
Writing a Simulator for the SIMH System
Revised 1-Mar-2020 for SIMH V4.0

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2018, written by Robert M Supnik
Copyright (c) 1993-2018, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Robert M Supnik.

1. Overview ... 4

2. Data Types .. 4

3. VM Organization.. 5

3.1 CPU Organization .. 6
3.1.1 Time Base .. 6
3.1.2 Step Function ... 7
3.1.3 Memory Organization .. 7
3.1.4 Interrupt Organization .. 8
3.1.5 I/O Dispatching .. 9
3.1.6 Instruction Execution ... 9

3.2 Peripheral Device Organization .. 10
3.2.1 Device Timing ... 11
3.2.2 Clock Calibration ... 12
3.2.3 Pre-Calibration ... 14
3.2.4 Idling .. 14
3.2.5 Data I/O ... 15

Data Structures .. 17

3.3 DEVICE Structure ... 17
3.3.1 Awidth and Aincr .. 19
3.3.2 Device Flags .. 19
3.3.3 Context ... 19
3.3.4 Examine and Deposit Routines .. 20
3.3.5 Reset Routine ... 20
3.3.6 Boot Routine .. 20
3.3.7 Attach and Detach Routines... 20
3.3.8 Memory Size Change Routine ... 21
3.3.9 Debug Controls .. 21
3.3.10 Device Specific Help support .. 23
3.3.11 Help Routine .. 23
3.3.12 Attach Help Routine .. 23

3.4 UNIT Structure ... 23
3.4.1 Unit Flags .. 24
3.4.2 Service Routine .. 25

3.5 REG Structure .. 25
3.5.1 Register Flags .. 29

3.6 BITFIELD Structure.. 29

3.7 MTAB Structure ... 30
3.7.1 Validation Routine ... 32
3.7.2 Display Routine ... 32
3.7.3 Help Flags .. 32
3.7.4 Example arguments in the mstring ... 32
3.7.5 Help field ... 33

3.8 Other Data Structures .. 33

4. VM Provided Routines ... 33

4.1 Instruction Execution ... 33

4.2 Binary Load and Dump ... 34

4.3 Symbolic Examination and Deposit .. 34

4.4 Optional Interfaces ... 35
4.4.1 Once Only Initialization Routine ... 35
4.4.2 Address Input and Display ... 36
4.4.3 Command Input and Post-Processing .. 36
4.4.4 Simulator Stop Message Formatting .. 36
4.4.5 VM-Specific Commands ... 37
4.4.6 VM-Support for stepping over subroutine calls ... 38
4.4.7 Displaying the simulator PC value in debug output ... 38

5. Other SCP Facilities .. 38

5.1 Terminal Input/Output Formatting Library ... 38

5.2 Terminal Multiplexer Emulation Library ... 39

5.3 Magnetic Tape Emulation Library ... 44

5.4 Disk Emulation Library ... 48

5.5 Breakpoint Support .. 50
5.5.1 Breakpoint Basics .. 51
5.5.2 Testing For Breakpoints ... 52
5.5.3 The Replay Problem .. 53
5.5.4 Breakpoint Classes ... 53

1. Overview

SIMH (history simulators) is a set of portable programs, written in C, which simulate various historically
interesting computers. This document describes how to design, write, and check out a new simulator for
SIMH. It is not an introduction to either the philosophy or external operation of SIMH, and the reader
should be familiar with both of those topics before proceeding. Nor is it a guide to the internal design or
operation of SIMH, except insofar as those areas interact with simulator design. Instead, this manual
presents and explains the form, meaning, and operation of the interfaces between simulators and the
SIMH simulator control package. It also offers some suggestions for utilizing the services SIMH offers
and explains the constraints that all simulators operating within SIMH will experience.

Some terminology: Each simulator consists of a standard simulator control package (SCP and related
libraries), which provides a control framework and utility routines for a simulator; and a unique virtual
machine (VM), which implements the simulated processor and selected peripherals. A VM consists of
multiple devices, such as the CPU, paper tape reader, disk controller, etc. Each controller consists of a
named state space (called registers) and one or more units. Each unit consists of a numbered state
space (called a data set). The host computer is the system on which SIMH runs; the target computer is
the system being simulated.

SIMH is unabashedly based on the MIMIC simulation system, designed in the late 1960’s by Len
Fehskens, Mike McCarthy, and Bob Supnik. This document is based on MIMIC’s published interface
specification, “How to Write a Virtual Machine for the MIMIC Simulation System”, by Len Fehskens and
Bob Supnik.

2. Data Types

SIMH is written in C. The host system must support (at least) 32-bit data types (64-bit data types for the
PDP-10 and other large-word target systems). To cope with the vagaries of C data types, SIMH defines
some unambiguous data types for its interfaces:

 SIMH data type interpretation in typical 32-bit C

 int8, uint8 signed char, unsigned char
 int16, uint16 signed short, unsigned short
 int32, uint32 signed int, unsigned int
 t_int64, t_uint64 long long, _int64 (system specific)
 t_addr simulated address, uint32 or t_uint64
 t_value simulated value, uint32 or t_uint64
 t_svalue simulated signed value, int32 or t_int64
 t_mtrlnt mag tape record length, uint32
 t_stat status code, int
 t_bool true/false value, int

[The inconsistency in naming t_int64 and t_uint64 is due to Microsoft VC++, which uses int64 as a
structure name member in the master Windows definitions file.]

In addition, SIMH defines structures for each of its major data elements:

 DEVICE device definition structure
 UNIT unit definition structure
 REG register definition structure

 MTAB modifier definition structure
 CTAB command definition structure
 DEBTAB debug table entry structure

3. VM Organization

A virtual machine (VM) is a collection of devices bound together through their internal logic. Each device
is named and corresponds more or less to a hunk of hardware on the real machine; for example:

 VM device Real machine hardware

 CPU central processor and main memory
 PTR paper tape reader controller and paper tape reader
 TTI console keyboard
 TTO console output
 DKP disk pack controller and drives

There may be more than one device per physical hardware entity, as for the console; but for each user-
accessible device there must be at least one. One of these devices will have the pre-eminent
responsibility for directing simulated operations. Normally, this is the CPU, but it could be a higher-level
entity, such as a bus master.

The VM actually runs as a subroutine of the simulator control package (SCP). It provides a master
routine for running simulated programs and other routines and data structures to implement SCP’s
command and control functions. The interfaces between a VM and SCP are relatively few:

 Interface Function

 char sim_name[] simulator name string
 REG *sim_PC pointer to simulated program counter
 int32 sim_emax maximum number of words in an instruction or data item
 DEVICE *sim_devices[] table of pointers to simulated devices, NULL terminated
 const char *sim_stop_messages[SCPE_BASE]
 table of pointers to error messages
 t_stat sim_load (…) binary loader subroutine
 t_stat sim_instr (void) instruction execution subroutine
 t_stat parse_sym (…) symbolic instruction/data parse subroutine
 t_stat fprint_sym (…) symbolic instruction/data print subroutine

In addition, there are several optional interfaces, which can be used for special situations, such as GUI
implementations:

 Interface Function

 t_addr (*sim_vm_parse_addr) (…) pointer to address parsing routine
 void (*sim_vm_fprint_addr) (…) pointer to address output routine
 void (*sim_vm_sprint_addr) (…) pointer to address format routine
 char (*sim_vm_read) (…) pointer to command input routine
 void (*sim_vm_post) (…) pointer to command post-processing routine
 t_bool (*sim_vm_fprint_stopped) (…) pointer to stop message format routine
 t_value (*sim_vm_pc_value) (…) pointer to routine returning the VM PC value
 t_bool (*sim_vm_is_subroutine_call) (…)
 pointer to routine that determines if the current

instruction is a subroutine call

const char *sim_vm_release pointer to string specifying the simulator specific
release version

 CTAB *sim_vm_cmd pointer to simulator-specific command table

There is no required organization for VM code. The following convention has been used so far. Let
name be the name of the real system (i1401 for the IBM 1401; i1620 for the IBM 1620; pdp1 for the PDP-
1; pdp18b for the other 18-bit PDP’s; pdp8 for the PDP-8; pdp11 for the PDP-11; nova for Nova; hp2100
for the HP 21XX; h316 for the Honeywell 315/516; gri for the GRI-909; pdp10 for the PDP-10; vax for the
VAX; sds for the SDS-940):

• name.h contains definitions for the particular simulator

• name_sys.c contains all the SCP interfaces except the instruction simulator

• name_cpu.c contains the instruction simulator and CPU data structures

• name_stddev.c contains the peripherals which were standard with the real system.

• name_lp.c contains the line printer.

• name_mt.c contains the mag tape controller and drives, etc.

The SIMH standard definitions are in sim_defs.h. Most definitions required by a VM can be obtained
simply by including that file A few require additional header files; those are called out below. The base
components of SIMH are:

 Source module header file module

 scp.c scp.h control package
 sim_console.c sim_console.h terminal I/O library
 sim_fio.c sim_fio.h file I/O library
 sim_timer.c sim_timer.h timer library
 sim_sock.c sim_sock.h socket I/O library
 sim_ether.c sim_ether.h Ethernet I/O library
 sim_serial.c sim_serial.h Serial Port I/O library
 sim_tmxr.c sim_tmxr.h terminal multiplexer simulation library
 sim_disk.c sim_disk.h disk simulation library
 sim_tape.c sim_tape.h magtape simulation library

3.1 CPU Organization

Most CPU’s perform at least the following functions:

• Time keeping

• Instruction fetching

• Address decoding

• Execution of non-I/O instructions

• I/O command processing

• Interrupt processing

Instruction execution is actually the least complicated part of the design; memory and I/O organization
should be tackled first.

3.1.1 Time Base

In order to simulate asynchronous events, such as I/O completion, the VM must define and keep a time
base. This can be accurate (for example, nanoseconds of execution) or arbitrary (for example, number of
instructions executed), but it must be used consistently throughout the VM. Many existing VM’s count

time in instructions, some count time in cycles that may align with cycles in the original hardware that may
reflect different instructions and/or combinations of memory references.

The CPU is responsible for counting down the event counter sim_interval and calling the asynchronous
event controller sim_process_event. SCP does the record keeping for timing.

SCP will display pending events or other activities and report the number these event times reflect using
the string sim_vm_interval_units. The sim_vm_interval_units defaults to “instructions”, but the
simulator may change this to “cycles” if the simulator tracks machine state updates internally based on
cycles.

A simulator’s time base needs to be specifically considered when writing simulated devices. The correct
choice that a DEVICE may use depends on, not only the sim_interval decrement strategy, but also the
nature of how long the DEVICE being simulated completed various activities actually being simulated.
Usually, DEVICEs simulate some physical interaction that the CPU made with mechanical components
(tape drives, card readers, disk drives, etc.). he time that activities on these mechanical devices was
many times the instruction execution rate of the processor (100’s, 1000’s or more). A DEVICE author
usually chooses DEVICE delays that are something between:

1) The amount of sim_interval decrements that relates to how long the activities on that particular
DEVICE actually took.

2) The absolute minimum that software (operating systems, applications, or diagnostics) running
within the simulator were capable of receiving a completion notification for the particular DEVICE
activity.

The absolute minimum case would often reflect that the software in question (device driver, or other) may
setup some sort of I/O to the device, but not actually be prepared to realize the operation’s completion
one instruction after whatever the CPU did to initiate the operation (for instance the interrupt handler for
device’s I/O completion). It probably would have been smarter if the original software author established
the interrupt handler before initiating the I/O activity, but real hardware never responded in one instruction
time, so that software always worked on hardware. Since the goal of the simulation is to have the
simulator work with existing software, the DEVICE simulation should reflect this goal. This minimum
value is usually observed during DEVICE simulator development and thus adjusted by the failure of such
software.

3.1.2 Step Function

SCP implements a stepping function using the STEP command. STEP counts down a specified number
of time units (as described in section 3.1.1) and then stops simulation. The VM can override the STEP
command’s counts by calling routine sim_cancel_step:

• t_stat sim_cancel_step (void) – cancel STEP count down.

The VM can then inspect variable sim_step to see if a STEP command is in progress. If sim_step is
non-zero, it represents the number of steps to execute. The VM can count down sim_step using its own
counting method, such as cycles, instructions, or memory references. If the VM counts steps in units
other than instructions, it can set the sim_vm_step_unit string pointer to reflect this.

3.1.3 Memory Organization

The criterion for memory layout is very simple: use the SIMH data type that is as large as (or if necessary,
larger than), the word length of the real machine. Note that the criterion is word length, not addressability:
the PDP-11 has byte addressable memory, but it is a 16-bit machine, and its memory is defined as uint16
M[]. It may seem tempting to define memory as a union of int8 and int16 data types, but this would make
the resulting VM endian-dependent. Instead, the VM should be based on the underlying word size of the
real machine, and byte manipulation should be done explicitly. Examples:

 Simulator memory size memory declaration

 IBM 1620 5-bit uint8
 IBM 1401 7-bit uint8
 PDP-8 12-bit uint16
 PDP-11, Nova 16-bit uint16
 PDP-1 18-bit uint32
 VAX 32-bit uint32
 PDP-10, IBM 7094 36-bit t_uint64

3.1.4 Interrupt Organization

The design of the VM’s interrupt structure is a complex interaction between efficiency and fidelity to the
hardware. If the VM’s interrupt structure is too abstract, interrupt driven software may not run. On the
other hand, if it follows the hardware too literally, it may significantly reduce simulation speed. One rule I
can offer is to minimize the fetch-phase cost of interrupts, even if this complicates the (much less
frequent) evaluation of the interrupt system following an I/O operation or asynchronous event. Another is
not to over-generalize; even if the real hardware could support 64 or 256 interrupting devices, the
simulators will be running much smaller configurations. I’ll start with a simple interrupt structure and then
offer suggestions for generalization.

In the simplest structure, interrupt requests correspond to device flags and are kept in an interrupt request
variable, with one flag per bit. The fetch-phase evaluation of interrupts consists of two steps: are
interrupts enabled, and is there an interrupt outstanding? If all the interrupt requests are kept as single-bit
flags in a variable, the fetch-phase test is very fast:

 if (int_enable && int_requests) { …process interrupt… }

Indeed, the interrupt enable flag can be made the highest bit in the interrupt request variable, and the two
tests combined:

 if (int_requests > INT_ENABLE) { …process interrupt… }

Setting or clearing device flags directly sets or clears the appropriate interrupt request flag:

 set: int_requests = int_requests | DEVICE_FLAG;
 clear: int_requests = int_requests & ~DEVICE_FLAG;

At a slightly higher complexity, interrupt requests do not correspond directly to device flags but are based
on masking the device flags with an enable (or disable) mask. There are now two parallel variables:
device flags and interrupt enable mask. The fetch-phase test is now:

 If (int_enable && (dev_flags & int_enables)) { …process interrupt… }

As a next step, the VM may keep a summary interrupt request variable, which is updated by any change
to a device flag or interrupt enable/disable:

 enable: int_requests = device_flags & int_enables;
 disable: int_requests = device_flags & ~int_disables;

This simplifies the fetch phase test slightly.

At yet higher complexity, the interrupt system may be too complex or too large to evaluate during the
fetch-phase. In this case, an interrupt pending flag is created, and it is evaluated by subroutine call

whenever a change could occur (start of execution, I/O instruction issued, device time out occurs). This
makes fetch-phase evaluation simple and isolates interrupt evaluation to a common subroutine.

If required for interrupt processing, the highest priority interrupting device can be determined by scanning
the interrupt request variable from high priority to low until a set bit is found. The bit position can then be
back-mapped through a table to determine the address or interrupt vector of the interrupting device.

3.1.5 I/O Dispatching

I/O dispatching consists of four steps:

• Identify the I/O command and analyze for the device address.

• Locate the selected device.

• Break down the I/O command into standard fields.

• Call the device processor.

Analyzing an I/O command is usually easy. Most systems have one or more explicit I/O instructions
containing an I/O command and a device address. Memory mapped I/O is more complicated; the
identification of a reference to I/O space becomes part of memory addressing. This usually requires
centralizing memory reads and writes into subroutines, rather than as inline code.

Once an I/O command has been analyzed, the CPU must locate the device subroutine. The simplest
way is a large switch statement with hardwired subroutine calls. More modular is to call through a
dispatch table, with NULL entries representing non-existent devices; this also simplifies support for
modifiable device addresses and configurable devices. Before calling the device routine, the CPU usually
breaks down the I/O command into standard fields. This simplifies writing the peripheral simulator.

3.1.6 Instruction Execution

Instruction execution is the responsibility of VM subroutine sim_instr. It is called from SCP as a result of
a RUN, GO, CONT, or BOOT command. It begins executing instructions at the current PC (sim_PC
points to its register description block) and continues until halted by an error or an external event.

When called, the CPU needs to account for any state changes that the user made. For example, it may
need to re-evaluate whether an interrupt is pending, or restore frequently used state to local register
variables for efficiency. The actual instruction fetch and execute cycle is usually structured as a loop
controlled by an error variable, e.g.,

 reason = 0;
 do { … } while (reason == 0); or while (reason == 0) { … }

Within this loop, the usual order of events is:

• If the event timer sim_interval has reached zero, process any timed events. This is done by
SCP subroutine sim_process_event. Because this is the polling mechanism for user-generated
processor halts (^E), errors must be recognized immediately:

if (sim_interval <= 0) {

if (reason = sim_process_event ()) break; }

• Check for outstanding interrupts and process if required.

• Check for other processor-unique events, such as wait-state outstanding or traps outstanding.

• Check for an instruction breakpoint. SCP has a comprehensive breakpoint facility. It allows a VM
to define many different kinds of breakpoints. The VM checks for execution (type E) breakpoints
during instruction fetch.

• Fetch the next instruction, increment the PC, optionally decode the address, and dispatch (via a
switch statement) for execution.

A few guidelines for implementation:

• In general, code should reflect the hardware being simulated. This is usually simplest and
easiest to debug.

• The VM should provide some debugging aids. The existing CPU’s all provide multiple instruction
breakpoints, a PC change queue, error stops on invalid instructions or operations, and symbolic
examination and modification of memory.

3.2 Peripheral Device Organization

The basic elements of a VM are devices, each corresponding roughly to a real chunk of hardware. A
device consists of register-based state and one or more units. Thus, a multi-drive disk subsystem is a
single device (representing the hardware of the real controller) and one or more units (each representing
a single disk drive). Sometimes the device and its unit are the same entity as, for example, in the case of
a paper tape reader. However, a single physical device, such as the console, may be broken up for
convenience into separate input and output devices.

In general, units correspond to individual sources of input or output (one tape transport, one A-to-D
channel). Units are the basic medium for both device timing and device I/O. Except for the console,
terminals, and network devices, all other I/O devices are simulated as host-resident files. SCP allows the
user to make an explicit association between a host-resident file and a simulated hardware entity.

Both devices and units have state. Devices operate on registers, which contain information about the
state of the device, and indirectly, about the state of the units. Units operate on data sets, which may be
thought of as individual instances of input or output, such as a disk pack or a punched paper tape. In a
typical multi-unit device, all units are the same, and the device performs similar operations on all of them,
depending on which one has been selected by the program being simulated.

(Note: SIMH, like MIMIC, restricts registers to devices. Replicated registers, for example, disk drive
current state, are handled via register arrays.)

For each structural level, SIMH defines, and the VM must supply, a corresponding data structure.
DEVICE structures correspond to devices, REG structures to registers, and UNIT structures to units.
These structures are described in detail in section 4.

The primary functions of a peripheral are:

• command decoding and execution

• device timing

• data transmission.

Command decoding is fairly obvious. At least one section of the peripheral code module will be devoted
to processing directives issued by the CPU. Typically, the command decoder will be responsible for
register and flag manipulation, and for issuing or canceling I/O requests. The former is easy, but the later
requires a thorough understanding of device timing.

3.2.1 Device Timing

The principal problem in I/O device simulation is imitating asynchronous operations in a sequential
simulation environment. Fortunately, the timing characteristics of most I/O devices do not vary with
external circumstances. The distinction between devices whose timing is externally generated (e.g.,
console keyboard) and those whose timing is internally generated (disk, paper tape reader) is crucial.
With an externally timed device, there is no way to know when an in-progress operation will begin or end;
with an internally timed device, given the time when an operation starts, the end time can be calculated.

For an internally timed device, the elapsed time between the start and conclusion of an operation is called
the wait time. Some typical internally timed devices and their wait times include:

 PTR (300 char/sec) 3.3 msec
 PTP (50 char/sec) 20 msec
 CLK (line frequency) 16.6 msec
 TTO (30 char/sec) 33 msec

Mass storage devices, such as disks and tapes, do not have a fixed response time, but a start-to-finish
time can be calculated based on current versus desired position, state of motion, etc.

For an externally timed device, there is no portable mechanism by which a VM can be notified of an
external event (for example, a key stroke). Accordingly, all current VM’s poll for keyboard input, thus
converting the externally timed keyboard to a pseudo-internally timed device. A more general restriction
is that SIMH is single-threaded. Threaded operations must be done by polling using the unit timing
mechanism, either with real units or fake units created expressly for polling.

SCP provides the supporting routines for device timing. SCP maintains a list of units (called active units)
that are in the process of timing out. It also provides routines for querying or manipulating this list (called
the active queue). Lastly, it provides a routine for checking for timed-out units and executing a VM-
specified action when a time-out occurs.

Device timing is done with the UNIT structure, described in section 4. To set up a timed operation, the
peripheral calculates a waiting period for a unit and places that unit on the active queue. The CPU counts
down the waiting period. When the waiting period has expired, sim_process_event removes the unit
from the active queue and calls a device subroutine. A device may also cancel an outstanding timed
operation and query the state of the queue. The timing subroutines are:

• t_stat sim_activate (UNIT *uptr, int32 wait). This routine places the specified unit on the active
queue with the specified waiting period. A waiting period of 0 is legal; negative waits cause an
error. If the unit is already active, the active queue is not changed, and no error occurs.

• t_stat sim_activate_abs (UNIT *uptr, int32 wait). This routine places the specified unit on the
active queue with the specified waiting period. A waiting period of 0 is legal; negative waits cause
an error. If the unit is already active, the specified waiting period overrides the currently pending
waiting period.

• t_stat sim_activate_after (UNIT *uptr, uint32 usec_delay). This routine places the specified unit
on the active queue with the specified delay based on the simulator’s calibrated clock. The
specified delay must be greater than 0 usecs. If the unit is already active, the active queue is not
changed, and no error occurs.

• t_stat sim_activate_after_d (UNIT *uptr, double usec_delay). This routine places the specified
unit on the active queue with the specified delay based on the simulator’s calibrated clock. The
specified delay must be greater than 0 usecs. If the unit is already active, the active queue is not
changed, and no error occurs.

• t_stat sim_activate_after_abs (UNIT *uptr, uint32 usec_delay). This routine places the specified
unit on the active queue with the specified delay based on the simulator’s calibrated clock. The
specified delay must be greater than 0 usecs. If the unit is already active, the specified delay
overrides the currently pending waiting period.

• t_stat sim_activate_after_abs_d (UNIT *uptr, double usec_delay). This routine places the
specified unit on the active queue with the specified delay based on the simulator’s calibrated
clock. The specified delay must be greater than 0 usecs. If the unit is already active, the
specified delay overrides the currently pending waiting period.

• t_stat sim_cancel (UNIT *uptr). This routine removes the specified unit from the active queue. If
the unit is not on the queue, no error occurs.

• t_bool sim_is_active (UNIT *uptr). This routine tests whether a unit is in the active queue. If it
is, the routine returns TRUE(1); if it is not, the routine returns FALSE(0).

• int32 sim_activate_time (UNIT *uptr). This routine returns the time the device has remaining in
the queue + 1. If it is not pending, the routine returns 0.

• double sim_activate_time_usecs (UNIT *uptr). This routine returns the wall clock time in usecs
the device has remaining in the queue + 1. If the unit is not pending, the routine returns 0.

• double sim_gtime (void). This routine returns the time elapsed since the last RUN or BOOT
command.

• uint32 sim_grtime (void). This routine returns the low-order 32b of the time elapsed since the
last RUN or BOOT command.

• int32 sim_qcount (void). This routine returns the number of entries on the clock queue.

• t_stat sim_process_event (void). This routine removes all timed out units from the active queue
and calls the appropriate device subroutine to service the time-out.

• int32 sim_interval. This variable represents the time until the first unit on the event queue that is
scheduled to happen. sim_inst counts down this value (usually by 1 for each instruction
executed). If there are no timed events outstanding, SCP counts down a “null interval” of 10,000
time units.

3.2.2 Clock Calibration

The timing mechanism described in the previous section is approximate. Devices, such as real-time
clocks, which track wall time will be inaccurate. SCP provides routines to synchronize multiple simulated
clocks (to a maximum of 8) to wall time.

• int32 sim_rtcn_init_unit_ticks (UNIT *uptr, int32 clock_interval, int32 clk, int32 ticksper). This
routine initializes the clock calibration mechanism for simulated clock clk and uptr identifies which
unit’s service routine performs clock tick activities. The argument clock_interval is returned as the
result. The ticksper argument specifies the clock ticks per second.

• int32 sim_rtcn_init_unit (UNIT *uptr, int32 clock_interval, int32 clk, int32 ticksper). This routine
initializes the clock calibration mechanism for simulated clock clk and uptr identifies which unit’s
service routine performs clock tick activities. The argument clock_interval is returned as the
result.

• int32 sim_rtcn_calb (int32 tickspersecond, int32 clk). This routine calibrates simulated clock clk.
The argument is the number of clock ticks expected per second. The return value is the
calibrated interval for the next tick.

• int32 sim_rtcn_calb_tick (int32 clk). This routine calibrates simulated clock clk. The return
value is the calibrated interval for the next tick.

Some host computers have relatively poor resolution clock ticks (>= 10ms) and/or variable or high
minimum sleep times (> 2ms). Some simulators have clocks which may need to tick faster than the clock
resolution or minimum sleep times. In order to provide accurate time services, a simulator should notify
the timing services that the simulated system has digested a previously generated clock tick.

• t_stat sim_rtcn_tick_ack (int32 delay, int32 clk). This routine informs the timing subsystem that
the most recent clock tick for the simulated clock has been digested by the simulated system and
the timing subsystem can potentially schedule a catchup ticks if necessary. If a catchup clock tick
is necessary, the delay value indicates how soon the tick can be generated.

The VM must call sim_rtcn_init_unit_ticks for each simulated clock in two places: in the reset routine of
the DEVICE which implements a clock device (All reset routines are executed at simulator startup and
when a DEVICE is enabled or disabled) and whenever the real-time clock is started. The simulator calls
sim_rtcn_calb to calculate the actual interval delay when the real-time clock is serviced:

 /* clock start */

 if (!sim_is_active (&clk_unit))

 sim_activate (&clk_unit, sim_rtcn_init_unit_ticks (&clk_unit, clk_delay, clkno,
clk_ticks_per_second));

 etc.

 /* clock service */

 sim_rtcn_calb_tick (clkno);
 sim_activate_after (&clk_unit, 1000000/clk_ticks_per_second);

 /* clock register access */

 sim_rtcn_tick_ack (20, clkno);

The real-time clock is usually simulated clock 0; other clocks are used for polling asynchronous
multiplexers or intervals timers.

The underlying timer services will automatically run a calibrated clock whenever the simulator doesn’t
have one registered and running or when the registered timer is running too fast for accurate clock
calibration.. This will allow the sim_activate_after API to provide proper wall clock relative timing delays.

Some simulated systems use programmatic interval timers to implement clock ticks. If a simulated
system or simulated operating system uses a constant interval to provide the system clock ticks, then
clock device is a candidate to be a calibrated timer. If the simulated operating system dynamically
changes the programmatic interval more than once, then such a device is not a calibrated timer, but it
certainly should use sim_activate_after and sim_activate_time to implement the programmatic interval
delays.

3.2.3 Pre-Calibration

Some simulator situations expect that instruction execution rates be immediately close to the rate that the
host system is capable of executing instructions at and for wall clock delays to be immediately precise.
The simulator framework provides a means of pre-calibrating the instruction execution rate. A sequence
of three to four instructions that run in a tight loop can be used at simulator startup time to compute the
execution rate.

The following line in and around the CPU device reset routine will serve to facilitate the precalibration:

static const char *vax_clock_precalibrate_commands[] = {
 "-m 100 INCL 120",
 "-m 103 INCL 124",
 "-m 106 MULL3 120,124,128",
 "-m 10D BRW 100",
 "PC 100",
 NULL};

t_stat cpu_reset (DEVICE *dptr)
{
 sim_clock_precalibrate_commands = vax_clock_precalibrate_commands;
 sim_vm_initial_ips = SIM_INITIAL_IPS;

[...]
}

Once pre-calibration has been done, some wall clock delays on some (very slow) host systems may be
unreasonably off with respect to actual instruction execution. To accommodate for this the simulator may
provide an initial expectation of how fast it can execute the pre-calibration instruction loop. This estimate
can be specified by the simulator in the CPU device reset routine. An appropriate value for the
sim_vm_initial_ips is best determined by comparing the VAX simulator pre-calibrated result (displayed
in the SHOW CLOCK command) to your simulator’s pre-calibrated value. If your value is approximately N
times the VAX’s value, then sim_vm_initial_ips should be set to N times SIM_INITIAL_IPS.

3.2.4 Idling

Idling is a way of pausing simulation when no real work is happening, without losing clock calibration.
The VM must detect when it is idle; it can then inform the host of this situation by calling sim_idle:

• t_bool sim_idle (int32 clk, int tick_decrement) – attempt to idle the VM until the next scheduled
I/O event, using simulated clock clk as the time base, and decrement sim_interval by an
appropriate number of cycles. If a calibrated timer is not available, or the time until the next event
is less than 1ms, decrement sim_interval by tick_decrement; otherwise, leave sim_interval
unchanged.

sim_idle returns TRUE if the VM actually idled, FALSE if it did not.

In order for idling to be well behaved on the host system, simulated devices which poll for input (console
and terminal multiplexors are examples), the polling that these devices perform should be done at the
same time as when the simulator will unavoidably be executing instructions. The most common time this
happens is when click tick interrupts are generated. As such, these devices should schedule their polling
activities to be aligned with the clock ticks which are happening anyway or some multiple of the clock tick
value.

• t_stat sim_clock_coschedule (UNIT *uptr, int32 interval) – This routine places the specified unit
on the active queue behind the default timer at the specified interval rounded up to a whole

number of timer ticks. An interval value 0 is legal; negative intervals cause an error. If the unit is
already active, the active queue is not changed, and no error occurs.

• t_stat sim_clock_coschedule_abs (UNIT *uptr, int32 interval) – This routine places the specified
unit on the active queue behind the default timer at the specified interval rounded up to a whole
number of timer ticks. An interval value 0 is legal; negative intervals cause an error. If the unit is
already active, the specified waiting period overrides the currently pending waiting period.

• t_stat sim_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 ticks) – This routine places the
specified unit on the active queue behind the specified timer with the specified number of clock
ticks between invocations. A tick count of 0 is legal; negative ticks cause an error. If the unit is
already active, the active queue is not changed, and no error occurs. Events scheduled for 0 or 1
tick will fire on the next clock tick.

• t_stat sim_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 ticks) – This routine places
the specified unit on the active queue behind the specified timer with the specified number of
clock ticks between invocations. A tick count of 0 is legal; negative ticks cause an error. If the
unit is already active, the specified waiting period overrides the currently pending waiting period.
Events scheduled for 0 or 1 tick will fire on the next clock tick.

Because idling and throttling are mutually exclusive, the VM must inform SCP when idling is turned on or
off:

• t_stat sim_set_idle (UNIT *uptr, int32 val, const char *cptr, void *desc) – informs SCP that idling
is enabled.

• t_stat sim_clr_idle (UNIT *uptr, int32 val, const char *cptr, void *desc) – informs SCP that idling
is disabled.

• t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, const void *desc) – displays whether idling
is enabled or disabled, as seen by SCP.

3.2.5 Data I/O

For most devices, timing is half the battle (for clocks it is the entire war); the other half is I/O. Some
devices are simulated on real hardware (for example, Ethernet controllers). Most I/O devices are
simulated as files on the host file system in little-endian format. SCP provides facilities for associating
files with units (ATTACH command) and for reading and writing data from and to devices in a endian- and
size-independent way.

For most devices, the VM designer does not have to be concerned about the formatting of simulated
device files. I/O occurs in 1, 2, 4, or 8 byte quantities; SCP automatically chooses the correct data size
and corrects for byte ordering. Specific issues:

• Line printers should write data as 7-bit ASCII, with newlines replacing carriage-return/line-feed
sequences.

• Disks should be viewed as linear data sets, from sector 0 of surface 0 of cylinder 0 to the last
sector on the disk. This allows easy transcription of real disks to files usable by the simulator.

• Magtapes, by convention, use a record based format. Each record consists of a leading 32-bit
record length, the record data (padded with a byte of 0 if the record length is odd), and a trailing
32-bit record length. File marks are recorded as one record length of 0.

• Cards have 12 bits of data per column, but the data is most conveniently viewed as (ASCII)
characters. Column binary can be implemented using two successive characters per card
column..

Data I/O varies between fixed and variable capacity devices, and between buffered and non-buffered
devices. A fixed capacity device differs from a variable capacity device in that the file attached to the
former has a maximum size, while the file attached to the latter may expand indefinitely. A buffered
device differs from a non-buffered device in that the former buffers its data set in host memory, while the
latter maintains it as a file. Most variable capacity devices (such as the paper tape reader and punch) are
sequential; all buffered devices are fixed capacity.

3.2.5.1 Reading and Writing Data

The ATTACH command creates an association between a host file and an I/O unit. For non-buffered
devices, ATTACH stores the file pointer for the host file in the fileref field of the UNIT structure. For
buffered devices, ATTACH reads the entire host file into a buffer pointed to by the filebuf field of the
UNIT structure. If unit flag UNIT_MUSTBUF is set, the buffer is allocated dynamically; otherwise, it must
be statically allocated.

For non-buffered devices, I/O is done with standard C subroutines plus the SCP routines sim_fread and
sim_fwrite. sim_fread and sim_fwrite are identical in calling sequence and function to fread and fwrite,
respectively, but will correct for endian dependencies. For buffered devices, I/O is done by copying data
to or from the allocated buffer. The device code must maintain the number (+1) of the highest address
modified in the hwmark field of the UNIT structure. For both the non-buffered and buffered cases, the
device must perform all address calculations and positioning operations.

SIMH provides capabilities to access files >2GB (the int32 position limit). If a VM is compiled with flags
USE_INT64 and USE_ADDR64 defined, then t_addr is defined as t_uint64 rather than uint32. Routine
sim_fseek allows simulated devices to perform random access in large files:

• int sim_fseek (FILE *handle, t_addr position, int where)

sim_fseek is identical to standard C fseek, with two exceptions: where = SEEK_END is not supported,
and the position argument can be 64b wide.

The DETACH command breaks the association between a host file and an I/O unit. For buffered devices,
DETACH writes the allocated buffer back to the host file.

3.2.5.2 Console I/O

SCP provides three routines for console I/O.

• t_stat sim_poll_kbd (void). This routine polls for keyboard input. If there is a character, it
returns SCPE_KFLAG + the character. If the console is attached to a Telnet connection, and the
connection is lost, the routine returns SCPE_LOST. If there is no input, it returns SCPE_OK.

• t_stat sim_putchar (int32 char). This routine types the specified ASCII character to the console.
If the console is attached to a Telnet connection, and the connection is lost, the routine returns
SCPE_LOST.

• t_stat sim_putchar_s (int32 char). This routine outputs the specified ASCII character to the
console. If the console is attached to a Telnet connection, and the connection is lost, the routine
returns SCPE_LOST; if the connection is backlogged, the routine returns SCPE_STALL and the
output should retried at a later time.

3.2.5.3 Simulators for computers without a console port

If a computer being simulated doesn’t have a console port SCP will call sim_poll_kbd periodically to
detect when a user types ^E (Control E) in the session running the simulator and they will be returned to
the “sim>” prompt.

Data Structures

The devices, units, and registers that make up a VM are formally described through a set of data
structures which interface the VM to the control portions of SCP. The devices themselves are pointed to
by the device list array sim_devices[]. Within a device, both units and registers are allocated
contiguously as arrays of structures. In addition, many devices allow the user to set or clear options via a
modifications table.

Note that a device must always have at least one unit, even if that unit is not needed for simulation
purposes. A device that does not need registers need not provide a register table, instead the registers
field is set to NULL.

Device registers serve two purposes:

1. provide a means of letting the simulator user (more often the developer) have visibility to examine
and potentially change arbitrary state variables within the simulator from the sim> prompt rather

than having to use a debugger.
2. provide all of the information in the internal state of a simulated device so that a SAVE command

can capture that state and a subsequent RESTORE (after exiting and restarting the same

simulator) will be able to proceed without any information being missing.

A device unit serves two fundamental purposes in a simulator:

1. It acts as an entity which can generate events which are handled in the simulated instruction
stream (via one of the sim_activate APIs)

2. It provides a place which holds an open file pointer for simulated devices which have content
bound to file contents (via ATTACH commands).

For example: A UNIT can be mapped to real units in a simulated device (i.e. Disk Drives), or it might
serve merely to perform timing related activities, or both of these might be present. The pdp11_rq
simulation has a combination of both of these. There are 4 units which map one to one directly to
simulated disk drives, and there are 2 additional units. One is used to time various things and one is
used to provide instruction delays while walking through the MSCP initialization and command processing
sequence.

3.3 DEVICE Structure

Devices are defined by the DEVICE structure (typedef DEVICE):

struct DEVICE {
 const char *name; /* name */
 struct UNIT *units; /* units */
 struct REG *registers; /* registers */
 struct MTAB *modifiers; /* modifiers */
 int32 numunits; /* #units */
 uint32 aradix; /* address radix */
 uint32 awidth; /* address width */

 uint32 aincr; /* addr increment */
 uint32 dradix; /* data radix */
 uint32 dwidth; /* data width */
 t_stat (*examine)(); /* examine routine */
 t_stat (*deposit)(); /* deposit routine */
 t_stat (*reset)(); /* reset routine */
 t_stat (*boot)(); /* boot routine */
 t_stat (*attach)(); /* attach routine */
 t_stat (*detach)(); /* detach routine */
 void *ctxt; /* context */
 uint32 flags; /* flags */
 uint32 dctrl; /* debug control flags */
 struct DEBTAB *debflags; /* debug flag names */
 t_stat (*msize)(); /* memory size change */
 char *lname; /* logical name */
 t_stat (*help)(); /* help routine */
 t_stat (*attach_help)(); /* attach help routine */
 void *help_ctxt; /* help context */

const char *(*description)(); /* device description */
};

The fields are the following:

name device name, string of all capital alphanumeric characters.
units pointer to array of UNIT structures, or NULL if none.
registers pointer to array of REG structures, or NULL if none.
modifiers pointer to array of MTAB structures, or NULL if none.
numunits number of units in this device.
aradix radix for input and display of device addresses, 2 to 16 inclusive.
awidth width in bits of a device address, 1 to 64 inclusive.
aincr increment between device addresses, normally 1; however, byte addressed

devices with 16-bit words specify 2, with 32-bit words 4.
dradix radix for input and display of device data, 2 to 16 inclusive.
dwidth width in bits of device data, 1 to 64 inclusive.
examine address of special device data read routine, or NULL if none is required.
deposit address of special device data write routine, or NULL if none is required.
reset address of device reset routine, or NULL if none is required.
boot address of device bootstrap routine, or NULL if none is required.
attach address of special device attach routine, or NULL if none is required.
detach address of special device detach routine, or NULL if none is required.
ctxt address of VM-specific device context table, or NULL if none is required.
flags device flags.
dctrl debug control flags.
debflags pointer to array of DEBTAB structures, or NULL if none.
msize address of memory size change routine, or NULL if none is required.
lname pointer to logical name string, or NULL if not assigned.
help address of help routine, or NULL if none is required.
attach_help address of attach help routine, or NULL if none is required.
help_ctx address of device specific context which might be useful while displaying help

for the current device, or NULL if none is required.
description address of device description function, or NULL if not implemented. The function

returns a string which displays the a description of the device being simulated.
 This is part of the output of the "SHOW FEATURES" command. It also is
available (when provided) for dynamic insertion in the information produced by
the DEVICE help routine.

3.3.1 Awidth and Aincr

The awidth field specifies the width of the VM’s fundamental computer “word”. For example, on the PDP-
11, awidth is 16b, even though memory is byte-addressable. The aincr field specifies how many
addressing units comprise the fundamental “word”. For example, on the PDP-11, aincr is 2 (2 bytes per
word).

If aincr is greater than 1, SCP assumes that data is naturally aligned on addresses that are multiples of
aincr. VM’s that support arbitrary byte alignment of data (like the VAX) can follow one of two strategies:

• Set awidth = 8 and aincr = 1 and support only byte access in the examine/deposit routines.

• Set awidth and aincr to the fundamental sizes and support unaligned data access in the
examine/deposit routines.

In a byte-addressable VM, SAVE and RESTORE will require (memory_size_bytes / aincr) iterations to
save or restore memory. Thus, it is significantly more efficient to use word-wide rather than byte-wide
memory; but requirements for unaligned access can add significantly to the complexity of the examine
and deposit routines.

3.3.2 Device Flags

The flags field contains indicators of current device status. SIMH defines several flags:

flag name meaning if set

 DEV_DISABLE device can be set enabled or disabled
 DEV_DIS device is currently disabled
 DEV_DYNM device requires call on msize routine to change memory size
 DEV_DEBUG device supports SET DEBUG command
 DEV_SECTORS device capacity is in units of 512 byte sectors
 DEV_DONTAUTO do not automatically detach already attached units
 DEV_FLATHELP use traditional (unstructured) help
 DEV_NOSAVE don’t save device state

The flags field also contains an optional device type specification. One of these may be specified when
initializing the flags field:

 DEV_DISK device uses sim_disk library attach
 DEV_TAPE device uses sim_tape library attach
 DEV_MUX device uses sim_tmxr library attach
 DEV_ETHER device uses sim_ether library attach
 DEV_DISPLAY device uses sim_video library attach

Starting at bit position DEV_V_UF up to but not including DEV_V_RSV, the remaining flags are device-
specific. Device flags are automatically saved and restored; the device need not supply a register for
these bits.

3.3.3 Context

The field contains a pointer to a VM-specific device context table, if required. SIMH never accesses this
field. The context field allows VM-specific code to walk VM-specific data structures from the
sim_devices root pointer.

3.3.4 Examine and Deposit Routines

For devices which maintain their data sets as host files, SCP implements the examine and deposit data
functions. However, devices which maintain their data sets as private state (for example, the CPU) must
supply special examine and deposit routines. The calling sequences are:

t_stat examine_routine (t_val *eval_array, t_addr addr, UNIT *uptr, int32 switches) – Copy
sim_emax consecutive addresses for unit uptr, starting at addr, into eval_array. The switch
variable has bit<n> set if the n’th letter was specified as a switch to the examine command.

t_stat deposit_routine (t_val value, t_addr addr, UNIT *uptr, int32 switches) – Store the specified
value in the specified addr for unit uptr. The switch variable is the same as for the examine
routine.

3.3.5 Reset Routine

The reset routine implements the device reset function for the RESET, RUN, and BOOT commands. Its
calling sequence is:

 t_stat reset_routine (DEVICE *dptr) – Reset the specified device to its initial state.

A typical reset routine clears all device flags and cancels any outstanding timing operations. Switch –p
(available via global variable sim_switches) specifies a reset to power-up state.

The reset routine is a reasonable place to perform one time initialization activities specific to the device
keeping a static variable indicating that the one time initialization has been performed.

3.3.6 Boot Routine

If a device responds to a BOOT command, the boot routine implements the bootstrapping function. Its
calling sequence is:

t_stat boot_routine (int32 unit_num, DEVICE *dptr) – Bootstrap unit unit_num on the device dptr.

A typical bootstrap routine copies a bootstrap loader into main memory and sets the PC to the starting
address of the loader. SCP then starts simulation at the specified address.

3.3.7 Attach and Detach Routines

Normally, the ATTACH and DETACH commands are handled by SCP. However, devices which need to
pre- or post-process these commands must supply special attach and detach routines. The calling
sequences are:

t_stat attach_routine (UNIT *uptr, const char *file) – Attach the specified file to the unit uptr.
sim_switches contains the command switch; bit SIM_SW_REST indicates that attach is being
called by the RESTORE command rather than the ATTACH command.

t_stat detach_routine (UNIT *uptr) – Detach unit uptr.

In practice, these routines usually invoke the standard SCP routines, attach_unit and detach_unit,
respectively. For example, here are special attach and detach routines to update line printer error state:

t_stat lpt_attach (UNIT *uptr, const char *cptr) {
t_stat r;

if ((r = attach_unit (uptr, cptr)) != SCPE_OK) return r;

lpt_error = 0;

return SCPE_OK;

}

t_stat lpt_detach (UNIT *uptr) {

 lpt_error = 1;

 return detach_unit (uptr);

}

If the VM specifies an ATTACH or DETACH routine, SCP bypasses its normal tests before calling the VM
routine. Thus, a VM DETACH routine cannot be assured that the unit is actually attached and must test
the unit flags if required.

SCP executes a DETACH ALL command as part of simulator exit. Normally, DETACH ALL only calls a
unit’s detach routine if the unit’s UNIT_ATT flag is set. During simulator exit, the detach routine is also
called if the unit is not flagged as attachable (UNIT_ATTABLE is not set). This allows the detach routine
of a non-attachable unit to function as a simulator-specific cleanup routine for the unit, device, or entire
simulator.

3.3.8 Memory Size Change Routine

Most units instantiate any memory array at the maximum size possible. This allows apparent memory
size to be changed by varying the capac field in the unit structure. For some devices (like the VAX CPU),
instantiating the maximum memory size would impose a significant resource burden if less memory was
actually needed. These devices must provide a routine, the memory size change routine, for RESTORE
to use if memory size must be changed:

t_stat change_mem_size (UNIT *uptr, int32 val, const char *cptr, void *desc) – Change the
capacity (memory size) of unit uptr to val. The cptr and desc arguments are included for
compatibility with the SET command’s validation routine calling sequence.

3.3.9 Debug Controls

Devices can support debug printouts. Debug printouts are controlled by the SET {NO}DEBUG command,
which specifies where debug output should be printed; and by the SET <device> {NO}DEBUG command,
which enables or disables individual debug printouts.

If a device supports debug printouts, device flag DEV_DEBUG must be set. Field dctrl is used for the
debug control flags. If a device supports only a single debug on/off flag, then the debflags field should
be set to NULL. If a device supports multiple debug on/off flags, then the correspondence between bit
positions in dctrl and debug flag names is specified by table debflags. debflags points to a contiguous
array of DEBTAB structures (typedef DEBTAB). Each DEBTAB structure specifies a single debug flag:

 struct DEBTAB {
 const char name; /* flag name */
 uint32 mask; /* control bit */
 const char *desc; /* description */
 };

The fields are the following:

 name name of the debug flag.
 mask bit mask of the debug flag.

 desc description of the debug flag.

The array is terminated with a NULL entry.

The use and definition of debug mask values is up to the particular simulator device. Some simulator
support libraries define their own debug mask values that can be used to display various details about the
internal activities of the respective library. Libraries defined debug masks a defined starting at the high
bits in 32 bit the mask word, so device specific masks should start their mask definitions with the low bits
to avoid unexpected debug output if the definitions collide.

Simulator code can produce debug output by calling sim_debug which is declared (in header file scp.h):

void sim_debug (uint32 dbits, DEVICE* dptr, const char* fmt, ...);

The dbits is a flag which matches a mask in a sim_debtab structure, and the the dptr is the DEVICE
which has the corresponding dctl field.

Additionally support exists for displaying bit and bitfield values. Bit field values are defined using the
BITFIELD structure and the BIT macros to declare the bits and bitfields.

BIT(nm) - Single Bit definition

BITNC - Don't care Bit definition

BITF(nm,sz) - Bit Field definition

BITNCF(sz) - Don't care Bit Field definition

BITFFMT(nm,sz,fmt) - Bit Field definition with Output format

BITFNAM(nm,sz,names) - Bit Field definition with value->name map

ENDBITS

For example:

static const char *rp_fname[CS1_N_FNC] = {

 "NOP", "UNLD", "SEEK", "RECAL", "DCLR", "RLS",

 "OFFS", "RETN","PRESET", "PACK", "SEARCH",

 "WRCHK", "WRITE", "WRHDR", "READ", "RDHDR"

 };

BITFIELD xx_csr_bits[] = {

 BIT(GO), /* Go */

 BITFNAM(FUNC,5,rp_fname), /* Function Code */

 BIT(IE), /* Interrupt Enable */

 BIT(RDY), /* Drive Ready */

 BIT(DVA), /* Drive Available */

 BITNCF(1), /* 12 Reserved */

 BIT(TRE), /* Transfer Error */

 BIT(SC), /* Special Condition */

 ENDBITS

};

The fields in a register can be displayed (along with transition indicators) by calling sim_debug_bits_hdr
or sim_debug_bits.

void sim_debug_bits_hdr (uint32 dbits, DEVICE* dptr,

 const char *header, BITFIELD* bitdefs,

 uint32 before, uint32 after, int terminate);

void sim_debug_bits (uint32 dbits, DEVICE* dptr, BITFIELD* bitdefs,

 uint32 before, uint32 after, int terminate);

3.3.10 Device Specific Help support

A device declaration may specify a device type or class in the flags field by providing one of DEV_DISK,
DEV_TAPE, DEV_MUX, DEV_ETHER or DEV_DISPLAY values when initializing the flags. The device
type allows the scp HELP command routine to provide some default help information for devices which
don’t otherwise specify a device specific help routine or a attach_help routine.

3.3.11 Help Routine

A device declaration may provide a routine which will display help about that device when a user enters a
“HELP dev” command.

t_stat help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) – Write help
information about the device and/or unit usage. The flag and cptr arguments are included for
compatibility with the HELP command’s validation routine calling sequence.

3.3.12 Attach Help Routine

A device declaration may provide a routine which will display help about the attach command for this
device.

t_stat attach_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) – Write help
information about the device and/or unit attach usage. The flag and cptr arguments are included
for compatibility with the HELP command’s validation routine calling sequence.

3.4 UNIT Structure

Units are allocated as contiguous array. Each unit is defined with a UNIT structure (typedef UNIT):

struct UNIT {
 struct UNIT *next; /* next active */
 t_stat (*action)(); /* action routine */
 char *filename; /* open file name */
 FILE *fileref; /* file reference */
 void *filebuf; /* memory buffer */
 uint32 hwmark; /* high water mark */
 int32 time; /* time out */
 uint32 flags; /* flags */
 uint32 dynflags; /* dynamic flags */
 t_addr capac; /* capacity */
 t_addr pos; /* file position */
 void (*io_flush)(); /* i/o flush routine */
 uint32 iostarttime; /* i/o start time */
 int32 buf; /* buffer */
 int32 wait; /* wait */
 int32 u3; /* device specific */
 int32 u4; /* device specific */
 int32 u5; /* device specific */

 int32 u6; /* device specific */
 void *up7; /* device specific */
 void *up8; /* device specific */

};

The simulator accessible fields are the following:

next pointer to next unit in active queue, NULL if none.
action address of unit time-out service routine.
filename pointer to name of attached file, NULL if none.
fileref pointer to FILE structure of attached file, NULL if none.
hwmark buffered devices only; highest modified address, + 1.
time increment until time-out beyond previous unit in active queue.
flags unit flags.
dynflags dynamic flags.
capac unit capacity, 0 if variable.
pos sequential devices only; next device address to be read or written.
io_flush I/O flush routine, NULL if none.
iostarttime simulation time (from sim_grtime()) for use with sim_activate_notbefore().
buf by convention, the unit buffer, but can be used for other purposes.
wait by convention, the unit wait time, but can be used for other purposes.
u3 user-defined.
u4 user-defined.
u5 user-defined.
u6 user-defined.
up7 user-defined void pointer (useful for a unit specific context).
up8 user-defined void pointer (useful for a unit specific context).

buf, wait, u3, u4, u5, u6, and parts of flags are all saved and restored by the SAVE and RESTORE
commands and thus can be used for unit state which must be preserved. The values of up7, up8 and any
device specific internal pointer variables must be established in the device reset or attach routines to be
properly behaved across SAVE/RESTORE activities

Macro UDATA is available to fill in the common fields of a UNIT. It is invoked by

 UDATA (action_routine, flags, capacity)

Fields after buf can be filled in manually, e.g,

 UNIT lpt_unit =

{ UDATA (&lpt_svc, UNIT_SEQ+UNIT_ATTABLE, 0), 500 };

defines the line printer as a sequential unit with a wait time of 500.

3.4.1 Unit Flags

The flags field contains indicators of current unit status. SIMH defines 13 flags:

flag name meaning if set

UNIT_ATTABLE the unit responds to ATTACH and DETACH.
UNIT_RO the unit is currently read only.
UNIT_FIX the unit is fixed capacity.
UNIT_SEQ the unit is sequential.
UNIT_ATT the unit is currently attached to a file.

UNIT_BINK the unit measures “K” as 1024, rather than 1000.
UNIT_BUFABLE the unit buffers its data set in memory.
UNIT_MUSTBUF the unit allocates its data buffer dynamically.
UNIT_BUF the unit is currently buffering its data set in memory.
UNIT_ROABLE the unit can be ATTACHed read only.
UNIT_DISABLE the unit responds to ENABLE and DISABLE.
UNIT_DIS the unit is currently disabled.
UNIT_IDLE the unit is idle eligible.

A unit is “active” when it is in the SIMH event queue. Units are made active by a call to sim_activate or a
similar routine. A request to idle SIMH is not performed unless the unit at the head of the event queue
(the unit with the shortest remaining time) has the UNIT_IDLE flag set. In VMs that want to support idling,
devices that poll for data (such as console and mux terminals) and clocks should use a multiple of the
clock period as their poll interval, they should use clock co-scheduling to properly align their servicing with
clock ticks, and all these units should be marked with UNIT_IDLE. Other devices (like disk) usually have
shorter service times, and would not typically be marked with UNIT_IDLE.

Units for sequential devices (UNIT_SEQ) must update the unit structure pos member to reflect the
position in the attached sequential device file as data is read or written to that file. The pos value is used
to position the attached file whenever simulation execution starts or resumes from the sim> prompt.

Starting at bit position UNIT_V_UF up to but not including UNIT_V_RSV, the remaining flags are unit-
specific. Unit-specific flags are set and cleared with the SET and CLEAR commands, which reference the
MTAB array (see below). Unit-specific flags and UNIT_DIS are automatically saved and restored; the
device need not supply a register for these bits.

3.4.2 Service Routine

This routine is called by sim_process_event when a unit times out. Its calling sequence is:

t_stat service_routine (UNIT *uptr)

The status returned by the service routine is passed by sim_process_event back to the CPU.
If the user has typed the interrupt character (^E), it returns SCPE_STOP.

3.5 REG Structure

Registers are allocated as contiguous array, with a NULL register at the end. Each register is defined
with a REG structure (typedef REG):

struct REG {
 const char *name; /* name */
 void *loc; /* location */
 uint32 radix; /* radix */
 uint32 width; /* width */
 uint32 offset; /* starting bit */
 uint32 depth; /* save depth */
 const char *desc; /* description */
 struct bitfield *fields; /* bit fields */
 uint32 flags; /* flags */
 uint32 qptr; /* current queue pointer */
 size_t str_size; /* structure size */
 };

The fields are the following:

name register name, string of all capital alphanumeric characters.
loc pointer to location of the register value.
radix radix for input and display of data, 2 to 16 inclusive.
width width in bits of data, 1 to 64 inclusive.
offset bit offset (from right end of data).
depth size of data array (normally 1).
desc register description.
fields bit fields and formatting information.
qptr for a circular queue, the entry number for the first entry
str_size structure size.
flags flags and formatting information.

The depth field is used with “arrayed registers”. Arrayed registers are used to represent structures with
multiple data values, such as the locations in a transfer buffer; or structures which are replicated in every
unit, such as a drive status register. The qptr field is used with “queued registers”. Queued registers are
arrays that are organized as circular queues, such as the PC change queue. The desc field (if present) is
displayed by the HELP dev REGISTER command to enumerate the device registers and describe them.
The fields field (if present) is used to display details of a register’s content according to the respective
field descriptions.

A register that is 32b or less keeps its data in a 32b scalar variable (signed or unsigned). A register that
is 33b or more keeps its data in a 64b scalar variable (signed or unsigned). There are several exceptions
to this rule:

• An arrayed register keeps its data in a C-array whose SIMH data type is as large as (or if
necessary, larger than), the width of a register element. For example, an array of 6b registers
would keep its data in a uint8 (or int8) array; an array of 16b registers would keep its data in a
uint16 (or int16) array; an array of 24b registers would keep its data in a uint32 (or int32) array.

• A register flagged with REG_FIT obeys the sizing rules of an arrayed register, rather than a
normal scalar register. This is useful for aliasing registers into memory or into structures.

Macros ORDATA, DRDATA, HRDATA and BINDATA define right-justified octal, decimal, hexadecimal,
and binary registers, respectively. They are invoked by:

 xRDATA (name, location, width)

Macro FLDATA defines a one-bit binary flag at an arbitrary offset in a 32-bit word. It is invoked by:

 FLDATA (name, location, bit_position)

Macro GRDATA defines a register with arbitrary location and radix. It is invoked by:

 GRDATA (name, location, radix, width, bit_position)

Macro BRDATA defines an arrayed register whose data is kept in a standard C array. It is invoked by:

 BRDATA (name, location, radix, width, depth)

Macro VBRDATA defines an arrayed register whose scalar data elements are accessed as if they were in
a standard C array, but the location is an arbitrary pointer to memory. It is invoked by:

 VBRDATA (name, location, radix, width, depth)

For all of these macros, the flag field can be filled in manually, e.g.,

 REG lpt_reg = {

 { DRDATA (POS, lpt_unit.pos, 31), PV_LEFT }, … }

Macro URDATA defines an arrayed register whose data is part of the UNIT structure. This macro must
be used with great care. If the fields are set up wrong, or the data is actually kept somewhere else,
storing through this register declaration can trample over memory. The macro is invoked by:

 URDATA (name, location, radix, width, offset, depth, flags)

The location should be an offset in the UNIT structure for unit 0. The width should be 32 for an int32 or
uint32 field, and T_ADDR_W for a t_addr filed. The flags can be any of the normal register flags;
REG_UNIT will be OR’d in automatically. For example, the following declares an arrayed register of all
the UNIT position fields in a device with 4 units:

 { URDATA (POS, dev_unit[0].pos, 8, T_ADDR_W, 0, 4, 0) }

Finally, macro STRDATA defines an arrayed register whose data is part of an arbitrary structure array.
This macro must be used with great care. If the fields are set up wrong, or the data is actually kept
somewhere else, storing through this register declaration can trample over memory. The macro is
invoked by:

 STRDATA (name, location, radix, width, offset, depth, size, flags)

The location should be the address in the structure for the first element (0) of the structure array. The
width should be 32 for an int32 or uint32 field, and T_ADDR_W for a t_addr filed. The flags can be any of
the normal register flags; REG_STRUCT will be OR’d in automatically. For example, the following
declares an arrayed register of all the UNIT position fields in a device with 4 units:

 { STRDATA (POS, dev_unit[0].pos, 8, T_ADDR_W, 0, 4,

sizeof(dev_unit[0]), 0) }

Each of the ORDATA, DRDATA, FLDATA, GRDATA, BRDATA, VBRDATA, URDATA and STRDATA
macros have corresponding ‘D’ and ‘DF’ macros (ORDATAD, DRDATAD, FLDATAD, GRDATAD,
BRDATAD, VBRDATAD, URDATAD ,STRDATAD, ORDATADF, DRDATADF, FLDATADF, GRDATADF,
BRDATADF, VBRDATADF, URDATADF and STRDATADF) which can be used to provide initialization
values to the desc fields in the REG structure.

Macro SAVEDATA defines an object which will be store and restored from a saved simulator image
without any consideration for the format it contains. SAVEDATA REGisters can not be examined or
deposited to. This macro must be used with great care. The data being saved and restored is may not
be meaningfully correct if the save environment has a different host architecture than the restoring one.
The macro is invoked by:

 SAVEDATA (name, location)

The location can be anywhere, but should name an object (scalar, array, structure, etc.) that will be saved
and restored in its entirety. For example, the following declares an arrayed register of all the UNIT
position fields in a device with 4 units:

 { BLOBDATA (SETUP, xs_dev.setup) }

A generic register population macro exists called REGDATA. Simulators using this macro will be
protected against future changes to the REG structure. If new fields are added to this structure a new
initialization macro will be provided, but all uses of the prior macro will continue to work correctly.

All REG variables should be initialized with one of the register initialization macros. Using these macros
protects these declarations from any changes that may occur to the REG structure in the future since if
any changes are made to the REG structure the macros will be changed to reflect the necessary
changes.

 REGDATA (name, location, radix, width, offset, depth, desc, fields, flags, qptr, size)

3.5.1 Register Flags

The flags field contains indicators that control register examination and deposit.

flag name meaning if specified

PV_RZRO print register right justified with leading zeroes.
PV_RSPC print register right justified with leading spaces.
PV_RCOMMA print register right justified space fill comma’s every 3.
PV_LEFT print register left justified.
REG_RO register is read only.
REG_HIDDEN register is hidden (will not appear in EXAMINE STATE).
REG_HRO register is read only and hidden.
REG_NZ new register values must be non-zero.
REG_UNIT register resides in the UNIT structure.
REG_STRUCT register resides in an arbitrary structure.
REG_CIRC register is a circular queue.
REG_VMIO register is displayed and parsed using VM data routines.
REG_VMAD register is displayed and parsed using VM address routines.
REG_FIT register container uses arrayed rather than scalar size rules.
REG_DEPOSIT register updates invoke VM register update routine.

The PV flags are mutually exclusive. PV_RZRO is the default if no formatting flag is specified.

Starting at bit position REG_V_UF, the remaining flags are user-defined. These flags are passed to the
VM-defined fprint_sym and parse_sym routines in the upper bits of the addr parameter; they are
merged with the lower 16 bits containing the register radix value.

If a user-defined flag or the REG_VMIO flag is specified in a register’s flag field, the EXAMINE and
DEPOSIT commands will call fprint_sym and parse_sym instead of the standard print and parse
routines. The user-defined flags passed in the addr parameter may be used to identify the register or
determine how it is to be handled.

If the REG_DEPOSIT flag is specified in a register’s flag field, register deposits will call VM-defined
reg_update after the register contents have been changed. The VM-defined reg_update routine may
reference the user-defined flags specified in the register definition to identify the register or determine any
consequences related to updating that register.

If REG_UNIT is clear, the register data is located at the address specified by the loc pointer. If
REG_UNIT is set, the register name is used to refer to a field in a UNIT structure, and loc points to that
field in the UNIT struct for unit 0. The examine and deposit commands will adjust that address by the unit
number times the size of the UNIT struct to determine the actual data address.

3.6 BITFIELD Structure

Bitfields are allocated as contiguous array, with a NULL bitfield at the end. Each bitfield is defined with a
BITFIELD structure (typedef BITFIELD):

struct BITFIELD {
 const char *name; /* field name */
 uint32 offset; /* starting bit */
 uint32 width; /* width */

 const char **valuenames; /* map of values to strings */
 const char *format; /* value format string */

};

The fields are the following:

name field name, string of alphanumeric characters.
offset starting bit (normally populated automatically).
width width in bits of data, 1 to 32 inclusive.
valuenames pointer to a string array which maps fields values
format value format string

Macros BIT and BITF define single bit and multi-bit fields, respectively. They are invoked by:

 BIT (name)
 BITF (name, width)

Macros BITNC and BITNCF define single bit and multi-bit don’t care fields, respectively. They are
invoked by:

 BITNC
 BITFNCF (width)

Macro BITFFMT defines a bit fields with an output format specifier. It is invoked by:

 BITFFMT (name, width, fmt)

Macro BITFNAM defines a bit fields with a value to name string map. It is invoked by:

 BITFFMT (name, width, maparray)

Macro STARTBIT resets fields to the beginning of the register. This is useful when other conditions
redefine the structure of a register’s contents. It is invoked by:

 STARTBIT

3.7 MTAB Structure

Device-specific SHOW and SET commands are processed using the modifications array, which is
allocated as contiguous array, with a NULL at the end. Each possible modification is defined with a
MTAB structure (typedef MTAB), which has the following fields:

struct MTAB {
 uint32 mask; /* mask */
 uint32 match; /* match */
 const char *pstring; /* print string */
 const char *mstring; /* match string */
 t_stat (*valid)(); /* validation routine */
 t_stat (*disp)(); /* display routine */
 void *desc; /* location descriptor */
 const char *help; /* help string */

};

MTAB supports two different structure interpretations: regular and extended. A regular MTAB entry
modifies flags in the UNIT flags word; the descriptor entry is not used. The fields are the following:

mask bit mask for testing the unit.flags field
match value to be stored (SET) or compared (SHOW)
pstring pointer to character string printed on a match (SHOW), or NULL
mstring pointer to character string to be matched (SET), or NULL
valid address of validation routine (SET), or NULL
disp address of display routine (SHOW), or NULL

For SET, a regular MTAB entry is interpreted as follows:

1. Test to see if the mstring entry exists.
2. Test to see if the SET parameter matches the mstring.
3. Call the validation routine, if any.
4. Apply the mask value to the UNIT flags word and then or in the match value.

For SHOW, a regular MTAB entry is interpreted as follows:

1. Test to see if the mstring entry exists.
2. Test to see if the UNIT flags word, masked with the mask value, equals the match value.
3. If a display routine exists, call it, otherwise
4. Print the pstring.

Extended MTAB entries have a different interpretation:

mask entry flags
 MTAB_XTD extended entry
 MTAB_VDV valid for devices
 MTAB_VUN valid for units
 MTAB_VALR requires a value
 MTAB_VALO optionally accepts a value
 MTAB_NMO valid only in named SHOW
 MTAB_NC do not convert option value to upper case
 MTAB_SHP SHOW parameter takes optional value
match value to be stored (SET)
pstring pointer to character string printed on a match (SHOW), or NULL
mstring pointer to character string to be matched (SET), or NULL
valid address of validation routine (SET), or NULL
disp address of display routine (SHOW), or NULL
desc pointer to data address (valid clear) or
 a validation-specific structure (valid set)

For SET, an extended MTAB entry is interpreted as follows:

1. Test to see if the mstring entry exists.
2. Test to see if the SET parameter matches the mstring.
3. Test to see if the entry is valid for the type of SET being done (SET device or SET unit).
4. If a validation routine exists, call it and return its status. The validation routine is responsible

for storing the result.
5. If desc is NULL, exit.
6. Otherwise, store the match value in the int32 pointed to by desc.

For SHOW, an extended MTAB entry is interpreted as follows:

1. Test to see if the mstring entry exists.

2. Test to see if the entry is valid for the type of SHOW being done (device or unit).
3. If a display routine exists, call it, otherwise,
4. Print the pstring.

SHOW [dev|unit] <modifier>{=<value>} is a special case. Only two kinds of modifiers can be displayed
individually: an extended MTAB entry that takes a value; and any MTAB entry with both a display routine
and a pstring. Recall that if a display routine exists, SHOW does not use the pstring entry. For
displaying a named modifier, pstring is used as the string match. This allows implementation of complex
display routines that are only invoked by name, e.g.,

 MTAB cpu_tab[] = {

 { mask, value, “normal”, “NORMAL”, NULL, NULL, NULL },

 { MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, “SPECIAL”,

NULL, NULL, NULL, &spec_disp },

 { 0 }

};

A SHOW CPU command will display only the modifier named NORMAL; but SHOW CPU SPECIAL will
invoke the special display routine.

3.7.1 Validation Routine

The validation routine can be used to validate input during SET processing. It can make other state
changes required by the modification or initiate additional dialogs needed by the modifier. Its calling
sequence is:

t_stat validation_routine (UNIT *uptr, int32 value, const char *cptr, void *desc) – test that
uptr.flags can be set to value. cptr points to the value portion of the parameter string (any
characters after the = sign); if cptr is NULL, no value was given. desc points to the REG or int32
used to store the parameter.

3.7.2 Display Routine

The display routine is called during SHOW processing to display device- or unit-specific state. Its calling
sequence is:

t_stat display_routine (FILE *st, UNIT *uptr, int32 value, const void *desc) – output device- or
unit-specific state for uptr to stream st. If the modifier is regular MTAB entry, or an extended
entry without MTAB_SHP set, desc points to the structure in the MTAB entry. If the modifier is an
extended MTAB entry with MTAB_SHP set, desc points to the optional value string or is NULL if
no value was supplied. value is the value field of the matched MTAB entry.

When the display routine is called, SHOW hasn’t output anything. SHOW will append a newline after the
display routine returns, except for extended entries with the MTAB_NMO flag set.

3.7.3 Help Flags

The flags MTAB_VALR and MTAB_VALO are used to construct command syntax examples when
displaying help for SET and SHOW commands. These flags do not otherwise influence the actions taken
during processing of SET or SHOW commands.

3.7.4 Example arguments in the mstring

The value of the mstring field may contain examples of valid additional parameters which may be
specified as values. For example:

 MTAB cr_mod[] = {

 { mask, value, “normal”, “NORMAL”, NULL, NULL, NULL },

 { MTAB_XTD|MTAB_VDV, 0, “TRANSLATION”,

“TRANSLATION={DEFAULT|026|026FTN|029|EBCDIC}”,

NULL, &cr_set_trans, &cr_show_trans },

 { 0 }

};

This entry has an mstring value of “TRANSLATION={DEFAULT|026|026FTN|029|EBCDIC}”. When

comparisons are made against this string, everything starting at the equal sign and beyond is irrelevant to
the match activity since the input being compared has already been parsed with a delimiter of ‘=’. The
remaining parts of the mstring value are ignored, but are available when constructing HELP dev SET
output.

3.7.5 Help field

The MTAB entry’s help field is used when constructing HELP dev SHOW or HELP dev SHOW output. It
serves to describe the purpose or effect of the particular SET dev or SHOW dev command. The help field
is ignored when constructing HELP dev SET output for MTAB entries which have an equal sign in the
mstring field.

3.8 Other Data Structures

char sim_name[] is a character array containing the VM name.

int32 sim_emax contains the maximum number of words needed to hold the largest instruction or data
item in the VM. Examine and deposit will process up to sim_emax words.

DEVICE *sim_devices[] is an array of pointers to all the devices in the VM. It is terminated by a NULL.
By convention, the CPU is always the first device in the array.

REG *sim_PC points to the REG structure for the program counter. By convention, the PC is always the
first register in the CPU’s register array.

char *sim_stop_messages[SCPE_BASE] is an array of pointers to character strings, corresponding to
error status returns greater than zero. If sim_instr returns status code n > 0 but less than SCPE_BASE,
then sim_stop_message[n] is printed by SCP. This array must have valid character pointers for all
values < SCPE_BASE which sim_instr returns. Declaring the array with dimension SCPE_BASE will
properly allow the array to be filled in as needed with appropriate message text for any messages that are
needed while also providing NULL pointers for the remaining possibilities.

4. VM Provided Routines

4.1 Instruction Execution

Instruction execution is performed by routine sim_instr. Its calling sequence is:

t_stat sim_instr (void) – execute from current PC until error or halt.

4.2 Binary Load and Dump

If the VM responds to the LOAD (or DUMP) command, the load routine (dump routine) is implemented by
routine sim_load. Its calling sequence is:

t_stat sim_load (FILE *fptr, const char *buf, const char *fnam, t_bool flag) - If flag = 0, load data
from binary file fptr. If flag = 1, dump data to binary file fptr. For either command, buf contains
any VM-specific arguments, and fnam contains the file name.

If LOAD or DUMP is not implemented, sim_load should simply return SCPE_ARG. The LOAD and
DUMP commands open the specified file before calling sim_load, and close it on return.

sim_load may optionally load or dump data in different formats based on flag options specified in the
sim_switches variable. If or how this is done or what any switches mean are completely up to the
simulator’s implementation in the sim_load function.

4.3 Symbolic Examination and Deposit

If the VM provides symbolic examination and deposit of data, it must provide two routines, fprint_sym for
output and parse_sym for input. Their calling sequences are:

t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val, UNIT *uptr, int32 switch) – Based on the
switch variable, symbolically output to stream ofile the data in array val at the specified addr in
unit uptr.

t_stat parse_sym (const char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 switch) – Based
on the switch variable, parse character string cptr for a symbolic value val at the specified addr in
unit uptr.

If symbolic processing is not implemented, or the output value or input string cannot be parsed, these
routines should return SCPE_ARG. If the processing was successful and consumed more than a single
word, then these routines should return extra number of addressing units consumed as a negative
number. If the processing was successful and consumed a single addressing unit, then these routines
should return SCPE_OK. For example, PDP-11 parse_sym would respond as follows to various inputs:

 input return value

 XYZGH SCPE_ARG
 MOV R0,R1 -1
 MOV #4,R5 -3
 MOV 1234,5670 -5

There is an implicit relationship between the addr and val arguments and the device’s aincr fields. Each
entry in val is assumed to represent aincr addressing units, starting at addr:

val[0] addr + 0

val[1] addr + aincr

val[2] addr + (2 * aincr)

val[3] addr + (3 * aincr)

: :

Because val is typically filled in and stored by calls on the device’s examine and deposit routines,
respectively, the examine and deposit routines and fprint_sym and fparse_sym must agree on the
expected width of items in val, and on the alignment of addr. Further, if fparse_sym wants to modify a

storage unit narrower than awidth, it must insert the new data into the appropriate entry in val without
destroying surrounding fields. The number of words in the val array is given by global variable
sim_emax.

The interpretation of switch values is arbitrary (except in the cases noted below), but the following are
provided by existing VMs in their fprint_sym implementations:

 switch interpretation

 -a single character
 -c character string
 -m instruction mnemonic

In addition, on input, a leading ‘ (apostrophe) is interpreted to mean a single character, and a leading “
(double quote) is interpreted to mean a character string.

fprint_sym is called to print the instruction at the program counter value for the simulation stop message,
for registers containing user-defined or REG_VMIO flags in their flag fields and memory values printed by
the EXAMINE command, and for printing the values printed by the EVAL command. These cases are
differentiated by the presence of special flags in the switch parameter. For a simulation stop, the “M”
switch and the SIM_SW_STOP switch are passed. For examining registers, the SIM_SW_REG switch is
passed. In addition, the user-defined flags and register radix are passed in the addr parameter. Register
radix is taken from the radix specified in the register definition, or overridden by –d, -o, or –x switches in
the command. For examining memory and the EVAL command, no special switch flags are passed.

parse_sym is called to parse memory, register, and the logical and relational search specifier values for
the DEPOSIT command and the symbolic expression for the EVAL command. As with fprint_sym, these
cases are differentiated by the presence of special flags in the switch parameter. For registers, the
SIM_SW_REG switch is passed. For all other cases, no special switch flags are passed.

4.4 Optional Interfaces

For greater flexibility, SCP provides some optional interfaces that can be used to extend its command
input, command processing, and command post-processing capabilities. These interfaces are strictly
optional and are off by default. Using them requires intimate knowledge of how SCP functions internally
and is not recommended to the novice VM writer.

4.4.1 Once Only Initialization Routine

SCP previously defined a pointer (*sim_vm_init)(void). This was a “weak global”; the intention of this
routine was that if no other module defines this value, it will default to NULL. A VM requiring special
initialization would fill in this pointer with the address of its special initialization routine:

 WEAK void sim_special_init (void);

 WEAK void (*sim_vm_init)(void) = &sim_special_init;

The special initialization routine could perform any actions required by the VM. If the other optional
interfaces are to be used, the initialization routine could also fill in the appropriate pointers.

Due to the lack reliable functionality across all different supported host platforms, this “weak global”
paradigm has been removed. These activities must now be done in the CPU reset routine (since that is
called during SCP initialization, as well as when a RESET command is issued later on). When these are
done in the CPU reset routine, care should be taken to only perform them once if they have any side
effects (like clearing all memory).

4.4.2 Address Input and Display

SCP defines a pointer t_addr *(sim_vm_parse_addr)(DEVICE *, const char *, const char **). This is
initialized to NULL. If it is filled in by the VM, SCP will use the specified routine to parse addresses in
place of its standard numerical input routine. The current command switches, if needed, may be read
from the global variable sim_switches. The calling sequence for the sim_vm_parse_addr routine is:

t_addr sim_vm_parse_addr (DEVICE *dptr, const char *cptr, const char **optr) – parse the
string pointed to by cptr as an address for the device pointed to by dptr. optr points to the first
character not successfully parsed. If cptr == optr, parsing failed.

SCP defines a pointer void *(sim_vm_fprint_addr)(FILE *, DEVICE *, t_addr). This is initialized to
NULL. If it is filled in by the VM, SCP will use the specified routine to print addresses in place of its
standard numerical output routine. The calling sequence for the sim_vm_fprint_addr routine is:

t_addr sim_vm_fprint_addr (FILE *stream, DEVICE *dptr, t_addr addr) – output address addr to
stream in the format required by the device pointed to by dptr.

SCP defines a pointer void *(sim_vm_sprint_addr)(FILE *, DEVICE *, t_addr). This is initialized to
NULL. If it is filled in by the VM, SCP will use the specified routine to print addresses in place of its
standard numerical output routine. The calling sequence for the sim_vm_sprint_addr routine is:

t_addr sim_vm_sprint_addr (char *buf, DEVICE *dptr, t_addr addr) – output address addr to buf
in the format required by the device pointed to by dptr.

4.4.3 Command Input and Post-Processing

SCP defines a pointer char* (sim_vm_read)(char *, int32 *, FILE *). This is initialized to NULL. If it is
filled in by the VM, SCP will use the specified routine to obtain command input in place of its standard
routine, read_line. The calling sequence for the sim_vm_read routine is:

char sim_vm_input (char *buf, int32 *max, FILE *stream) – read the next command line from
stream and store it in buf, up to a maximum of max characters

The routine is expected to strip off leading whitespace characters and to return NULL on end of file.

SCP defines a pointer void *(sim_vm_post)(t_bool from_scp). This is initialized to NULL. If filled in by
the VM, SCP will call the specified routine at the end of every command. This allows the VM to update
any local state, such as a GUI console display. The calling sequence for the vm_post routine is:

void sim_vm_postupdate (t_bool from_scp) – if called from SCP, the argument from_scp is
TRUE; otherwise, it is FALSE.

4.4.4 Simulator Stop Message Formatting

SCP defines a pointer, sim_vm_fprint_stopped, to a function taking parameters of type FILE * and
t_stat and returning a value of type t_bool. It is initialized to NULL but may be reset by the VM to point
at a routine that will be called when a simulator stop occurs. The calling sequence is:

t_bool vm_fprint_stopped (FILE *stream, t_stat reason) – write a simulator stop message to
stream for the reason specified, and return TRUE if SCP should append the program counter
value or FALSE if SCP should not

When the instruction loop is exited, SCP regains control and prints a simulator stop message. By default,
the message is printed with this format:

<reason>, <program counter label>: <address> (<instruction mnemonic>)

For example:

SCPE_STOP prints "Simulation stopped, P: 24713 (LOAD 1)"
SCPE_STEP prints "Step expired, P: 24713 (LOAD 1)"

For VM stops, this routine is called after the reason has been printed and before the comma, program
counter label, address, and instruction mnemonic are printed. Depending on the reason for the stop, the
routine may insert additional information, and it may request omission of the PC value by returning
FALSE instead of TRUE. For example, a VM may define these stops and their associated formats:

STOP_SYSHALT prints "System halt 3, P: 24713 (LOAD 1)"
STOP_HALT prints "Programmed halt, CIR: 030365 (HALT 5), P: 24713 (LOAD 1)"
STOP_CDUMP prints "Cold dump complete, CIR: 000020"

For these examples, the VM’s vm_fprint_stopped routine prints “ 3” and returns TRUE for
STOP_SYSHALT, prints “, CIR: 030365 (HALT 5)” and returns TRUE for STOP_HALT, prints “, CIR:
000020” and returns FALSE for STOP_CDUMP, and prints nothing and returns TRUE for all other VM
stops.

4.4.5 VM-Specific Commands

SCP defines a pointer CTAB *sim_vm_cmd. This is initialized to NULL. If filled in by the VM, SCP
interprets it as a pointer to SCP command table. This command table is checked before user input is
looked up in the standard command table. It may be used to override or otherwise arbitrarily extend
the functionality of a normal SCP command.

A command table is allocated as a contiguous array. Each entry is defined with a sim_ctab structure
(typedef CTAB):

struct sim_ctab {
 const char *name; /* name */
 t_stat (*action)(); /* action routine */
 int32 arg; /* argument */
 const char *help; /* help string */

};

If the first word of a command line matches ctab.name, then the action routine is called with the following
arguments:

t_stat action_routine (int32 arg, const char *buf) – process input string buf based on optional
argument arg

The string passed to the action routine starts at the first non-blank character past the command name.

When looking for a matching command, SCP scans the command table from first to last entry, looking for
a command name that begins with the command supplied by the user. The first one found is considered
the matching command. If no match is found, the SCP standard command table is scanned next, using
the same “first match” rule. You may need to adjust command names for VM-specific commands to avoid
conflicting with commonly used standard commands. For example, if a VM defined the single VM-specific
command “NORMAL_START”, SCP would accept “N” as an abbreviation for this command. This might

confuse users who expect “N” to be an abbreviation of the “NEXT” command. The “first match is used”
rule is useful when a VM needs to redefine a standard SCP command with a different syntax. For
example, the VAX simulators do this in several different ways to redefine the BOOT command.

4.4.6 VM-Support for stepping over subroutine calls

SCP can provide the ability to step over subroutine calls with the NEXT command. In order for the NEXT
command to work, the simulator must provide a VM specific routine which will identify whether the next
instruction to be executed is a subroutine call and, if so to identify where to dynamically insert
breakpoint(s) to stop instruction execution when the subroutine returns.

SCP defines a pointer t_bool *(sim_vm_is_subroutine_call)(t_addr **ret_addrs). This is initialized to
NULL. If filled in by the VM, SCP will call the specified routine to determine where to dynamically place
breakpoints to support the NEXT command. The function return value is TRUE if the next instruction is a
subroutine call, and argument ret_addrs is used to return the address of a zero-terminated array of
addresses where breakpoints are to be set (i.e., the possible return addresses for the subroutine being
called). The function return value is FALSE and ret_addrs is unused if the next instruction is not a
subroutine call.

4.4.7 Displaying the simulator PC value in debug output

Some simulators expose the PC as a register, some don’t expose it or expose a register which is not a
variable that is updated during instruction execution (i.e. only upon exit of sim_instr()). For the –P debug
option to be effective, such a simulator should provide a routine which returns the value of the current PC
and set the sim_vm_pc_value routine pointer to that routine.

SCP defines a pointer t_value *(sim_vm_pc_value)(void). This is initialized to NULL. If filled in by the
VM, SCP will call the specified routine to determine active PC value when generating debug output
containing the execution PC (if debug is enabled with the –P flag).

5. Other SCP Facilities

5.1 Terminal Input/Output Formatting Library

SIMH provides routines to convert ASCII input characters to the format expected VM, and to convert VM-
supplied ASCII characters to C-standard format. The routines are

int32 sim_tt_inpcvt (int32 c, uint32 mode) – convert input character c according to the mode
specification and return the converted result (-1 if the character is not valid in the specified mode).

int32 sim_tt_outcvt (int32 c, uint32 mode) – convert output character c according to the mode
specification and return the converted result (-1 if the character is not valid in the specified mode).

The supported modes are:

 TTUF_MODE_8B 8b mode; no conversion
 TTUF_MODE_7B 7b mode; the high-order bit is masked off
 TTUF_MODE_7P 7b printable mode; the high-order bit is masked off
 In addition, on output, if the character is not printable,
 -1 is returned
 TTUF_MODE_UC 7b upper case mode; the high-order bit is masked off
 In addition, lower case is converted to upper case
 If the character is not printable, -1 is returned

On input, TTUF_MODE_UC has an additional modifier, TTUF_MODE_KSR, which forces the high order
bit to be set rather than cleared.

The set of printable control characters is contained in the global bit-vector variable sim_tt_pchar. Each
bit represents the character corresponding to the bit number (e.g., bit 0 represents NUL, bit 1 represents
SOH, etc.). If a bit is set, the corresponding control character is considered printable. It initially contains
the following characters: BEL, BS, HT, LF, and CR. The set may be manipulated with these routines:

t_stat sim_set_pchar (int32 flag, const char *cptr) – set sim_tt_pchar to the value pointed to by
cptr; return SCPE_2FARG if cptr is null or points to a null string, or SCPE_ARG if the value
cannot be converted or does not contain at least CR and LF. The string argument must be in the
default radix of the current simulator.

t_stat sim_show_pchar (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) –
output the sim_tt_pchar value to the stream st. The sim_tt_pchar value will be displayed in the
default radix of the current simulator and character mnemonics for each set bit will also be
displayed,

Note that the DEL character is always considered non-printable and will be suppressed in the UC and 7P
modes.

A simulator which will always want a specific set of printable characters defined should explicitly call
sim_set_pchar the first time the simulator’s cpu_reset routine is called.

5.2 Terminal Multiplexer Emulation Library

SIMH supports the use of multiple terminals. All terminals except the console are accessed via Telnet or
serial ports on the host machine. SIMH provides three supporting libraries for implementing multiple
terminals: sim_tmxr.c (and its header file, sim_tmxr.h), which provide OS-independent support routines
for terminal multiplexers; sim_serial.c (and its header file sim_serial.h), which provide OS-dependent
serial I/O routines; and sim_sock.c (and its header file, sim_sock.h), which provide OS-dependent socket
routines. Sim_sock.c and sim_serial.c are implemented under Windows, VMS, UNIX, and MacOS.

Two basic data structures define the multiple terminals. Individual lines are defined by an array of tmln
structures (typedef TMLN):

struct tmln {
 int conn; /* line connected flag */

SOCKET sock; /* connection socket */
 char *ipad; /* IP address */
 SOCKET master; /* line specific master socket */
 char *port; /* line specific listening port */
 int32 sessions; /* count of tcp connections received */
 uint32 cnms; /* connect time ms */
 int32 tsta; /* Telnet state */
 int32 rcve; /* rcv enable */
 int32 xmte; /* xmt enable */
 int32 dstb; /* disable Tlnt bin */
 int32 notelnet; /* raw binary data (no telnet interpret) */
 int32 rxbpr; /* rcv buf remove */
 int32 rxbpi; /* rcv buf insert */
 int32 rxcnt; /* rcv count */
 int32 txbpr; /* xmt buf remove */
 int32 txbpi; /* xmt buf insert */

 int32 txcnt; /* xmt count */
 int32 txdrp; /* xmt drop count */
 int32 txbsz; /* xmt buffer size */
 int32 txbfd; /* xmt buffered flag */
 t_bool modem_control; /* line modem control support */
 t_bool port_speed_control; /* line programmatically sets port speed
*/
 int32 modembits; /* modem bits which are set */
 FILE *txlog; /* xmt log file */
 FILEREF *txlogref; /* xmt log file reference */
 char *txlogname; /* xmt log file name */
 char rxb[TMXR_MAXBUF]; /* rcv buffer */
 char rbr[TMXR_MAXBUF]; /* rcv break */
 char *txb; /* xmt buffer */
 TMXR *mp; /* back pointer to mux */
 char *serconfig; /* line config */
 SERHANDLE serport; /* serial port handle */
 t_bool ser_connect_pending; /* serial connection notice pending */
 SOCKET connecting; /* Outgoing socket while connecting */
 char *destination; /* Outgoing destination address:port */
 UNIT *uptr; /* input polling unit -default to mp->uptr
*/
 UNIT *o_uptr; /* output polling unit –default to lp->uptr
*/
 };

The fields are the following:

 conn connection flag (0 = disconnected)
 sock connection socket
 ipad IP address of remote end of connection
 master optional line specific listening socket
 port optional line specific listening port
 sessions count of tcp connections received
 cnms connect time
 tsta Telnet state
 rcve receive enable flag (0 = disabled)
 xmte transmit flow control flag (0 = transmit disabled)
 dstb Telnet bin mode disabled
 rxbpr receive buffer remove pointer
 rxbpi receive buffer insert pointer
 rxcnt receive count
 txbpr transmit buffer remove pointer
 txbpi transmit buffer insert pointer
 txcnt transmit count
 txlog pointer to log file descriptor
 txlogname pointer to log file name

rxb receive buffer
rbr receive buffer break flags

 txb transmit buffer

The overall set of extra terminals is defined by the tmxr structure (typedef TMXR):

struct tmxr {
 int32 lines; /* # lines */
 char *port; /* listening port */

 SOCKET master; /* master socket */
 TMLN *ldsc; /* pointer to line descriptors */
 int32 *lnorder; /* line connection order */
 DEVICE *dptr; /* multiplexer device */
 UNIT *uptr; /* polling unit (connection) */
 char logfiletmpl[FILENAMEMAX]; /* template logfile name */
 int23 buffered; /* Buffered line behavior and buffer
size*/
 int32 sessions; /* count of tcp connections received */
 uint32 last_poll_time; /* time of last connection poll */
 t_bool notelnet; /* default telnet capability for incoming
connections */
 t_bool modem_control; /* multiplexer supports modem control
behaviors */
 t_bool port_speed_control; /* multiplexer programmatically sets port
speed */
 };

The fields are the following:

 lines number of lines (constant)
 port master listening port (specified by ATTACH command)
 master master listening socket (filled in by ATTACH command)
 ldsc array of line descriptors

lnorder array of line numbers in order of connection sequence, or NULL if user-defined
connection order is not required

dptr pointer to the multiplexer’s DEVICE structure, or NULL if the device is to be
derived from the UNIT passed to the attach call.

uptr the UNIT passed to the attach call.
logfiletmpl template logfile name used to create names for per line log filesl.
buffered Buffered line behaviors enabled flag and the size of the line buffer.
sessions count of tcp connections received on the master socket.
last_poll_time time of last connection poll.
notelnet default telnet capability for tcp connections.
modem_control flag indicating that multiplexer supports full modem control behaviors.

The number of elements in the ldsc and lnorder arrays must equal the value of the lines field. Set
lnorder to NULL if the connection order feature is not needed. If the first element of the lnorder array is
–1, then the default ascending sequential connection order is used. Set dptr to NULL if the device should
be derived from the unit passed to the tmxr_attach call.

Library sim_tmxr.c provides the following routines to support Telnet and Serial port-based terminals:

int32 tmxr_poll_conn (TMXR *mp) – poll for a new connection to the terminals described by mp.
If there is a new connection, the routine resets all the line descriptor state (including receive
enable) and returns the line number (index to line descriptor) for the new connection. If there isn’t
a new connection, the routine returns –1.

void tmxr_reset_ln (TMLN *lp) – reset the line described by lp. The connection is closed and all
line descriptor state is reset.

int32 tmxr_getc_ln (TMLN *lp) – return the next available character from the line described by lp.
If a character is available, the return value is:

 (1 << TMXR_V_VALID) | character

If a BREAK occurred on the line, SCPE_BREAK will be ORed into the return variable. If no
character is available, the return value is 0.

void tmxr_poll_rx (TMXR *mp) – poll for input available on the terminals described by mp.

int32 tmxr_rqln (TMLN *lp) – return the number of characters in the receive queue of the line
described by lp which are ready to be read now.

t_stat tmxr_putc_ln (TMLN *lp, int32 chr) – output character chr to the line described by lp.
Possible errors are SCPE_LOST (connection lost) and SCPE_STALL (connection backlogged).
If executed directly in instruction simulation code (as opposed to during event processing) and
line output rate limiting is in effect, then inter-character delays will occur before this routine
returns.

void tmxr_poll_tx (TMXR *mp) – poll for output complete on the terminals described by mp.

int32 tmxr_tqln (TMLN *lp) – return the number of characters in the transmit queue of the line
described by lp.

int32 tmxr_txdone_ln (TMLN *lp) – return the transmit complete indicator for the the line
described by lp. 0 – not done, 1 – just now done, -1 – previously done. When the 1 return value
is returned would be a good time to pass an interrupt or other status information into the system
being simulated.

void tmxr_send_buffered_data (TMLN *lp) – flush any buffered data for the line described by lp.

t_stat tmxr_attach (TMXR *mp, UNIT *uptr, const char *cptr) – attach the port contained in
character string cptr to the terminals described by mp and unit uptr.

t_stat tmxr_open_master (TMXR *mp, const char *cptr) – associate the port contained in
character string cptr to the terminals described by mp. This routine is a subset of tmxr_attach.

t_stat tmxr_detach (TMXR *mp, UNIT *uptr) – detach all connections for the terminals described
by mp and unit uptr.

t_stat tmxr_close_master (TMXR *mp) – close the master port for the terminals described by
mp. This routine is a subset of tmxr_detach.

t_stat tmxr_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) – stub examine routine, needed
because the extra terminals are marked as attached; always returns an error.

t_stat tmxr_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) – stub deposit routine, needed
because the extra terminals are marked as detached; always returns an error.

void tmxr_msg (SOCKET sock, const char *msg) – output character string msg to socket sock.

void tmxr_linemsg (TMLN *lp, const char *msg) – output character string msg to line lp.

void tmxr_linemsgf (TMLN *lp, const const *fmt, ,,,) – output formatted msg to line lp.

void tmxr_fconns (FILE *st, TMLN *lp, int32 ln) – output connection status to stream st for the
line described by lp. If ln is >= 0, preface the output with the specified line number.

void tmxr_fstats (FILE *st, TMLN *lp, int32 ln) – output connection statistics to stream st for the
line described by lp. If ln is >= 0, preface the output with the specified line number.
tstat tmxr_set_log (UNIT *uptr, int32 val, char *cptr, void *mp) – enable logging of a line of the
multipleser described by mp to the filename pointed to by cptr. If uptr is NULL, then val indicates
the line number; otherwise, the unit number within the associated device implies the line number.
This function may be used as an MTAB validation routine.

tstat tmxr_set_nolog (UNIT *uptr, int32 val, const char *cptr, const void *mp) – disable logging of
a line of the multipleser described by mp to the filename pointed to by cptr. If uptr is NULL, then
val indicates the line number; otherwise, the unit number within the associated device implies the
line number. This function may be used as an MTAB validation routine.

tstat tmxr_show_log (FILE *st, UNIT *uptr, int32 val, const void *mp) – outputs the logging status
of a line of the multiplexer described by mp to stream st. If uptr is NULL, then val indicates the
line number; otherwise, the unit number within the associated device implies the line number.
This function may be used as an MTAB display routine.

t_stat tmxr_dscln (UNIT *uptr, int32 val, const char *cptr, const void *mp) – parse the string
pointed to by cptr for a decimal line number. If the line number is valid, disconnect the specified
line in the terminal multiplexer described by mp. The calling sequence allows tmxr_dscln to be
used as an MTAB processing routine. A line connected via a tcp session will be disconnected, a
line connected to a serial port will be closed if the sim_switches –C flag is enabled when the
routine is called, otherwise a serial port will have DTR dropped for 500ms and raised again.

t_stat tmxr_set_lnorder (UNIT *uptr, int32 val, const char *cptr, const void *desc) – set the line
connection order array associated with the TMXR structure pointed to by desc. The string
pointed to by cptr is parsed for a semicolon-delimited list of ranges. Ranges are of the form:

line1-line2 ascending sequence from line1 to line2

line1/length ascending sequence from line1 to line1+length-1

ALL ascending sequence of all lines defined by the

multiplexer

The line order array must provide an int32 element for each line. The calling sequence allows
tmxr_set_lnorder to be used as an MTAB processing routine.

t_stat tmxr_show_lnorder (FILE *st, UNIT *uptr, int32 val, void *desc) – output the line
connection order associated multiplexer (TMXR *) desc to stream st. The order is rendered as a
semicolon-delimited list of ranges. The calling sequence allows tmxr_show_lnorder to be used
as an MTAB processing routine.

t_stat tmxr_show_summ (FILE *st, UNIT *uptr, int32 val, const void *desc) – outputs the
summary status of the multiplexer (TMXR *) desc to stream st.

t_stat tmxr_show_cstat (FILE *st, UNIT *uptr, int32 val, const void *desc) – outputs either the
connections (val = 1) or the statistics (val = 0) of the multiplexer (TMXR *) desc to stream st. Also
checks for multiplexer not attached, or all lines disconnected.

t_stat tmxr_show_lines (FILE *st, UNIT *uptr, int32 val, const void *desc) – outputs the number
of lines in the terminal multiplexer (TMXR *) I to stream I.

t_stat tmxr_set_modem_control_passthru (TMXR *mp) – Enables modem control passthru
behaviors, and disables internal manipulation of DTR (&RTS) by tmxr apis. Enables the
tmxr_set_get_modem_bits and tmxr_set_config_line APIs.

t_stat tmxr_clear_modem_control_passthru (TMXR *mp) – Disables modem control passthru
behaviors, and enables internal manipulation of DTR (&RTS) by tmxr apis. Disables the
tmxr_set_get_modem_bits and tmxr_set_config_line APIs.

t_stat tmxr_set_port_speed_control (TMXR *mp) – Declares that the device which interfaces
the specified TMXR uses the tmxr_set_config_line API to set the port line speed. This
declaration should be made in the device reset routine and called before any line attachments are
made.

t_stat tmxr_clear_port_speed_control (TMXR *mp) – Declares that the device which interfaces
the specified TMXR does not use the tmxr_set_config_line API to set the port line speed. This
declaration should only be necessary if tmxr_set_port_speed_control had been called previously.
I will fail if any line attachments are active.

t_stat tmxr_set_line_port_speed_control (TMXR *mp, int line) – Declares that the device which
interfaces the specified TMXR uses the tmxr_set_config_line API to set the port line speed for the
specified line. This declaration should be made in the device reset routine and called before any
line attachments are made.

t_stat tmxr_clear_ line_port_speed_control (TMXR *mp, int line) – Declares that the device
which interfaces the specified TMXR does not use the tmxr_set_config_line API to set the port
line speed for the specified line. This declaration should only be necessary if
tmxr_set_port_speed_control had been called previously. I will fail if any line attachments are
active.

t_stat tmxr_set_get_modem_bits (TMLN *lp, int32 bits_to_set, int32 bits_to_clear, int32
*incoming_bits) – For a line connected to a serial port on a TMXR device with
modem_control_passthru enabled, then the bits_to_set and/or bits_to_clear (DTR and RTS) are
changed and if incoming_bits is not NULL, then the current modem bits are returned
(DCD,RNG,CTS, DSR).

t_stat tmxr_set_config_line (TMLN *lp, const char *config) – sets the line configuration (speed,
parity, character size, stopbits) on a serial port. Config is a string of the form: 9600-8N1.

t_stat tmxr_set_line_unit (TMXR *mp, int line, UNIT *uptr) – Declare which unit polls for input on
a given line (only needed if the input polling unit is different than the unit provided when the
multiplexer was attached.

t_stat tmxr_set_line_output_unit (TMXR *mp, int line, UNIT *uptr) – Declare which unit polls for
output on a given line (only needed if the output polling unit is different than the unit provided
when the multiplexer was attached.

The OS dependent serial I/O and socket routines should not be accessed by the terminal simulators. The
routines provided by sim_sock and sim_serial are for internal use by the TMXR library only and should be
not be used directly by any simulator.

5.3 Magnetic Tape Emulation Library

SIMH supports the use of emulated magnetic tapes. Magnetic tapes are emulated as disk files containing
both data records and metadata markers; the format is fully described in the paper “SIMH Magtape
Representation and Handling”. SIMH provides a supporting library, sim_tape.c (and its header file,
sim_tape.h), that abstracts handling of magnetic tapes. This allows support for multiple tape formats,
without change to magnetic device simulators.

The magtape library does not require any special data structures. However, it does define some
additional unit flags:

 MTUF_WLK unit is write locked

If magtape simulators need to define private unit flags, those flags should begin at bit number
MTUF_V_UF instead of UNIT_V_UF. The magtape library maintains the current magtape position in the
pos field of the UNIT structure.

Library sim_tape.c provides the following routines to support emulated magnetic tapes. These are
declared in header file sim_tape.h.

t_stat sim_tape_attach (UNIT *uptr, const char *cptr) – Attach tape unit uptr to file cptr. Tape
Simulators must call this routine, rather than the standard attach_unit routine. This allows for
future expansion of format support and proper functionality with all other tape APIs.

t_stat sim_tape_detach (UNIT *uptr) – Detach tape unit uptr from its current file.

t_stat sim_tape_set_fmt (UNIT *uptr, int32 val, const char *cptr, void *desc) – Set the tape
format for unit uptr to the format specified by string cptr.

t_stat sim_tape_show_fmt (FILE *st, UNIT *uptr, int32 val, const void *desc) – Write the tape
format for unit uptr to the file specified by descriptor st.

t_stat sim_tape_set_capac (UNIT *uptr, int32 val, const char *cptr, void *desc) – Set the tape
capacity for unit uptr to the capacity, in MB, specified by string cptr.

t_stat sim_tape_show_capac (FILE *st, UNIT *uptr, int32 val, const void *desc) – Write the
capacity for unit uptr to the file specified by descriptor st.

t_stat sim_tape_set_dens (UNIT *uptr, int32 val, const char *cptr, void *desc) – Set the tape
density for unit uptr to the density, in bits per inch, specified by string cptr. Only specific densities
are supported; desc must point at an int32 value consisting of one or more MT_*_VALID
constants logically ORed together that specifies the densities allowed. Alternately, desc may be
set to NULL and val may specify one of the MT_DENS_* constants to set the density directly; in
this case, cptr is ignored.

t_stat sim_tape_show_dens (FILE *st, UNIT *uptr, int32 val, const void *desc) – Write the
density for unit uptr to the file specified by descriptor st.

t_stat sim_tape_rdrecf (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max) – Forward read the
next record on unit uptr into buffer buf of size max. Return the actual record size in tbc.

t_stat sim_tape_rdrecf_a (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max,
TAPE_PCALLBACK callback) – Forward read the next record on unit uptr into buffer buf of size
max. Return the actual record size in tbc and call callback routine on completion.

t_stat sim_tape_rdrecr (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max) – Reverse read the
next record on unit uptr into buffer buf of size max. Return the actual record size in tbc. Note that
the record is returned in forward order, that is, byte 0 of the record is stored in buf[0], and so on.

t_stat sim_tape_rdrecr_a (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max,
TAPE_PCALLBACK callback) – Reverse read the next record on unit uptr into buffer buf of size
max. Return the actual record size in tbc and call callback routine on completion. Note that the
record is returned in forward order, that is, byte 0 of the record is stored in buf[0], and so on.

t_stat sim_tape_wrrecf (UNIT *uptr, uint8 buf, t_mtrlnt tbc) – Write buffer uptr of size tbc as the
next record on unit uptr.

t_stat sim_tape_wrrecf_a (UNIT *uptr, uint8 buf, t_mtrlnt tbc, TAPE_PCALLBACK callback) –
Write buffer uptr of size tbc as the next record on unit uptr and call callback routine on
completion.

t_stat sim_tape_errecf (UNIT *uptr, t_mtrlnt tbc) – Starting at the current tape position, write an
erase gap in the forward direction on unit uptr for a length corresponding to a record containing
the number of bytes specified by tbc. If tbc is 0, then the tape mark at the current position is
erased. If the tape is not positioned at a record of the specified length or at a tape mark, the
routine returns MTSE_INVRL.

t_stat sim_tape_errecr (UNIT *uptr, t_mtrlnt tbc) – Starting at the current tape position, write an
erase gap in the reverse direction on unit uptr for a length corresponding to a record containing
the number of bytes specified by tbc. If tbc is 0, then the tape mark preceding the current position
is erased. If the tape is not positioned at the end of a record of the specified length or at a tape
mark, the routine returns MTSE_INVRL.

t_stat sim_tape sprecf (UNIT *uptr, t_mtrlnt *tbc) – Space unit uptr forward one record. The size
of the record is returned in tbc.

t_stat sim_tape sprecf_a (UNIT *uptr, t_mtrlnt *tbc, TAPE_PCALLBACK callback) – Space unit
uptr forward one record. The size of the record is returned in tbc and call callback routine on
completion.

t_stat sim_tape sprecsf (UNIT *uptr, uint32 count, uint32 *skipped) – Space unit uptr forward
count records. The number of records actually skipped is returned in skipped.

t_stat sim_tape sprecsf_a (UNIT *uptr, uint32 count, uint32 *skipped, TAPE_PCALLBACK
callback) – Space unit uptr forward count records. The number of records actually skipped is
returned in skipped and call callback routine on completion.

t_stat sim_tape spfilef (UNIT *uptr, uint32 count, uint32 *skipped) – Space unit uptr forward
count files. The number of files actually skipped is returned in skipped.

t_stat sim_tape spfilef_a (UNIT *uptr, uint32 count, uint32 *skipped, TAPE_PCALLBACK
callback) – Space unit uptr forward count files. The number of files actually skipped is returned in
skipped and call callback routine on completion.

t_stat sim_tape spfilebyrecf (UNIT *uptr, uint32 count, uint32 *skipped, uint32 *recsskipped,
t_bool check_leot) – Space unit uptr forward count files. The number of files actually skipped is
returned in skipped. The number of records skipped is returned in recsskipped.

t_stat sim_tape spfilebyrecf_a (UNIT *uptr, uint32 count, uint32 *skipped, uint32 *recsskipped,
t_bool check_leot, TAPE_PCALLBACK callback) – Space unit uptr forward count files. The
number of files actually skipped is returned in skipped. The number of records skipped is returned
in recsskipped and call callback routine on completion.

t_stat sim_tape position (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recsskipped, uint32 files,
uint32 *filesskipped, uint32 *objectsskipped) – Space unit uptr forward recs records and files files.
The number of recordss actually skipped is returned in recsskipped. The number of files actually
skipped is returned in filesskipped. The number of records skipped is returned in recsskipped.
The number of objects skipped is returned in objectssskipped.

t_stat sim_tape position_a (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recsskipped, uint32
files, uint32 *filesskipped, uint32 *objectsskipped, TAPE_PCALLBACK callback) – Space unit uptr
forward recs records and files files. The number of recordss actually skipped is returned in
recsskipped. The number of files actually skipped is returned in filesskipped. The number of
records skipped is returned in recsskipped. The number of objects skipped is returned in
objectssskipped and call callback routine on completion.

t_stat sim_tape_sprecr (UNIT *uptr, t_mtrlnt *tbc) – Space unit uptr reverse one record. The
size of the record is returned in tbc.

t_stat sim_tape_sprecr_a (UNIT *uptr, t_mtrlnt *tbc, TAPE_PCALLBACK callback) – Space unit
uptr reverse one record. The size of the record is returned in tbc and call callback routine on
completion.

t_stat sim_tape_wrtmk (UNIT *uptr) – Write a tape mark on unit uptr.

t_stat sim_tape_wrtmk_a (UNIT *uptr, TAPE_PCALLBACK callback) – Write a tape mark on unit
uptr and call callback routine on completion.

t_stat sim_tape_wreom (UNIT *uptr) – Write an end-of-medium marker on unit uptr (this
effectively erases the rest of the tape).

t_stat sim_tape_wreom_a (UNIT *uptr, TAPE_PCALLBACK callback) – Write an end-of-medium
marker on unit uptr (this effectively erases the rest of the tape) and call callback routine on
completion.

t_stat sim_tape_wreomrw (UNIT *uptr) – Write an end-of-medium marker on unit uptr and
rewind (this effectively erases the rest of the tape).

t_stat sim_tape_wreomrw_a (UNIT *uptr, TAPE_PCALLBACK callback) – Write an end-of-
medium marker on unit uptr and rewind (this effectively erases the rest of the tape) and call
callback routine on completion.

t_stat sim_tape_wrgap (UNIT *uptr, uint32 gaplen) – Write an erase gap on unit uptr of gaplen
tenths of an inch in length at a tape density specified by a preceding sim_tape_set_dens call.

t_stat sim_tape_wrgap_a (UNIT *uptr, uint32 gaplen, TAPE_PCALLBACK callback) – Write an
erase gap on unit uptr of gaplen tenths of an inch in length at a tape density specified by a
preceding sim_tape_set_dens call and call callback routine on completion.

t_stat sim_tape_rewind (UNIT *uptr) – Rewind unit uptr. This operation succeeds whether or not
the unit is attached to a file.

t_stat sim_tape_rewind_a (UNIT *uptr, TAPE_PCALLBACK callback) – Rewind unit uptr. This
operation succeeds whether or not the unit is attached to a file and call callback routine on
completion.

t_stat sim_tape_reset (UNIT *uptr) – Reset unit uptr. This routine should be called when a tape
unit is reset.

t_bool sim_tape_bot (UNIT *uptr) – Return TRUE if unit uptr is at beginning-of-tape.

t_bool sim_tape wrp (UNIT *uptr) – Return TRUE if unit uptr is write-protected.

t_bool sim_tape_eot (UNIT *uptr) – Return TRUE if unit uptr has exceed the capacity specified of
the specified unit (kept in uptr->capac).

The library supports reading and writing erase gaps in standard (SIMH) tape format image files. Before
writing a gap with sim_tape_wrgap, the tape unit density must be set by calling sim_tape_set_dens;
failure to do so will result in an error. For reading, if the tape density has been set, then the length is
monitored when skipping over erase gaps. If the gap length reaches 25 feet (the maximum allowed by
the ANSI/ECMA standards), motion is terminated, and “tape runaway” status is returned. Runaway status
is also returned if an end-of-medium marker or the physical end of file is encountered while spacing over
a gap. If the density has not been set, then a gap of any length is skipped, and tape runaway status is
never returned; in effect, any erase gaps present in the tape image file will be transparent to the calling
simulator.

The library supports writing erase gaps over existing data records and writing records over existing gaps.
If the end of a gap overlays part of a data record, the record will be truncated, but the tape image will
remain valid.

An attempt to write an erase gap in an unsupported tape format results in no action and no error. This
allows a device simulator that supports writing erase gaps to call sim_tape_wrgap without concern for
the tape format currently selected by the user.

Sim_tape_attach, sim_tape_detach, sim_tape_set_fmt, sim_tape_show_fmt, sim_tape_set_capac,
sim_tape_show_capac, sim_tape_set_dens, and sim_tape_show_dens return standard SCP status
codes; the other magtape library routines return return private codes for success and failure. The
currently defined magtape status codes are:

 MTSE_OK operation successful
 MTSE_UNATT unit is not attached to a file
 MTSE_FMT unit specifies an unsupported tape file format
 MTSE_IOERR host operating system I/O error during operation
 MTSE_INVRL invalid record length (exceeds maximum allowed)
 MTSE_RECE record header contains error flag
 MTSE_TMK tape mark encountered
 MTSE_BOT beginning of tape encountered during reverse operation
 MTSE_EOM end of medium encountered
 MTSE_WRP write protected unit during write operation
 MTSE_RUNAWAY tape runaway occurred

Sim_tape_set_fmt, sim_tape_show_fmt, sim_tape_set_capac, and sim_tape_show_capac should
be referenced by an entry in the tape device’s modifier list, as follows:

 MTAB tape_mod[] = {

{ MTAB_XTD|MTAB_VDV, 0, “FORMAT”, “FORMAT”,

 &sim_tape_set_fmt, &sim_tape_show_fmt, NULL },

{ MTAB_XTD|MTAB_VUN, 0, “CAPACITY”, “CAPACITY”,

 &sim_tape_set_capac, &sim_tape_show_capac, NULL }, …

};

Sim_tape_set_dens and sim_tape_show_dens may be referenced in the modifier list, or
sim_tape_set_dens may be called directly to set the density, as indicated above.

5.4 Disk Emulation Library

SIMH supports the use of disk drives. Disk drives as disk files containing both data and potentially
additional metadata which describes various aspects of the disk container and the disk drive it emulates.
SIMH provides a supporting library, sim_disk.c (and its header file, sim_disk.h), that abstracts handling of
disk drives which have sectors which are a multiple of 512 bytes. This allows support for alternate disk
formats or disk access to physical devices on the host system, without change to disk device simulators.

The disk library does not require any special data structures.

If disk drive simulators need to define private unit flags, those flags should begin at bit number
DKUF_V_UF instead of UNIT_V_UF. The disk library maintains the current disk position in the pos field
of the UNIT structure.
Library sim_disk.c provides the following routines to support emulated disk drives. These are declared in
include file sim_disk.h.

t_stat sim_disk_attach (UNIT *uptr, const char *cptr, size_t sector_size, size_t
xfer_element_size, t_bool dontautosize, uint32 debugbit, const char *drivetype, uint32
pdp11_tracksize, int completion_delay) – Attach disk unit uptr to file cptr. Disk Simulators should
call this routine, rather than the standard attach_unit routine,

t_stat sim_disk_attach_ex (UNIT *uptr, const char *cptr, size_t sector_size, size_t
xfer_element_size, t_bool dontchangecapac, uint32 debugbit, const char *drivetype, uint32
pdp11_tracksize, int completion_delay, const char **drivetypes) – Attach disk unit uptr to file cptr.
Disk Simulators should call this routine, rather than the standard attach_unit routine, The
drivetypes is a NULL terminated list of drive types available to autosize.

t_stat sim_disk_attach_ex2 (UNIT *uptr, const char *cptr, size_t sector_size, size_t
xfer_element_size, t_bool dontchangecapac, uint32 debugbit, const char *drivetype, uint32
pdp11_tracksize, int completion_delay, const char **drivetypes, size_t reserved_sectors) – Attach
disk unit uptr to file cptr. Disk Simulators should call this routine, rather than the standard
attach_unit routine, The drivetypes is a NULL terminated list of drive types available to autosize.

t_stat sim_disk_detach (UNIT *uptr) – Detach disk unit uptr from its current file.

t_stat sim_disk_set_fmt (UNIT *uptr, int32 val, const char *cptr, void *desc) – Set the disk format
for unit uptr to the format specified by string cptr.

t_stat sim_disk_show_fmt (FILE *st, UNIT *uptr, int32 val, const void *desc) – Write the disk
format for unit uptr to the file specified by descriptor st.

t_stat sim_disk_set_capac (UNIT *uptr, int32 val, const char *cptr, void *desc) – Set the disk
capacity for unit uptr to the capacity, in MB, specified by string cptr.

t_stat sim_disk_show_capac (FILE *st, UNIT *uptr, int32 val, const void *desc) – Write the
capacity for unit uptr to the file specified by descriptor st.

t_stat sim_disk_rdsect (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectsread, , t_seccnt
*sectstoread) – Read up to sectstoread sectors from sector number lba on unit uptr into buffer
buf. Return the number of sectors read in sectsread.

t_stat sim_disk_rdsect_a (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectsread, , t_seccnt
*sectstoread, DISK_PCALLBACK callback) – Read up to sectstoread sectors from sector number
lba on unit uptr into buffer buf asynchronously. Return the number of sectors read in sectsread,
and call callback routine on completion.

t_stat sim_disk_wrsect (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectswritten, , t_seccnt
*sectstowrite) – Write sectstowrite sectors from buffer buf to disk sector number lba on unit uptr.
Return the number of sectors written in sectswritten.

t_stat sim_disk_wrsect_a (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectswritten, , t_seccnt
*sectstowrite, DISK_PCALLBACK callback) – Write sectstowrite sectors from buffer buf to disk

sector number lba on unit uptr asynchronously. Return the number of sectors written in
sectswritten, and call callback routine on completion.

t_stat sim_disk_unload (UNIT *uptr) – Unload or detach a disk as needed.

t_stat sim_disk_set_asynch (UNIT *uptr, int latency) – Enable asynchronouos operation for I/O
to disk unit uptr.

t_stat sim_disk_clr_asynch (UNIT *uptr, int latency) – Disable asynchronouos operation for I/O
to disk unit uptr.

t_stat sim_disk_reset (UNIT *uptr) – Reset unit uptr. This routine should be called when a tape
unit is reset.

t_bool sim_disk_isavailable (UNIT *uptr) – Check to see if disk is available for I/O, return TRUE
if so.

t_bool sim_disk_isavailable_a (UNIT *uptr, DISK_PCALLBACK callback) – Check to see if disk
is available for I/O asynchronously. Return TRUE if so.

t_bool sim_disk_wrp (UNIT *uptr) – Return TRUE if unit uptr is write-protected.

t_addr sim_disk_size (UNIT *uptr) – get disk size

Sim_disk_attach, sim_disk_detach, sim_disk_set_fmt, sim_disk_show_fmt, sim_disk_set_capac,
and sim_tape_disk_capac return standard SCP status codes; the other disk library routines return
private codes for success and failure. Success status is DKSE_OK and any other value is an error.
Errno usually will have the appropriate error code:

 DKSE_OK operation successful

Sim_disk_set_fmt, sim_disk_show_fmt, sim_disk_set_capac, and sim_disk_show_capac should be
referenced by an entry in the disk device’s modifier list, as follows:

 MTAB disk_mod[] = {

{ MTAB_XTD|MTAB_VDV, 0, “FORMAT”, “FORMAT”,

 &sim_disk_set_fmt, &sim_disk_show_fmt, NULL },

{ MTAB_XTD|MTAB_VUN, 0, “CAPACITY”, “CAPACITY”,

 &sim_disk_set_capac, &sim_disk_show_capac, NULL }, …

};

5.5 Breakpoint Support

SIMH provides a highly flexible and extensible breakpoint subsystem to assist in debugging simulated
code. Its features include:

• Up to 26 different kinds of breakpoints (*)

• Unlimited numbers of breakpoints

• Proceed counts for each breakpoint

• Automatic execution of commands when a breakpoint is taken

If debugging is going to be a major activity on a simulator, implementation of a full-featured breakpoint
facility will be of immense help to users.

* Breakpoint type C should probably be avoided since the –C switch is used by the “SHOW BREAK –C”
command to display currently defined breakpoints as commands which can be entered in a subsequent
invocation of the simulator to recreate the same breakpoint set.

5.5.1 Breakpoint Basics

SIMH breakpoints are characterized by a type, an address, a class, a proceed count, and an action string.
Breakpoint types are arbitrary and are defined by the virtual machine. Each breakpoint type is assigned a
unique letter. All simulators to date provide execution (“E”) breakpoints. A useful extension would be to
provide breakpoints on read (“R”) and write (“W”) data access. Even finer gradations are possible, e.g.,
physical versus virtual addressing, DMA versus CPU access, and so on.

Breakpoints can be assigned to devices other than the CPU, but breakpoints don’t contain a device
pointer. Thus, each device must have its own unique set of breakpoint types. For example, if a simulator
contained a programmable graphics processor, it would need a separate instruction breakpoint type (e.g.,
type G rather than E).

The virtual machine defines the valid breakpoint types to SIMH through two variables:

sim_brk_types – initialized by the VM (usually in the CPU reset routine) to a mask of all

supported breakpoints; bit 0 (low order bit) corresponds to type ‘A’, bit 1 to type ‘B’, etc.

sim_brk_dflt – initialized by the VM to the mask for the default breakpoint type.

SIMH in turn provides the virtual machine with a summary of all the breakpoint types that currently have
active breakpoints:

sim_brk_summ – maintained by SIMH; provides a bit mask summary of whether any
breakpoints of a particular type have been defined.

When the virtual machine reaches the point in its execution cycle corresponding to a breakpoint type, it
tests to see if any breakpoints of that type are active. If so, it calls sim_brk_test to see if a breakpoint of
a specified type (or types) is set at the current address. Here is an example from the fetch phase, testing
for an execution breakpoint:

 /* Test for breakpoint before fetching next instruction */

 if ((sim_brk_summ & SWMASK (‘E’)) &&

 sim_brk_test (PC, SWMASK (‘E’))) <execution break>

If the virtual machine implements only one kind of breakpoint, then testing sim_brk_summ for non-zero
suffices. Even if there are multiple breakpoint types, a simple non-zero test distinguishes the no-
breakpoints case (normal run mode) from debugging mode and provides sufficient efficiency.

When a breakpoint match is detected by sim_brk_test the global variables sim_brk_match_type and
sim_brk_match_addr are set to reflect the details of the match that was found. Simulator code can use
this information directly or SimH provides internal facilities to report the details of breakpoints which have
been matched. For example:

 BRKTYPTAB cpu_breakpoints [] = {

 BRKTYPE('E',"Execute Instruction at Virtual Address"),

 BRKTYPE('P',"Execute Instruction at Physical Address"),

 BRKTYPE('R',"Read from Virtual Address"),

 BRKTYPE('S',"Read from Physical Address"),

 BRKTYPE('W',"Write to Virtual Address"),

 BRKTYPE('X',"Write to Physical Address"),

 { 0 }

 };

 t_stat cpu_reset (DEVICE *dptr)

 {

 ...

 sim_brk_dflt = SWMASK ('E');

 sim_brk_types = sim_brk_dflt|SWMASK ('P')|

 SWMASK ('R')|SWMASK ('S')|

 SWMASK ('W')|SWMASK ('X');

 sim_brk_type_desc = cpu_breakpoints;

 ...

 }

In the breakpoint dispatch code something like:

 reason = STOP_IBKPT;

 sim_messagef (reason, "%s", sim_brk_message());

 [and then sim_instr() returns with:]

 return reason;

Or, if it is desirable to suppress the standard message produced when returning to SCP, the following
may be used:

 reason = STOP_IBKPT;

 reason = sim_messagef (reason, "%s\n", sim_brk_message());

 [and then sim_instr() returns with:]

 return reason;

sim_messagef produces a message which contains either the breakpoint type and the matched
breakpoint address (if sim_brk_type_desc is not set), or the type mapped to it related description as
indicated in the BRKTYPTAB pointed to by sim_brk_typ_desc.

5.5.2 Testing For Breakpoints

Breakpoint testing must be done at every point in the instruction decode and execution cycle where an
event relating to a breakpoint type occurs. If a virtual machine implements data breakpoints, it simplifies
implementation if data reads and writes are centralized in subroutines, rather than scattered throughout
the code. For this reason (among others), it is good practice to perform memory access through
subroutines, rather than by direct access to the memory array.

As an example, consider a virtual machine with a central memory read subroutine. This routine takes an
additional parameter, the type of read (often required for memory protection):

 #define IF 0 /* fetch */

 #define ID 1 /* indirect */

 #define RD 2 /* data read */

 #define WR 3 /* data write */

 t_stat Read (uint32 addr, uint32 *dat, uint32 acctyp)

 {

 static uint32 bkpt_type[4] = {

 SWMASK (‘E’), SWMASK (‘N’),

 SWMASK (‘R’), SWMASK (‘W’) };

 If ((sim_brk_summ & bkpt_type[acctyp]) &&

 sim_brk_test (addr, bkpt_type[acctyp]))

 return STOP_BKPT;

else *dat = M[addr];

return SCPE_OK;

}

This routine provides differentiated breakpoints for execution, indirect addresses, and data reads, with a
single test.

5.5.3 The Replay Problem

When a breakpoint is taken, control returns to the SimH control package. Depending on the code
structure of the simulated system and the particular type of breakpoint, a breakpoint may be taken before
or after a specific activity has completed. If it is taken before the operation has actually been performed,
when execution resumes, the same breakpoint will be reached and taken again immediately. This could
result in an endless loop, with the simulator never progressing beyond a breakpoint.

To address this problem, when a breakpoint is taken, SimH remembers the breakpoint that was taken
and the instruction executed count when that particular breakpoint was taken. If the next breakpoint test
for that breakpoint type is to the same address and the instruction execution count is the same, SimH
suppresses the breakpoint. Thus, the simulator can make progress past the breakpoint but will take the
breakpoint again if control returns to the same address.

In order to properly suppress replay breakpoints it is important that the bookkeeping that a simulator does
to record the instructions actually executed not be done when a breakpoint is taken. This bookkeeping is
done by adjustments to sim_interval and subsequent calls to sim_process_event.If a simulator returns
from sim_instr() due to a breakpoint either the adjustment to sim_interval should be done after all
breakpoint checking or the return logic that handles breakpoints should unwind any sim_interval
adjustment that may have happened.

Most simulators will implement a CPU execution breakpoint concept such that the breakpoint is taken
prior to the instruction at the breakpoint address having executed. This allows for the user to continue
execution from breakpoint and the simulator will produce precisely the same results as if the breakpoint
hadn’t been there. In order for this to be true, when a breakpoint is taken, not only must sim_interval be
restored to its value prior to the breakpoint, but all other simulator specific state must also be retained.
This state includes program counter, the contents of registers, condition codes and memory that may
have already changed prior to the call to sim_brk_test that causes the breakpoint to be taken. Achieving
this is simplest with basic PC based execution breakpoints and gets more complicated with breakpoints
based on various memory reference activities.

5.5.4 Breakpoint Classes

SimH implements up to 8 breakpoint classes. Each breakpoint class has its own state. Thus, if the E, R,
and W breakpoints are assigned to separate classes, each will be suppressed in turn until the next
breakpoint test on that class that fails or that uses a different address.

Breakpoint classes are arbitrary identifiers and can be assigned by the simulator writer as desired. The
class is specified as part of the breakpoint type in the call to sim_brk_test:

 <31:29> = class number (0 by default)
 <25:0> = bit mask of breakpoint types

Note that breakpoint classes and breakpoint types are orthogonal. Thus, classes can be used to
distinguish different cases of the same breakpoint type. For example, in an SMP system with ‘n’
processors, classes 0..n-1 could be used for E-breakpoints for processors 0..n-1. Or in a VAX, classes
1..6 could be used for data breakpoints on operands 1..6, with 0 reserved for the CPU’s E-breakpoints.

