longer used as editing characters.

12. Variable names are significant up to 40 characters and can contain embedded reserved
words. However, reserved words must now be delimited by spaces. To maintain
compatibility with earlier versions of BASIC, spaces will be automatically inserted

between adjoining reserved words and variable names.

WARNING: This insertion of spaces may cause the end of a line to be truncated if the
linelength is close to 255 characters.

13. BASIC programs may be saved in a protected binary format. See SAVE, Section 2.60.

APPENDIX B

BASIC-80 Disk Input/Output

Disk 1/O procedures for the beginning BASIC-80 user are examined in this appendix. If you are
new to BASIC-80 or if you're getting disk related errors, read through these procedures and
program examples to make sure you’re using all the disk statements correctly.

Wherever a filename is required in a disk command or statement, use a name the conforms to
your operating system’s requirements for filenames. The CP/M operating system will append a
default extension of .BAS to the filename given in a SAVE, RUN, MERGE, or LOAD command.

B.1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in program file manipulation.

SAVE <filename>[,A]

LOAD <filename>[,R]

RUN <filename>[,R]

MERGE <filename>

KILL<filename>

NAME <old filename>
AS <new filename>

Writes to disk the program thatis currently residing in memory.
Optional ,A writes the program as a series of ASCIl characters.
(Otherwise BASIC uses a compressed binary format.)

Loads the program from disk into memory. Optional ,R runs the
program immediately. LOAD always deletes the current contents of
memory and closes all files before LOADing. If ,R is included,
however, open data files are kept open. Thus programs can be
chained or loaded in sections and still access the same data files.

RUN <filename> loads the program from disk into memory and runs
it. RUN deletes the current contents of of memory and closes all files
before loading the program. If the ,R option is included, however,
all open data files are kept open.

Merges (loads) the program from disk with the program in memory.
The program line numbers on disk are merged with the line numbers
in memory. [f two lines have the same number, only the line from
the disk program is saved. After a MERGE command, the “merged”
program resides in memory, and BASIC returns to command level.

Deletes the file from disk. <filename> may be a program file, or a
sequential or random access data file.

To change the name of a disk file, execute the NAME statement:
NAME <old filename> as <new filename>. NAME may be used with
program files, random files, or sequential files.

Page B-2
B.2 PROTECTED FILES

If you wish to save a program in an encoded binary format, use the “Protect” option with the
SAVE comand. For example:

SAVE “MYPROG”,P

A program saved this way cannot be listed or edited. You may also want to save an unprotected
copy of the program for listing and editing purposes.

B.3 DISK DATA FILES — SEQUENTIAL AND RANDOM INPUT/OUTPUT

There are two types of disk data files that may be created and accessed by a BASIC-80 program:
sequential files and random access files.

B.3.1 Sequential Files

Sequential files are easier to create than random files, but are limited in flexibility and speed
when it comes to accessing the data. The data that is written to a sequential file is stored, one
item after another (sequentially), in the order it is sent and is read back in the same way.

The statements and functions that are used with sequential files are:

OPEN PRINT# INPUT# WRITE# PRINT# USING LINE INPUTH#
CLOSE EOF LoC

The following program steps are required to create a sequential file and access the data in a file:

1.) OPEN the file in “0” mode OPEN “0”,#1, “DATA”
2.) Write data to the file using the PRINT# statement PRINT#1,A$;B$;C$
3.) To access the data in the file, you must CLOSE the file CLOSE #1

and reOPEN it in “I” mode. OPEN “I”,#1,”DATA”
4.) Use the INPUT# statement to read data from INPUT#,X$,Y$,Z$

the sequential file into the program.

Program B-1 (on the next page) is a short program that creates a sequential file, “DATA” from
information you input at a terminal.

Page B-3
Program B-1 — CREATE A SEQUENTIAL DATA FILE

10 OPEN "Q",#1, "DATA"

20 INPUT "NAME";N$

25 IF N$="DONE" THEN END

30 INPUT "DEPARTMENT";D$

40 INPUT "DATE HIRED";H$

50 PRINT#1,N$;",";b$;",";H$
60 PRINT:GOTO 20

RUN

NAME?

MICKEY MOUSE

DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

Now look at Program B-2. It accesses the file “DATA” that was created using Program B-1, and
displays the name of everyone hired in 1978.

Program B-2 — ACCESSING A SEQUENTIAL FILE

10 OPEN "I",#1,"DATA"

20 INPUT#1,N$,D$,HS$

30 IF RIGHT${H$,2)="78" THEN PRINT N$
40 GOTO 20

RUN

EBENEEZER SCROOGE

SUPER MANN

Input past end in 20

ok

Page B-4
Program B-2 reads, sequentially, every item in the file. When all of the data has been read, line

20 causes an “Input past end” error. To avoid getting this error, insert line 15 which uses the EOF
function to test for end-of-file:

15 IF EOF(1) THEN END
and change line 40 to read:
40 GOTO 15

Any program that creates a sequential file can also write formatted data to the disk with the
PRINT# USING statement. For example, the statement:

PRINT#1,USING”#4H#.## ”:A,B,C,D

could be used to write numeric data to disk without explicit delimiters. The comma at the end
of the format string serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns the number of sectors that have been
written to or read from the file since it was OPENed. A sector is a 128-byte block of data.

B.3.1.1 Adding Data to a Sequential File

If you have a sequential file residing on disk and later want to add more data to the end of it,
you cannot simply open the file in “0” mode and start writing data. As soon as you open a
sequential file in “0” mode, you destroy its current contents. The following procedure can be
used to add data to an existing file called “NAMES”.

1.) OPEN “NAMES” in “I” mode.

2.) OPEN a second file called “COPY” in “0” mode.

3.) Read in the data in “NAMES” and write it to “COPY”.

4.) CLOSE “NAMES” and KILL it.

5.) Write the new information to “COPY”

6.) Rename “COPY” as “NAMES” and CLOSE.
Program B-3 illustrates this technique. It can be used to create or add onto a file called NAMES.
This program also illustrates the use of LINE INPUT# to read strings with embedded commas

from the disk file. Remember, LINE INPUT# will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) or until it has read 255 characters.

Page B-5
PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

10 ON ERROR GOTO 2000

20 OPEN "I",#1,"NAMES"

30 REM IP FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "@",#2,"COPY"

50 IF EOF(1) THEN 90

60 LINE INPUT#1,A$

70 PRINT#2,A$

80 GOTO 50

90 CLOSE #1

100 KILL “NAMES"

110 REM ADD NEW ENTRIES TO FILE

120 INPUT "NAME";N$

130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? ";A$

150 LINE INPUT "BIRTHDAY? ";B$

160 PRINT#2,N$

170 PRINT#2,A$

180 PRINT#2,B$

190 PRINT:GOTO 120

200 CLOSE

205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"

2000 IF ERR=53 AND ERL=20 THEN OPEN "@",#2,"COPY":RESUME 120
2010 ON ERROR GOTO @

The error trapping routine in line 2000 traps a "File does not exist” error in line 20. If this
happens, the statements that copy the file are skipped, and "COPY" is created as if it were a new
file.

B.3.2 Random Files

Creating and accessing random files requires more program steps than sequential files, but there
are advantages to using random files. One advantage is that random files require less room on
the disk, because BASIC stores them in a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be accessed randomly, i.e., anywhere on
the disk — it is not necessary to read through all the information, as with sequential files. This is
possible because the information is stored and accessed in distinct units called records and each
record is numbered.

The statements and functions that are used with random files are:

OPEN FIELD LSET/RSET GET PUT CLOSE LOG
MKI$ Cvl MKS$ CvS MKD$ CvD

Page B-6
B.3.2.1 Creating a Random File
The following program steps are required to create a random file:

1.) OPEN the file for random access OPEN "R",#1,"FILE",32
("R" mode). This example specifies
a record length of 32 bytes. If the
record length is omitted, the default
is 128 bytes.

2.) Use the FIELD statement to allocate FIELD #1 20 AS N$,4 AS A$, 8 AS P$
space in the random buffer for the
variables that will be written to the

random file.

3.) Use LSET to move the data into the LSET N$=X$
random buffer. Numeric values must LSET A$=MKS$ (AMT)
must be made into strings when placed LSET P$=TELS$

in the buffer. To do this, use the “make”
functions: MKI$ to make an integer value
into a string, MKS$ to make a single
precision value into a string, and MKD$
for a double precision value.

4.) Write the data from the buffer to the disk PUT #1,CODE%
using the PUT statement.

Look at Program B-4. It takes information that is input at the terminal and writes it to a random
file. Each time the PUT statement is executed, a record is written to the file. The two-digit code
that is input in line 30 becomes the record number.

NOTE: Do not use a FIELDed string variable in an INPUT or LET statement. This

causes the pointer for that variable to point into string space instead of the random
file buffer.

{Program B-4 follows on the next page.}

Page B-7
PROGRAM B-4 — CREATE A RANDOM FILE

10 OPEN "R”,#1,"FILE",32

20 FIELD #1,20 AS N$,4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE”;CODE%
40 INPUT "NAME”:X$

50 INPUT "AMOUNT”; AMT

60 INPUT "PHONE”;TEL$;PRINT
70 LSET N$=X$

80 LSET A$=MKS$(AMT)

90 LSET P$=TEL$

100 PUT #1,CODE%

110 GOTO 30

B.3.2.2 Access a Random File

The following program steps are required to access a random file:

1.)

2.)

OPEN the file in “R” mode. OPEN “R”,#1,”FILE”,32

Use the FIELD statement to FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
allocate space in the random

buffer for the variables that

will be read from the file.

NOTE: In a program that performs both input and output on the same random file, you
can often use just one OPEN statement and one FIELD statement.

Use the GET statement to move GET #1,CODE%
the desire record into the random

buffer.

The data in the buffer may now PRINT N$

be accessed by the program. PRINT CVS(A$)

Numeric values must be converted
back to number using the “convert”
functions: CVI for integers, CVS for
single precision values, and CVD for
double precision values.

Program B-5 accesses the random file "FILE” that was created in Program B-4. By inputting the
three-digit code at the terminal, the information associated with that code is read from the file
and displayed.

{Editor’s Note: line two of the above paragraph should read “two-digit” vs. “three-digit”. This is
clear from code in both example Programs B-4 & B-5. Program B-5 follows on the next page.}

Page B-8

PROGRAM B-5 — ACCESS A RANDOM FILENAME

10
20
30
40
50
60
70
80

OPEN "R”,#1,"FILE",32

FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
INPUT "2-DIGIT CODE”;CODE%

GET #1, CODE%

PRINT N$

PRINT USING "$$###. ##”;CVS (A$)
PRINT P$:PRINT

GOTO 30

The LOC function, with random files, returns the "current record number." The current record
number is one plus the last record number that was used in a GET or PUT statement.

For example, the statement:

IF LOC(1) >5@ THEN END

ends program execution if the current record number in file #1 is higher than 50.

Program B-6 is an inventory program that illustrates random file access. In this program, the
record number is used as the part number, and it is assumed the inventory will contain no more
than 100 different part numbers. Lines 900-960 initialize the data file by writing CHR$(255) as
the first character of each record. This is used later (line 270 and line 500) to determine
whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the program performs. When you
type in the desired function number, line 230 branches to the appropriate subroutine.

PROGRAM B-6 — INVENTORY

120 OPEN"R",#1,"INVEN.DAT",39

125 FIELD#1,1 AS F$,30 AS D$,2 AS Q$,2 AS R$,4 AS P$

130 PRINT:PRINT "FUNCTIONS:”:PRINT

135 PRINT 1,"INITIALIZE FILE"

140 PRINT 2,"CREATE A NEW ENTRY"

150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"

160 PRINT 4,"ADD TO STOCK"

170 PRINT 5,"”SUBTRACT FROM STOCK"

180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"

220 PRINT:PRINT:INPUT”FUNCTION"; FUNCTION

225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT”BAD FUNCTION NUMBER":GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680

240 GOTO 220

250 REM BUILD NEW ENTRY

260 GOSUB 840

270 IF ASC(F$)<>255 THEN INPUT"OVERWRITE";A$:IF A$<>"Y" THEN RETURN

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
710
720

730
740
840
850

Page B-9

LSET F$=CHR$(®)

INPUT "DESCRIPTION";DESC$

LSET D$=DESC$

INPUT "QUANTITY IN STOCK";Q%

LSET Q$=MKI$(Q%)

INPUT "REORDER LEVEL";R%

LSET R$=MKI$(R%)

INPUT "UNIT PRICE";:P

LSET P$=MKS$(P)

PUT#1,PART%

RETURN

REM DISPLAY ENTRY

GOSUB 840

IF ASC(P$)=255 THEN PRINT "NULL ENTRY":RETURN
PRINT USING "PART NUMBER ###"; PART%

PRINT D$

PRINT USING "QUANTITY ON HAND #HH#":CVI{Q$)
PRINT USING "REORDER LEVEL #####";CVI(R$)
PRINT USING "UNIT PRICE $$##.##":CVS(P$)
RETURN

REM ADD TO STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
PRINT D$:INPUT "QUANTITY TO ADD ";A%
Q%=CVI{Q$)+A%

LSET Q$=MKI$(Q%)

PUT#1, PART%

RETURN

REM REMOVE FROM STOCK

GOSUB 840

IF ASC{F$)=255 THEN PRINT "NULL ENTRY":RETURN
PRINT D$

INPUT "QUANTITY TO SUBTRACT";:S%

Q%=CVI (Q$)

IF (Q%-S%)<@ THEN PRINT "ONLY":Q%;" IN STOCK":GOTO 600
Q%=Q%-S%

IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW";Q%;" REORDER LEVEL":CVI(R$)
LSET Q$=MKI$(Q%)

PUT#1, PART%

RETURN

DISPLAY ITEMS BELOW REORDER LEVEL

FOR 1=1 TO 100

GET#1,1

IF CVI(Q$)<CVI(R$) THEN PRINT D$:"” QUANTITY";
CVI(Q$) TAB(50) "REORDER LEVEL";CVI(R$)

NEXT I

RETURN

INPUT "PART NUMBER";PART%

IF (PART%<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER":

Page B-9

GOTO 840 ELSE GET#1,PART%:RETURN

890 END

900 REM INITIALIZE FILE

910 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)

930 FOR 1=1 TO 100

940 PUT#1,1

950 NEXT I

960 RETURN

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-80 have provisions for interfacing with assembly language subroutines.
The USR function allows assembly language subroutines to be called in the same way BASIC's
intrinsic functions are called.

NOTE

The addresses of the DEINT, GIVABF, MAKINT, and FRCINT routines are stored in locations that
must be supplied individually for different implementations of BASIC.

C.1 MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine before it can be loaded.
During initialization, enter the highest memory location minus the amount of memory needed
for the assembly language subroutine(s). BASIC uses all memory available from its starting
location up, so only the topmost locations in memory can be set aside for user subroutines.

When an assembly language subroutine is called , the stack pointer is set up for 8 levels (15
bytes) of stack storage. If more stack space is needed , BASIC's stack can be saved and a new
stack set up for use by the assembly language subroutine. BASIC’s stack must be restored,
however, before returning from the subroutine.

The assembly language subroutine may be loaded into memory by means of the system monitor,
or the BASIC POKE statement, or (if the user has the MACRO-80 or FORTRAN-80 package)
routines may be assembled with MACRO-80 and loaded using LINK-80.

Page C-2
C.2 USR FUNCTION CALLS - 8K BASIC

The starting address of the assembly language subroutine must be stored in USRLOC, a two-byte
location in memory that is supplied individually with different implementations of BASIC-80.
With 8K BASIC, the Starting address may be POKEd into USRLOC. Store the low order byte first,
followed by the high order byte. The function USR will call the routine whose address is in
USRLOC. Initially USRLOC contains the address of ILLFUN, the routine that gives the "Illegal
function call” error. Therefore, if USR is called without changing the address in USRLOC, an
“Illegal function call” error results.

The format of a USR function call is

USR(argument)
where the argument is a numeric expression. To obtain the argument, the assembly language
subroutine must call the routine DEINT. DEINT places the argument into the D,E register pair as a
2-byte, 2’s complement integer. (If the argument is not in the range -32768 to 32767, an

"Illegal function call" error occurs.)

To pass the result back from an assembly language subroutine, load the value in register pair
[A,B], and call the routine GIVABF. If GIVABF is not called, USR(X) returns X. To return to
BASIC, the assembly language subroutine must execute a RET instruction.

For example, here is an assembly language subroutine that multiplies the argument by 2:

USRSUB: CALL DEINT ;put arg in D,E
XCHG ;move arg to H,L
DAD H ;H,L=H,L+H,L
MOV A,H ;move result to A,B
MOV B, L
JMP GIVABF ;pass result back and RETurn

Note that valid results will be obtained from this routine for arguments in the range
-16384<=x<=16383. The single instruction JMP GIVABF has the same effect as:

CALLRET
GIVABF

Page C-3

To return additional values to the program, load them into memory and read them with the PEEK
function.

There are several methods by which a program may call more than one USR routine. For
example, the starting address of each routine may be POKEd into USRLOC prior to each USR call,
or the argument to USR could be an index into a table of USR routines.

C-3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the USR function is USR[<digit>] (argument)
where <digit> is from O to 9 and the argument is any numeric or string expression.

<digit> specifies which USR routine is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is omitted, USR® is assumed. The address
given in the DEF USR statement determines the starting address of the subroutine.

When the USR function call is made, register A contains a value that specifies the type of
argument that was given. The value in A may be one of the following:

Value in A Type of Argument
2 Two-byte integer (two’ s complement)
3 String
4 Single precision floating point number
8 Double precision floating point number

If the argument is a number , the [H,L] register pair points to the Floating Point Accumulator
(FAC) where the argument is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

FAC-2 contains the middle 8 bits of mantissa and

FAC-1 contains the highest 7 bits of mantissa with leading 1 suppressed (implied).
Bit 7 is the sign of the number (O=positive, 1=negative).

FAC is the exponent minus 128, and the binary point is to the left of the most significant
bit of the mantissa.

Page C-4
If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes of mantissa (FAC-7 contains the lowest 8
bits).

If the argument is a string, the [D,E] register pair points to 3 bytes called the "string descriptor".
Byte O of the string descriptor contains the length of the string (0 to 255). Bytes 1 and 2,
respectively, are the lower and upper 8 bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the program, the string descriptor will point to
program text. Be careful not to alter or destroy your program this way. To avoid unpredictable
results, add +"" to the string literal in the program. Example:

A$ = "BASIC-80"+""

This will copy the string literal into string space and will prevent alteration of program text
during a subroutine call.

Usually, the value returned by a USR function is the same type (integer, string, single precision or
double precision) as the argument that was passed to it. However, calling the MAKINT routine
returns the integer in [H,L] as the value of the function, forcing the value returned by the
function to be integer. To execute MAKINT, use the following sequence to return from the
subroutine:

PUSH H ;save value to be returned
LHLD xxx ;get address of MAKINT routine
XTHL ;save return on stack and

;get back [H,L]
RET ;return

Also, the argument of the function, regardless of its type may be forced to an integer by calling
the FRCINT routine to get the integer value of the argument in [H,L]. Execute the following
routine:

LXI H ;get address of subroutine
;continuation

PUSH H ;place on stack

LHLD xxx ;get address of FRCINT

PCHL

SUB1:

Page C-5
C.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be made with the CALL statement. The
calling sequence used is the same as that in Microsoft's FORTRAN, COBOL and BASIC

compilers.

A CALL statement with no arguments generates a simple "CALL" instruction. The corresponding
subroutine should return via a simple "RET." (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

A subroutine CALL with arguments results in a somewhat more complex calling sequence. For
each argument in the CALL argument list, a parameter is passed to the subroutine. That
parameter is the address of the low byte of the argument. Therefore, parameters always occupy
two bytes each, regardless of type. The method of passing the parameters depends upon the
number of parameters to pass:

1. If the number of parameters is less than or equal to 3, they are passed in the
registers. Parameter 1 will be in HL, 2 in DE (if present) , and 3 in BC (if present).

2. If the number of parameters is greater than 3, they are passed as follows:
1. Parameter 1 in HL.
2. Parameter 2 in DE.
3. Parameters 3 through n in a contiguous data block, BC will point to the low

byte of this data block (i.e., to the low byte of parameter 3).

Note that, with this scheme, the subroutine must know how many parameters to expect in order
to find them. Conversely, the calling program is responsible for passing the correct number of
parameters. There are no checks for the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs to transfer them to a local data
area, there is a system subroutine which will perform this transfer. This argument transfer
routine is named $AT (located in the FORTRAN library, FORLIB.REL), and is called with HL
pointing to the local data area, BC pointing to the third parameter, and A containing the number
of arguments to transfer (i.e. , the total number of arguments minus 2) . The subroutine is
responsible for saving the first two parameters before calling $AT.

Page C-6

For example, if a subroutine expects 5 parameters, it should look like:

SUBR: SHLD P1 ; SAVE PARAMETER 1
XCHG
SHLD P2 ; SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H,P3 ;POINTER TO LOCAL AREA
CALL SAT ; TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutinel]

RET ;RETURN TO CALLER

P1: DS 2 ; SPACE FOR PARAMETER 1
P2: DS 2 ; SPACE FOR PARAMETER 2
P3: DS 6 ; SPACE FOR PARAMETERS 3 - 5

6

A listing of the argument transfer routine $AT follows.

00100 ; ARGUMENT TRANSFER

00200 :[B,C] POINTS TO 3RD PARAM.

00300 s[H,L] POINTS TO LOCAL STORAGE FOR PARAM 3

00400 ;[A] CONTAINS THE # OF PARAMS TO XFER (TOTAL-2)
00500

00600

00700 ENTRY $AT

00800 $AT: XCHG :SAVE [H,L] IN [D,E]
00900 MoV H,B

01000 MoV L,C s[H,L] = PTR TO PARAMS
01100 AT1: MoV C,M

01200 INX H

01300 MoV B,M

01400 INX H ;[B,C] = PARAM ADR

01500 XCHG ;[H,L] POINTS TO LOCAL STORAGE
01600 MoV M,C

01700 INX H

01800 MoV M,B

01900 INX H ;STORE PARAM IN LOCAL AREA
02000 XCHG ;SINCE GOING BACK TO ATI
02100 DCR A ; TRANSFERRED ALL PARAMS?
02200 INZ AT1 :NO, COPY MORE

02300 RET ;YES, RETURN

Page C-7

When accessing parameters in a subroutine, don’t forget that they are pointers to the actual
arguments passed.

NOTE: It is entirely up to the programmer to see to it that the arguments in the calling
program match in number, type, and length with the parameters expected by the
subroutine. This applies to BASIC subroutines, as well as those written in assembly
language.

C.5 INTERRUPTS

Assembly language subroutines can be written to handle interrupts. All interrupt handling
routines should save the stack, register A-L. and the PSW. Interrupts should always be re-enabled
before returning from the subroutine, since an interrupt automatically disables all further
interrupts once it is received.

The user should be aware of which interrupt vectors are free in the particular version of BASIC
that has been supplied.

(Note to CP/M users: In CP/M BASIC, all interrupt vectors are free.)

APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) is supplied on a standard size 3740 single density
diskette. The name of the file is MBASIC-COM. (A 28K or larger CP/M system is
recommended.)

To run MBASIC, bring up CP/M and type the following:
A>MBASIC <carriage return>
The system will reply:

xxxx Bytes Free

BASIC-80 Version 5-0

(CP/M Version)

Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy

Ok

MBASIC is the same as Disk BASIC-80 as described in this manual, with the following
exceptions:

D.7 INITIALIZATION

The initialization dialog has been replaced by a set of options which are placed after the
MBASIC command to CP/M. The format of the command line is:

A>MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>]

If <filename> is present, MBASIC proceeds as if a RUN <filename> command were typed after
initialization is complete. A default extension of .BAS is used if none is supplied and the
filename is less than 9 characters long. This allows BASIC programs to be executed in batch
mode using the SUBMIT facility of CP/M. Such programs should include a SYSTEM statement (see
below) to return to CP/M when they have finished, allowing the next program in the batch
stream to execute.

Page D-2

If /F:<number of files> is present, it sets the number of disk data files that may be open at any
one time during the execution of a BASIC program. Each file data block allocated in this
fashion requires 166 bytes of memory. If the /F option is omitted, the number of files defaults
to 3.

The /M:<highest memory location> option sets the highest memory location that will be used
by MBASIC. In some cases it is desirable to set the amount of memory well below the CP/M’s
FDOS to reserve space for assembly language subroutines.

In all cases, <highest memory location> should be below the start of FDOS (whose address is
contained in locations 6 and 7). If the /M option is omitted, all memory up to the start of FDOS
is used.

/S:<maximum record size> may be added at the end of the command line to set the maximum
record size for use with random files. The default record size is 128 bytes.

NOTE: <number of files>, <highest memory location>, and <maximum record size>
are numbers that may be either decimal, octal (preceded by &0) or hexadecimal
(preceded by &H).

Examples:
A>MBASIC PAYROLL.BAS Use all memory and 3 files,

load and execute PAYROLL.BAS.
A>MBASIC INVENT/F:6 Use all memory and 6 files,

load and execute INVENT.BAS.
A>MBASIC /M:32768 Use first 32k of memory and 3 files.
A>MBASIC DATACK/F:2/M:&H9 000 Use first 36K of memory,

2 files, and execute DATACK.BAS
D.2 DISK FILES

Disk filenames follow the normal CP/M naming conventions. All filenames may include A: or
B: as the first two characters to specify a disk drive, otherwise the currently selected drive is
assumed. A default extension of .BAS is used on LOAD, SAVE, MERGE and RUN <filename>
commands if no ". " appears in the filename and the filename is less than 9 characters long.

For systems with CP/M 2.x, large random files are supported. The maximum logical record
number is 32767. If a record size of 256 is specified, then files up to 8 megabytes can be
accessed.

Page D-3

D.3 FILES COMMAND

Format:
Purpose:

Remarks:

Examples:

FILES [<filename>]
To print the names of files residing on the current disk.

If <filename> is omitted, all the files on the currently selected drive will be listed.
<filename> is a string formula which may contain question marks (?) to match any
character in the filename or extension. An asterisk (*) as the first character of the
filename or extension will match any file or any extension.

FILES
FILES "x.BAS"
FILES "B:*.x"

FILES "TEST?.BAS"

D.4 RESET COMMAND

Format:

Purpose:

Remarks:

RESET

To close all disk files and write the directory information to a diskette before it is
removed from a disk drive.

Always execute a RESET command before removing a diskette from a disk drive.
Otherwise, when the diskette is used again, it will not have the current directory
information written on the directory track.

RESET closes all open files on all drives and writes the directory track to every
diskette with open files.

Page D-4

D.5 LOF FUNCTION

Format: LOF(<file number>)

Action: Returns the number of records present in the last extent read or written. If the file
does not exceed one extent (128 records), then LOF returns the true length of the
file.

Example: 110 IF NUM%>LOF(1) THEN PRINT “INVALID ENTRY"

D.6 EOF

With CP/M, the EOF function may be used with random files. If a GET is done past the end of
file, EOF will return -1. This may be used to find the size of a file using a binary search or other
algorithm

D-7 MISCELLANEOUS

1. CSAVE and CLOAD are not implemented.

2. To return to CP/M, use the SYSTEM command or statement. SYSTEM closes all files and
then performs a CP/M warm start. Control-C always returns to MBASIC, not to CP/M.

3. FRCINT is at 103 hex and MAKINT is at 105 hex. (Add 1000 hex for ADDS versions,
4000 for SBC CP/M versions.)

APPENDIX H
Standalone Disk BASIC

Standalone Disk BASIC is an easily implemented, self-contained version of BASIC-80 that runs

on almost any 8080 or Z80 based disk hardware without an operating system. Standalone Disk
BASIC incorporates several unique disk I/O methods that make faster and more efficient use of
disk access and storage.

Random access with Standalone BASIC is faster than other disk operating systems because the
file allocation table is kept in memory and updated periodically on the diskette. Therefore,
there is no need for index blocks for random files, and there is no need to distinguish between
random and sequential files. Because there are no index blocks, there is no large per-file
overhead either in memory or on disk. Binary SAVEs and LOADS are also faster because they
are optimized by cluster, i.e., an entire cluster is read or written at one time, instead of a single
sector.

To initialize Standalone Disk BASIC, insert the BASIC diskette and power up the system. In
one- or two-drive systems, BASIC asks if there are two drives. In systems with more than two
drives, BASIC asks for the number of drives. BASIC then asks how many files, i.e., how many
disk files may be open at one time. Answer with a number from 0 to 15, or, for a default of 1
file per drive, just enter a carriage return.

The operation of Standalone Disk BASIC is the same as Disk BASIC-80 as described in this
manual, with the following exceptions:

H.1 FILENAMES

The format for disk filenames is:
[drive#:]filename[.extension]

The first drive is 1.

Disk filenames are six characters with an optional three-character extension that is preceded by
a decimal point.

If a decimal point appears in a filename after fewer than six characters, the name is blank-filled
to six characters and the next three characters are the extension.

If the filename is six or fewer characters with no decimal point, there is no extension. If the
filename is more than six characters, BASIC inserts a decimal point after the sixth character and
uses the next three characters as an extension. (Any additional characters are ignored.)

Page H-2

H.2 DISK FILES
The FILES command prints the names of the files residing on a disk. The format is:

[LIFILES[<drive number>]
LFILES outputs to the line printer. In addition to the filename, the size of each file, in clusters, is
output. A cluster is the minimum unit of allocation for a file — it is one-half of a track.
Filenames of files created with OPEN or ASCII SAVE are listed with a space between the name and
extension. Filenames of binary files created with binary SAVE are listed with a decimal point
between the name and extension. The protected file option with SAVE is not supported in
Standalone Disk BASIC.
H.3 FPOS
The FPOS function:

FPOS(<file number>)
is the same as BASIC-80’s LOC function except it returns the number of the physical sector where
<filenumber> is located. (BASIC-80’s LOC function and CP/M BASIC-80’s LOF function are also
implemented.)
H.4 DSKI$/DSKO$
The DSKO$ statement:

DSKO$<drive>,<track>,<sector>,<string expression>

writes <string expression> on the specified sector. The maximum length for the string is 128
characters. A string of fewer than 128 characters is zero-filled at the end to 128 characters.

DSKI$ is the complementary function to the DSKO$ statement. DSKI$ returns the contents of a
sector to a string variable name. The format is:

DSKI$(<drive>,<track>,<sector>)

Example: A$=DSKI$(0,I,J)

Page H-3
H.5 MOUNT COMMAND

Before a diskette can be used for file operations (i.e., any disk I/O besides DSKI$, DSKO$, or IBM
or USR modes), i t must be MOUNTed. The format of the command is:

MOUNT[<drive>[,<drive>...]]

MOUNT with no arguments mounts all drives. When a diskette is mounted, BASIC reads the File
Allocation Table (see Section H.11.2) from the diskette into memory and checks it for errors. If
there are no errors, the disk is mounted.

If an error is found, BASIC reads one or both of the back-up allocation tables from the diskette in
an attempt to mount the disk; and a warning message, "x copies of allocation bad on drive
y", is issued, x is 1 or 2 and y is the drive number. When a warning occurs, it is a good idea to
make a new copy of the diskette.

If all copies of the allocation table are bad or if a free entry is encountered in the file chain, a
fatal error—"bad allocation table"—is given and the diskette will not be mounted.

While a disk is mounted, BASIC occasionally writes the allocation table to the directory track,
but it does not check for errors unless the read after write attribute is set for that drive (see SET
statement).

H.6 REMOVE COMMAND

REMOVE is the complement of MOUNT. Before a diskette can be taken out of the drive, a REMOVE
command must be executed. The format of the command is:

REMOVE[<drive>[,<drive>...]]

REMOVE writes three copies of the current allocation table to disk and follows the same error-
check procedure as MOUNT. MOUNT and REMOVE replace the RESET command that is in BASIC-80.

NOTE: ALWAYS do a REMOVE before taking a diskette out of a drive. If you do not, the diskette
you took out will not have an updated and checked allocation table, and the data on the next
diskette inserted will be destroyed when the wrong allocation table is written to the directory
track.

Page H-4
H.7 SET STATEMENT

The SET statement determines the attributes of the currently mounted disk drive, a currently
open file, or a file that need not be open. The format of the SET statement is:

SET<drive> | #<file> | <filename>,<attribute string>

<attribute string> is a string of characters that determines what attributes are set. Any
characters other than the following are ignored:

R Read after write
P Write protect
E EBCDIC conversion (if available)

Attributes are assigned in the following order:

1.) MOUNT command
When a MOUNT is done for a particular drive, the first byte of the information sector
on the diskette (track 35, sector 20 for floppy; track 18, sector 13 for minifloppy)
contains the attributes for the disk. (octal values: R=100, P=s20, E=40)

2.) SET<drive>,<attribute string> Statement
This statement sets the current attributes for the disk, in memory, while it is
mounted. The attributes are not permanently recorded and apply only while the
disk is mounted.

3.) When afile is created, the permanent file attributes recorded on the disk will be
the same as the current drive attributes.

4.) SET<filename>,<attribute string> Statement
This statement changes the permanent file attributes that are stored in the directory
entry for that file. It does not affect the drive attributes.

5.) When an existing file is OPENed, the attributes of the file number are those of the
directory entry.

6.) SET#<file number>,<attribute string> Statement
This statement changes the attributes for that file number but does not change the
directory entry.

Page H-5

Examples:

SET 1,"R" Force read after write checking on all output to drive 1.

SET #1,"R" Force read after write for all output to file 1 while it is open.
SET #1,"P" Give write protect error if any output is attempted to file 1.

SET "TEST","P" Protect TEST from deletion and modification.

SET 1,"" Turn off all attributes for drive 1.

H.8 ATTR$ FUNCTION

ATTR$ returns a strin of the current attributes for a drive, currently open file, or file that need not
be open. The format of ATTR$ is:

ATTR$(<drive> | #<file number> | <filename>)
For example:
SET 1,"R":A$=ATTR$(1) :PRINT A$
ok
H.9 OPEN STATEMENT
The format for the OPEN statement in Standalone BASIC is:
OPEN <filename> [FOR <mode>] AS [#]<file number>

where <mode> is one of the following:

INPUT
OUTPUT
APPEND
IBM
USR

Page H-6

The mode determines only the Initial positioning within the file and the actions to be taken if the
file does not exist. The action taken in each mode is:

INPUT The initial position is at the start of the file. An error is returned if the file is
not found.

OUTPUT The initial position is at the start of the file. A new file is always created.

APPEND The initial position is at the end of the file. An error is returned if the file is
not found.

IBM The initial position is after the last DSKI$ or DSKO$. The file is then set up

to write contiguous. No file search is done. (The same effect may be
achieved in many cases by altering the FORMAT program. See Section
H.11.2.1.)

USR Same as IBM mode except, instead of write contiguous, USR@ is called and
returns the next track/sector number. The USR® routine should read the
current track/sector from B,C and return the next location in B,C. When
USR@ is first called, B,C contains the track and sector number of the previous
DSKI$ or DSKO$

If the FOR <mode> clause is omitted, the initial position is at the start of the file. If the file is not
found, it is created.

Note that variable length records are not supported in Standalone Disk BASIC. All records are
128 bytes in length.

USR mode is especially useful for creating diskettes that require sector mapping. This is the case
if the diskette is intended for use on another system, for example, a CP/M system. Instead of
opening the file for write contiguous (IBM mode), the USRO routine may be used to map the
sectors logically, as required by the other system.

When a file is OPENed FOR APPEND, the file mode is set to APPEND and the record number is set to
the last record of the file. The program may subsequently execute disk 1/O statements that move
the pointer elsewhere in the file. When the last record is read, the file mode is reset to FILE and
the pointer is left at the end of the file. Then, if you wish to append another record, execute:

GET#n,LOF (n)
This positions the pointer at the end of the file in preparation for appending.
At any one time, it is possible to have a particular filename OPEN under more than one file

number. This allows different attributes to be used for different purposes. Or, for program
clarity, you may wish to use different file numbers for different methods of access.

Page H-7

Each file number has a different buffer, so changes made under one file are not accessible to (or
affected by) the other numbers until that record is written (e.g., GET#n, LOC(n)).

H.10 DISK INPUT/OUTPUT

A GET or PUT (i.e., random access) cannot be done on a file that is OPEN FOR IBM or OPEN FOR
DSR. Otherwise, GET/PUT may be executed along with PRINT#/INPUT# on the same file, which
makes midfile updating possible. The statement formats for GET, PUT, PRINT#, and INPUT# are
the same as those in BASIC-80. The action of each statement in Standalone BASIC is as follows:

GET If the "buffer changed” flag is set, write the buffer to disk. Then execute the GET
(read the record into the buffer), and reset the position for sequential 1/O to the
beginning of the buffer.

PUT Execute the PUT (write the buffer to the specified record number), and set the
"sequential I/0 is illegal” flag until a GET is done.

INPUTH# If the buffer is empty, write it if the "buffer changed"” flag is set, then read the next
buffer.
PRINT# Set the "buffer changed” flag. If the buffer is full, write it to disk. Then, if end of

file has not been reached, read the next buffer.

H.10.1 File Format

For a single density floppy, each file requires 137 bytes: 9 bytes plus the 128-byte buffer.
Because the File Allocation Table keeps random access information for all files, random and
sequential files are identical on the disk. The only distinction is that sequential files have a
Control-Z (32 octal) as the last character of the last sector. When this sector is read, it is
scanned from the end for a non-zero byte. If this byte is Control-Z, the size of the buffer is set
so that a PRINT overwrites this byte. If the byte is not Control-Z, the size is set so the last null
seen is overwritten.

Any sequential file can be copied in random mode and remain identical. If a file is written to
disk in random mode (i.e., with PUT instead of PRINT) and then read in sequential mode, it will
still have proper end of file detection.

Page H-8
H.11 DISK ALLOCATION INFORMATION

With Standalone Disk BASIC, storage space on the diskette is allocated beginning with the
cluster closest to the current position of the head. (This method is optimized for writing.
Custom versions can be optimized for reading.) Disk allocation information is placed in
memory when the disk is mounted and is periodically written back to the disk. Because this
allocation information is kept in memory, there is no need for index blocks for random files, and
there is no need to distinguish between random and sequential files.

H.11.1 Directory Format

On the diskette, each sector of the directory track contains eight file entries. Each file entry is
16 bytes long and formatted as follows:

Bytes Usage
0-8 Filename, 1 to 9 characters. The first character may not be zero or 255.
9 Attribute:
Octal

200 Binary file

100 Force read after write check
40 EBCDIC file
20 Write protected file

Excluding 200, these bits are the same for the disk attribute byte which is
the first byte of the information sector.

10 Pointer into File Allocation Table to the first cluster of the file’s cluster
chain.

11-15 Reserved for future expansion.

If the first byte of a filename is zero, that file entry slot is free. If the first byte is 255, that slot is
the last occupied slot in the directory, i.e., this flags the end of the directory.

Page H-9

H.11.2 Drive Information

For each disk drive that is MOUNTed, the following information is kept in memory:

1.

2.)

3.)

4.)

Attributes

Drive attributes are read from the information sector when the drive is mounted and may
be changed with the SET statement. Current attributes may be examined with the ATTR$
function.

Track Number
This is the current track while the disk is mounted. Otherwise, track number contains
255 as a flag that the disk is not mounted.

Modification Counter
This counter is incremented whenever an entry in the File Allocation Table is changed.

After a given number of changes has been made, the File Allocation Table is written to
disk.

Number of Free Clusters
This is calculated when the drive is mounted, and updated whenever a file is deleted or a
cluster is allocated.

File Allocation Table

The File Allocation Table has a one-byte entry for every cluster allocated on the disk. If
the cluster is free, this entry is 255. If the cluster is reserved, this entry is 254. If the
cluster is the last cluster of the file, this entry is 300 (octal) plus the number of sectors
from this cluster that were used. Otherwise, the entry is a pointer to the next cluster of
the file. The File Allocation Table is read into memory when the drive is mounted, and
updated:

1. When a file is deleted
2. When a file is closed

3 When modifications to the table total twice the number of sectors in a cluster (this
can be changed in custom versions.)

4. When modifications to the table have been made and the disk head is on (or
passes) the directory track.

Page H-10
H.11.2.1 FORMAT Program

Before mounting a drive with a new diskette, run BASIC’'S FORMAT program to initialize the
directory (set all bytes to 255), set the information sector to 0, and set all the File Allocation able
entries (except the directory track entry (254)) to "free" (255).

The FORMAT program is:

10 CLEAR 1500

20 A$=STRING$(128, 255)

30 B$=STRING$(35%2,255)+STRING$ (2, 254)+STRING$ (56, 255)
40 FOR S=1 TO 19:DSK@$ 1,35,S,A$:NEXT

50 FOR S=21 TO 25 STEP 2;DSKe$ 1,35,S,B$

60 DSKO$ 1,35,S+1,A$;NEXT

70 DSKO$ 1,35,20,CHR$(0)

After running FORMAT and MOUNTing the drive, files will be allocated as usual, i.e., on either side
of the directory track.

The FORMAT program may be altered to pre-allocate selected files. For instance, you may wish to
use the FORMAT program to pre-allocate files contiguously (as they would be allocated in IBM
mode). Then IBM and BASIC files may both exist on the diskette. The altered FORMAT program
must also write the name of the file(s) to the directory track (i.e., files 1-8 in sector 1, files 9-16
in sector 2, etc.), so BASIC knows where the files start.

H.11.3 File Block
Each file on the disk has a file block that contains the following information;

1. File Mode (byte 0)
This is the first byte (byte 0) of the file block, and its location may be read with
VARPTR(#filenumber). The location of any other byte in the file block is relative
to the file mode byte. The file mode byte is one of the following:

Octal
1 Input only
2 Output only
4 Pile mode
10 Append mode
20 Delete file
40 IBM mode
100 Special format (USR)

200 Binary save

Page H-11

NOTE: It is not recommended that the user attempt to modify the next four
bytes of the File Allocation Table. Many unforeseen complications may

result.
2. Pointer to the File Allocation Table entry for the first cluster allocated to the
file (+1)
3. Pointer to the File Allocation Table entry for the last cluster accessed (+2)
4. Last sector accessed (+3)

5. Disk number of file (+4)

6. The size of the last buffer read (+5). This is 128 unless the last sector of the
file is not full (i.e., Control-Z).

7. The current position in the buffer (+6). This is the offset within the buffer
for the next print or input.

8. File flag (+7), is one of the following:
Octal
100 Read after write check
40 Read/Write EBCDIC, not ASCII (Not available in all versions.)
20 File write protected
10 Buffer changed by PRINT
4 PUT has been done. PRINT/INPUT are errors until a GET
is done.
2 Flags buffer is empty.
9. Terminal position for TAB function and comma in PRINT statements (+8)

10. Beginning of sector buffer (+9), 128 bytes in length.

H.12

Page H-12
ADVANCED USES OF FILE BUFFERS

Information may be passed from one program to another by FIELDing it to an unopened
file number (not #0). The FIELD buffer is not cleared as long as the file is not OPENed.

The FIELDed buffer for an unopened file can also be used to format strings. For example,
an 80-character string could be placed into a FIELDed buffer with LSET. The strings
could then be accessed as four 20-character strings using their FIELDed variable names.
For example:

100 FIELD#1, 80 AS A$

200 FIELD#1, 20 AS A1$, 20 AS A2$, 20 AS A3$, 20 AS A4$
300 LINE INPUT "CUSTOMER INFORMATION: ";B$

400 LSET A$=B$

500 PRINT "NAME ";Al$;"SSN: ";A2$

FIELD#@ may be used as a temporary buffer, but note that this buffer is cleared after each
of the following commands: FILES, LOAD, SAVE, MERGE, RUN, DSKO$, MOUNT, OPEN.

The effect of PRINTLUSING]# into a string may be achieved by printing to a FIELDed buffer
and then accessing it without reopening the file. To assure that this temporary buffer is
not written to the disk, return the pointer to the beginning of the buffer and reset the
"buffer changed” flag as follows:

10 OPEN "D" FOR IBM AS 1:REM THIS DOESN'T USE SPACE

20 PRINT USING#1 . . .

30 P=PEEK(6+VARPTR(#1)):REM OPTIONAL, TO GET LENGTH OF PRINT USING
40 FIELD#1 ... AS ...

50 Y=7+VARPTR(#1)

60 POKE Y,PEEK(Y AND &360):REM RESET BUFFER CHANGED FLAG

70 POKE 6+VARPTR,@:REM CLEAR POSITION IN BUFFER

H-13

H.13 STANDALONE BASIC DISK ERRORS
50 FIELD overflow 63 Direct statement in file
51 Internal error 64 Bad allocation table
52 Bad file number 65 Bad drive number
53 File not found 66 Bad track/sector
54 File already open 67 File write protected
55 Disk not mounted 68 Disk offline
56 Disk I/0 error 69 Deleted record
57 File already exists 70 Rename across disks
59 Disk already mounted 71 Sequential after PUT
61 Input past end 72 Sequential I/0 only
62 Bad file name 73 File not OPEN

H.14 DOUBLE DENSITY, DOUBLE SIDED DISKETTES

For diskettes with 256-byte sectors, DSKI$ and DSKO$ are modified.

The DSKI$ function returns as its value the first 255 bytes of the sector read.

The DSKO$ statement does not use the <string expression> field. The format is:
DSKO$ <drive>,<track>,<sector>

In order to specify the data to write with DSKO$ and to retrieve all 256 bytes of the data read by
DSKI$, the user must FIELD two or more variables (for a total of 256 bytes) to the file#0 buffer.
The FIELDed variables will be identical to the data read with DSKI$ and written with DSKO$. For
example:

FIELD#0,128 AS A$,128 AS B$

For double-sided diskettes, the formats of DSKI$ and DSKO$ must also include the surface
number:

DSKI$(<drive>,<surface>,<track>,<sector>)

DKSO$ <drive>,<surface>,<track>,<sector>
or
DKS0$ <drive>,<surface>,<track>,<sector>,<string exp>

APPENDIX |
Converting Programs to BASIC-80
If you have programs written in a BASIC other than BASIC-80, some minor adjustments may be
necessary before running them with BASIC-80. Here are some specific things to look for when
converting BASIC programs.
1.1 STRING DIMENSIONS

Delete all statements that are used to declare the length of strings.

A statement such as DIM A$(I,J), which dimensions a string array for J elements of length I,
should be converted to the BASIC-80 statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation. Each of these must be
changed to a plus (+)sign, which is the operator for BASIC-80 stringconcatenation.

In BASIC-80, the MID$, RIGHT$, and LEFT$ functions are used to take substrings of strings. Forms
such as A$(I) to access the Ith character in A$, or A$(I,J) to take a substring of A$ from
position I to position J, must be changed as follows:

Other BASIC BASIC-80
X$=A$ (1) X$=MID$(AS$,I,J)
X$=A$(I,T) X$=MID$(A$,I,T-I+1)

If the substring reference is on the left side of an assignment and X$ is used to replace characters
in A$,convert as follows:

Other BASIC BASIC-80
A$(I)=X$ A$-LEFT$(A$,I-1)+X$+MID$(AS,I+1)
A$(I,J)=X$ A$=LEFT$(A$,I-1);X$;MID$(AS$,T+1)

Ext. and Disk BASIC-80

A$(I)=X$ MID$(A$,1,1)=X$
A$(I,T)=X$ MID$(A$,I,T-I+1)=X$

Page I-2

1.2 MULTIPLE ASSIGNMENTS
Some BASICs allow statements of the form:

10 LET B=C=0
to set B and C equal to zero. BASIC-80 would interpret the second equal sign as a
logicaloperator and set B equal to -1 if C equaled 0. Instead, convert this statement to two
assignment statements:

10 C=0:B=0
1.3 MULTIPLE STATEMENTS

Some BASICS use a backslash (\) to separate multiplestatements on a line. With BASIC-80, be
sure all statements on a line are separated by a colon (:).

1.4 MAT FUNCTIONS

Programs using the MAT functions available in some BASICs must be rewritten using FOR. . .NEXT
loops to execute properly.

Code

NF

SN

RG

oD

FC

Number

APPENDIX]

Summary of Error Codes and Error Messages

Messsage

NEXT without FOR
A variable in a NEXT statement does not correspond to any
previously executed, unmatched FOR statement variable.

Syntax error

A line is encountered that contains some incorrect sequence
of characters (such as unmatched parenthesis, misspelled
command or statement, incorrect punctuation, etc.).

Return without GOSUB
A RETURN statement is encountered for which there is no
previous, unmatched GOSUB statement.

Out of data
A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

Illegal function call
A parameter that is out of range is passed to a math or string
function. An FC error may also occur as the result of:

1. a negative or unreasonably large subscript

2. a negative or zero argument with LOG

3. a negative argument or SQR

4. A negative mantissa with a non-integer exponent

5. a call to a USR function for which the starting address

has not yet been given

6. an improper argument to MID$, LEFT$,RIGHT$, INP,

OUT, WAIT, PEEK, POKE, TAB,SPC, STRING$, PACE$,
INSTR, or ON...GOTO.

ov

OM

UL

BS

DD

/0

ID

™

0S

10

11

12

13

14

Page J-2

Overflow

The result of a calculation is too large to be represented in
BASIC-80’s number format. If underflow occurs, the result is
zero and execution continues without an error.

Out of Memory
A program is too large, has too many FOR loops or GOSUBs,

too many variables, or expressions that are too complicated.

Undefined line
A line reference in a GOTO, GOSUB, IF...THEN...ELSE or
DELETE is to a nonexistent line.

Subscript out of range
An array element is referenced either with a subscript that is

outside the dimensions of the array, or with the wrong
number of subscripts.

Duplicate definition

Two DIM statements are given for the same array, or a DIM
statement is given for an array after the default dimension of
10 has been established for that array.

Division by zero

A division by zero is encountered in an expression, or the
operation of involution results in zero being raised to a
negative power. Machine infinity with the sign of the
numerator is supplied as the result of the division, or positive
machine infinity is supplied as the result of the involution,
and execution continues.

Illegal direct
A statement that is illegal in direct mode is entered as a direct

mode command.

Type mismatch

A string variable name is assigned a numeric value or vice
versa; a function that expects a numeric argument is given a
string argument or vice versa.

Out of string space

String variables have caused BASIC to exceed the amount of
free memory remaining. BASIC will allocate string space
dynamically, until it runs out of memory.

LS

ST

CN

UF

15

16

17

18

19

20

21

22

23

26

Page J-3

String too long
An attempt is made to create a string more than 255
characters long.

String formula too complex.
A string expression is too long or too complex. The
expression should be broken into smaller expressions.

Can’t continued
An attempt is made to continue a program that:

1.) has halted due to an error,
2.) has been modified during a break in execution, or
3.) does not exist.

Undefined user functions
A USR function is called before the function definition (DEF
statement) is given.

Extended and Disk Versions ONLY

No RESUME
An error trapping routine is entered but contains no RESUME
statement.

RESUME without error
A RESUME statement is encountered before an error-trapping
routine is entered.

Unprintable error

An error message is not available for the error condition
which exists. This is usually called by an error with an
undefined error code.

Missing operands
An expression contains an operator with no operand
following it.

Line buffer overflows
An attempt is made to input a line that has too many
characters.

FOR without NEXT
A FOR was encountered without a matching NEXT.

29

30

50

51

52

53

54

55

57

Page J-4

WHILE without WEND
A WHILE statement does not have a matching WEND.

WEND without WHILE
A WEND was encountered without a matching WHILE.

DISK ERRORS

Field overflow
A FIELD statement is attempting to allocate more bytes than
were specified for the record length of a random file.

Internal error

An internal malfunction has occurred in Disk BASIC-80.
Report to Microsoft the conditions under which the message
appeared.

Bad file number

A statement or command references a file with a file number
that is not OPEN or is out of the range of file numbers specified
at initialization.

File not found
A LOAD, KILL, or OPEN statement references a file that does not
exist on the current disk.

Bad file mode

An attempt is made to use PUT, GET, or LOF with a sequential
file, to LOAD a random file, or to execute an OPEN with a file
mode other than I, 0, orR.

File already open
A sequential output mode OPEN is issued for a file that is
already open; or aKILL is given for a file that is open.

Disk I/0 error
An 1/O error occurred on a disk 1/O operation. It is a fatal
error, i.e., the operating ssytem cannot recover from the error.

58

61

62

63

64

66

67

Page J-5

File already exists
The filename specified in a NAME statement is identical to a
filename already in use on the disk.

Disk full
All disk storage space is in use.

Input past end

An INPUT statement is executed after all the data in the file
has has been INPUT, or for a null (empty) file. To avoid this
error, use the EOF function to detect the end of file.

Bad record number
In a PUT or GET statement, the record number is either greater
than the maximum allowed (32767) or equal to zero.

Bad file name
An illegal form is used for the filename with LOAD, SAVE, KILL,
or OPEN (e.g., a filename with too many characters).

Direct statement in file
A direct statement is encountered while LOADing an ASCII-
format file. The LOAD is terminated.

Too many files
An attempt is made to create a new file (using SAVE or OPEN)
when all 255 directory entries are full.

APPENDIX K
Mathematical Functions
Derived Functions

Functions that are not intrinsic to BASIC-80 may be calculated as follows.

Function BASIC-80 Equivalent

SECANT SEC(X) = 1/C0S(X)

COSECANT CSC(X) = 1/SINCX)

COTANGENT COT(X) = 1/TAN(CX)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X*X+1))

INVERSE COSINE ARCCOS(X) = -ATN(X/SQR(X*X-1))+1.5708

INVERSE SECANT ARCSEC(X) = ATN(X/SQR(X*X-1))+SGN(SGN(X)-1)*1.5708
INVERSE COSECANT ARCCSC(X) = ATN(X/SQR(X*X-1))+(SGN(X)-1)*1.5708
INVERSE COTANGENT ARCCOT(X) = ATN(X)+1.5708

HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT TANH(X) = EXP(=X)/EXP (X)+EXP (-X))*2+1
HYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXP(-X))

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)-EXP(-X))

HYPERBOLIC COTANGENT COTH(X) = EXP(-X)/(EXP(X)-EXP (~X))*2+1

INVERSE HYPERBOLIC SINE ARCSINH(X) LOG(X+SQR(X*X+1)

INVERSE HYPERBOLIC COSINE ARCCOSH(X)
INVERSE HYPERBOLIC TANGENT ARCTANH(X)
INVERSE HYPERBOLIC SECANT ARCSECH(X)
INVERSE HYPERBOLIC COSECANT ARCCSCH(X)
INVERSE HYPERBOLIC COTANGENT ARCCOTH(X)

LOG(X+SQR(X*X-1)
LOG((1+X)/(1-X))/2
LOG((SQR(-X*X+1)+1)/X)
LOG((SGN(X)*SQR(X*X+1)+1)/X
LOG((X+1)/(X-1))/2

APPENDIX L
Microsoft BASIC Compiler

The Microsoft BASIC Compiler package contains the following software:
BASIC Compiler, MACRO-80 assembler, and LINK-80 loader.

The following manuals are also supplied:
BASIC-80 Reference Manual, BASIC Compiler User’s Manual, Utility Software Manual.

The Utility Software Manual is the reference manual for MACRO-80 and LINK-80. The BASIC
Compiler User’s Manual describes the use of the compiler, its command format, compilation
switches and error messages. The BASIC language that is used with the Microsoft BASIC
Compiler is the same as described in this manual for Disk BASIC-80 with the following
exceptions:

L.7 OPERATIONAL DIFFERENCES

The Compiler interacts with the console only to read compiler commands. These specify what
files are to be compiled. There is no "direct mode," as with the BASIC-80 interpreter.
Commands that are usually issued in the direct mode with the BASIC-80 interpreter are not
implemented on the Compiler. The following statements and commands are not implemented
and will generate an error message:

AUTO CLOAD CSAVE CONT DELETE
EDIT ERASE LIST LLIST LOAD
MERGE NEW RENUM SAVE

Because there is no direct mode for typing in programs or edit mode for editing programs, use
Microsoft’s EDIT-80 Text Editor or BASIC-80 interpreter for creating and editing programs. If you
use the interpreter, be sure to SAVE the file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than 253 characters in length. A logical
statement, however, may contain as may physical lines as desired. Use line feed to start a new
physical line within a logical statement.

To reduce the size of the compiled program, there are no program line numbers included in the
object code generated by the compiler unless the /D, /X, or /E switch is set in the compiler
command. Error messages, therefore, contain the address where the error occurred, instead of a
line number. The compiler listing and the map generated by LINK-80 are used to identify the
line that has the error. It is always a good idea to debug programs using the BASIC-80
interpreter before attempting to compile them. See the BASIC Compiler User’s Manual for more
information.

Page L-2

L.2 LANGUAGE DIFFERENCES

Most programs that run on the Microsoft BASIC-80 interpreter will run on the BASIC Compiler
with little or no change. However, it is necessary to note differences in the use of the following
program statements:

1.)

CALL

The <variable name> field in the CALL statement must contain an External symbol,
i.e., one that is recognized by LINK-80 as a global symbol. This routine must be
supplied by the user as an assembly language subroutine or a routine from the
FORTRAN-80 library.

CHAIN and RUN

The CHAIN statement is used to chain to a new program overlay using the runtime
module. The RUN statement is to be used to execute any executable file. (Under
CP/M, any .COM file may be RUN.)

CLEAR
The CLEAR statement is only supported in compiled programs using the runtime
module.

COMMON
The COMMON statement must appear before any executable statements. See section
2.7 for further details.

DEFINT/SNG/DBL/STR

The compiler does not "execute" DEFxxx statements; it reacts to the static
occurrence of these statements, regardless of the order in which program lines are
executed. A DEFxxx statement takes effect as soon as its line is encountered.
Once the type has been defined for a given variable, i t remains in effect until the
end of the program or until a different DEFxxx statement with that variable takes
effect.

10.)

11.)

12.)

Page L-3

DIM and ERASE

The DIM statement is similar to the DEFxxx statement in that it is scanned rather
than executed. That is, DIM takes effect when its line is encountered. If the default
dimension (10) has already been established for an array variable and that variable
is later encountered in a DIM statement, a "Redimensioned array” error results.

There is no ERASE statement in the compiler, so arrays cannot be erased and
redimensioned. An ERASE statement will produce a fatal error.

Also note that the values of the subscripts in a DIM statement must be integer
constants; they may not be variables, arithmetic expessions, or floating point
values. For example,

DIM A1(I)
DIM A1(3+4)

are both illegal.

END

During execution of a compiled program, an END statement closes files and returns
control to the operating system. The compiler assumes an END statement at the
end of the program, so "running off the end" produces proper program
termination.

FOR/NEXT and WHILE/WEND
FOR/NEXT and WHILE/WEND loops must be statically nested.

ON ERRROR GOTO/RESUME <line number>

If a program contains ON ERRROR GOTO and RESUME <line number> statements, the
/E compilation switch must be used. If the RESUME NEXT, RESUME, or RESUME @
form is used, the /X switch must also be included. See the BASIC Compiler User’s
Manual for an explanation of these switches.

REM
REM statements or remarks starting with a single quotation mark do not take up
time or space during execution, and so may be used as freely as desired.

STOP
The STOP statement is identical to the END statement. Open files are closed and
control returns to the operating system.

TRON/TROFF
In order to use TRON/TROFF, the /D compilation switch must be used. Otherwise,
TRON and TROFF are ignored and a warning message is generated.

13.)

14.)

15.)

16.)

Page L-4

USRn Functions

USRn Functions are significantly different from the interpreter versions. The
argument to the USRn function is ignored and an integer result is returned in the
HL registers. It is recommended that USRn functions be replaced by the CALL
statement.

%INCLUDE

The %INCLUDE <filename> statement allows the compiler to include source from
an alternate file. The %INCLUDE statement must be the last statement on a line.
The format of the ¥INCLUDE statement is;

<line number> %INCLUDE <filename>
For example,

999 %INCLUDE SUB1000.BAS

Double Precision Transcendental Functions

SIN, COS, TAN, SQR, LOG, and EXP return double precision results if given a
double precision argument. Exponentiation with double precision operands will
return a double precision result.

String Variables

The string space is maintained differently with the BASIC Compiler than with the
interpreter. Using PEEK, POKE, VARPTR, or assembly language routines to change
string descriptors will result in a String Space Corrupt error.

L.3 EXPRESSION EVALUATION

During expression evaluation, the operands of each operator are converted to the same type,
that of the most precise operand. For example,

QR=J%+A ! +Qi#

causes J% to be converted to single precision and added to A!. This result is converted to
double precision and added to Q#.

The Compiler is more limited than the interpreter in handling numeric overflow. For example,
when run on the interpreter the following program

1%=20000
J%=20000
K%=-30000
M%=1%+J%-K%

Page L-5

yields 10000 for M%. That is, it adds 1% to J% and, because the number is too large, it converts the
result into a floating point number. K% is then converted to floating point and subtracted. The
result of 10000 is found, and is converted back to integer and saved as M%.

The compiler, however, must make type conversion decisions during compilation. It cannot
defer until the actual values are known. Thus, the compiler would generate code to perform the
entire operation in integer mode. If the /D switch were set, the error would be detected.
Otherwise, an incorrect answer would be produced.

In order to produce optimum efficiency in the compiled program, the compiler may perform
any number of valid algebraic transformations before generating the code. For example, the
program:

1%=20000
J%=-18000
K%=20000
M%=1%+J%+K%

could produce an incorrect result when run. If the compiler actually performs the arithmetic in
the order shown, no overflow occurs. However, if the compiler performs 1%+K% first and then
adds)%, an overflow will occur. The compiler follows the rules for operator precedence and
parenthetic modification of such precedence, but no other guarantee of evaluation order can be
made.

L.4 INTEGER VARIABLES

In order to produce the fastest and most compact object code possible, make maximum use of
integer variables. For example, this program:

FOR 1=1 TO 10
A(I)=0
NEXT I

can execute approximately 30 times faster by simplysubstituting "I%" for "I". It is especially
advantageous to use integer variables to compute array subscripts. The generated code is
significantly faster and more compact.

ASCII
Code
000
001
002
003
004
005
006
007
008
009
210
211
012
013
014
215
016
017
018
219
020
021
022
023
024
025
026
027
028
029
030
931
032
033
034
035
036
037
038
039
040
041
042

Character
NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAPE
FS
GS
RS
us

SPACE
!

n

¥\ ~ Q0 XA H

APPENDIX M
ASCII Character Codes

ASCII
Code
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085

Character

+

OWOoONOTUILPAE,WN—-O N

CHWVMOVO VTOZIrMIMXUHITOTMMOO™E>® DYV Il A -

(comma)

ASCII
Code
086
087
088
089
090
291
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Character

S - NN << X =<

~ A

(apostrophe)

AW —ANK X E<C W TQUOS S = XU HIMWQ-HhODAONOUTWD

DEL

ASCI| codes are in decimal. LF = Line Feed, FF = Form Feed, CR = Carriage Return, DEL = Rubout

Editor’s Note: The Appendices follow after this chapter. In this edition, only Appendices A, B,
C,D,H, 1, J,K L, and M are included. Non-existent page references in the Index which follows
later are preserved for historical purposes, and for inclusion in future editions if there is sufficient
interest in including Appendices E, F, and G (for non-CP/M operating systems). Non-existent
pages are shown in RED.

%INCLUDE

ABS

Addition

ALL
Arctangent
Array variables
Arrays

ASC

ASCII codes
ASCII format
Assembly language subroutines
ATN

ATTRS

ATTRIB

AUTO

Boolean operators

CALL

Carriage return
Cassette tape
CDBL

CHAIN
Character set
CHR$

CINT

CLEAR
CLOAD
CLOAD*
CLOAD?
CLOSE
Command level
COMMON
Concatenation
Constants
CONT

Control characters
Control-A
COS

CP/M

CSAVE
CSAVE*
CSNG

CVD

CVvI

CVS

INDEX

|___4

3-2

1-10

2'4/ ﬁ

3-3

1-8, 2-9, 2-19, L5
1-8, 2-7, 2-12, 2-25
3-2

3'2/ ﬁ

2.4, 250, 2-78, L-1
2-3, 2-17, 2-60, 3-23to 3-24, C-1,
3-3, L4

H-5

E-2

1-2, 2-2

112

2-3, (G5, L-2

1-3, 2-37, 2-42to2-43, 2-841to 2-86
2-7, 2-12

3-3

2.4, 29, L2

13

3-4

3-4

2-6, A-1, L2

2-7

2-7

2-7

2-8, B-3, B8

1-1

2-4, 29, L2
115

1-4

2-11, 2-42

M

2:23

3-5, L4

2-47, 2-50, 2-77t02-78, B-1, D-1
212

212

ﬁ

3'6/ @

3-6, B-8

36, B-8

DATA

DEF FN

DEF USR
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEINT
DELETE
DIM

Direct mode
Division
Double precision
DSKIS
DSKO$

EDIT

Edit mode
END

EOF

ERASE

ERL

ERR

ERROR

Error codes
Error messages
Error trapping
Escape

EXP
Exponentiation
Expressions

FIELD

FILES

FIX

FOR...NEXT
FORMAT program
FPOS

FRCINT

FRE

Functions

GET
GIVABF
GIVINT
GOSUB
GOTO

HEX$
Hexadecimal

_
o
No
1
N
o

—_
N
N
N
1©

—_—

o
N

n
N

o
N

-
N

()
N
oo

>
1
2]

~

|
(o)
—

~

2-33, L-3

D-4

5
[
— @ N
dd_\

~

1
[O8)

2-76, B-7,

H-11

L-3

IF..GOTO
IF..THEN

IF.. THEN...ELSE
Indirect mode
INKEY$

INP

INPUT
INPUTS$
INPUT#

INSTR

INT

Integer

Integer division
INTEL
Interrupts
ISIS-II

KILL

LEFT$

LEN

LET

LFILES

Line feed
LINE INPUT
LINE INPUT#
Line numbers
Line printer
Lines

LIST

LLIST

LOAD

LOC

LOF

LOG

Logical operators
Loops

LPOS
LPRINT
LPRINT USING
LSET

MAKINT
MBASIC
MDS
MERGE
MID$

MKD$, MKI$, MKS$
MOD operator, Modulus arithmetic

MOUNT
Multiplication

No
1
19]

2-37, A-2, B-9

H-7

o
4
N

B-9

2-42 to 2-43, 2-85 to 2-86,

B-5, B8, H-=2

&
N

1
—_

L-1

http://2-74/

NAME 2-52

Negation 1-10

NEW 2-8, 2-53

NULL 2-54

Numeric constants 14

Numeric variables 1-7

OCT$ 3-16

Octal 1-5, 3-16

ON ERROR GOTO 2-55, L-3
ON...GOSUB 2-56

ON...GOTO 2-56

OPEN 2-8, 2-29, 2-57, B-3, B-8 H-5to H-6
Operators 1-9, 1-11to1-13, 1-15, L4
OPTION BASE 2-58

OuT 2-59

Overflow 1-11, 3-7, 3-22, A-1, L-4
Overlay 2-4

Paper tape 2-54

PEEK 2-60, 3-16

POKE 2-60, 3-16

POS 2-84, 3-17

PRINT 2-61, A-1

PRINT USING 2-63, A-2

PRINT# 2-67, B-3 H-7
PRINT# USING 2-67, B-5, B-3
Protected files 2-78, A-2, B-2

PUT 2-29, 2-69, B-8, H-7
Random files 2-29, 2-32, 2-40, 2-49, 2-57, 2-69, 3-13, 3-15,B-7,D-4
Random numbers 2-70, 3-18
RANDOMIZE 2-70, 3-18, A-1
READ 2-71, 2-75

Relational operators 1-11

REM 2-73, L3

REMOVE H-3

RENUM 2.4, 226, 2-74
RESET D-3

RESTORE 2-75

RESUME 2-76, L3

RETURN 2-33

RIGHT$ 3-17

RND 2-70, 3-18, A-1

RSET 2-49, B-8

Rubout 1-3 1-15, 2-21

RUN 2-77t0 2-78, B-2, L-2

SAVE

SBC

Sequential files
SET

SGN

SIN

Single precision
Space Requirements for variables
SPACE$

SPC

SQR
Standalone Disk BASIC
STOP

STR$

String constants
String functions
String operators
String space
String Variables
STRINGS
Subroutines
Subscripts
Subtraction
SWAP

SYSTEM

TAB

Tab

TAN
TEKDOS
TROFF
TRON

USR
USRLOC

VAL
Variables
VARPTR

WAIT

WEND

WHILE

WIDTH

WIDTH LPRINT
WRITE

WRITE#

2-47, 2-77 1o 2-78, B-1

G-1

2-39to 2-40, 2-43, 2-57, 2-67, 2-86, 3-6,
H-4

3-18

3-19, L-4

1-5, 2-16, 2-51, 3-5, A-1
1-8

3-19

3-20

3-20, L-4

H-1

2-11, 2-24, 2-33, 2-79, L-3
3-21

1-4

3-6, 3-11to3-13, 3-15, 3-17, 3-21, 3-23,
1-15

2-6, 3-8, A-1, B-9
1-7, 2-16, 2-42to2-43, L-4
3-21

2-3, 2-33, 2-56, C-1

1-7, 2-19, 2-58, L-3

1-10

2-80

D-4, F-1

3-22

1-3to1-4

3-22, L-4

F-1

2-81, L-3

2-81, L3

2-17, 3-23, C-1

C2, G-1

3-23

1-6, L-5

3-24

2-82

2-83, L-3

2-83, L-3

2-84, A-2

2-84, A-2

2-85

2-86, B-3

8
L
o

-1

~

http://2-56/

