; The purpose of this file is to define generic symbols and to include ; the requested build configuraton file to bring in platform specifics. ; There are several hardware platforms supported by SBC. ; 1. SBC Z80 SBC (v1 or v2) w/ ECB interface ; 2. ZETA Standalone Z80 SBC w/ SBC compatibility ; 3. ZETA2 Second version of ZETA with enhanced memory bank switching ; 4. N8 MSX-ish Z180 SBC w/ onboard video and sound ; 5. MK4 Mark IV Z180 based SBC w/ ECB interface ; 6. UNA Any Z80/Z180 computer with UNA BIOS ; 7. RCZ80 RC2014 based system with 512K banked RAM/ROM card ; 8. RCZ180 RC2014 based system with Z180 CPU ; 9. EZZ80 Easy Z80, Z80 SBC w/ RC2014 bus and CTC ; 10. SCZ180 Steve Cousins Z180 based system ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; INCLUDE VERSION ; #INCLUDE "ver.inc" ; ADD BIOSVER ; FALSE .EQU 0 TRUE .EQU ~FALSE ; ; DEBUGGNG OPTIONS ; USENONE .EQU 0 ; NO DEBUG USEXIO .EQU 1 ; BASIC SERIAL DRIVER USEMIO .EQU 2 ; MEMORY BUFFER DRIVER WBWDEBUG .EQU USENONE ; ; PRIMARY HARDWARE PLATFORMS ; PLT_SBC .EQU 1 ; SBC ECB Z80 SBC PLT_ZETA .EQU 2 ; ZETA Z80 SBC PLT_ZETA2 .EQU 3 ; ZETA Z80 V2 SBC PLT_N8 .EQU 4 ; N8 (HOME COMPUTER) Z180 SBC PLT_MK4 .EQU 5 ; MARK IV PLT_UNA .EQU 6 ; UNA BIOS PLT_RCZ80 .EQU 7 ; RC2014 W Z80 PLT_RCZ180 .EQU 8 ; RC2014 W/ Z180 PLT_EZZ80 .EQU 9 ; EASY Z80 PLT_SCZ180 .EQU 10 ; SCZ180 ; #IF (BIOS == BIOS_WBW) #INCLUDE "hbios.inc" #ENDIF ; ; CPU TYPES ; CPU_NONE .EQU 0 ; NO CPU TYPE DEFINED CPU_Z80 .EQU 1 ; Z80 FAMILY CPU_Z180 .EQU 2 ; Z180 FAMILY CPU_Z280 .EQU 3 ; Z280 FAMILY ; ; BIOS MODE ; BIOS_NONE .EQU 0 ; NO BIOS TYPE DEFINED BIOS_WBW .EQU 1 ; ROMWBW HBIOS BIOS_UNA .EQU 2 ; UNA UBIOS ; ; MEMORY MANAGERS ; MM_NONE .EQU 0 MM_SBC .EQU 1 ; ORIGINAL N8VEM/RBC Z80 SBC BANKED MEMORY MM_Z2 .EQU 2 ; 16K X 4 BANKED MEMORY INTRODUCED ON ZETA2 MM_N8 .EQU 3 ; Z180 CUSTOMIZED FOR N8 MEMORY EXTENSIONS MM_Z180 .EQU 4 ; Z180 NATIVE MEMORY MANAGER ; ; BOOT STYLE ; BT_MENU .EQU 1 ; WAIT FOR MENU SELECTION AT LOADER PROMPT BT_AUTO .EQU 2 ; AUTO SELECT BOOT_DEFAULT AFTER BOOT_TIMEOUT ; ; FLOPPY DISK MEDIA SELECTIONS (ID'S MUST BE INDEX OF ENTRY IN FCD_TBL) ; FDM720 .EQU 0 ; 3.5" FLOPPY, 720KB, 2 SIDES, 80 TRKS, 9 SECTORS FDM144 .EQU 1 ; 3.5" FLOPPY, 1.44MB, 2 SIDES, 80 TRKS, 18 SECTORS FDM360 .EQU 2 ; 5.25" FLOPPY, 360KB, 2 SIDES, 40 TRKS, 9 SECTORS FDM120 .EQU 3 ; 5.25" FLOPPY, 1.2MB, 2 SIDES, 80 TRKS, 15 SECTORS FDM111 .EQU 4 ; 8" FLOPPY, 1.11MB, 2 SIDES, 74 TRKS, 15 SECTORS ; ; MEDIA ID VALUES ; MID_NONE .EQU 0 MID_MDROM .EQU 1 MID_MDRAM .EQU 2 MID_RF .EQU 3 MID_HD .EQU 4 MID_FD720 .EQU 5 MID_FD144 .EQU 6 MID_FD360 .EQU 7 MID_FD120 .EQU 8 MID_FD111 .EQU 9 ; ; ZILOG CTC MODE SELECTIONS ; CTCMODE_NONE .EQU 0 ; NO CTC CTCMODE_ZP .EQU 1 ; ZILOG PERIPHERALS ECB CTC CTCMODE_Z2 .EQU 2 ; ZETA2 ONBOARD CTC CTCMODE_EZ .EQU 3 ; EASY Z80 ONBOARD CTC CTCMODE_RC .EQU 4 ; RC2014 CTC MODULE (ALSO KIO) ; ; DS RTC MODE SELECTIONS ; DSRTCMODE_NONE .EQU 0 ; NO DSRTC DSRTCMODE_STD .EQU 1 ; ORIGINAL DSRTC CIRCUIT (SBC, ZETA, MK4) DSRTCMODE_MFPIC .EQU 2 ; MF/PIC VARIANT ; ; SIO MODE SELECTIONS ; SIOMODE_NONE .EQU 0 SIOMODE_RC .EQU 1 ; RC2014 SIO MODULE (SPENCER OWEN) SIOMODE_SMB .EQU 2 ; RC2014 SIO MODULE (SCOTT BAKER) SIOMODE_ZP .EQU 3 ; ECB-ZILOG PERIPHERALS BOARD SIOMODE_EZZ80 .EQU 4 ; EASY Z80 ON-BOARD SIO/0 ; ; TYPE OF CONSOLE BELL TO USE ; CONBELL_NONE .EQU 0 CONBELL_PSG .EQU 1 CONBELL_IOBIT .EQU 2 ; ; FD MODE SELECTIONS ; FDMODE_NONE .EQU 0 FDMODE_DIO .EQU 1 ; DISKIO V1 FDMODE_ZETA .EQU 2 ; ZETA FDMODE_ZETA2 .EQU 3 ; ZETA V2 FDMODE_DIDE .EQU 4 ; DUAL IDE FDMODE_N8 .EQU 5 ; N8 FDMODE_DIO3 .EQU 6 ; DISKIO V3 FDMODE_RCSMC .EQU 7 ; RC2014 SMC 9266 @ $40 (SCOTT BAKER) FDMODE_RCWDC .EQU 8 ; RC2014 WDC 37C65 @ $40 (SCOTT BAKER) ; ; IDE MODE SELECTIONS ; IDEMODE_NONE .EQU 0 IDEMODE_DIO .EQU 1 ; DISKIO V1 IDEMODE_DIDE .EQU 2 ; DUAL IDE IDEMODE_MK4 .EQU 3 ; MARK IV ONBOARD IDE (8 BIT) IDEMODE_RC .EQU 4 ; RC2014 CF MODULE (8 BIT) @ $10 (SPENCER OWEN) IDEMODE_SMB .EQU 5 ; RC2014 IDE MODULE (8 BIT) @ $E0 (SCOTT BAKER) ; ; PPIDE MODE SELECTIONS ; PPIDEMODE_NONE .EQU 0 PPIDEMODE_SBC .EQU 1 ; STANDARD SBC PARALLEL PORT PPIDEMODE_DIO3 .EQU 2 ; DISKIO V3 PARALLEL PORT PPIDEMODE_MFP .EQU 3 ; MULTIFUNCTION / PIC PPIDEMODE_N8 .EQU 4 ; MULTIFUNCTION / PIC PPIDEMODE_RC .EQU 5 ; RC2014 PPIDE MODULE @ $20 (ED BRINDLEY) ; ; SD MODE SELECTIONS ; SDMODE_NONE .EQU 0 SDMODE_JUHA .EQU 1 ; JUHA MINI BOARD SDMODE_N8 .EQU 2 ; N8-2511, UNMODIFIED SDMODE_CSIO .EQU 3 ; N8-2312 OR N8-2511 MODIFIED SDMODE_PPI .EQU 4 ; PPISD MINI BOARD SDMODE_UART .EQU 5 ; SD INTERFACE VIA UART SDMODE_DSD .EQU 6 ; DUAL SD SDMODE_MK4 .EQU 7 ; MARK IV SDMODE_SC .EQU 8 ; SC (Steve Cousins) SDMODE_MT .EQU 9 ; MT (Shift register SPI WIZNET for RC2014) ; ; SOUND CHIP MODE SELECTIONS ; AYMODE_NONE .EQU 0 AYMODE_N8 .EQU 1 ; N8 BUILT-IN SOUND AYMODE_SCG .EQU 2 ; SCG ECB BOARD AYMODE_RCZ80 .EQU 3 ; RC2014 SOUND MODULE BY ED BRINDLEY ON Z80 AYMODE_RCZ180 .EQU 4 ; RC2014 SOUND MODULE BY ED BRINDLEY ON Z180 ; ; TMS VIDEO MODE SELECTIONS ; TMSMODE_NONE .EQU 0 TMSMODE_SCG .EQU 1 ; SCG ECB BOARD TMSMODE_N8 .EQU 2 ; N8 BUILT-IN VIDEO ; ; SERIAL DEVICE CONFIGURATION CONSTANTS ; SER_DATA5 .EQU 0 << 0 SER_DATA6 .EQU 1 << 0 SER_DATA7 .EQU 2 << 0 SER_DATA8 .EQU 3 << 0 ; SER_PARNONE .EQU 0 << 3 SER_PARODD .EQU 1 << 3 SER_PAREVEN .EQU 3 << 3 SER_PARMARK .EQU 5 << 3 SER_PARSPACE .EQU 7 << 3 ; SER_STOP1 .EQU 0 << 2 SER_STOP2 .EQU 1 << 2 ; ; SERIAL BAUD RATES ENCODED AS V = 75 * 2^X * 3^Y ; AND STORED AS 5 BITS: YXXXX ; SER_BAUD75 .EQU $00 << 8 SER_BAUD150 .EQU $01 << 8 SER_BAUD300 .EQU $02 << 8 SER_BAUD600 .EQU $03 << 8 SER_BAUD1200 .EQU $04 << 8 SER_BAUD2400 .EQU $05 << 8 SER_BAUD4800 .EQU $06 << 8 SER_BAUD9600 .EQU $07 << 8 SER_BAUD19200 .EQU $08 << 8 SER_BAUD38400 .EQU $09 << 8 SER_BAUD76800 .EQU $0A << 8 SER_BAUD153600 .EQU $0B << 8 SER_BAUD307200 .EQU $0C << 8 SER_BAUD614400 .EQU $0D << 8 SER_BAUD1228800 .EQU $0E << 8 SER_BAUD2457600 .EQU $0F << 8 SER_BAUD225 .EQU $10 << 8 SER_BAUD450 .EQU $11 << 8 SER_BAUD900 .EQU $12 << 8 SER_BAUD1800 .EQU $13 << 8 SER_BAUD3600 .EQU $14 << 8 SER_BAUD7200 .EQU $15 << 8 SER_BAUD14400 .EQU $16 << 8 SER_BAUD28800 .EQU $17 << 8 SER_BAUD57600 .EQU $18 << 8 SER_BAUD115200 .EQU $19 << 8 SER_BAUD230400 .EQU $1A << 8 SER_BAUD460800 .EQU $1B << 8 SER_BAUD921600 .EQU $1C << 8 SER_BAUD1843200 .EQU $1D << 8 SER_BAUD3686400 .EQU $1E << 8 SER_BAUD7372800 .EQU $1F << 8 ; SER_XON .EQU 1 << 6 SER_DTR .EQU 1 << 7 SER_RTS .EQU 1 << 13 ; SER_75_8N1 .EQU SER_BAUD75 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_150_8N1 .EQU SER_BAUD150 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_300_8N1 .EQU SER_BAUD300 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_600_8N1 .EQU SER_BAUD600 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_1200_8N1 .EQU SER_BAUD1200 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_2400_8N1 .EQU SER_BAUD2400 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_4800_8N1 .EQU SER_BAUD4800 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_9600_8N1 .EQU SER_BAUD9600 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_19200_8N1 .EQU SER_BAUD19200 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_38400_8N1 .EQU SER_BAUD38400 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_76800_8N1 .EQU SER_BAUD76800 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_153600_8N1 .EQU SER_BAUD153600 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_307200_8N1 .EQU SER_BAUD307200 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_614400_8N1 .EQU SER_BAUD614400 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_1228800_8N1 .EQU SER_BAUD1228800 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_2457600_8N1 .EQU SER_BAUD2457600 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_225_8N1 .EQU SER_BAUD225 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_450_8N1 .EQU SER_BAUD450 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_900_8N1 .EQU SER_BAUD900 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_1800_8N1 .EQU SER_BAUD1800 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_3600_8N1 .EQU SER_BAUD3600 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_7200_8N1 .EQU SER_BAUD7200 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_14400_8N1 .EQU SER_BAUD14400 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_28800_8N1 .EQU SER_BAUD28800 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_57600_8N1 .EQU SER_BAUD57600 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_115200_8N1 .EQU SER_BAUD115200 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_230400_8N1 .EQU SER_BAUD230400 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_460800_8N1 .EQU SER_BAUD460800 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_921600_8N1 .EQU SER_BAUD921600 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_1843200_8N1 .EQU SER_BAUD1843200 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_3686400_8N1 .EQU SER_BAUD3686400 | SER_DATA8 | SER_PARNONE | SER_STOP1 SER_7372800_8N1 .EQU SER_BAUD7372800 | SER_DATA8 | SER_PARNONE | SER_STOP1 ; ; TERMENABLE CONTROLS INCLUSION OF TERMINAL PSEUDO-DEVICE DRIVER ; IT IS SET TO TRUE BY THE INCLUSION OF ANY VDA DRIVER. ; TERMENABLE .EQU FALSE ; TERM PSEUDO DEVICE, WILL AUTO-ENABLE IF A VDA IS ENABLED ; ; ECB-VDU MODES ; V80X24 .EQU 0 V80X25 .EQU 1 V80X30 .EQU 2 V80X25B .EQU 3 V80X24B .EQU 4 ; ; KEYBOARD LAYOUTS ; KBD_US .EQU 0 ; US ENGLISH KBD_DE .EQU 1 ; GERMAN ; ; DEVICE DRIVER TO BE INITIALIZED FIRST. FIRST CIO DRIVER, UNIT 0 INITIALIZED BECOMES PRIMARY CONSOLE. ; IS AN INDEX INTO THE ENABLED INITIALIZATION DRIVER LIST i.e. ASCI, UART, SIO, ACIA, PIO, UF ETC. ; EXAMPLE: IF ONLY UART, SIO AND PIO ARE ENABLE AND THE SIO IS DESIRED AS THE PRIMARY CONSOLE, ; SET FORCECON TO 2 IN YOUR CUSTOM CONFIGURATION FILE i.e. "FORCECON: .SET 2" ; FORCECON .EQU 0 ; DEFAULT IS TO FOLLOW NORMAL SEQUENCE ; #INCLUDE "build.inc" ; INCLUDE USER CONFIG, ADD VARIANT, TIMESTAMP, & ROMSIZE ; ; INCLUDE Z180 REGISTER DEFINITIONS ; #IF (BIOS == BIOS_WBW) #IF (CPUFAM == CPU_Z180) #INCLUDE "z180.inc" #ENDIF #ENDIF ; ; SETUP DEFAULT CPU SPEED VALUES ; CPUKHZ .EQU CPUOSC / 1000 ; CPU FREQ IN KHZ ; #IF (BIOS == BIOS_WBW) #IF (CPUFAM == CPU_Z180) #IF (Z180_CLKDIV == 0) CPUKHZ .SET CPUKHZ / 2 ; ADJUST FOR HALF SPEED OPERATION #ENDIF #IF (Z180_CLKDIV == 2) CPUKHZ .SET CPUKHZ * 2 ; ADJUST FOR DOUBLE SPEED OPERATION #ENDIF #ENDIF #ENDIF ; CPUMHZ .EQU CPUKHZ / 1000 ; CPU FREQ IN MHZ ; TICKSPERSEC .EQU 50 ; ; MEMORY BANK CONFIGURATION ; #IF (BIOS == BIOS_UNA) BID_ROM0 .EQU $0000 BID_RAM0 .EQU $8000 #ENDIF ; #IF (BIOS == BIOS_WBW) BID_ROM0 .EQU $00 BID_RAM0 .EQU $80 #ENDIF BID_ROMN .EQU (BID_ROM0 + ((ROMSIZE / 32) - 1)) BID_RAMN .EQU (BID_RAM0 + ((RAMSIZE / 32) - 1)) BID_BOOT .EQU BID_ROM0 ; BOOT BANK ;BID_BIOSIMG .EQU BID_ROM0 + 1 ; BIOS IMAGE BANK ;BID_OSIMG .EQU BID_ROM0 + 2 ; ROM LOADER AND IMAGES BANK BID_IMG0 .EQU BID_ROM0 + 1 ; ROM LOADER AND FIRST IMAGES BANK BID_IMG1 .EQU BID_ROM0 + 2 ; SECOND IMAGES BANK BID_FSFAT .EQU BID_ROM0 + 3 ; FAT FILESYSTEM DRIVER BANK BID_ROMD0 .EQU BID_ROM0 + 4 ; FIRST ROM DRIVE BANK BID_ROMDN .EQU BID_ROMN ; LAST ROM DRIVE BANK BID_RAMD0 .EQU BID_RAM0 ; FIRST RAM DRIVE BANK BID_RAMDN .EQU BID_RAMN - 4 ; LAST RAM DRIVE BANK BID_AUX .EQU BID_RAMN - 3 ; AUX BANK (BPBIOS, ETC.) BID_BIOS .EQU BID_RAMN - 2 ; BIOS BANK BID_USR .EQU BID_RAMN - 1 ; USER BANK (CP/M TPA, ETC.) BID_COM .EQU BID_RAMN ; COMMON BANK, UPPER 32K ; ; MEMORY LAYOUT ; SYS_SIZ .EQU $3000 ; COMBINED SIZE OF SYSTEM AREA (OS + HBIOS PROXY) HBBUF_SIZ .EQU 1024 ; INVARIANT HBIOS PHYSICAL DISK BUFFER, 1K HBX_SIZ .EQU $200 ; HBIOS PROXY SIZE (SUBJECT TO CHANGE) CPM_SIZ .EQU SYS_SIZ - HBX_SIZ ; NET SIZE OF ALL OS COMPONENTS (EXCLUDING HBIOS PROXY) CCP_SIZ .EQU $800 ; INVARIANT SIZE OF CCP BDOS_SIZ .EQU $E00 ; INVARIANT SIZE OF BDOS CBIOS_SIZ .EQU CPM_SIZ - CCP_SIZ - BDOS_SIZ ; CBIOS IS THE REMAINDER MEMTOP .EQU $10000 ; INVARIANT TOP OF Z80 ADDRESSABLE MEMORY BNKTOP .EQU $8000 ; BANK MEMORY BARRIER HBX_IMG .EQU $200 ; LOC OF HBX IMAGE IN HBIOS IMAGE BANK HBBUF_END .EQU BNKTOP ; END OF PHYSICAL DISK BUFFER IN HBIOS HBBUF_LOC .EQU HBBUF_END - HBBUF_SIZ ; START OF PHYSICAL DISK BUFFER HBX_END .EQU MEMTOP ; END OF HBIOS PROXY HBX_LOC .EQU HBX_END - HBX_SIZ ; START OF HBIOS PROXY CPM_END .EQU HBX_LOC ; END OF CPM COMPONENTS (INCLUDING CBIOS) CPM_LOC .EQU CPM_END - CPM_SIZ ; START OF CPM COMPONENTS CBIOS_END .EQU HBX_LOC ; END OF CBIOS CBIOS_LOC .EQU CBIOS_END - CBIOS_SIZ ; START OF CBIOS CPM_ENT .EQU CBIOS_LOC ; CPM ENTRY POINT (IN CBIOS) LDR_SIZ .EQU $0E00 MON_LOC .EQU $F000 ; LOCATION OF MONITOR FOR RUNNING SYSTEM MON_SIZ .EQU $0E00 ; SIZE OF MONITOR BINARY IMAGE MON_END .EQU MON_LOC + MON_SIZ ; END OF MONITOR BAS_LOC .EQU $0200 ; NASCOM BASIC BAS_SIZ .EQU $2000 BAS_END .EQU BAS_LOC + BAS_SIZ TBC_LOC .EQU $0A00 ; TASTYBASIC TBC_SIZ .EQU $0900 TBC_END .EQU TBC_LOC + TBC_SIZ EGG_LOC .EQU $0A00 ; EASTER EGG EGG_SIZ .EQU $0200 EGG_END .EQU EGG_LOC + EGG_SIZ FTH_LOC .EQU $0200 ; CAMEL FORTH FTH_SIZ .EQU $1700 FTH_END .EQU FTH_LOC + FTH_SIZ MON_DSKY .EQU MON_LOC + (0 * 3) ; MONITOR ENTRY (DSKY) MON_SERIAL .EQU MON_LOC + (1 * 3) ; MONITOR ENTRY (SERIAL PORT) ; ; INTERRUPT MODE 2 SLOT ASSIGNMENTS ; #IF (INTMODE == 2) #IF (CPUFAM == CPU_Z180) ; Z180-BASED SYSTEMS INT_INT1 .EQU 0 ; Z180 INT 1 INT_INT2 .EQU 1 ; Z180 INT 2 INT_TIM0 .EQU 2 ; Z180 TIMER 0 INT_TIM1 .EQU 3 ; Z180 TIMER 1 INT_DMA0 .EQU 4 ; Z180 DMA 0 INT_DMA1 .EQU 5 ; Z180 DMA 1 INT_CSIO .EQU 6 ; Z180 CSIO INT_SER0 .EQU 7 ; Z180 SERIAL 0 INT_SER1 .EQU 8 ; Z180 SERIAL 0 INT_PIO0A .EQU 9 ; ZILOG PIO 0, CHANNEL A INT_PIO0B .EQU 10 ; ZILOG PIO 0, CHANNEL B INT_PIO1A .EQU 11 ; ZILOG PIO 1, CHANNEL A INT_PIO1B .EQU 12 ; ZILOG PIO 1, CHANNEL B INT_SIO0 .EQU 13 ; ZILOG SIO 0, CHANNEL A & B INT_SIO1 .EQU 14 ; ZILOG SIO 1, CHANNEL A & B #ELSE ; Z80-BASED SYSTEMS INT_CTC0A .EQU 0 ; ZILOG CTC 0, CHANNEL A INT_CTC0B .EQU 1 ; ZILOG CTC 0, CHANNEL B INT_CTC0C .EQU 2 ; ZILOG CTC 0, CHANNEL C INT_CTC0D .EQU 3 ; ZILOG CTC 0, CHANNEL D INT_SIO0 .EQU 7 ; ZILOG SIO 0, CHANNEL A & B INT_SIO1 .EQU 8 ; ZILOG SIO 1, CHANNEL A & B INT_PIO0A .EQU 9 ; ZILOG PIO 0, CHANNEL A INT_PIO0B .EQU 10 ; ZILOG PIO 0, CHANNEL B INT_PIO1A .EQU 11 ; ZILOG PIO 1, CHANNEL A INT_PIO1B .EQU 12 ; ZILOG PIO 1, CHANNEL B #ENDIF #DEFINE IVT(INTX) HB_IVT+(INTX * 4)+1 #DEFINE VEC(INTX) INTX*2 #ENDIF ; ; HELPER MACROS ; #DEFINE PRTC(C) CALL PRTCH \ .DB C ; PRINT CHARACTER C TO CONSOLE - PRTC('X') #DEFINE PRTS(S) CALL PRTSTRD \ .TEXT S ; PRINT STRING S TO CONSOLE - PRTD("HELLO") #DEFINE PRTX(X) CALL PRTSTRI \ .DW X ; PRINT STRING AT ADDRESS X TO CONSOLE - PRTI(STR_HELLO) ; #DEFINE XIO_PRTC(C) CALL XIO_PRTCH \ .DB C ; PRINT CHARACTER C TO CONSOLE - PRTC('X') #DEFINE XIO_PRTS(S) CALL XIO_PRTSTRD \ .DB S ; PRINT STRING S TO CONSOLE - PRTD("HELLO") #DEFINE XIO_PRTX(X) CALL XIO_PRTSTRI \ .DW X ; PRINT STRING AT ADDRESS X TO CONSOLE - PRTI(STR_HELLO)