RomWBW
Architecture

N8VEM Project
RomWBW Version 2.5

March 19, 2013

Contents

OVEBIVIBW ..ttt ettt e et e e s ettt e e e s e s bbbt e e e e e s e s s bbbt e e e e e s e b b ae e teeeeesa b rbaeteeesesannnnraees 2
2ol €= o]0 [Vo IR USRI 2
LYY e I DT o g T =Y =T = VPSR 3
YU ol T 0 g LT/ L= 0 0 Yo T Y I 1Y o T | NN 4
N A =] 0 T = 7o Lo o o Yol = 4
ROM BOOT ... ittt e e s bbb et e e e s e s bbbt e s e e e s s s bbbt e e e e s s e s b anae e e e s 5
iYoo) [ToF: o Yo T 2 o Yo AN PR 6
NOTES it b e e s a e e s b e e e seba e e e sans 6
DIIVEI IMIOTEN ...ttt e b e s h e sttt et e bt e bt e s bt e sae e e at e et e et e e bt e nbeesheesateeareeneeane 6
Character / EMUIGLION / VIdEO SEIVICES ...uvveeeeeieieeeeeeeeee oo ettt e e e e e e eeeerteeessseeessaeereeesssesassaeeeeeessseeanrseeens 7
HBIOS RETEIENCE ..ottt ettt ettt et e st e e bt e e s bt e s bt e e sabe e s bt e e sabeesneeesabeesabeeesabeesbeeennreas 9
101V o Tor= 1 o o PRSPPSO 9
FUNCEION OVEIVIEW .ttt 10
Character INPUL/OULPUL (ClO) ...oiiieieiiie ettt ettt et e et e et e et e e e tve e e ebeeeetbeeebeeeetbeeeabeeentaeensseeenseeennns 11
DisK INPUL/OULPUL (DIO)...uiiiiieeiiieeetie ettt ettt ettt ettt e eette e e te e e teeesabe e e beeestbeesabesesaseesabaeensaeesnteseseeensrens 13
Rl TiME CIOCK (RTEC) .uriiieiiiiie e eeieee ettt ettt e e ettt e e e ettt e e e et e e e e e ate e e e eabeea e e steeesestasaeestaeeeassaeasasseeasansres 16
EMUIGTION (EMU) . .eiiiiiieciee ettt ettt e e tee et e e et e e st e e eataeesateesaseeesseeantaeessseesasaeansaeesnseeasneensses 18
Video Display AdApter (VDA)ueeiueeeieeeiee ettt e st e eteeesteesteeestaeesteeesaseessbeessaeasssaeensesessseesnsasesssessnseeans 19
N L= T)) ISR PSP 27
Y =Yoo T oY A I 1YL TVl D<) =Y | T 29

RomWBW Architecture Page 1

Overview

RomWBW provides a complete firmware package for all of the Z80-based systems that are available in
the N8VEM Community (see http:// http://n8vem-sbc.pbworks.com). Each of these systems provides

for a fairly large ROM memory (typically, 512KB or more). RomWBW allows you to configure and build

appropriate contents for such a ROM.

Typically, a computer will contain a small ROM that contains the BIOS (Basic Input/Output System)
functions as well as code to start the system by booting an operating system from a disk. Since the
N8VEM Projects provide a large ROM space, RomWBW provides a much more comprehensive software
package. In fact, it is entirely possible to run a fully functioning N8VEM System with nothing but the
ROM.

RomWBW firmware includes:
e System startup code (bootstrap)

e A basic system/debug monitor

HBIOS (Hardware BIOS) providing support for the vast majority of NSVEM I/O components

A complete operating system (either CP/M 2.2 or ZSDOS 1.1)

A built-in CP/M filesystem containing the basic applications and utilities for the operating
system and hardware being used

It is appropriate to note that much of the code and components that make up a complete RomWBW
package are derived from pre-existing work. Most notably, the imbedded operating system is simply a
ROM-based copy of generic CP/M or ZSDOS. Much of the hardware support code was originally
produced by other members of the N8VEM community.

The remainder of this document will focus on the HBIOS portion of the ROM. HBIOS contains the vast
majority of the custom-developed code for the N8VEM hardware platforms. It provides a formal,
structured interface that allows the operating system to be hosted with relative ease.

Background
The Z80 CPU architecture has a limited, 64K address range. In general, this address space must
accommodate a running application, disk operating system, and hardware support code.

All N8VEM Z80 CPU platforms provide a physical address space that is much larger than the CPU address
space (typically 512K or 1MB). This additional memory can be made available to the CPU using a
technique called bank switching. To achieve this, the physical memory is divided up into chunks (banks),
typically 32K each. A designated area of the CPU’s 64K address space is then reserved to “map” any of
the physical memory chunks. You can think of this as a window that can be adjusted to view portions of
the physical memory in 32K blocks. In the case of N8VEM platforms, the lower 32K of the CPU address

RomWBW Architecture Page 2

http://n8vem-sbc.pbworks.com/

space is used for this purpose (the window). The upper 32K of CPU address space is assigned a fixed 32K
area of physical memory that never changes. The lower 32K can be “mapped” on the fly to any of the
32K banks of physical memory at a time. The only constraint is that the CPU cannot be executing code
in the lower 32K of CPU address space at the time that a bank switch is performed.

By cleverly utilizing the pages of physical RAM for specific purposes and swapping in the correct page
when needed, it is possible to utilize substantially more than 64K of RAM. Because the N8VEM project
has now produced a very large variety of hardware, it has become extremely important to implement a
bank switched solution to accommodate the maximum range of hardware devices and desired
functionality.

General Design Strategy

The design goal is to locate as much of the hardware dependent code as possible out of normal 64KB
CP/M address space and into a bank switched area of memory. A very small code shim (proxy) is located
in the top 256 bytes of CPU memory. This proxy is responsible for redirecting all hardware BIOS (HBIOS)
calls by swapping the “driver code” bank of physical RAM into the lower 32K and completing the
request. The operating system is unaware this has occurred. As control is returned to the operating
system, the lower 32KB of memory is switched back to normal (bank 0).

HBIOS is completely agnostic with respect to the operating system (it does not know or care what
operating system is using it). The operating system makes simple calls to HBIOS to access any desired
hardware functions. Since the HBIOS proxy occupies only 256 bytes at the top of memory, the vast
majority of the CPU memory is available to the operating system and the running application. As far as
the operating system is concerned, all of the hardware driver code has been magically implemented
inside of a tiny 256 byte area at the top of the CPU address space.

Unlike some other Z80 bank switching schemes, there is no attempt to build bank switching into the
operating system itself. This is intentional so as to ensure that any operating system can easily be
adapted without requiring invasive modifications to the operating system itself. This also keeps the
complexity of memory management completely away from the operating system and applications.

There are some operating systems that have built-in support for bank switching (e.g., CP/M 3). These
operating systems are allowed to make use of the bank switched memory and are compatible with
HBIOS. However, it is necessary that the customization of these operating systems take into account the
banks of memory used by HBIOS and not attempt to use those specific banks.

Note that all code and data are located in RAM memory during normal execution. While it is possible to
use ROM memory to run code, it would require that more upper memory be reserved for data storage.
It is simpler and more memory efficient to keep everything in RAM. At startup (boot) all required code
is copied to RAM for subsequent execution.

RomWBW Architecture Page 3

Runtime Memory Layout

RomWBW Bank Switched Memory Layout
$10000 N ——————————
HBIOS Proxy (RST 08) A ®
| $Fro0] \

4

N Operating System A CBIOS

5 N i BDOS HBIOS Function Call

Q. CP/M or ZSYS 4 w/ Bank Switch
ol ccP o

)
S -2 |-spooo
o -8 [}
i =S
al1c
o
o
©
B T e - — J
o)
5%
ol Application Area (TPA)
Rl

2 HBIOS

= (Hardware Drivers)

g

c

©

o

$0000 - —

J

Fixed Mapping of Upper 32K to Last Bank

BankOlBankllBankZlBank3| e o o

|Bank N

Physical RAM (32K banks)

RAM Disk

System Boot Process
A multi-phase boot strategy is employed. This is necessary because at cold start, the CPU is executing

code from ROM in lower memory which is the same area that is bank switched.

Boot Phase 1 copies the phase 2 code to upper memory and jumps to it to continue the boot process.

This is required because the CPU starts at address $0000 in low memory. However, low memory is used

as the area for switching ROM/RAM banks in and out. Therefore, it is necessary to relocate execution to

high memory in order to initialize the RAM memory banks.

Boot Phase 2 manages the setup of the RAM page banks for HBIOS operation, performs hardware

initialization, and then executes the boot loader.

RomWBW Architecture

Page 4

Boot Phase 3 is the loading of the selecting operating system (or debug monitor) by the Boot Loader.
The Boot Loader is responsible for prompting the user to select a target operating system to load,
loading it into RAM, then transferring control to it. The Boot Loader is capable of loading a target
operating system from a variety of locations including disk drives and ROM.

Note that the entire boot process is entirely operating system agnostic. It is unaware of the operating
system being loaded. The Boot Loader prompts the user for the location of the binary image to load,
but does not know anything about what is being loaded (the image is usually an operating system, but
could be any executable code image). Once the Boot Loader has loaded the image at the selected
location, it will transfer control to it. Assuming the typical situation where the image was an operating
system, the loaded operating system will then perform it’s own initialization and begin normal
operation.

There are actually two ways to perform a system boot. The first, and most commonly used, method is a
“ROM Boot”. This refers to booting the system directly from the startup code contained on the physical
ROM chip. A ROM Boot is always performed upon power up or when a hardware reset is performed.

Once the system is running (operating system loaded), it is possible to reboot the system from a system
image contained on the file system. This is referred to as an “Application Boot”. This mechanism allows
a temporary copy of the system to be uploaded and stored on the file system of an already running
system and then used to boot the system. This boot technique is useful to: 1) test a new build of a
system image before programming it to the ROM; or 2) easily switch between system images on the fly.

A more detailed explanation of these two boot processes is presented below. You can refer to the
section of this document called Memory Layout Detail to help understand the processes.

ROM Boot

At power on (or hardware reset), ROM page 0 is automatically mapped to lower memory by hardware
level system initialization. Page Zero (first 256 bytes of the CPU address space) is reserved to contain

dispatching instructions for interrupt instructions. Address S0000 performs a jump to the start of the

phase 1 code so that this first page can be reserved.

The phase 1 code now copies the phase 2 code from lower memory to upper memory and jumps to it.
The phase 2 code now initializes the HBIOS by copying the ROM resident HBIOS from ROM page 1 to
RAM page 1. It subsequently calls the HBIOS initialization routine. Finally, it starts the Boot Loader
which prompts the user for the location of the target system image to execute.

Once the boot loader transfers control to the target system image, all of the Phase 1, Phase 2, and Boot
Loader code is abandoned and the space it occupied is normally overwritten by the operating system.

The ROM Boot process is implemented in the source file “bootrom.asm”.

RomWBW Architecture Page 5

Application Boot

When a new system image is built, one of the output files produced is an actual CP/M application (an
executable .COM program file). Once you have a running CP/M (or compatible) system, you can
upload/copy this application file to the filesystem. By executing this file, you will initiate an Application
Boot using the system image contained in the application file itself.

Upon execution, the Application Boot program is loaded into memory by the previously running
operating system starting at S0100. Note that program image contains a copy of the HBIOS to be
installed and run. Once the Application Boot program is loaded by the previous operating system,
control is passed to it and it performs a system initialization similar to the ROM Boot, but using the
image loaded in RAM.

Specifically, the code at $0100 (in low memory) copies phase 2 boot code to upper memory and
transfers control to it. The phase 2 boot code copies the HBIOS image from application RAM to RAM
page 1, then calls the HBIOS initialization routine. At this point, the prior HBIOS code has been
discarded and overwritten. Finally, the Boot Loader is invoked just like a ROM Boot.

This process is implemented in the source file “bootapp.asm”

Notes
1. Size of ROM disk and RAM disk will be decreased as needed to accommodate RAM and ROM
memory bank usage for the banked BIOS.

2. There is no support for interrupt driven drivers at this time. Such support should be possible in
a variety of ways, but none are yet implemented.

3. There are still some places in the CBIOS where it is manipulating memory banks directly. This is
inappropriate and will eventually be corrected.

Driver Model

The framework code for bank switching also allows hardware drivers to be implemented mostly without
concern for memory management. Drivers are coded to simply implement the HBIOS functions
appropriate for the type of hardware being supported. When the driver code gets control, it has already
been mapped to the CPU address space and simply performs the requested function based on
parameters passed in registers. Upon return, the bank switching framework takes care of restoring the
original memory layout expected by the operating system and application.

However, the one constraint of hardware drivers is that any data buffers that are to be returned to the
operating system or applications must be allocated in high memory. Buffers inside of the driver’s
memory bank will be swapped out of the CPU address space when control is returned to the operating
system.

RomWBW Architecture Page 6

If the driver code must make calls to other code, drivers, or utilities in the driver bank, it must make
those calls directly (it must not use RST 08). This is to avoid a nested bank switch which is not supported

at this time.

Character / Emulation / Video Services

In addition to a generic set of routines to handle typical character input/output, HBIOS also includes
functionality for managing built-in video display adapters. To start with there is a basic set of character
input/output functions, the CIOXXX functions, which allow for simple character data streams. These
functions fully encompass routing byte stream data to/from serial ports. Note that there is a special
character pseudo-device called “CRT”. When characters are read/written to/from the CRT character
device, the data is actually passed to a built-in terminal emulator which, in turn, utilizes a set of VDA
(Video Display Adapter) functions (such as cursor positioning, scrolling, etc.).

The following diagram depicts the relationship between these components of HBIOS video processing:

RomWBW Architecture Page 7

Character / Emulation / Video Services

HBIOS HARDWARE

Character

1/0 N
Services > umT (e

UART
VDU p| Asal ﬁ»[

CIOXXX

-
ASCI j

(7]

9

=

g: EMUXXX >l Emula)tion

2 Services

5

§ TTY ——

(7]

a0 ANSI +—® Video

E Others... —P Display p VDU nTse

g Adapter

& VDAXXX Services BB

- VGA [
p CVDU [—p

SY6545 N ::
MC8563 (| UPD7220 2 g
uPD7220 B ::
TMS9918 > B

Normally, the operating system will simply utilize the CIOXXX functions to send and receive character
data. The Character I/O Services will route I/O requests to the specified physical device which is most
frequently a serial port (such as UART or ASCI). As shown above, if the CRT device is targeted by a
CIOXXX function, it will actually be routed to the Emulation Services which implement TTY, ANSI, etc.
escape sequences. The Emulation Services subsequently rely on the Video Display Adapter Services as
an additional layer of abstraction. This allows the emulation code to be completely unaware of the
actual physical device (device independent). Video Display Adapter (VDA) Services contains drivers as
needed to handle the available physical video adapters.

Note that the Emulation and VDA Services API functions are available to be called directly. Doing so
must be done carefully so as to not corrupt the “state” of the emulation logic.

Before invoking CIOXXX functions targeting the CRT device, it is necessary that the underlying layers
(Emulation and VDA) be properly initialized. The Emulation Services must be initialized to specify the

RomWBW Architecture Page 8

desired emulation and specific physical VDA device to target. Likewise, the VDA Services may need to be
initialized to put the specific video hardware into the proper mode, etc.

HBIOS Reference

Invocation

HBIOS functions are invoked by placing the required parameters in CPU registers and executing an RST
08 instruction. Note that HBIOS does not preserve register values that are unused. However, it must
not modify the Z80 alternate registers or IX/IY (these registers can be used within HBIOS as long as they
are saved and restored internally).

Normally, applications will not call HBIOS functions directly. It is intended that the operating system
makes all HBIOS function calls. Applications that are considered system utilities may use HBIOS, but
must be careful not to modify the operating environment in any way that the operating system does not
expect.

In general, the desired function is placed in the B register. Additional registers are used as defined by
the specific function. Register A should be used to return function result information. A=0 should
indicate success, other values are function specific.

Some functions utilize pointers to memory buffers. Such memory buffers are required to be located in
the upper 32K for CPU RAM address space. This requirement significantly simplifies the HBIOS proxy
and improves performance by avoiding “double copies” of buffers.

RomWBW Architecture Page 9

Function Overview

Character Input/Output (CIO)

Character Input — CIOIN

Character Output — CIOIN

Character Input Status — CIOIST
Character Output Status — CIOOST
Character 1/O Configuration — CIOCFG

Disk Input/Output (DIO)

Disk Read — DIORD

Disk Write — DIOWR

Disk Status — DIOST

Disk Media — DIOMED

Disk Identify — DIOID

Disk Get Buffer Address — DIOGETBUF
Disk Set Buffer Address — DIOSETBUF

Real Time Clock (RTC)

RTC Get Time — RTCGETTIM

RTC Set Time — RTCSETTIM

RTC Get NVRAM Byte — RTCGETBYT
RTC Set NVRAM Byte — RTCSETBYT
RTC Get NVRAM Block — RTCGETBLK
RTC Set NVRAM Block — RTCSETBLK

Emulation (EMU)

Emulation Input — EMUIN
Emulation Output — EMUIN
Emulation Input Status — EMUIST
Emulation Output Status — EMUOST
Emulation Initialization — EMUINI
Emulation Query — EMUQRY

Video Display Adapter (VDA)

VDA Initialize — VDAINI

VDA Query — VDAQRY

VDA Reset — VDARES

VDA Set Cursor Style — VDASCS
VDA Set Cursor Position — VDASCP
VDA Set Character Attribute — VDASAT
VDA Set Character Color — VDASCO
VDA Write Character — VDAWRC
VDA Fill - VDAFIL

VDA Copy -- VDACPY

VDA Scroll — VDASCR

VDA Keyboard Status — VDAKST
VDA Keyboard Flush — VDAKFL
VDA Keyboard Read — VDAKRD

System (SYS)

System Get Configuration — SYSGETCFG
System Set Configuration — SYSSETCFG
System Banked Memory Copy — SYSBNKCPY
System Get Version — SYSGETVER

RomWBW Architecture

Page 10

Character Input/Output (CIO)

Character input/output functions require that a character device/unit be specified in the C register. The

upper nibble (upper 4 bits) specify the device (such as UART). The lower nibble specifies the unit of the

device (O=first port, 1=second port, etc.)

The CRT device is a virtual device code that will route characters in/out via the currently active VDA

device (see EMUINI function).

The currently supported devices/units are:

Device Unit
0 UART Unit = Port
1 ASCI Unit = Port
2 ProplO VGA N/A
3 ParPortProp VGA N/A
F CRT N/A

Character Input - CIOIN ($00)

Input
B=S00 (function)
C=Device/Unit

Output
A=Status (0=0K, 1=Error)
E=Character input

Wait for a single character to be available at the specified device and return the character in E. Function

will wait indefinitely for a character to be available.

Character Output - CIOOUT (3$01)

Input
B=S$01 (function)
C=Device/Unit
E=Character to output

Output
A=Status (0=0K, 1=Error)

Wait for device/unit to be ready to send a character, then send the character specified in E.

Character Input Status - CIOIST ($02)

Input
B=S$02 (function)
C=Device/Unit

Output
A=Status: # characters in input buffer

Return the number of characters available to read in the input buffer of the device/unit specified. If the
device has no input buffer, it is acceptable to return simply 0 or 1 where 0 means there is no character
available to read and 1 means there is a character available to read.

RomWBW Architecture

Page 11

Character Output Status - CIOOST ($03)

Input
B=503 (function)
C=Device/Unit

Output
A=Status: output buffer space available

Return the space available in the output buffer expressed as a character count. If a 16 byte output
buffer contained 6 characters waiting to be sent, this function would return 10, the number of positions
available in the output buffer. If the port has no output buffer, it is acceptable to return simply O or 1
where 0 means the port is busy and 1 means the port is ready to output a character.

Character Config - CIOCFG ($04)

Input

B=504 (function)
C=Speed
E=Framing/Parity

Output
A=Status: 0=Success, otherwise failure

Not yet implemented.

Sets the speed and framing of the character stream. Register C specifies the speed. Register E specifies

the framing and parity characteristics.

RomWBW Architecture

Page 12

Disk Input/Output (DIO)

Disk input/output functions require that a disk device/unit be specified in the C register. The upper

nibble (upper 4 bits) specify the device (such as IDE). The lower nibble specifies the unit of the device

(0=master, 1=slave, etc.)

The currently supported devices/units are:

Device Unit

0 Memory Disk Unit 0 = ROM, Unit 1 = RAM

1 Floppy Disk Unit 0 = Primary, Unit 1 = Secondary

2 IDE Disk Unit 0 = Master, Unit 1 = Slave

3 ATAPI Disk (not implemented) Unit 0 = Master, Unit 1 = Slave

4 IDE Disk Unit 0 = Master, Unit 1 = Slave

5 SD Card N/A

6 ProplO SD Card N/A

7 ParPortProp SD Card N/A

8 SIMH HDSK Disk Unit 0-7 = SIMH emulated hard disk 0-7

The currently defined media types are:

Media ID Value | Format
MID_NONE 0 No media installed
MID_MDROM | 1 ROM Drive
MID_MDRAM | 2 RAM Drive
MID_HD 3 Hard Disk (LBA)
MID_FD720 4 3.5” 720K Floppy
MID_FD144 5 3.5” 1.44M Floppy
MID_FD360 6 5.25” 360K Floppy
MID_FD120 7 5.25” 1.2M Floppy
MID_FD111 8 8” 1.11M Floppy

Disk Read - DIORD ($10)

Input

B=510 (function)
C=Device/Unit
HL=Track
D=Head
E=Sector

Output
A=Status (0=0K, 1=Error)

Read a single 512 byte sector into the buffer previously specified buffer area (see DIOSBA).

For a hard disk device, only LBA addressing is supported. In this case, HL will contain the high 16 bits of
the LBA block number and DE will contain the low 16 bits of the LBA block number.

RomWBW Architecture

Page 13

Disk Write - DIOWR ($11)

Input

B=$11 (function)
C=Device/Unit
HL=Track
D=Head
E=Sector

Output
A=Status (0=0K, 1=Error)

Write a single 512 byte sector from the buffer previously specified buffer area (see DIOSBA).

For a hard disk device, only LBA addressing is supported. In this case, HL will contain the high 16 bits of

the LBA block number and DE will contain the low 16 bits of the LBA block number.

Disk Status - DIOST ($12)

Input
B=$12 (function)
C=Device/Unit

Output
A=Status (0=0K, 1=Error)

Return the current status of the specified device.

Disk Media - DIOMED ($13)

Input
B=513 (function)
C=Device/Unit

Output
A=Media ID

Return a media identifier that describes the media format of the current media in the device. If the
device supports multiple media types, the media will be examined to determine the specific media

format currently installed.

Disk Identify - DIOID ($14)
Not implemented

Disk Get Buffer Address - DIOGETBUF ($18)

Input
B=518 (function)
HL=Buffer Address

Output
A=Status (0-OK, 1=Error)

Get the current buffer address used for disk read/write calls.

RomWBW Architecture

Page 14

Disk Set Buffer Address - DIOSETBUF ($19)

Input Output
B=519 (function) A=Status (0-OK, 1=Error)

HL=Buffer Address

Set the buffer address to be used for subsequent disk read/write calls. Contents of any prior buffer
location are not retained. The new buffer area is not initialized. The buffer must be located in high
memory (top 32K).

RomWBW Architecture Page 15

Real Time Clock (RTC)

The Real Time Clock functions provide read/write access to the clock and related Non-Volatile RAM.

The time functions (RTCGTM and RTCSTM) require a 7 byte date/time buffer of the following format.

Each byte is BCD encoded.

Offset | Contents

Year (00-99)

Month (01-12)

Date (01-31)

Hours (00-24)

Minutes (00-59)

Seconds (00-59)

|~ WINIFLR|O

Day of Week (00-06)

RTC Get Time - RTCGETTIM($20)

Input
B=520 (function)
HL=Time Buffer Address

Output
A=Status: 0=Success, otherwise failure

Read the current value of the clock and store the date/time in the buffer pointed to by HL.

RTC Set Time - RTCSETTIM($21)

Input
B=521 (function)

Output
A=Status: 0=Success, otherwise failure

Set the current value of the clock based on the date/time in the buffer pointed to by HL.

RTC Get NVRAM Byte - RTCGETBYT($22)

Input
B=S$22 (function)
C=Index

Output
A=Status: 0=Success, otherwise failure

E=Value

Read a single byte value from the Non-Volatile RAM at the index specified by C. The value is returned in

register E.

RTC Set NVRAM Byte - RTCSETBYT($23)

Input
B=523 (function)
C=Index

Output
A=Status: 0=Success, otherwise failure

E=Value

Write a single byte value into the Non-Volatile RAM at the index specified by C. The value to be written

is specified in E.

RomWBW Architecture

Page 16

RTC Get NVRAM Block - RTCGETBLK($24)

Input Output
B=$24 (function) A=Status: 0=Success, otherwise failure
HL=Buffer

Read the entire contents of the Non-Volatile RAM into the buffer pointed to by HL. HL must point to a
location in the top 32K of CPU address space.

RTC Set NVRAM Block - RTCSETBLK($25)

Input Output
B=S$25 (function) A=Status: 0=Success, otherwise failure
HL=Buffer

Write the entire contents of the Non-Volatile RAM from the buffer pointed to by HL. HL must point to a
location in the top 32K of CPU address space.

RomWBW Architecture Page 17

Emulation (EMU)

The Emulation functions allow setting up the desired emulation (terminal type) as well as the target
physical device for emulation. It is not possible to maintain multiple independent emulation states for
different physical devices — emulation must be reinitialized to target a new physical device.

Emulation Input - EMUIN ($30)

Input Output
B=530 (function) A=Status (0=0K, 1=Error)

E=Character input

Wait for a single character to be available at the emulation target device and return the character in E.
Function will wait indefinitely for a character to be available.

Emulation Output - EMUOUT ($31)

Input Output
B=531 (function) A=Status (0=0K, 1=Error)

E=Character to output

Wait for emulation target device/unit to be ready to send a character, then send the character specified
inE.

Emulation Input Status - EMUIST ($32)

Input Output
B=$32 (function) A=Status: # characters in input buffer

Return the number of characters available to read in the input buffer of the emulation target
device/unit specified. If the device has no input buffer, it is acceptable to return simply 0 or 1 where 0
means there is no character available to read and 1 means there is a character available to read.

Emulation Output Status - EMUOST ($33)

Input Output
B=533 (function) A=Status: output buffer space available

Return the space available in the output buffer expressed as a character count. If a 16 byte output
buffer contained 6 characters waiting to be sent, this function would return 10, the number of positions
available in the output buffer. If the emulation target device has no output buffer, it is acceptable to
return simply 0 or 1 where 0 means the port is busy and 1 means the port is ready to output a character.

RomWBW Architecture Page 18

Emulation Initialization -EMUINI ($38)

Input Output
B=$38 (function) A=Status: 0=Success, otherwise failure

C=VDA Device/Unit
E=Terminal Type

Selects the actual VDA device/unit to be targeted for emulation.. Register C is set to the VDA
device/unit to be selected. Register E specifies the terminal emulation to be used (0=TTY, 1=ANSlI).

Emulation Query -EMUQRY ($39)

Input Output
B=$39 (function) A=Status: 0=Success, otherwise failure

C=VDA Device/Unit
E=Terminal Emulation

Returns current information about the active emulation session. Register C is set to the VDA device/unit
currently targeted. Register E returns the terminal emulation in use (0=TTY, 1=ANSI).

Video Display Adapter (VDA)
The VDA functions are provided as a common interface to Video Display Adapters. Not all VDAs will
include keyboard hardware. In this case, the keyboard functions should return a failure status.

The VDA functions require that a VDA device/unit be specified in the C register. The upper nibble (upper
4 bits) specifies the device. The lower nibble specifies the unit (not currently used).

The currently defined video devices are:

VDA ID Value Device

VDA_NONE 0 No VDA

VDA_VDU 1 ECB VDU board

VDA_CVDU 2 ECB Color VDU board

VDA 7220 3 ECB uPD7220 video display board
VDA N8 4 TMS9918 video display built-in to N8

Depending on the capabilities of the hardware, the use of colors and attributes may or may not be
supported. If the hardware does not support these capabilities, they will be ignored.

RomWBW Architecture Page 19

Color byte values are constructed using typical RGBI (Red/Green/Blue/Intensity) bits. The high four bits

of the value determine the background color and the low four bits determine the foreground color. This

results in 16 unique color values for both foreground and background. The following table illustrates the

color byte value construction:

@
-+

Color

Background

Intensity

Blue

Green

Red

Foreground

Intensity

Blue

Green

ORINW(ARlUWO |

Red

The following table illustrates the resultant color for each of the possible 16 values for foreground or

background:
Foreground Background | Color Sample
0 0000 | 0_ | 0000 Black
1 0001 | 1_ | 0001 Red
2 0010 | 2_ | 0010 Green
3 0011 | 3_ | 0011 Brown
4 0100 | 4_ | 0100 Blue
5 0101 | 5_ | 0101 Magenta
6 0110 | 6 | 0110 Cyan
7 0111 | 7_ | 0111 White
8 1000 | 8_ | 1000 Gray
9 1001 | 9_ | 1001 Light Red
A 1010 | A_ | 1010 Light Green
B 1011 | B_ | 1011 Yellow
C 1100 | C_ | 1100 Light Blue
D 1101 | D_ | 1101 Light Magenta
E 1110 | E_ | 1110 Light Cyan
F| 1111 | F_ | 1111 | Bright White

RomWBW Architecture

Page 20

Attribute byte values are constructed using the following bit encoding:

Bit Effect

n/a (0)

n/a (0)

n/a (0)

n/a (0)

n/a (0)

Reverse

Underline

ORINW(I~lUO |

Blink

The following codes are returned by a keyboard read to signify non-ASCIl keystrokes:

Value | Keystroke Value | Keystroke
EO F1 FO Insert

El F2 F1 Delete

E2 F3 F2 Home

E3 F4 F3 End

E4 F5 F4 PageUp

E5 F6 F5 PadeDown
E6 F7 F6 UpArrow

E7 F8 F7 DownArrow
E8 F9 F8 LeftArrow
E9 F10 F9 RightArrow
EA F11 FA Power

EB F12 FB Sleep

EC SysReq FC Wake

ED PrintScreen FD Break

EE Pause FE

EF App FF

RomWBW Architecture Page 21

Video Display Adapter Initialize -VDAINI ($40)

Input Output
B=540 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Video Mode (device specific)
HL=Character Bitmap (optional)

Performs a full (re)initialization of the specified video device. The screen is cleared and the keyboard
buffer is flushed. If the specified VDA supports multiple video modes, the requested mode can be
specified in E (set to O for default/not specified). Mode values are specific to each VDA.

HL may point to a location in memory with the character bitmap to be loaded into the VDA video
processor. The location MUST be in the top 32K of the CPU memory space. HL must be set to zero if no
character bitmap is specified (the VDA video processor will utilize a default character bitmap).

Video Display Adapter Query -VDAQRY ($41)

Input Output
B=$41 (function) A=Status: 0=Success, otherwise failure
C=Device/Unit C=Video Mode
HL=Character Bitmap Data (optional) D=Row Count
E=Column Count
HL=Character Bitmap Data (zero if none)

Return information about the specified video device. C will be set to the current video mode. DE will
return the dimensions of the video display as measured in rows and columns. Note that this is the count
of rows and columns, not the last row/column number.

If HL is not zero, it must point to a suitably sized memory buffer in the upper 32K of CPU address space
that will be filled with the current character bitmap data. Itis critical that HL be set to zero if it does not
point to a proper buffer area or memory corruption will result. The video device driver may not have
the ability to provide character bitmap data. In this case, on return, HL will be set to zero.

Video Display Adapter Reset -VDARES ($42)

Input Output
B=542 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit

Performs a soft reset of the Video Display Adapter. Should clear the screen, home the cursor, restore
active attribute and color to defaults. Keyboard should be flushed.

RomWBW Architecture Page 22

Video Display Adapter Set Cursor Style -VDASCS ($43)

Input Output
B=$43 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
D=Start/End pixel
E=Style

If supported by the video hardware, adjust the format of the cursor such that the cursor starts at the
pixel specified in the top nibble of D and end at the pixel specified in the bottom nibble of D. So, if
D=508, a block cursor would be used that starts at the top pixel of the character cell and ends at the
ninth pixel of the character cell.

Register E is reserved to control the style of the cursor (blink, visibility, etc.), but is not yet implemented.

Adjustments to the cursor style may or may not be possible for any given video hardware.

Video Display Adapter Set Cursor Position -VDASCP ($44)

Input Output

B=544 (function) A=Status: 0=Success, otherwise failure
C=Device/Unit

D=Row

E=Column

Reposition the cursor to the specified row and column. Specifying a row/column that exceeds the
boundaries of the display results in undefined behavior. Cursor coordinates are 0 based (0,0 is the
upper left corner of the display).

Video Display Adapter Set Character Attribute -VDASAT ($45)

Input Output
B=$45 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Character Attribute Code

Assign the specified character attribute code to be used for all subsequent character writes/fills. This
attribute is used to fill new lines generated by scroll operations. Refer to the character attribute for a
list of the available attribute codes. Note that a given video display may or may not support any/all
attributes.

RomWBW Architecture Page 23

Video Display Adapter Set Character Color -VDASCO ($46)

Input Output

B=$46 (function) A=Status: 0=Success, otherwise failure
C=Device/Unit

E=Color Code

Assign the specified color code to be used for all subsequent character writes/fills. This color is also
used to fill new lines generated by scroll operations. Refer to color code table for a list of the available
color codes. Note that a given video display may or may not support any/all colors.

Video Display Adapter Write Character -VDAWRC ($47)

Input Output
B=$47 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Character

Write the character specified in E. The character is written starting at the current cursor position and
the cursor is advanced. If the end of the line is encountered, the cursor will be advanced to the start of
the next line. The display will not scroll if the end of the screen is exceeded.

Video Display Adapter Fill -VDAFIL ($48)

Input Output
B=$48 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Character
HL=Count

Write the character specified in E to the display the number of times specified in HL. Characters are
written starting at the current cursor position and the cursor is advanced by the number of characters
written. If the end of the line is encountered, the characters will continue to be written starting at the
next line as needed. The display will not scroll if the end of the screen is exceeded.

RomWBW Architecture Page 24

Video Display Adapter Copy -VDACPY ($49)

Input Output
B=$48 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
D=Source Row
E=Source Column
L=Count (max 255)

Copy count (L) bytes from the source row/column (DE) to current cursor position. The source index
position is expressed as a linear index from the upper left position (not row/column). The cursor
position is not updated. The maximum count is 255. Copying to/from overlapping areas is not
supported and will have an undefined behavior. The display will not scroll if the end of the screen is
exceeded. Copying beyond the active screen buffer area is not supported and results in undefined
behavior.

Video Display Adapter Scroll -VDASCR ($4A)

Input Output
B=549 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Scroll distance (# lines)

Scroll the video display by the number of lines specified in E. If E contains a negative number, then
reverse scroll should be performed.

Video Display Adapter Keyboard Status -VDAKST ($4B)

Input Output
B=S4A (function) A=Status: # key codes in keyboard buffer

C=Device/Unit

Return a count of the number of key codes in the keyboard buffer. If it is not possible to determine the
actual number in the buffer, it is acceptable to return 1 to indicate there are key codes available to read
and 0O if there are none available.

Video Display Adapter Keyboard Flush -VDAKFL ($4C)

Input Output
B=$4B (function) A=Status: 0=Success, otherwise failure

C=Device/Unit

If a keyboard buffer is in use, it should be purged and all contents discarded.

RomWBW Architecture Page 25

Video Display Adapter Keyboard Read -VDAKRD ($4D)

Input Output
B=$4C (function) A=Status: 0=Success, otherwise failure
C=Device/Unit C=Scancode

D=Keystate

E=Keycode

Read next key code from keyboard. If a keyboard buffer is used, return the next key code in the buffer.
If no key codes are available, wait for a keypress and return the keycode.

The scancode value is the raw scancode from the keyboard for the keypress. Scancodes are from
scancode set 2 standard.

The keystate is a bitmap representing the value of all modifier keys and shift states as they existed at the
time of the keystroke. The bitmap is defined as:

Bit 7: Set to indicate key pressed was from the num pad
Bit 6: Set to indicate Caps Lock was active

Bit 5: Set to indicate Num Lock was active

Bit 4: Set to indicate Scroll Lock was active

Bit 3: Set to indicate Windows key was held down

Bit 2: Set to indicate Alt key was held down

Bit 1: Set to indicate control key was held down

Bit 0: Set to indicate Shift key was held down

Keycodes are generally returned as appropriate ASCII values, if possible. Special keys, like function keys,
are returned as reserved codes as described at the start of this section.

RomWBW Architecture Page 26

System (SYS)

Get Configuration - SYSGETCFG ($F0)

Input

B=SFO (function)

C=Config Version (not implemented)
DE=Destination address

Output
A=Status: 0=Success, otherwise failure

Copies the 256 byte block of configuration data into the destination memory address specified in DE.
The destination memory address must be in high memory (upper 32K). At present, you will need to
consult the source code for information on the contents of the configuration block.

Set Configuration - SYSSETCFG ($F1)

Input

B=SF1 (function)

C=Config Version (not implemented)
DE=Source address

Output
A=Status: 0=Success, otherwise failure

Loads a 256 byte block of configuration data into the BIOS from the source memory address specified in
DE. The source memory address must be in high memory (upper 32K). At present, you will need to
consult the source code for information on the contents of the configuration block.

NOTE: At present, the effects of this function are undefined. The BIOS will not dynamically adapt to a

changed configuration.

RomWBW Architecture

Page 27

Banked Memory Copy - SYSBNKCPY ($F2)

Input Output
B=SF2 (function) A=Status: 0=Success, otherwise failure

DE=Destination address
HL=Source address
IX=Count of bytes to copy

The function will select the requested memory bank into the lower 32K of CPU address space. Then it
executes a memory copy from the source address (DE) to the destination address (HL) of count bytes
(IX). It then restores the default bank (application memory) to the lower 32K.

The function does not know or care if you are copying to or from or within a bank. It simply selects the
bank and performs the copy. To copy "from" a bank, you would specify a source in the lower 32K and a
destination in the upper 32K. To copy "to" a bank, you would specify a source in the upper 32K and a
destination in the lower 32K.

It is also possible to copy memory around within a bank by specifying a source and destination in the
lower 32K.

WARNING: The memory copy is performed from low byte to high byte, so be careful of a memory copy
where the source range overlaps the destination range.

WARNING: directly manipulating memory banks can easily corrupt critical areas of the system.

Get Version - SYSGETVER ($F3)

Input Output
B=SF3 (function) A=Status: 0=Success, otherwise failure
DE=Version

This function will return the HBIOS version number. The version number is returned in DE. High nibble
of D is the major version, low nibble of D is the minor version, high nibble of E is the patch number, and
low nibble of E is the build number.

RomWBW Architecture Page 28

Memory Layout Detail

ROM Page 0
Loc Org Size Source Contents
0000 | 0000 | 0100 | pgzero.asm Page Zero

0100 | 0100 0100 bootrom.asm

ROM Bootstrap

0200 | 0100 | 0200 | syscfg.asm

System Configuration

0400 | 8400 0C00 loader.asm

Loader

1000 1000 3000 romfill.asm

Filler

4000 | CO0O0 | 1000 | dbgmon.asm

Debug Monitor

5000 | DOOO | 0800 | <ccp>

Command Processor (CCP, ZCPR, etc.)

5800 | D800 | OEOO | <dos>

Disk Operating System (BDOS, ZSDOS, etc.)

6600 | E600 | 1900 | <osbios>

OS BIOS (CBIOS, ZBIOS)

7F00 | FFOO | 0100 | hbfill

Filler for HBIOS Proxy

ROM Page 1
Loc Org Size Source Contents
0000 | 0000 0100 | pgzero.asm Page Zero

0100 | 0100 0100 | bootrom.asm

Reserved (unused)

0200 | 0200 | 0200 | syscfg.asm

System Configuration

0400 | 0400 0C00 | loader.asm

Reserved (unused)

1000 | 1000 | 7000 | bnkl.asm

Bank 1 HBIOS Extension (drivers)

COM File Image

Loc Org Size Source

Contents

0100 | 0100 | 0100 | bootapp.asm

Application Bootstrap

0200 | 0200 | 0200 | syscfg.asm

System Configuration

0400 | 8400 0C00 | loader.asm

Loader

1000 | 1000 | 7000 | bnkl.asm

Bank 1 HBIOS Extension (drivers)

8000 | CO00 | 1000 | dbgmon.asm

Debug Monitor

9000 | DOOO | 0800 | <ccp>

Command Processor (CCP, ZCPR, etc.)

9800 | D800 | OEOO | <dos>

Disk Operating System (BDOS, ZSDOS, etc.)

A600 | E600 | 1900 | <osbios>

OS BIOS (CBIOS, ZBIOS)

RAM Page 0 (Applications)

Loc Org Size Contents

0000 | 0000 | 0100 | PageZero

0100 | 0100 | 7FO0 | Application (TPA)

RomWBW Architecture

Page 29

RAM Page 1 (HBIOS Extension - Drivers)

Loc Org Size Contents

0000 | 0000 | 0100 | Page Zero

0100 | 0100 | 0100 | Reserved (unused)

0200 | 0200 | 0200 | System Configuration (dynamic)
0400 | 0400 | 0CO0 | Command processor cache area
1000 | 1000 | 7000 | Bank 1 BIOS Extension (drivers)

RAM Page N (Fixed 32K Upper Memory Area)

Loc Org Size Contents

8000 | 8000 | 4000 | TPA (continued from lower memory)

C000 | Ccooo 1000 | TPA/Debug Monitor

D000 | DOOO | 0800 | Command Processor (CCP, ZCPR, etc.)

D800 | D800 | OEOO | Disk Operating System (BDOS, ZSDOS, etc.)

E600 | E600 | 1900 | OS BIOS (CBIOS, ZBIOS)

FFOO | FFOO | 0100 | HBIOS Proxy (HiMem Stub)

RomWBW Architecture Page 30

