
GPP 2.27 — Generic Preprocessor

Denis Auroux, Tristan Miller

1 DESCRIPTION

GPP is a general-purpose preprocessor with customizable syntax, suit-
able for a wide range of preprocessing tasks. Its independence from any
programming language makes it much more versatile than cpp, while its
syntax is lighter and more flexible than that of m4.

GPP is targeted at all common preprocessing tasks where cpp is not suit-
able and where no very sophisticated features are needed. In order to
be able to process equally efficiently text files or source code in a variety
of languages, the syntax used by GPP is fully customizable. The handling
of comments and strings is especially advanced.

Initially, GPP only understands a minimal set of built-in macros, called
meta-macros. These meta-macros allow the definition of user macros
as well as some basic operations forming the core of the preprocess-
ing system, including conditional tests, arithmetic evaluation, wildcard
matching (globbing), and syntax specification. All user macro definitions
are global—i.e., they remain valid until explicitly removed; meta-macros
cannot be redefined. With each user macro definition GPP keeps track
of the corresponding syntax specification so that a macro can be safely
invoked regardless of any subsequent change in operating mode.

In addition to macros, GPP understands comments and strings, whose
syntax and behavior can be widely customized to fit any particular pur-
pose. Internally comments and strings are the same construction, so
everything that applies to comments applies to strings as well.

2 SYNTAX

1

gpp [-{}{o|O} outfile] [-{}I/include/path ...]

[-{}Dname=val ...] [-{}z|+z] [-{}x] [-{}m]

[-{}C|-{}T|-{}H|-{}X|-{}P|-{}U ... [-{}M ...]]

[-{}n|+n] [+c<n> str1 str2] [+s<n> str1 str2 c]

[-{}c str1] [-{}-{}nostdinc] [-{}-{}nocurinc]

[-{}-{}curdirinclast] [-{}-{}warninglevel n]

[-{}-{}includemarker str] [-{}-{}include file]

[infile]

gpp -{}-{}help

3 OPTIONS

GPP recognizes the following command-line switches and options. Note
that the -nostdinc, -nocurinc, -curdirinclast, -warninglevel, and -includemarker
options from version 2.1 and earlier are deprecated and should not be
used. Use the “long option” variants instead (--nostdinc, etc.).

• -h --help
Print a short help message.

• --version
Print version information.

• -o outfile
Specify a file to which all output should be sent (by default, every-
thing is sent to standard output).

• -O outfile
Specify a file to which all output should be sent; output is simulta-
neously sent to stdout.

• -I /include/path
Specify a path where the #include meta-macro will look for include
files if they are not present in the current directory. The default is
/usr/include if no -I option is specified. Multiple -I options may be
specified to look in several directories.

2

• -D name=val
Define the user macro name as equal to val. This is strictly equiv-
alent to using the #define meta-macro, but makes it possible to
define macros from the command-line. If val makes references to
arguments or other macros, it should conform to the syntax of the
mode specified on the command-line. Starting with version 2.1,
macro argument naming is allowed on the command-line. The syn-
tax is as follows: -Dmacro(arg1,. . .)=definition. The arguments are
specified in C-style syntax, without any whitespace, but the defini-
tion should still conform to the syntax of the mode specified on the
command-line.

• +z
Set text mode to Unix mode (LF terminator). Any CR character in
the input is systematically discarded. This is the default under Unix
systems.

• -z
Set text mode to DOS mode (CR–LF terminator). In this mode all CR
characters are removed from the input, and all output LF characters
are converted to CR–LF. This is the default if GPP is compiled with
the WIN_NT option.

• -x
Enable the use of the #exec meta-macro. Since #exec includes the
output of an arbitrary shell command line, it may cause a potential
security threat, and is thus disabled unless this option is specified.

• -m
Enable automatic mode switching to the cpp compatibility mode
if the name of an included file ends in ‘.h’ or ‘.c’. This makes it
possible to include C header files with only minor modifications.

• -n
Prevent newline or whitespace characters from being removed from
the input when they occur as the end of a macro call or of a com-
ment. By default, when a newline or whitespace character forms
the end of a macro or a comment it is parsed as part of the macro
call or comment and therefore removed from output. Use the -n op-
tion to keep the last character in the input stream if it was whites-

3

pace or a newline. This is activated in cpp and Prolog modes.

• +n
The opposite of -n. This is the default in all modes except cpp and
Prolog. Note that +n must be placed after -C or -P in order to have
any effect.

• -U arg1 . . . arg9
User-defined mode. The nine following command-line arguments
are taken to be respectively the macro start sequence, the macro
end sequence for a call without arguments, the argument start se-
quence, the argument separator, the argument end sequence, the
list of characters to stack for argument balancing, the list of char-
acters to unstack, the string to be used for referring to an argu-
ment by number, and finally the quote character (if there is none
an empty string should be provided). These settings apply both to
user macros and to meta-macros, unless the -M option is used to
define other settings for meta-macros. See the section on syntax
specification for more details.

• -M arg1 . . . arg7
User-defined mode specifications for meta-macros. This option can
only be used together with -U. The seven following command-line
arguments are taken to be respectively the macro start sequence,
the macro end sequence for a call without arguments, the argu-
ment start sequence, the argument separator, the argument end
sequence, the list of characters to stack for argument balancing,
and the list of characters to unstack. See below for more details.

• (default mode)
The default mode is a vaguely cpp-like mode, but it does not handle
comments, and presents various incompatibilities with cpp. Typical
meta-macros and user macros look like this:

#define x y

macro(arg,...)

This mode is equivalent to

-U "" "" "(" "," ")" "(" ")" "#" "\\"

-M "#" "\n" " " " " "\n" "(" ")"

4

• -C
cpp compatibility mode. This is the mode where GPP’s behavior is
the closest to that of cpp. Unlike in the default mode, meta-macro
expansion occurs only at the beginning of lines, and C comments
and strings are understood. This mode is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+c "/*" "*/" +c "//" "\n" +c "\\\n" ""

+s "\"" "\"" "\\" +s "'" "'" "\\"

• -T
TEX-like mode. In this mode, typical meta-macros and user macros
look like this:

\define{x}{y}

\macro{arg}{...}

No comments are understood. This mode is equivalent to

-U "\\" "" "{" "}{" "}" "{" "}" "#" "@"

• -H
HTML-like mode. In this mode, typical meta-macros and user macros
look like this:

<#define x|y>

<#macro arg|...>

No comments are understood. This mode is equivalent to

-U "<#" ">" "\B" "|" ">" "<" ">" "#" "\\"

• -X
XHTML-like mode. In this mode, typical meta-macros and user
macros look like this:

<#define x|y/>

<#macro arg|.../>

No comments are understood. This mode is equivalent to

-U "<#" "/>" "\B" "|" "/>" "<" ">" "#" "\\"

5

• -P
Prolog-compatible cpp-like mode. This mode differs from the cpp
compatibility mode by its handling of comments, and is equivalent
to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+ccss "\!o/*" "*/" +ccss "%" "\n" +ccii "\\\n" ""

+s "\"" "\"" "" +s "\!#'" "'" ""

• +c <n> str1 str2
Specify comments. Any unquoted occurrence of str1 will be inter-
preted as the beginning of a comment. All input up to the first
following occurrence of str2 will be discarded. This option may be
used multiple times to specify different types of comment delim-
iters. The optional parameter <n> can be specified to alter the
behavior of the comment and, e.g., turn it into a string or make it
ignored under certain circumstances, see below.

• -c str1
Un-specify comments or strings. The comment/string specification
whose start sequence is str1 is removed. This is useful to alter the
built-in comment specifications of a standard mode—e.g., the cpp
compatibility mode.

• +s <n> str1 str2 c
Specify strings. Any unquoted occurrence of str1 will be interpreted
as the beginning of a string. All input up to the first following oc-
currence of str2 will be output as is without any evaluation. The
delimiters themselves are output. If c is non-empty, its first char-
acter is used as a string-quote character—i.e., a character whose
presence immediately before an occurrence of str2 prevents it from
terminating the string. The optional parameter <n> can be speci-
fied to alter the behavior of the string and, e.g., turn it into a com-
ment, enable macro evaluation inside the string, or make the string
specification ignored under certain circumstances. See below.

• -s str1
Un-specify comments or strings. Identical to -c.

• --include file

6

Process file before infile

• --nostdinc
Do not look for include files in the standard directory /usr/include.

• --nocurinc
Do not look for include files in the current directory.

• --curdirinclast
Look for include files in the current directory after the directories
specified by -I rather than before them.

• --warninglevel n
Set warning level to n (0, 1 or 2). Default is 2 (most verbose).

• --includemarker str
keep track of #include directives by inserting a marker in the out-
put stream. The format of the marker is determined by str, which
must contain three occurrences of the character % (or equivalently
?). The first occurrence is replaced with the line number, the sec-
ond with the file name, and the third with 1, 2 or blank. When this
option is specified in default, cpp or Prolog mode, GPP does its best
to ensure that line numbers are the same in the output as in the in-
put by inserting blank lines in the place of definitions or comments.

• infile
Specify an input file from which GPP reads its input. If no input file
is specified, input is read from standard input.

4 SYNTAX SPECIFICATION

The syntax of a macro call is as follows: it must start with a sequence of
characters matching the macro start sequence as specified in the current
mode, followed immediately by the name of the macro, which must be
a valid identifier—i.e., a sequence of letters, digits, or underscores (“_”).
The macro name must be followed by a short macro end sequence if the
macro has no arguments, or by a sequence of arguments initiated by an
argument start sequence. The various arguments are then separated
by an argument separator, and the macro ends with a long macro end
sequence.

7

In all cases, the parameters of the current context—i.e., the arguments
passed to the body being evaluated—can be referred to by using an ar-
gument reference sequence followed by a digit between 1 and 9. Alter-
natively, macro parameters may be named (see below). Furthermore,
to avoid interference between the GPP syntax and the contents of the
input file, a quote character is provided. The quote character can be
used to prevent the interpretation of a macro call, comment, or string
as anything but plain text. The quote character “protects” the following
character, and always gets removed during evaluation. Two consecutive
quote characters evaluate as a single quote character.

Finally, to facilitate proper argument delimitation, certain characters can
be “stacked” when they occur in a macro argument, so that the argu-
ment separator or macro end sequence are not parsed if the argument
body is not balanced. This allows nesting macro calls without using
quotes. If an improperly balanced argument is needed, quote characters
should be added in front of some stacked characters to make it balanced.

The macro construction sequences described above can be different for
meta-macros and for user macros: this is the case in cpp mode, for exam-
ple. Note that, since meta-macros can only have up to two arguments,
the delimitation rules for the second argument are somewhat sloppier,
and unquoted argument separator sequences are allowed in the second
argument of a meta-macro.

Unless one of the standard operating modes is selected, the above syn-
tax sequences can be specified either on the command-line, using the -M
and -U options respectively for meta-macros and user macros, or inside
an input file via the #mode meta and #mode user meta-macro calls. In
both cases the mode description consists of nine parameters for user
macro specifications, namely the macro start sequence, the short macro
end sequence, the argument start sequence, the argument separator,
the long macro end sequence, the string listing characters to stack, the
string listing characters to unstack, the argument reference sequence,
and finally the quote character. As explained below, these sequences
should be supplied using the syntax of C strings; they must start with a
non-alphanumeric character, and in the first five strings special match-
ing sequences can be used (see below). If the argument corresponding
to the quote character is the empty string, that argument’s functional-

8

ity is disabled. For meta-macro specifications there are only seven pa-
rameters, as the argument reference sequence and quote character are
shared with the user macro syntax.

The structure of a comment/string is as follows: it must start with a
sequence of characters matching the given comment/string start se-
quence, and always ends at the first occurrence of the comment/string
end sequence, unless it is preceded by an odd number of occurrences
of the string-quote character (if such a character has been specified). In
certain cases comment/strings can be specified to enable macro evalu-
ation inside the comment/string; in that case, if a quote character has
been defined for macros it can be used as well to prevent the comment/
string from ending, with the difference that the macro quote character
is always removed from output whereas the string-quote character is al-
ways output. Also note that under certain circumstances a comment/
string specification can be disabled, in which case the comment/string
start sequence is simply ignored. Finally, it is possible to specify a string
warning character whose presence inside a comment/string will cause
GPP to output a warning (this is useful to locate unterminated strings in
cpp mode). Note that input files are not allowed to contain unterminated
comments/strings.

A comment/string specification can be declared from within the input
file using the #mode comment meta-macro call (or equivalently #mode
string), in which case the number of C strings to be given as arguments
to describe the comment/string can be anywhere between two and four:
the first two arguments (mandatory) are the start sequence and the end
sequence, and can make use of the special matching sequences (see
below). They may not start with alphanumeric characters. The first char-
acter of the third argument, if there is one, is used as the string-quote
character (use an empty string to disable the functionality), and the first
character of the fourth argument, if there is one, is used as the string-
warning character. A specification may also be given from the command-
line, in which case there must be two arguments if using the +c option
and three if using the +s option.

The behavior of a comment/string is specified by a three-character mod-
ifier string, which may be passed as an optional argument either to the
+c/+s command-line options or to the #mode comment/#mode string

9

meta-macros. If no modifier string is specified, the default value is “ccc”
for comments and “sss” for strings. The first character corresponds to
the behavior inside meta-macro calls (including user-macro definitions
since these come inside a #define meta-macro call), the second charac-
ter corresponds to the behavior inside user-macro parameters, and the
third character corresponds to the behavior outside of any macro call.
Each of these characters can take the following values:

• i: disable the comment/string specification.

• c: comment (neither evaluated nor output).

• s: string (the string and its delimiter sequences are output as-is).

• q: quoted string (the string is output as-is, without the delimiter
sequences).

• C: evaluated comment (macros are evaluated, but output is dis-
carded).

• S: evaluated string (macros are evaluated, delimiters are output).

• Q: evaluated quoted string (macros are evaluated, delimiters are
not output).

Important note: any occurrence of a comment/string start sequence in-
side another comment/string is always ignored, even if macro evaluation
is enabled. In other words, comments/strings cannot be nested. In par-
ticular, the ‘Q’ modifier can be a convenient way of defining a syntax for
temporarily disabling all comment and string specifications.

Syntax specification strings should always be provided as C strings, whether
they are given as arguments to a #mode meta-macro call or on the
command-line of a Unix shell. If command-line arguments are given via
another method than a standard Unix shell, then the shell behavior must
be emulated—i.e., the surrounding "" quotes should be removed, all oc-
currences of ‘\\’ should be replaced by a single backslash, and similarly
‘\"’ should be replaced by ‘"’. Sequences like ‘\n’ are recognized by GPP
and should be left as is.

Special sequences matching certain subsets of the character set can be
used. They are of the form ‘\x’, where x is one of:

10

• b: matches any sequence of one or more spaces or tab characters
(‘\b’ is identical to ‘ ’).

• w: matches any sequence of zero or more spaces or tab characters.

• B: matches any sequence of one or more spaces, tabs or newline
characters.

• W: matches any sequence of zero or more spaces, tabs or newline
characters.

• a: an alphabetic character (‘a’ to ‘z’ and ‘A’ to ‘Z’).

• A: an alphabetic character, or a space, tab or newline.

• #: a digit (‘0’ to ‘9’).

• i: an identifier character. The set of matched characters is cus-
tomizable using the #mode charset id command. The default set-
ting matches alphanumeric characters and underscores (‘a’ to ‘z’,
‘A’ to ‘Z’, ‘0’ to ‘9’ and ‘_’).

• t: a tab character.

• n: a newline character.

• o: an operator character. The set of matched characters is cus-
tomizable using the #mode charset op command. The default set-
ting matches all characters in “+-*/\ˆ<>=‘∼:.?@#&!%|”, except in
Prolog mode where ‘!’, ‘%’ and ‘|’ are not matched.

• O: an operator character or a parenthesis character. The set of
additional matched characters in comparison with ‘\o’ is customiz-
able using the #mode charset par command. The default setting is
to have the characters in “()[]{}” as parentheses.

Moreover, all of these matching subsets except ‘\w’ and ‘\W’ can be
negated by inserting a ‘!’—i.e., by writing ‘\!x’ instead of ‘\x’.

Note an important distinctive feature of start sequences: when the first
character of a macro or comment/string start sequence is ‘ ’ or one of the
above special sequences, it is not taken to be part of the sequence itself
but is used instead as a context check: for example a start sequence be-
ginning with ‘\n’ matches only at the beginning of a line, but the match-

11

ing newline character is not taken to be part of the sequence. Similarly
a start sequence beginning with ‘ ’ matches only if some whitespace is
present, but the matching whitespace is not considered to be part of the
start sequence and is therefore sent to output. If a context check is per-
formed at the very beginning of a file (or more generally of any body to
be evaluated), the result is the same as matching with a newline charac-
ter (this makes it possible for a cpp-mode file to start with a meta-macro
call).

Two special syntax rules were added in version 2.1. First, argument ref-
erences (#n) are no longer evaluated when they are outside of macro
calls and definitions. However, they are no longer allowed to appear (un-
less protected by quote characters) inside a call to a defined user macro;
the current behavior (backwards compatible) is to remove them silently
from the input if that happens.

Second, if the end sequence (either for macros or comments) consists
of a single newline character, and if delimitation rules lead to evaluation
in a context where the final newline character is absent, GPP silently
ignores the missing newline instead of producing an error. The main
consequence is that meta-macro calls can now be nested in a simple
way in standard, cpp and Prolog modes.

5 EVALUATION RULES

Input is read sequentially and interpreted according to the rules of the
current mode. All input text is first matched against the specified com-
ment/string start sequences of the current mode (except those which
are disabled by the ‘i’ modifier), unless the body being evaluated is the
contents of a comment/string whose modifier enables macro evaluation.
The most recently defined comment/string specifications are checked for
first. Important note: comments may not appear between the name of a
macro and its arguments (doing so results in undefined behavior).

Anything that is not a comment/string is then matched against a possi-
ble meta-macro call, and if that fails too, against a possible user-macro
call. All remaining text undergoes substitution of argument reference
sequences by the relevant argument text (empty unless the body being
evaluated is the definition of a user macro) and removal of the quote

12

character if there is one.

Note that meta-macro arguments are passed to the meta-macro prior to
any evaluation (although the meta-macro may choose to evaluate them,
see meta-macro descriptions below). In the case of the #mode meta-
macro, GPP temporarily adds a comment/string specification to enable
recognition of C strings (". . . ") and prevent any evaluation inside them,
so no interference of the characters being put in the C string arguments
to #mode with the current syntax is to be feared.

On the other hand, the arguments to a user macro are systematically
evaluated, and then passed as context parameters to the macro defini-
tion body, which gets evaluated with that environment. The only excep-
tion is when the macro definition is empty, in which case its arguments
are not evaluated. Note that GPP temporarily switches back to the mode
in which the macro was defined in order to evaluate it, so it is perfectly
safe to change the operating mode between the time a macro is defined
and the time when it is called. Conversely, if a user macro wishes to
work with the current mode instead of the one that was used to define it
it needs to start with a #mode restore call and end with a #mode save
call.

A user macro may be defined with named arguments (see #define de-
scription below). In that case, when the macro definition is being eval-
uated, each named parameter causes a temporary virtual user-macro
definition to be created; such a macro may be called only without argu-
ments and simply returns the text of the corresponding argument.

Note that, since macros are evaluated when they are called rather than
when they are defined, any attempt to call a recursive macro causes
undefined behavior except in the very specific case when the macro uses
#undef to erase itself after finitely many loop iterations.

Finally, a special case occurs when a user macro whose definition does
not involve any arguments (neither named arguments nor the argument
reference sequence) is called in a mode where the short user-macro end
sequence is empty (e.g., cpp or TEX mode). In that case it is assumed
to be an alias macro: its arguments are first evaluated in the current
mode as usual, but instead of being passed to the macro definition as
parameters (which would cause them to be discarded) they are actually

13

appended to the macro definition, using the syntax rules of the mode in
which the macro was defined, and the resulting text is evaluated again.
It is therefore important to note that, in the case of a macro alias, the ar-
guments actually get evaluated twice in two potentially different modes.

6 META-MACROS

These macros are always predefined. Their actual calling sequence de-
pends on the current mode; here we use cpp-like notation.

• #define x y
This defines the user macro x as y. y can be any valid GPP input,
and may for example refer to other macros. x must be an iden-
tifier (i.e., a sequence of alphanumeric characters and ‘_’), unless
named arguments are specified. If x is already defined, the previ-
ous definition is overwritten. If no second argument is given, x will
be defined as a macro that outputs nothing. Neither x nor y are
evaluated; the macro definition is only evaluated when it is called,
not when it is declared.

It is also possible to name the arguments in a macro definition:
in that case, the argument x should be a user-macro call whose
arguments are all identifiers. These identifiers become available as
user-macros inside the macro definition; these virtual macros must
be called without arguments, and evaluate to the corresponding
macro parameter.

• #defeval x y
This acts in a similar way to #define, but the second argument y is
evaluated immediately. Since user macro definitions are also eval-
uated each time they are called, this means that the macro y will
undergo two successive evaluations. The usefulness of #defeval is
considerable as it is the only way to evaluate something more than
once, which may be needed to force evaluation of the arguments of
a meta-macro that normally doesn’t perform any evaluation. How-
ever since all argument references evaluated at define-time are un-
derstood as the arguments of the body in which the macro is being
defined and not as the arguments of the macro itself, usually one
has to use the quote character to prevent immediate evaluation of

14

argument references.

• #undef x
This removes any existing definition of the user macro x.

• #ifdef x
This begins a conditional block. Everything that follows is evalu-
ated only if the identifier x is defined, and until either a #else or a
#endif statement is reached. Note, however, that the commented
text is still scanned thoroughly, so its syntax must be valid. It is in
particular legal to have the #else or #endif statement ending the
conditional block appear only as the result of a user-macro expan-
sion and not explicitly in the input.

• #ifndef x
This begins a conditional block. Everything that follows is evaluated
only if the identifier x is not defined.

• #ifeq x y
This begins a conditional block. Everything that follows is evaluated
only if the results of the evaluations of x and y are identical as
character strings. Any leading or trailing whitespace is ignored for
the comparison. Note that in cpp-mode any unquoted whitespace
character is understood as the end of the first argument, so it is
necessary to be careful.

• #ifneq x y
This begins a conditional block. Everything that follows is evaluated
only if the results of the evaluations of x and y are not identical
(even up to leading or trailing whitespace).

• #else
This toggles the logical value of the current conditional block. What
follows is evaluated if and only if the preceding input was com-
mented out.

• #endif
This ends a conditional block started by a #if. . . meta-macro.

• #include file
This causes GPP to open the specified file and evaluate its contents,
inserting the resulting text in the current output. All defined user

15

macros are still available in the included file, and reciprocally all
macros defined in the included file will be available in everything
that follows. The include file is looked for first in the current di-
rectory, and then, if not found, in one of the directories specified
by the -I command-line option (or /usr/include if no directory was
specified). Note that, for compatibility reasons, it is possible to put
the file name between "" or <>.

The order in which the various directories are searched for include
files is affected by the -nostdinc, -nocurinc and -curdirinclast command-
line options.

Upon including a file, GPP immediately saves a copy of the current
operating mode onto the mode stack, and restores the operating
mode at the end of the included file. The included file may override
this behavior by starting with a #mode restore call and ending with
a #mode push call. Additionally, when the -m command line option
is specified, GPP will automatically switch to the cpp compatibility
mode upon including a file whose name ends with either ‘.c’ or ‘.h’.

• #exec command
This causes GPP to execute the specified command line and include
its standard output in the current output. Note that, for security
reasons, this meta-macro is disabled unless the -x command line
flag was specified. If use of #exec is not allowed, a warning mes-
sage is printed and the output is left blank. Note that the specified
command line is evaluated before being executed, thus allowing
the use of macros in the command-line. However, the output of
the command is included verbatim and not evaluated. If you need
the output to be evaluated, you must use #defeval (see above) to
cause a double evaluation.

• #eval expr
The #eval meta-macro attempts to evaluate expr first by expand-
ing macros (normal GPP evaluation) and then by performing arith-
metic evaluation and/or wildcard matching. The syntax and opera-
tor precedence for arithmetic expressions are the same as in C; the
only missing operators are <<, >>, ?:, and the assignment opera-
tors.

16

POSIX-style wildcard matching (‘globbing’) is available only on POSIX
implementations and can be invoked with the =∼ operator. In brief,
a ‘?’ matches any single character, a ‘*’ matches any string (includ-
ing the empty string), and ‘[. . .]’ matches any one of the characters
enclosed in brackets. A ‘[. . .]’ class is complemented when the first
character in the brackets is ‘!’. The characters in a ‘[. . .]’ class can
also be specified as a range using the ‘-’ character—e.g., ‘[F-N]’ is
equivalent to ‘[FGHIJKLMN]’.

If unable to assign a numerical value to the result, the returned
text is simply the result of macro expansion without any arithmetic
evaluation. The only exceptions to this rule are the comparison
operators ==, !=, <, >, <=, and >= which, if one of the sides
does not evaluate to a number, perform string comparison instead
(ignoring trailing and leading spaces). Additionally, the length(. . .)
arithmetic operator returns the length in characters of its evaluated
argument.

Inside arithmetic expressions, the defined(. . .) special user macro
is also available: it takes only one argument, which is not evalu-
ated, and returns 1 if it is the name of a user macro and 0 other-
wise.

• #if expr
This meta-macro invokes the arithmetic/globbing evaluator in the
same manner as #eval and compares the result of evaluation with
the string "0" in order to begin a conditional block. In particular
note that the logical value of expr is always true when it cannot be
evaluated to a number.

• #elif expr
This meta-macro can be used to avoid nested #if conditions. #if
. . . #elif . . . #endif is equivalent to #if . . . #else #if . . . #endif #en-
dif.

• #mode keyword . . .
This meta-macro controls GPP’s operating mode. See below for a
list of #mode commands.

• #line
This meta-macro evaluates to the line number of the current input

17

file.

• #file
This meta-macro evaluates to the filename of the current input file
as it appears on the command line or in the argument to #include.
If GPP is reading its input from stdin, then #file evaluates to ‘stdin’.

• #date fmt
This meta-macro evaluates to the current date and time as format-
ted by the specified format string fmt. See the section DATE AND
TIME CONVERSION SPECIFIERS below.

• #error msg
This meta-macro causes an error message with the current file-
name and line number, and with the text msg, to be printed to
the standard error device. Subsequent processing is then aborted.

• #warning msg
This meta-macro causes a warning message with the current file-
name and line number, and with the text msg, to be printed to the
standard error device. Subsequent processing is then resumed.

The key to GPP’s flexibility is the #mode meta-macro. Its first argument
is always one of a list of available keywords (see below); its second ar-
gument is always a sequence of words separated by whitespace. Apart
from possibly the first of them, each of these words is always a delimiter
or syntax specifier, and should be provided as a C string delimited by
double quotes (" "). The various special matching sequences listed in
the section on syntax specification are available. Any #mode command
is parsed in a mode where ". . . " is understood to be a C-style string, so
it is safe to put any character inside these strings. Also note that the first
argument of #mode (the keyword) is never evaluated, while the second
argument is evaluated (except of course for the contents of C strings),
so that the syntax specification may be obtained as the result of a macro
evaluation.

The available #mode commands are:

• #mode save / #mode push
Push the current mode specification onto the mode stack.

• #mode restore / #mode pop

18

Pop mode specification from the mode stack.

• #mode standard name
Select one of the standard modes. The only argument must be one
of: default (default mode); cpp, C (cpp mode); tex, TeX (TEX mode);
html, HTML (html mode); xhtml, XHTML (xhtml mode); prolog, Pro-
log (prolog mode). The mode name must be given directly, not as
a C string.

• #mode user “s1” . . . “s9”
Specify user macro syntax. The 9 arguments, all of them C strings,
are the mode specification for user macros (see the -U command-
line option and the section on syntax specification). The meta-
macro specification is not affected.

• #mode meta {user | “s1” . . . “s7”}
Specify meta-macro syntax. Either the only argument is user (not
as a string), and the user-macro mode specifications are copied into
the meta-macro mode specifications, or there must be seven string
arguments, whose significance is the same as for the -M command-
line option (see section on syntax specification).

• #mode quote [“c”]
With no argument or "" as argument, removes the quote character
specification and disables the quoting functionality. With one string
argument, the first character of the string is taken to be the new
quote character. The quote character can be neither alphanumeric
nor ‘_’, nor can it be one of the special matching sequences.

• #mode comment [xxx] “start” “end” [“c” [“c”]]
Add a comment specification. Optionally a first argument consist-
ing of three characters not enclosed in " " can be used to specify a
comment/string modifier (see the section on syntax specification).
The default modifier is ccc. The first two string arguments are used
as comment start and end sequences respectively. The third string
argument is optional and can be used to specify a string-quote char-
acter. (If it is "", the functionality is disabled.) The fourth string ar-
gument is optional and can be used to specify a string delimitation
warning character. (If it is "", the functionality is disabled.)

• #mode string [xxx] “start” “end” [“c” [“c”]]

19

Add a string specification. Identical to #mode comment except that
the default modifier is sss.

• #mode nocomment / #mode nostring [“start”]
With no argument, remove all comment/string specifications. With
one string argument, delete the comment/string specification whose
start sequence is the argument.

• #mode preservelf { on | off | 1 | 0 }
Equivalent to the -n command-line switch. If the argument is on or
1, any newline or whitespace character terminating a macro call or
a comment/string is left in the input stream for further processing.
If the argument is off or 0 this feature is disabled.

• #mode charset { id | op | par } “string”
Specify the character sets to be used for matching the \o, \O and
\i special sequences. The first argument must be one of id (the set
matched by \i), op (the set matched by \o) or par (the set matched
by \O in addition to the one matched by \o). "string" is a C string
which lists all characters to put in the set. It may contain only the
special matching sequences \a, \A, \b, \B, and \# (the other se-
quences and the negated sequences are not allowed). When a ‘-’
is found inbetween two non-special characters this adds all char-
acters inbetween (e.g. "A-Z" corresponds to all uppercase charac-
ters). To have ‘-’ in the matched set, either put it in first or last
position or place it next to a \x sequence.

7 DATE AND TIME CONVERSION SPECIFIERS

Ordinary characters placed in the format string are copied without con-
version. Conversion specifiers are introduced by a ‘%’ character, and are
replaced as follows:

• %a
The abbreviated weekday name according to the current locale.

• %A
The full weekday name according to the current locale.

20

• %b
The abbreviated month name according to the current locale.

• %B
The full month name according to the current locale.

• %c
The preferred date and time representation for the current locale.

• %d
The day of the month as a decimal number (range 01 to 31).

• %F
Equivalent to %Y-%m-%d (the ISO 8601 date format).

• %H
The hour as a decimal number using a 24-hour clock (range 00 to
23).

• %I
The hour as a decimal number using a 12-hour clock (range 01 to
12).

• %j
The day of the year as a decimal number (range 001 to 366).

• %m
The month as a decimal number (range 01 to 12).

• %M
The minute as a decimal number (range 00 to 59).

• %p
Either ‘AM’ or ‘PM’ according to the given time value, or the corre-
sponding strings for the current locale. Noon is treated as ‘PM’ and
midnight as ‘AM’.

• %R
The time in 24-hour notation (%H:%M).

• %S
The second as a decimal number (range 00 to 61).

21

• %U
The week number of the current year as a decimal number, range
00 to 53, starting with the first Sunday as the first day of week 01.

• %w
The day of the week as a decimal, range 0 to 6, Sunday being 0.

• %W
The week number of the current year as a decimal number, range
00 to 53, starting with the first Monday as the first day of week 01.

• %x
The preferred date representation for the current locale without the
time.

• %X
The preferred time representation for the current locale without the
date.

• %y
The year as a decimal number without a century (range 00 to 99).

• %Y
The year as a decimal number including the century.

• %Z
The time zone or name or abbreviation.

• %%
A literal ‘%’ character.

Depending on the C compiler and library used to compile GPP, there may
be more conversion specifiers available. Consult your compiler’s docu-
mentation for the strftime() function. Note, however, that any conver-
sion specifiers not listed above may not be portable across installations
of GPP.

8 EXAMPLES

Here is a basic self-explanatory example in standard or cpp mode:

22

#define FOO This is

#define BAR a message.

#define concat #1 #2

concat(FOO,BAR)

#ifeq (concat(foo,bar)) (foo bar)

This is output.

#else

This is not output.

#endif

Using argument naming, the concat macro could alternatively be defined
as

#define concat(x,y) x y

In TEX mode and using argument naming, the same example becomes:

\define{FOO}{This is}

\define{BAR}{a message.}

\define{\concat{x}{y}}{\x \y}

\concat{\FOO}{\BAR}

\ifeq{\concat{foo}{bar}}{foo bar}

This is output.

\else

This is not output.

\endif

In HTML mode and without argument naming, one gets similarly:

<#define FOO|This is>

<#define BAR|a message.>

<#define concat|#1 #2>

<#concat <#FOO>|<#BAR>>

<#ifeq <#concat foo|bar>|foo bar>

This is output.

<#else>

This is not output.

<#endif>

The following example (in standard mode) illustrates the use of the quote
character:

23

#define FOO This is \

a multiline definition.

#define BLAH(x) My argument is x

BLAH(urf)

\BLAH(urf)

Note that the multiline definition is also valid in cpp and Prolog modes de-
spite the absence of quote character, because ‘\’ followed by a newline
is then interpreted as a comment and discarded.

In cpp mode, C strings and comments are understood as such, as illus-
trated by the following example:

#define BLAH foo

BLAH "BLAH" /* BLAH */

`It\'s a /*string*/ !'

The main difference between Prolog mode and cpp mode is the handling
of strings and comments: in Prolog, a ‘. . . ’ string may not begin imme-
diately after a digit, and a /*. . . */ comment may not begin immediately
after an operator character. Furthermore, comments are not removed
from the output unless they occur in a #command.

The differences between cpp mode and default mode are deeper: in de-
fault mode #commands may start anywhere, while in cpp mode they
must be at the beginning of a line; the default mode has no knowl-
edge of comments and strings, but has a quote character (‘\’), while cpp
mode has extensive comment/string specifications but no quote char-
acter. Moreover, the arguments to meta-macros need to be correctly
parenthesized in default mode, while no such checking is performed in
cpp mode.

This makes it easier to nest meta-macro calls in default mode than in
cpp mode. For example, consider the following HTML mode input, which
tests for the availability of the #exec command:

<#ifeq <#exec echo blah>|blah

> #exec allowed <#else> #exec not allowed <#endif>

There is no cpp mode equivalent, while in default mode it can be easily
translated as

24

#ifeq (#exec echo blah

) (blah

)

\#exec allowed

#else

\#exec not allowed

#endif

In order to nest meta-macro calls in cpp mode it is necessary to modify
the mode description, either by changing the meta-macro call syntax,
or more elegantly by defining a silent string and using the fact that the
context at the beginning of an evaluated string is a newline character:

#mode string QQQ "$" "$"

#ifeq $#exec echo blah

$ $blah

$

\#exec allowed

#else

\#exec not allowed

#endif

Note, however, that comments/strings cannot be nested (". . . " inside
$. . . $ would go undetected), so one needs to be careful about what to
include inside such a silent evaluated string. In this example, the loose
meta-macro nesting introduced in version 2.1 makes it possible to use
the following simpler version:

#ifeq blah #exec echo -n blah

\#exec allowed

#else

\#exec not allowed

#endif

Remember that macros without arguments are actually understood to
be aliases when they are called with arguments, as illustrated by the
following example (default or cpp mode):

#define DUP(x) x x

#define FOO and I said: DUP

FOO(blah)

25

The usefulness of the #defeval meta-macro is shown by the following
example in HTML mode:

<#define APPLY|<#defeval TEMP|<\##1 \#1>><#TEMP #2>>

<#define <#foo x>|<#x> and <#x>>

<#APPLY foo|BLAH>

The reason why #defeval is needed is that, since everything is evaluated
in a single pass, the input that will result in the desired macro call needs
to be generated by a first evaluation of the arguments passed to APPLY
before being evaluated a second time.

To translate this example in default mode, one needs to resort to paren-
thesizing in order to nest the #defeval call inside the definition of APPLY,
but need to do so without outputting the parentheses. The easiest solu-
tion is

#define BALANCE(x) x

#define APPLY(f,v) BALANCE(#defeval TEMP f

TEMP(v))

#define foo(x) x and x

APPLY(\foo,BLAH)

As explained above the simplest version in cpp mode relies on defining
a silent evaluated string to play the role of the BALANCE macro.

The following example (default or cpp mode) demonstrates arithmetic
evaluation:

#define x 4

The answer is:

#eval x*x + 2*(16-x) + 1998%x

#if defined(x)&&!(3*x+5>17)

This should be output.

#endif

To finish, here are some examples involving mode switching. The follow-
ing example is self-explanatory (starting in default mode):

#mode push

#define f(x) x x

26

#mode standard tex

\f{blah}

\mode{string}{"$" "$"}

\mode{comment}{"/*" "*/"}

\f{urf} /* blah */

\define{FOO}{bar/* and some more */}

\mode{pop}

f(FOO)

A good example where a user-defined mode becomes useful is the GPP
source of this document (available with GPP’s source code distribution).

Another interesting application is selectively forcing evaluation of macros
in C strings when in cpp mode. For example, consider the following input:

#define blah(x) "and he said: x"

blah(foo)

Obviously one would want the parameter x to be expanded inside the
string. There are several ways around this problem:

#mode push

#mode nostring "\""

#define blah(x) "and he said: x"

#mode pop

#mode quote "`"

#define blah(x) `"and he said: x`"

#mode string QQQ "$$" "$$"

#define blah(x) $$"and he said: x"$$

The first method is very natural, but has the inconvenience of being
lengthy and neutralizing string semantics, so that having an unevaluated
instance of ‘x’ in the string, or an occurrence of ‘/*’, would be impossible
without resorting to further contortions.

The second method is slightly more efficient because the local presence
of a quote character makes it easier to control what is evaluated and
what isn’t, but has the drawback that it is sometimes impossible to find

27

a reasonable quote character without having to either significantly alter
the source file or enclose it inside a #mode push/pop construct. For
example, any occurrence of ‘/*’ in the string would have to be quoted.

The last method demonstrates the efficiency of evaluated strings in the
context of selective evaluation: since comments/strings cannot be nested,
any occurrence of ‘"’ or ‘/*’ inside the ‘$$’ gets output as plain text, as
expected inside a string, and only macro evaluation is enabled. Also note
that there is much more freedom in the choice of a string delimiter than
in the choice of a quote character.

Starting with version 2.1, meta-macro calls can be nested more effi-
ciently in default, cpp and Prolog modes. This makes it easy to make
a user version of a meta-macro, or to increment a counter:

#define myeval #eval #1

#define x 1

#defeval x #eval x+1

9 ADVANCED EXAMPLES

Here are some examples of advanced constructions using GPP. They tend
to be pretty awkward and should be considered as evidence of GPP’s
limitations.

The first example is a recursive macro. The main problem is that (since
GPP evaluates everything) a recursive macro must be very careful about
the way in which recursion is terminated in order to avoid undefined be-
havior (most of the time GPP will simply crash). In particular, relying on
a #if/#else/#endif construct to end recursion is not possible and results
in an infinite loop, because GPP scans user macro calls even in the un-
evaluated branch of the conditional block. A safe way to proceed is for
example as follows (we give the example in TEX mode):

\define{countdown}{

\if{#1}

#1...

\define{loop}{\countdown}

\else

28

Done.

\define{loop}{}

\endif

\loop{\eval{#1-1}}

}

\countdown{10}

Another example, in cpp mode:

#mode string QQQ "$" "$"

#define triangle(x,y) y \

$#if length(y)<x$ $#define iter triangle$ $#else$ \

$#define iter$ $#endif

$ iter(x,*y)

triangle(20)

The following is an (unfortunately very weak) attempt at implementing
functional abstraction in GPP (in standard mode). Understanding this
example and why it can’t be made much simpler is an exercise left to the
curious reader.

#mode string "`" "`" "\\"

#define ASIS(x) x

#define SILENT(x) ASIS()

#define EVAL(x,f,v) SILENT(

#mode string QQQ "`" "`" "\\"

#defeval TEMP0 x

#defeval TEMP1 (

\#define \TEMP2(TEMP0) f

)

TEMP1

)TEMP2(v)

#define LAMBDA(x,f,v) SILENT(

#ifneq (v) ()

#define TEMP3(a,b,c) EVAL(a,b,c)

#else

#define TEMP3(a,b,c) \LAMBDA(a,b)

#endif

)TEMP3(x,f,v)

#define EVALAMBDA(x,y) SILENT(

29

#defeval TEMP4 x

#defeval TEMP5 y

)

#define APPLY(f,v) SILENT(

#defeval TEMP6 ASIS(\EVA)f

TEMP6

)EVAL(TEMP4,TEMP5,v)

This yields the following results:

LAMBDA(z,z+z)

=> LAMBDA(z,z+z)

LAMBDA(z,z+z,2)

=> 2+2

#define f LAMBDA(y,y*y)

f

=> LAMBDA(y,y*y)

APPLY(f,blah)

=> blah*blah

APPLY(LAMBDA(t,t t),(t t))

=> (t t) (t t)

LAMBDA(x,APPLY(f,(x+x)),urf)

=> (urf+urf)*(urf+urf)

APPLY(APPLY(LAMBDA(x,LAMBDA(y,x*y)),foo),bar)

=> foo*bar

#define test LAMBDA(y,`#ifeq y urf

y is urf#else

y is not urf#endif

`)

APPLY(test,urf)

=> urf is urf

30

APPLY(test,foo)

=> foo is not urf

10 AUTHOR

GPP was written by Denis Auroux <auroux@math.mit.edu>. Since ver-
sion 2.12 it has been maintained by Tristan Miller <tristan@logological.org>.

11 COPYRIGHT

Copyright © 1996–2001 Denis Auroux.

Copyright © 2003–2020 Tristan Miller.

Permission is granted to anyone to make or distribute verbatim copies of
this document as received, in any medium, provided that the copyright
notice and this permission notice are preserved, thus giving the recipient
permission to redistribute in turn.

Permission is granted to distribute modified versions of this document,
or of portions of it, under the above conditions, provided also that they
carry prominent notices stating who last changed them.

31

	DESCRIPTION
	SYNTAX
	OPTIONS
	SYNTAX SPECIFICATION
	EVALUATION RULES
	META-MACROS
	DATE AND TIME CONVERSION SPECIFIERS
	EXAMPLES
	ADVANCED EXAMPLES
	AUTHOR
	COPYRIGHT

