; ;============================================================================= ; IDE DISK DRIVER ;============================================================================= ; ; TODO: ; - GOPARTNER NEEDS TO HANDLE "NO PARTNER" CONDITION ; - IMPLEMENT H/W PROBES FOR DIO AND DIDE ; - DATA TRANSFERS LIMITED TO 512 BYTES WHICH IS INSUFFICIENT FOR CD=ROM MEDIA ; ; NOTES: ; - WELL KNOWN IDE PORT ADDRESSES: ; BOARD BASE DATLO DATHI ; ------ ------ ------ ------ ; DIO $20 $20 $28 ; DIDE-A $20 $28 $28 ; DIDE-B $30 $38 $38 ; MK4 $80 N/A N/A ; RC $10 N/A N/A ; SMB $E0 N/A N/A ; ; +-----------------------------------------------------------------------+ ; | CONTROL BLOCK REGISTERS | ; +-----------------------+-------+-------+-------------------------------+ ; | REGISTER | PORT | DIR | DESCRIPTION | ; +-----------------------+-------+-------+-------------------------------+ ; | IDE_REG_ALTSTAT | 0x0E | R | ALTERNATE STATUS REGISTER | ; | IDE_REG_CTRL | 0x0E | W | DEVICE CONTROL REGISTER | ; | IDE_REG_DRVADR | 0x0F | R | DRIVE ADDRESS REGISTER| ; +-----------------------+-------+-------+-------------------------------+ ; ; +-----------------------+-------+-------+-------------------------------+ ; | COMMAND BLOCK REGISTERS | ; +-----------------------+-------+-------+-------------------------------+ ; | REGISTER | PORT | DIR | DESCRIPTION | ; +-----------------------+-------+-------+-------------------------------+ ; | IDE_REG_DATA | 0x00 | R/W | DATA INPUT/OUTPUT | ; | IDE_REG_ERR | 0x01 | R | ERROR REGISTER | ; | IDE_REG_FEAT | 0x01 | W | FEATURES REGISTER | ; | IDE_REG_COUNT | 0x02 | R/W | SECTOR COUNT REGISTER | ; | IDE_REG_SECT | 0x03 | R/W | SECTOR NUMBER REGISTER | ; | IDE_REG_CYLLO | 0x04 | R/W | CYLINDER NUM REGISTER (LSB) | ; | IDE_REG_CYLHI | 0x05 | R/W | CYLINDER NUM REGISTER (MSB) | ; | IDE_REG_DRVHD | 0x06 | R/W | DRIVE/HEAD REGISTER | ; | IDE_REG_LBA0* | 0x03 | R/W | LBA BYTE 0 (BITS 0-7) | ; | IDE_REG_LBA1* | 0x04 | R/W | LBA BYTE 1 (BITS 8-15) | ; | IDE_REG_LBA2* | 0x05 | R/W | LBA BYTE 2 (BITS 16-23) | ; | IDE_REG_LBA3* | 0x06 | R/W | LBA BYTE 3 (BITS 24-27) | ; | IDE_REG_STAT | 0x07 | R | STATUS REGISTER | ; | IDE_REG_CMD | 0x07 | W | COMMAND REGISTER (EXECUTE) | ; +-----------------------+-------+-------+-------------------------------+ ; * LBA0-3 ARE ALTERNATE DEFINITIONS OF SECT, CYL, AND DRVHD PORTS ; ; === STATUS REGISTER === ; ; 7 6 5 4 3 2 1 0 ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; | BSY | DRDY | DWF | DSC | DRQ | CORR | IDX | ERR | ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; ; BSY: BUSY ; DRDY: DRIVE READY ; DWF: DRIVE WRITE FAULT ; DSC: DRIVE SEEK COMPLETE ; DRQ: DATA REQUEST ; CORR: CORRECTED DATA ; IDX: INDEX ; ERR: ERROR ; ; === ERROR REGISTER === ; ; 7 6 5 4 3 2 1 0 ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; | BBK | UNC | MC | IDNF | MCR | ABRT | TK0NF | AMNF | ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; (VALID WHEN ERR BIT IS SET IN STATUS REGISTER) ; ; BBK: BAD BLOCK DETECTED ; UNC: UNCORRECTABLE DATA ERROR ; MC: MEDIA CHANGED ; IDNF: ID NOT FOUND ; MCR: MEDIA CHANGE REQUESTED ; ABRT: ABORTED COMMAND ; TK0NF: TRACK 0 NOT FOUND ; AMNF: ADDRESS MARK NOT FOUND ; ; === DRIVE/HEAD / LBA3 REGISTER === ; ; 7 6 5 4 3 2 1 0 ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; | 1 | L | 1 | DRV | HS3 | HS2 | HS1 | HS0 | ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; ; L: 0 = CHS ADDRESSING, 1 = LBA ADDRESSING ; DRV: 0 = DRIVE 0 (PRIMARY) SELECTED, 1 = DRIVE 1 (SLAVE) SELECTED ; HS: CHS = HEAD ADDRESS (0-15), LBA = BITS 24-27 OF LBA ; ; === DEVICE CONTROL REGISTER === ; ; 7 6 5 4 3 2 1 0 ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; | X | X | X | X | 1 | SRST | ~IEN | 0 | ; +-------+-------+-------+-------+-------+-------+-------+-------+ ; ; SRST: SOFTWARE RESET ; ~IEN: INTERRUPT ENABLE ; IDE_REG_DATA .EQU $00 ; DATA /OUTPUT (R/W) IDE_REG_ERR .EQU $01 ; ERROR REGISTER (R) IDE_REG_FEAT .EQU $01 ; FEATURES REGISTER (W) IDE_REG_COUNT .EQU $02 ; SECTOR COUNT REGISTER (R/W) IDE_REG_SECT .EQU $03 ; SECTOR NUMBER REGISTER (R/W) IDE_REG_CYLLO .EQU $04 ; CYLINDER NUM REGISTER (LSB) (R/W) IDE_REG_CYLHI .EQU $05 ; CYLINDER NUM REGISTER (MSB) (R/W) IDE_REG_DRVHD .EQU $06 ; DRIVE/HEAD REGISTER (R/W) IDE_REG_LBA0 .EQU $03 ; LBA BYTE 0 (BITS 0-7) (R/W) IDE_REG_LBA1 .EQU $04 ; LBA BYTE 1 (BITS 8-15) (R/W) IDE_REG_LBA2 .EQU $05 ; LBA BYTE 2 (BITS 16-23) (R/W) IDE_REG_LBA3 .EQU $06 ; LBA BYTE 3 (BITS 24-27) (R/W) IDE_REG_BCL .EQU $04 ; PKT BYTE COUNT LOW (BITS 0-7) (R/W) IDE_REG_BCH .EQU $05 ; PKT BYTE COUNT HIGH (BITS 8-15) (R/W) IDE_REG_STAT .EQU $07 ; STATUS REGISTER (R) IDE_REG_CMD .EQU $07 ; COMMAND REGISTER (EXECUTE) (W) IDE_REG_XAR .EQU $08 ; ECB DIDE EXTERNAL ADDRESS REGISTER (W) IDE_REG_ALTSTAT .EQU $0E ; ALTERNATE STATUS REGISTER (R) IDE_REG_CTRL .EQU $0E ; DEVICE CONTROL REGISTER (W) IDE_REG_DRVADR .EQU $0F ; DRIVE ADDRESS REGISTER (R) ; ; COMMAND BYTES ; IDE_CMD_NOP .EQU $00 IDE_CMD_DEVRES .EQU $08 IDE_CMD_RECAL .EQU $10 IDE_CMD_READ .EQU $20 IDE_CMD_WRITE .EQU $30 IDE_CMD_DEVDIAG .EQU $90 IDE_CMD_PACKET .EQU $A0 IDE_CMD_IDPKTDEV .EQU $A1 IDE_CMD_IDDEV .EQU $EC IDE_CMD_SETFEAT .EQU $EF ; ; FEATURE BYTES ; IDE_FEAT_ENABLE8BIT .EQU $01 IDE_FEAT_DISABLE8BIT .EQU $81 ; ; IDE DEVICE TYPES ; IDE_TYPEUNK .EQU 0 IDE_TYPEATA .EQU 1 IDE_TYPEATAPI .EQU 2 ; ; IDE DEVICE STATUS CODES ; IDE_STOK .EQU 0 IDE_STINVUNIT .EQU -1 IDE_STNOMEDIA .EQU -2 IDE_STCMDERR .EQU -3 IDE_STIOERR .EQU -4 IDE_STRDYTO .EQU -5 IDE_STDRQTO .EQU -6 IDE_STBSYTO .EQU -7 IDE_STNOTSUP .EQU -8 IDE_STNOTRDY .EQU -9 ; ; DRIVE SELECTION BYTES (FOR USE IN DRIVE/HEAD REGISTER) ; ;IDE_DRVSEL: IDE_DRVMASTER .EQU %11100000 ; LBA, MASTER DEVICE IDE_DRVSLAVE .EQU %11110000 ; LBA, SLAVE DEVICE ; ; IDE DEVICE CONFIGURATION ; IDE_CFGSIZ .EQU 19 ; SIZE OF CFG TBL ENTRIES ; ; PER DEVICE DATA OFFSETS ; IDE_DEV .EQU 0 ; OFFSET OF DEVICE NUMBER (BYTE) IDE_MODE .EQU 1 ; OPERATION MODE: IDE MODE (BYTE) IDE_STAT .EQU 2 ; LAST STATUS (BYTE) IDE_TYPE .EQU 3 ; DEVICE TYPE (BYTE) IDE_ACC .EQU 4 ; ACCESS FLAG BITS BIT 0=MASTER, 1=8BIT (BYTE) IDE_MED .EQU 5 ; MEDIA FLAG BITS BIT 0=CF, 1=LBA (BYTE) IDE_MEDCAP .EQU 6 ; MEDIA CAPACITY (DWORD) IDE_LBA .EQU 10 ; OFFSET OF LBA (DWORD) IDE_IOBASE .EQU 14 ; IO BASE ADDRESS (BYTE) IDE_DATALO .EQU 15 ; 16 BIT DATA LO BYTE IDE_DATAHI .EQU 16 ; 16 BIT DATA HI BYTE IDE_PARTNER .EQU 17 ; PARTNER DEVICE (MASTER <-> SLAVE) (WORD) ; IDE_ACC_MAS .EQU %00000001 ; UNIT IS MASTER (ELSE SLAVE) IDE_ACC_8BIT .EQU %00000010 ; UNIT WANTS 8 BIT I/O (ELSE 16 BIT) ; IDE_MED_CF .EQU %00000001 ; MEDIA IS CF CARD IDE_MED_LBA .EQU %00000010 ; MEDIA HAS LBA CAPABILITY ; IDE_DEVCNT .EQU IDECNT * 2 ; IDE_CFGTBL: ; #IF (IDECNT >= 1) ; IDE_DEV0M: ; DEVICE 0, MASTER .DB $FE ; DRIVER DEVICE NUMBER (FILLED DYNAMICALLY) .DB IDE0MODE ; DRIVER DEVICE MODE .DB 0 ; DEVICE STATUS .DB 0 ; DEVICE TYPE .DB IDE_ACC_MAS | (IDE0A8BIT & IDE_ACC_8BIT) ; UNIT ACCESS FLAGS .DB 0 ; MEDIA FLAGS .DW 0,0 ; DEVICE CAPACITY .DW 0,0 ; CURRENT LBA .DB IDE0BASE ; IO BASE ADDRESS .DB IDE0DATLO ; IO BASE ADDRESS .DB IDE0DATHI ; IO BASE ADDRESS .DW IDE_DEV0S ; PARTNER ; IDE_DEV0S: ; DEVICE 0, SLAVE .DB $FE ; DRIVER DEVICE NUMBER (FILLED DYNAMICALLY) .DB IDE0MODE ; DRIVER DEVICE MODE .DB 0 ; DEVICE STATUS .DB 0 ; DEVICE TYPE .DB (IDE0B8BIT & IDE_ACC_8BIT) ; UNIT ACCESS FLAGS .DB 0 ; MEDIA FLAGS .DW 0,0 ; DEVICE CAPACITY .DW 0,0 ; CURRENT LBA .DB IDE0BASE ; IO BASE ADDRESS .DB IDE0DATLO ; IO BASE ADDRESS .DB IDE0DATHI ; IO BASE ADDRESS .DW IDE_DEV0M ; PARTNER #ENDIF ; #IF (IDECNT >= 2) ; IDE_DEV1M: ; DEVICE 1, MASTER .DB $FE ; DRIVER DEVICE NUMBER (FILLED DYNAMICALLY) .DB IDE1MODE ; DRIVER DEVICE MODE .DB 0 ; DEVICE STATUS .DB 0 ; DEVICE TYPE .DB IDE_ACC_MAS | (IDE1A8BIT & IDE_ACC_8BIT) ; UNIT ACCESS FLAGS .DB 0 ; MEDIA FLAGS .DW 0,0 ; DEVICE CAPACITY .DW 0,0 ; CURRENT LBA .DB IDE1BASE ; IO BASE ADDRESS .DB IDE1DATLO ; IO BASE ADDRESS .DB IDE1DATHI ; IO BASE ADDRESS .DW IDE_DEV1S ; PARTNER ; IDE_DEV1S: ; DEVICE 1, SLAVE .DB $FE ; DRIVER DEVICE NUMBER (FILLED DYNAMICALLY) .DB IDE1MODE ; DRIVER DEVICE MODE .DB 0 ; DEVICE STATUS .DB 0 ; DEVICE TYPE .DB (IDE1B8BIT & IDE_ACC_8BIT) ; UNIT ACCESS FLAGS .DB 0 ; MEDIA FLAGS .DW 0,0 ; DEVICE CAPACITY .DW 0,0 ; CURRENT LBA .DB IDE1BASE ; IO BASE ADDRESS .DB IDE1DATLO ; IO BASE ADDRESS .DB IDE1DATHI ; IO BASE ADDRESS .DW IDE_DEV1M ; PARTNER #ENDIF ; #IF (IDECNT >= 3) ; IDE_DEV2M: ; DEVICE 2, MASTER .DB $FE ; DRIVER DEVICE NUMBER (FILLED DYNAMICALLY) .DB IDE2MODE ; DRIVER DEVICE MODE .DB 0 ; DEVICE STATUS .DB 0 ; DEVICE TYPE .DB IDE_ACC_MAS | (IDE2A8BIT & IDE_ACC_8BIT) ; UNIT ACCESS FLAGS .DB 0 ; MEDIA FLAGS .DW 0,0 ; DEVICE CAPACITY .DW 0,0 ; CURRENT LBA .DB IDE2BASE ; IO BASE ADDRESS .DB IDE2DATLO ; IO BASE ADDRESS .DB IDE2DATHI ; IO BASE ADDRESS .DW IDE_DEV2S ; PARTNER ; IDE_DEV2S: ; DEVICE 2, SLAVE .DB $FE ; DRIVER DEVICE NUMBER (FILLED DYNAMICALLY) .DB IDE2MODE ; DRIVER DEVICE MODE .DB 0 ; DEVICE STATUS .DB 0 ; DEVICE TYPE .DB (IDE2B8BIT & IDE_ACC_8BIT) ; UNIT ACCESS FLAGS .DB 0 ; MEDIA FLAGS .DW 0,0 ; DEVICE CAPACITY .DW 0,0 ; CURRENT LBA .DB IDE2BASE ; IO BASE ADDRESS .DB IDE2DATLO ; IO BASE ADDRESS .DB IDE2DATHI ; IO BASE ADDRESS .DW IDE_DEV1M ; PARTNER #ENDIF ; #IF ($ - IDE_CFGTBL) != (IDE_DEVCNT * IDE_CFGSIZ) .ECHO "*** INVALID IDE CONFIG TABLE ***\n" #ENDIF ; .DB $FF ; END OF TABLE MARKER ; ; THE IDE_WAITXXX FUNCTIONS ARE BUILT TO TIMEOUT AS NEEDED SO DRIVER WILL ; NOT HANG IF DEVICE IS UNRESPONSIVE. DIFFERENT TIMEOUTS ARE USED DEPENDING ; ON THE SITUATION. THE SLOW TIMEOUT IS USED TO WAIT FOR A DEVICE TO ; BECOME READY AFTER A HARD RESET (SPIN UP, ETC.). THE NORMAL TIMEOUT ; IS USED DURING NORMAL OPERATION FOR ALL I/O OPERATIONS WHICH SHOULD ; OCCUR PRETTY FAST. NOTE THAT THE ATA SPEC ALLOWS UP TO 30 SECONDS ; FOR DEVICES TO RESPOND. WE ARE USING MUCH MORE AGGRESSIVE VALUES ; BASED ON REAL WORLD EXPERIENCE. ; THE PICO TIMEOUT (TOPICO) IS A SPECIAL TIMEOUT FOR THE RC2014 SD ; PICO TO WAIT FOR THE PICO DEVICE TO INITIALIZE. ; IDE_TOSLOW .EQU 200 ; SLOW TIMEOUT IS 20 SECS IDE_TONORM .EQU 5 ; NORMAL TIMEOUT IS 0.5 SECS IDE_TOPICO .EQU 50 ; RC2014 SD PICO (5 SECONDS) ; ;============================================================================= ; INITIALIZATION ENTRY POINT ;============================================================================= ; IDE_INIT: ; COMPUTE CPU SPEED COMPENSATED TIMEOUT SCALER ; ONE INTERNAL LOOP IN WAITBSY IS 180TS. ON A 1 MHZ CPU, 1 TS ; TAKES 1NS. SO 1/10 SECOND IS 100000 TS ON A 1 MHZ CPU. ; SINCE 1 INTERNAL LOOP IS 180 TS, IT TAKES 100000 / 180 = 556 ; INTERNAL LOOPS FOR 1/10 SECOND. SO, WE WANT TO USE ; 523 * CPU MHZ FOR INTERNAL LOOP COUNT. LD DE,556 ; LOAD SCALER FOR 1MHZ LD A,(CB_CPUMHZ) ; LOAD CPU SPEED IN MHZ CALL MULT8X16 ; HL := DE * A LD (IDE_TOSCALER),HL ; SAVE IT ; XOR A ; ZERO ACCUM LD (IDE_DEVNUM),A ; INIT DEV UNIT NUM FOR DYNAMIC ASSIGNMENT LD IY,IDE_CFGTBL ; POINT TO START OF CONFIG TABLE ; IDE_INIT1: LD A,(IY) ; LOAD FIRST BYTE TO CHECK FOR END CP $FF ; CHECK FOR END OF TABLE VALUE JR NZ,IDE_INIT2 ; IF NOT END OF TABLE, CONTINUE XOR A ; SIGNAL SUCCESS RET ; AND RETURN ; IDE_INIT2: BIT 0,(IY+IDE_ACC) ; MASTER? JR Z,IDE_INIT4 ; IF NOT MASTER, SKIP AHEAD ; CALL NEWLINE ; FORMATTING PRTS("IDE:$") ; LABEL FOR IO ADDRESS ; PRTS(" IO=0x$") ; LABEL FOR IO ADDRESS LD A,(IY+IDE_IOBASE) ; GET IO BASE ADDRES CALL PRTHEXBYTE ; DISPLAY IT ; PRTS(" MODE=$") ; LABEL FOR MODE LD A,(IY+IDE_MODE) ; GET MODE BITS LD DE,IDE_STR_MODE_DIO ; MODE LABEL CP IDEMODE_DIO ; TEST FOR MODE JR Z,IDE_INIT2A ; IF SO, DISPLAY IT LD DE,IDE_STR_MODE_DIDE ; MODE LABEL CP IDEMODE_DIDE ; TEST FOR MODE JR Z,IDE_INIT2A ; IF SO, DISPLAY IT LD DE,IDE_STR_MODE_MK4 ; MODE LABEL CP IDEMODE_MK4 ; TEST FOR MODE JR Z,IDE_INIT2A ; IF SO, DISPLAY IT LD DE,IDE_STR_MODE_RC ; MODE LABEL CP IDEMODE_RC ; TEST FOR MODE JR Z,IDE_INIT2A ; IF SO, DISPLAY IT JR IDE_INIT4 ; NO MODE? BYPASS ENTRY IDE_INIT2A: CALL WRITESTR ; DISPLAY MODE ; CALL IDE_DETECT ; PROBE FOR INTERFACE JR Z,IDE_INIT3 ; GOT IT, MOVE ON TO INIT UNITS CALL PC_SPACE ; FORMATTING LD DE,IDE_STR_NOHW ; NOT PRESENT MESSAGE CALL WRITESTR ; DISPLAY IT JR IDE_INIT4 ; SKIP CFG ENTRY ; IDE_INIT3: CALL IDE_RESET ; RESET THE BUS CALL IDE_INIT5 ; DETECT/INIT MASTER PUSH IY ; SAVE CFG PTR CALL IDE_GOPARTNER ; SWITCH IY TO PARTNER CFG CALL IDE_INIT5 ; DETECT/INIT SLAVE POP IY ; RESTORE CFG PTR ; IDE_INIT4: LD DE,IDE_CFGSIZ ; SIZE OF CFG TABLE ENTRY ADD IY,DE ; BUMP POINTER JP IDE_INIT1 ; AND LOOP ; IDE_INIT5: ; UPDATE DRIVER RELATIVE UNIT NUMBER IN CONFIG TABLE LD A,(IDE_DEVNUM) ; GET NEXT UNIT NUM TO ASSIGN LD (IY+IDE_DEV),A ; UPDATE IT INC A ; BUMP TO NEXT UNIT NUM TO ASSIGN LD (IDE_DEVNUM),A ; SAVE IT ; ; ADD UNIT TO GLOBAL DISK UNIT TABLE LD BC,IDE_FNTBL ; BC := FUNC TABLE ADR PUSH IY ; CFG ENTRY POINTER POP DE ; COPY TO DE CALL DIO_ADDENT ; ADD ENTRY TO GLOBAL DISK DEV TABLE ; ; START PRINTING DEVICE INFO CALL IDE_PRTPREFIX ; PRINT DEVICE PREFIX LD A,(IY+IDE_TYPE) LD DE,IDE_STR_TYPEATA CP IDE_TYPEATA CALL Z,WRITESTR LD DE,IDE_STR_TYPEATAPI CP IDE_TYPEATAPI CALL Z,WRITESTR ; ; CHECK FOR BAD STATUS LD A,(IY+IDE_STAT) ; GET STATUS OR A ; SET FLAGS JP Z,IDE_INIT6 CALL PC_SPACE JP NZ,IDE_PRTSTATSTR ; EXIT VIA PRINT STATUS STRING ; IDE_INIT6: LD DE,IDE_STR_8BIT BIT 1,(IY+IDE_ACC) ; 8 BIT ACCESS? CALL NZ,WRITESTR ; ; PRINT LBA/NOLBA CALL PC_SPACE ; FORMATTING BIT 1,(IY+IDE_MED) ; TEST LBA FLAG LD DE,IDE_STR_NO ; POINT TO "NO" STRING CALL Z,WRITESTR ; PRINT "NO" BEFORE "LBA" IF LBA NOT SUPPORTED PRTS("LBA$") ; PRINT "LBA" REGARDLESS ; ; PRINT STORAGE CAPACITY (BLOCK COUNT) PRTS(" BLOCKS=0x$") ; PRINT FIELD LABEL LD A,IDE_MEDCAP ; OFFSET TO CAPACITY FIELD CALL LDHLIYA ; HL := IY + A, REG A TRASHED CALL LD32 ; GET THE CAPACITY VALUE CALL PRTHEX32 ; PRINT HEX VALUE ; ; PRINT STORAGE SIZE IN MB PRTS(" SIZE=$") ; PRINT FIELD LABEL LD B,11 ; 11 BIT SHIFT TO CONVERT BLOCKS --> MB CALL SRL32 ; RIGHT SHIFT ;CALL PRTDEC ; PRINT LOW WORD IN DECIMAL (HIGH WORD DISCARDED) CALL PRTDEC32 ; PRINT DWORD IN DECIMAL PRTS("MB$") ; PRINT SUFFIX ; RET ; ;---------------------------------------------------------------------- ; PROBE FOR IDE HARDWARE ;---------------------------------------------------------------------- ; ; ON RETURN, ZF SET INDICATES HARDWARE FOUND ; IDE_DETECT: ; ;#IF (IDEMODE == IDEMODE_DIDE) ;#ENDIF ;; ;#IF (IDEMODE == IDEMODE_DIO) ;#ENDIF ; XOR A ; SIGNAL SUCCESS RET ; AND RETURN ; ;============================================================================= ; DRIVER FUNCTION TABLE ;============================================================================= ; IDE_FNTBL: .DW IDE_STATUS .DW IDE_RESET .DW IDE_SEEK .DW IDE_READ .DW IDE_WRITE .DW IDE_VERIFY .DW IDE_FORMAT .DW IDE_DEVICE .DW IDE_MEDIA .DW IDE_DEFMED .DW IDE_CAP .DW IDE_GEOM #IF (($ - IDE_FNTBL) != (DIO_FNCNT * 2)) .ECHO "*** INVALID IDE FUNCTION TABLE ***\n" #ENDIF ; IDE_VERIFY: IDE_FORMAT: IDE_DEFMED: SYSCHKERR(ERR_NOTIMPL) ; NOT IMPLEMENTED RET ; ; ; IDE_READ: CALL HB_DSKREAD ; HOOK HBIOS DISK READ SUPERVISOR LD BC,IDE_RDSEC ; GET ADR OF SECTOR READ FUNC LD (IDE_IOFNADR),BC ; SAVE IT AS PENDING IO FUNC JR IDE_IO ; CONTINUE TO GENERIC IO ROUTINE ; ; ; IDE_WRITE: CALL HB_DSKWRITE ; HOOK HBIOS DISK WRITE SUPERVISOR LD BC,IDE_WRSEC ; GET ADR OF SECTOR WRITE FUNC LD (IDE_IOFNADR),BC ; SAVE IT AS PENDING IO FUNC JR IDE_IO ; CONTINUE TO GENERIC IO ROUTINE ; ; ; IDE_IO: LD (IDE_DSKBUF),HL ; SAVE DISK BUFFER ADDRESS LD A,E ; BLOCK COUNT TO A OR A ; SET FLAGS RET Z ; ZERO SECTOR I/O, RETURN W/ E=0 & A=0 LD B,A ; INIT SECTOR DOWNCOUNTER LD C,0 ; INIT SECTOR READ/WRITE COUNT #IF (IDETRACE == 1) LD HL,IDE_PRTERR ; SET UP IDE_PRTERR PUSH HL ; ... TO FILTER ALL EXITS #ENDIF PUSH BC ; SAVE COUNTERS CALL IDE_CHKERR ; CHECK FOR ERR STATUS AND RESET IF SO POP BC ; RESTORE COUNTERS JR NZ,IDE_IO3 ; BAIL OUT ON ERROR IDE_IO1: PUSH BC ; SAVE COUNTERS CALL IDE_SELUNIT ; HARDWARE SELECTION OF TARGET UNIT LD HL,(IDE_IOFNADR) ; GET PENDING IO FUNCTION ADDRESS CALL JPHL ; ... AND CALL IT JR NZ,IDE_IO2 ; IF ERROR, SKIP INCREMENT ; INCREMENT LBA LD A,IDE_LBA ; LBA OFFSET CALL LDHLIYA ; HL := IY + A, REG A TRASHED CALL INC32HL ; INCREMENT THE VALUE ; INCREMENT DMA LD HL,IDE_DSKBUF+1 ; POINT TO MSB OF BUFFER ADR INC (HL) ; BUMP DMA BY INC (HL) ; ... 512 BYTES XOR A ; SIGNAL SUCCESS IDE_IO2: POP BC ; RECOVER COUNTERS JR NZ,IDE_IO3 ; IF ERROR, BAIL OUT INC C ; BUMP COUNT OF SECTORS READ DJNZ IDE_IO1 ; LOOP AS NEEDED IDE_IO3: LD E,C ; SECTOR READ COUNT TO E LD HL,(IDE_DSKBUF) ; CURRENT DMA TO HL OR A ; SET FLAGS BASED ON RETURN CODE RET Z ; RETURN IF SUCCESS LD A,ERR_IO ; SIGNAL IO ERROR OR A ; SET FLAGS RET ; AND DONE ; ; ; IDE_STATUS: ; RETURN UNIT STATUS LD A,(IY+IDE_STAT) ; GET STATUS OF SELECTED DEVICE OR A ; SET FLAGS RET ; AND RETURN ; ; ; IDE_DEVICE: LD D,DIODEV_IDE ; D := DEVICE TYPE LD E,(IY+IDE_DEV) ; E := PHYSICAL DEVICE NUMBER LD C,%01111001 ; ATAPI ATTRIBUTES LD A,(IY+IDE_TYPE) ; CHECK TYPE VALUE CP IDE_TYPEATAPI ; ATAPI? JR Z,IDE_DEVICE1 ; IF SO, DONE LD C,%00110001 ; COMPACTFLASH ATTRIBUTES BIT 0,(IY+IDE_MED) ; TEST CF BIT IN FLAGS JR NZ,IDE_DEVICE1 ; IF SET, DONE LD C,%00110000 ; GENERIC HARD DISK ATTRIBUTES IDE_DEVICE1: LD H,(IY+IDE_MODE) ; H := MODE LD L,(IY+IDE_IOBASE) ; L := BASE I/O ADDRESS XOR A ; SIGNAL SUCCESS RET ; ; IDE_GETMED ; IDE_MEDIA: LD A,E ; GET FLAGS OR A ; SET FLAGS JR Z,IDE_MEDIA1 ; JUST REPORT CURRENT STATUS AND MEDIA ; ;CALL IDE_RESET ; RESET IDE INTERFACE CALL IDE_INITUNIT ; RE-INITIALIZE UNIT ; IDE_MEDIA1: LD A,(IY+IDE_STAT) ; GET STATUS OR A ; SET FLAGS LD D,0 ; NO MEDIA CHANGE DETECTED LD E,MID_HD ; ASSUME WE ARE OK RET Z ; RETURN IF GOOD INIT LD E,MID_NONE ; SIGNAL NO MEDIA LD A,ERR_NOMEDIA ; NO MEDIA ERROR OR A ; SET FLAGS RET ; AND RETURN ; ; ; IDE_SEEK: BIT 7,D ; CHECK FOR LBA FLAG CALL Z,HB_CHS2LBA ; CLEAR MEANS CHS, CONVERT TO LBA RES 7,D ; CLEAR FLAG REGARDLESS (DOES NO HARM IF ALREADY LBA) LD (IY+IDE_LBA+0),L ; SAVE NEW LBA LD (IY+IDE_LBA+1),H ; ... LD (IY+IDE_LBA+2),E ; ... LD (IY+IDE_LBA+3),D ; ... XOR A ; SIGNAL SUCCESS RET ; AND RETURN ; ; ; IDE_CAP: LD A,(IY+IDE_STAT) ; GET STATUS PUSH AF ; SAVE IT LD A,IDE_MEDCAP ; OFFSET TO CAPACITY FIELD CALL LDHLIYA ; HL := IY + A, REG A TRASHED CALL LD32 ; GET THE CURRENT CAPACITY INTO DE:HL LD BC,512 ; 512 BYTES PER BLOCK POP AF ; RECOVER STATUS OR A ; SET FLAGS RET ; ; ; IDE_GEOM: ; FOR LBA, WE SIMULATE CHS ACCESS USING 16 HEADS AND 16 SECTORS ; RETURN HS:CC -> DE:HL, SET HIGH BIT OF D TO INDICATE LBA CAPABLE CALL IDE_CAP ; GET TOTAL BLOCKS IN DE:HL, BLOCK SIZE TO BC LD L,H ; DIVIDE BY 256 FOR # TRACKS LD H,E ; ... HIGH BYTE DISCARDED, RESULT IN HL LD D,16 | $80 ; HEADS / CYL = 16, SET LBA CAPABILITY BIT LD E,16 ; SECTORS / TRACK = 16 RET ; DONE, A STILL HAS IDE_CAP STATUS ; ;============================================================================= ; FUNCTION SUPPORT ROUTINES ;============================================================================= ; IDE_SETFEAT: PUSH AF #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" SETFEAT$") #ENDIF LD A,(IDE_DRVHD) ;OUT (IDE_REG_DRVHD),A CALL IDE_OUT .DB IDE_REG_DRVHD #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF POP AF ;OUT (IDE_REG_FEAT),A ; SET THE FEATURE VALUE CALL IDE_OUT .DB IDE_REG_FEAT #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF LD A,IDE_CMD_SETFEAT ; CMD = SETFEAT LD (IDE_CMD),A ; SAVE IT JP IDE_RUNCMD ; RUN COMMAND AND EXIT ; ; ; IDE_IDENTIFY: #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" IDDEV$") #ENDIF LD A,(IDE_DRVHD) ;OUT (IDE_REG_DRVHD),A CALL IDE_OUT .DB IDE_REG_DRVHD #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF LD A,IDE_CMD_IDDEV LD (IDE_CMD),A CALL IDE_RUNCMD_ND RET NZ ; CALL IDE_IN .DB IDE_REG_STAT BIT 3,A ; IS DRQ SET? JP Z,IDE_NOMEDIA ; LD HL,HB_WRKBUF JP IDE_GETBUF ; EXIT THRU BUFRD ; ; ; IDE_IDENTIFYPACKET: #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" IDPKTDEV$") #ENDIF LD A,(IDE_DRVHD) ;OUT (IDE_REG_DRVHD),A CALL IDE_OUT .DB IDE_REG_DRVHD #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF LD A,IDE_CMD_IDPKTDEV LD (IDE_CMD),A CALL IDE_RUNCMD_ND RET NZ ; CALL IDE_IN .DB IDE_REG_STAT BIT 3,A ; IS DRQ SET? JP Z,IDE_NOMEDIA ; LD HL,HB_WRKBUF JP IDE_GETBUF ; EXIT THRU BUFRD ; ; ; IDE_PACKET: #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" PACKET$") #ENDIF LD A,(IDE_DRVHD) ;OUT (IDE_REG_DRVHD),A CALL IDE_OUT .DB IDE_REG_DRVHD #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF XOR A ; ZERO CALL IDE_OUT .DB IDE_REG_FEAT ; FEATURE REG = 0 CALL IDE_OUT .DB IDE_REG_BCL LD A,8 CALL IDE_OUT .DB IDE_REG_BCH ; BYTE COUNT = 512???? LD A,IDE_CMD_PACKET LD (IDE_CMD),A JP IDE_RUNCMD_ND ; ; ; IDE_RDSEC: ; #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" READ$") #ENDIF LD A,(IDE_DRVHD) ;OUT (IDE_REG_DRVHD),A CALL IDE_OUT .DB IDE_REG_DRVHD #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF LD A,(IY+IDE_TYPE) CP IDE_TYPEATA JR Z,IDE_ATA_RDSEC CP IDE_TYPEATAPI JR Z,IDE_PKT_RDSEC JP IDE_CMDERR ; IDE_ATA_RDSEC: #IF (IDETRACE >= 3) PRTS(" ATA$") #ENDIF CALL IDE_SETADDR ; SETUP CYL, TRK, HEAD LD A,IDE_CMD_READ LD (IDE_CMD),A CALL IDE_RUNCMD RET NZ LD HL,(IDE_DSKBUF) JP IDE_GETBUF ; IDE_PKT_RDSEC: #IF (IDETRACE >= 3) PRTS(" PKT$") #ENDIF ; SETUP LBA ; #IF (DSKYENABLE) LD A,IDE_LBA CALL LDHLIYA CALL HB_DSKACT ; SHOW ACTIVITY #ENDIF ; ; 3 BYTES, LITTLE ENDIAN -> BIG ENDIAN LD HL,IDE_PKTCMD_RW10+3 ; START OF LBA FIELD IN CDB (MSB) LD A,(IY+IDE_LBA+2) ; THIRD BYTE OF LBA FIELD IN CFG (MSB) LD (HL),A INC HL LD A,(IY+IDE_LBA+1) LD (HL),A INC HL LD A,(IY+IDE_LBA+0) LD (HL),A INC HL LD HL,IDE_PKTCMD_RW10 LD A,SCSI_CMD_READ10 LD (HL),A XOR A ; READ DIRECTION LD (IDE_XFRDIR),A ; SAVE IT CALL IDE_RUNPCMD JP NZ,IDE_CHKPCMD RET ; ; ; IDE_WRSEC: ; #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" WRITE$") #ENDIF LD A,(IDE_DRVHD) ;OUT (IDE_REG_DRVHD),A CALL IDE_OUT .DB IDE_REG_DRVHD #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF LD A,(IY+IDE_TYPE) CP IDE_TYPEATA JR Z,IDE_ATA_WRSEC CP IDE_TYPEATAPI JR Z,IDE_PKT_WRSEC JP IDE_CMDERR ; IDE_ATA_WRSEC: #IF (IDETRACE >= 3) PRTS(" ATA$") #ENDIF CALL IDE_SETADDR ; SETUP CYL, TRK, HEAD LD A,IDE_CMD_WRITE LD (IDE_CMD),A CALL IDE_RUNCMD RET NZ LD HL,(IDE_DSKBUF) JP IDE_PUTBUF ; IDE_PKT_WRSEC: #IF (IDETRACE >= 3) PRTS(" PKT$") #ENDIF ; SETUP LBA ; #IF (DSKYENABLE) LD A,IDE_LBA CALL LDHLIYA CALL HB_DSKACT ; SHOW ACTIVITY #ENDIF ; ; 3 BYTES, LITTLE ENDIAN -> BIG ENDIAN LD HL,IDE_PKTCMD_RW10+3 ; START OF LBA FIELD IN CDB (MSB) LD A,(IY+IDE_LBA+2) ; THIRD BYTE OF LBA FIELD IN CFG (MSB) LD (HL),A INC HL LD A,(IY+IDE_LBA+1) LD (HL),A INC HL LD A,(IY+IDE_LBA+0) LD (HL),A INC HL LD HL,IDE_PKTCMD_RW10 LD A,SCSI_CMD_WRITE10 LD (HL),A OR $FF ; WRITE DIRECTION LD (IDE_XFRDIR),A ; SAVE IT CALL IDE_RUNPCMD JP NZ,IDE_CHKPCMD RET ; ; ; IDE_SETADDR: ; #IF (DSKYENABLE) LD A,IDE_LBA CALL LDHLIYA CALL HB_DSKACT ; SHOW ACTIVITY #ENDIF ; SEND 3 LOWEST BYTES OF LBA IN REVERSE ORDER ; IDE_REG_LBA3 HAS ALREADY BEEN SET ; HSTLBA2-0 --> IDE_REG_LBA2-0 LD A,(IY+IDE_LBA+2) #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF CALL IDE_OUT .DB IDE_REG_LBA2 ; LD A,(IY+IDE_LBA+1) #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF CALL IDE_OUT .DB IDE_REG_LBA1 ; LD A,(IY+IDE_LBA+0) #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF CALL IDE_OUT .DB IDE_REG_LBA0 ; LD A,1 #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF CALL IDE_OUT .DB IDE_REG_COUNT ; RET ; ;============================================================================= ; COMMAND PROCESSING ;============================================================================= ; ; RUN AN ATA COMMAND. THERE ARE TWO ENTRY POINTS. THE NORMAL ENTRY ; POINT WILL WAIT FOR DRIVE READY. THE _ND ENTRY POINT ONLY WAITS ; FOR THE DEVICE TO BE NOT BUSY. THE CORRECT ENTRY POINT DEPENDS ON ; THE COMMAND. ; IDE_RUNCMD_ND: CALL IDE_WAITBSY ; WAIT WHILE DEVICE BUSY RET NZ ; BAIL OUT ON TIMEOUT JR IDE_RUNCMD1 ; CONTINUE IDE_RUNCMD: CALL IDE_WAITRDY ; WAIT FOR DRIVE READY RET NZ ; BAIL OUT ON TIMEOUT ; IDE_RUNCMD1: LD A,(IDE_CMD) ; GET THE COMMAND #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF ;OUT (IDE_REG_CMD),A ; SEND IT (STARTS EXECUTION) CALL IDE_OUT .DB IDE_REG_CMD #IF (IDETRACE >= 3) PRTS(" -->$") #ENDIF ; CALL IDE_WAITBSY ; WAIT FOR DRIVE READY (COMMAND DONE) RET NZ ; BAIL OUT ON TIMEOUT ; CALL IDE_GETRES JP NZ,IDE_CMDERR RET ; ; PACKET COMMAND PROCESSOR ; HL: ADDRESS OF PACKET COMMAND BUFFER ; IDE_RUNPCMD: PUSH HL CALL IDE_PACKET POP HL RET NZ ; BAIL OUT ON ERROR ; #IF (IDETRACE >= 3) PRTS("\r\nPKTCMD:$") PUSH HL POP DE LD A,12 CALL PRTHEXBUF #ENDIF ; ; IF ZIP DRIVE HAS FALLEN ASLEEP, THEN IT WILL NEED EXTRA ; TIME HERE TO WAKE UP BEFORE ACCEPTING THE COMMAND. USE ; LONG TIMEOUT TO ACCOMMODATE THIS. LD DE,(IDE_TIMEOUT) ; GET CURRENT TIMEOUT PUSH DE ; SAVE IT LD DE,IDE_TOSLOW ; SLOW TIMEOUT FOR THIS LD (IDE_TIMEOUT),DE ; SET IT LD B,6 ; 6 WORDS ALWAYS CALL IDE_PUT POP DE ; RECOVER TIMEOUT LD (IDE_TIMEOUT),DE ; SET IT RET NZ ; CALL IDE_IN .DB IDE_REG_STAT BIT 3,A ; IS DRQ SET? RET Z ; IF NOT, ALL DONE ; CALL IDE_IN .DB IDE_REG_BCL LD C,A CALL IDE_IN .DB IDE_REG_BCH LD B,A ; ; BELOW ASSUMES MAX TRANSFER OF 512 BYTES!!! PUSH BC ; SAVE BYTE COUNT SRL B ; CONVERT RR C ; ... TO WORDS LD B,C ;LD HL,HB_WRKBUF ; SET XFR BUFFER LD HL,(IDE_DSKBUF) ; SET XFR BUFFER LD A,(IDE_XFRDIR) OR A JR NZ,IDE_RUNPCMD2 ; NZ = WRITE CALL IDE_GET ; GET SOME DATA JR IDE_RUNPCMD3 IDE_RUNPCMD2: CALL IDE_PUT ; PUT SOME DATA IDE_RUNPCMD3: POP BC ; RESTORE BYTE COUNT RET NZ ; BAIL OUT ON ERRORS ; XOR A RET ; ; THE FOLLOWING IS USED TO ASSESS ANY ERROR THAT OCCURS DURING ; RUNCMD AND SET AN APPROPRIATE ERROR CODE. ; IDE_CHKPCMD: ; LD HL,HB_WRKBUF LD (IDE_DSKBUF),HL LD HL,IDE_PKTCMD_SENSE CALL IDE_RUNPCMD RET NZ ; CALL IDE_IN .DB IDE_REG_BCL ; #IF (IDETRACE >= 3) CALL NEWLINE LD DE,HB_WRKBUF CALL PRTHEXBUF #ENDIF ; ; ASSESS SENSE DATA AND SET APPROPRIATE ERROR LD A,(HB_WRKBUF+12) CP $3A JP Z,IDE_NOMEDIA CP $04 JP Z,IDE_NOTRDY ; JP IDE_CMDERR ; ; HL=BUFFER ; IDE_GETBUF: LD B,0 ; FALL THRU!!! ; ; HL=BUFFER ; B=WORD COUNT, 0=256 ; IDE_GET: #IF (IDETRACE >= 3) PRTS(" GET$") #ENDIF ; ; WAIT FOR BUFFER PUSH BC PUSH HL CALL IDE_WAITDRQ ; WAIT FOR BUFFER READY POP HL POP BC RET NZ ; BAIL OUT IF TIMEOUT ; LD A,B ; WORD COUNT IN A ; BIT 1,(IY+IDE_ACC) ; 8 BIT? JR Z,IDE_GET1 ; IF NOT, DO 16 BIT CALL IDE_GET8 ; DO 8 BIT JR IDE_GET2 ; IDE_GET1: CALL IDE_GET16 ; IDE_GET2: CALL IDE_WAITRDY ; PROBLEMS IF THIS IS REMOVED! CALL IDE_GETRES JP NZ,IDE_IOERR RET ; IDE_GET8: ; 8 BIT I/O ;LD C,IDE_REG_DATA LD C,(IY+IDE_IOBASE) LD B,A INIR LD B,A INIR RET ; IDE_GET16: ; 16 BIT I/O ;LD C,IDE_REG_DATAHI LD D,(IY+IDE_DATALO) LD E,(IY+IDE_DATAHI) CALL IDE_GET16A ; GET FIRST 256 BYTES RET ; IDE_GET16A: LD C,D ; PORT FOR LSB INI ; GET IT, SAVE IT, AND DEC B LD C,E ; PORT FOR MSB INI ; GET IT, SAVE IT, AND DEC B DEC A JR NZ,IDE_GET16A ; LOOP TILL COUNTER EXHAUSTED RET ; ; HL=BUFFER ; IDE_PUTBUF: LD B,0 ; FALL THRU!!! ; ; HL=BUFFER ; B=WORD COUNT, 0=256 ; IDE_PUT: #IF (IDETRACE >= 3) PRTS(" PUT$") #ENDIF ; ; WAIT FOR BUFFER PUSH BC PUSH HL CALL IDE_WAITDRQ ; WAIT FOR BUFFER READY POP HL POP BC RET NZ ; BAIL OUT IF TIMEOUT ; LD A,B ; WORD COUNT IN A ; BIT 1,(IY+IDE_ACC) ; 8 BIT? JR Z,IDE_PUT1 ; IF NOT, DO 16 BIT CALL IDE_PUT8 ; DO 8 BIT JR IDE_PUT2 ; IDE_PUT1: CALL IDE_PUT16 ; IDE_PUT2: CALL IDE_WAITRDY ; PROBLEMS IF THIS IS REMOVED! CALL IDE_GETRES JP NZ,IDE_IOERR RET ; IDE_PUT8: ; 8 BIT I/O ;LD C,IDE_REG_DATA LD C,(IY+IDE_IOBASE) LD B,A OTIR LD B,A OTIR RET ; IDE_PUT16: ; 16 BIT I/O ;LD C,IDE_REG_DATAHI LD D,(IY+IDE_DATALO) LD E,(IY+IDE_DATAHI) CALL IDE_PUT16A ; PUT FIRST 256 BYTES RET ; IDE_PUT16A: LD C,D ; PORT FOR LSB OUTI ; PUT IT AND DEC B LD C,E ; PORT FOR MSB OUTI ; PUT IT AND DEC B DEC A JR NZ,IDE_PUT16A ; LOOP TILL COUNTER EXHAUSTED RET ; ; ; IDE_GETRES: ;IN A,(IDE_REG_STAT) ; GET STATUS CALL IDE_IN .DB IDE_REG_STAT #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF AND %00000001 ; ERROR BIT SET? RET Z ; NOPE, RETURN WITH ZF ; ;IN A,(IDE_REG_ERR) ; READ ERROR REGISTER CALL IDE_IN .DB IDE_REG_ERR #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF OR $FF ; FORCE NZ TO SIGNAL ERROR RET ; RETURN ; ;============================================================================= ; HARDWARE INTERFACE ROUTINES ;============================================================================= ; ; RESET ALL DEVICES ON BUS ; IDE_RESET: #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" RESET$") #ENDIF ; ; HARD RESET ; ; RESET LINE IS NORMALLY PULSED AT POWER ON. HOWEVER, THIS IS NOT ; DONE FOR MK4 BUILT-IN IDE PORT, SO WE DO IT NOW. ; LD A,(IY+IDE_MODE) ; GET MODE CP IDEMODE_MK4 ; MK4? JR NZ,IDE_RESET2 ; IF NOT, BYPASS ; ; USE HARDWARE RESET LINE #IF (IDETRACE >= 3) PRTS(" HARD$") #ENDIF LD A,$80 ; HIGH BIT OF XAR IS IDE RESET ;OUT (IDE_REG_XAR),A CALL IDE_OUT .DB IDE_REG_XAR LD DE,20 ; DELAY 32US (SPEC IS >= 25US) CALL VDELAY XOR A ; CLEAR RESET BIT ;OUT (IDE_REG_XAR),A CALL IDE_OUT .DB IDE_REG_XAR LD DE,20 CALL VDELAY ; ; SOME CF CARDS AND CF CARD EMULATORS NEED A LITTLE TIME TO ; "BOOT" THEIR INTERNAL ELECTRONICS, SO THEY CANNOT ASSERT BUSY ; IMMEDIATELY. A SMALL WAIT IS PERFORMED HERE TO GIVE SUCH DEVICES ; A BETTER CHANCE TO SUCCEED LATER. ; ;;; CALL LDELAY ; DELAY FOR SLAVE INIT LD DE,150000 / 16 ; CALL VDELAY ; SMALL DELAY ; JR IDE_RESET3 ; SKIP SOFT RESET ; ; SOFT RESET ; ; RC CANNOT ACCESS DEVICE CONTROL REG, SO SKIP THIS ; IDE_RESET2: LD A,(IY+IDE_MODE) ; GET MODE CP IDEMODE_RC ; RCBUS? JR Z,IDE_RESET4 ; IF SO, BYPASS ; ; INITIATE SOFT RESET #IF (IDETRACE >= 3) PRTS(" SOFT$") #ENDIF LD A,%00001110 ; ASSERT RESET, NO INTERRUPTS ;OUT (IDE_REG_CTRL),A CALL IDE_OUT .DB IDE_REG_CTRL LD DE,20 ; DELAY 320US (SPEC IS >= 25US) CALL VDELAY ; IDE_RESET3: ; ; CONFIGURE OPERATION AND END SOFT RESET ; #IF (IDETRACE >= 3) PRTS(" CONFIG$") #ENDIF LD DE,20 ; DELAY 320US (SPEC IS >= 25US) CALL VDELAY LD A,%00001010 ; DEASSERT RESET, NO INTERRUPTS ;OUT (IDE_REG_CTRL),A ; PUSH TO REGISTER CALL IDE_OUT .DB IDE_REG_CTRL ; IDE_RESET4: LD HL,IDE_TONORM ; NORMAL TIMEOUT NOW LD (IDE_TIMEOUT),HL ; AND RESTORE IT ; ; INITIALIZE THE INDIVIDUAL UNITS (MASTER AND SLAVE). ; BASED ON TESTING, IT APPEARS THAT THE MASTER UNIT MUST ; BE DONE FIRST OR THIS BEHAVES BADLY. ; PUSH IY ; SAVE CFG PTR BIT 0,(IY+IDE_ACC) ; MASTER? CALL Z,IDE_GOPARTNER ; IF NOT, SWITCH TO MASTER CALL IDE_INITUNIT ; INIT CURRENT UNIT CALL IDE_GOPARTNER ; POINT TO SLAVE CALL IDE_INITUNIT ; INIT PARTNER UNIT POP IY ; RECOVER ORIG CFG PTR ; XOR A ; SIGNAL SUCCESS RET ; AND DONE ; ; ; IDE_INITUNIT: CALL IDE_SELUNIT ; SELECT UNIT RET NZ ; ABORT IF ERROR CALL IDE_PROBE ; DO PROBE RET NZ ; JUST RETURN IF NOTHING THERE JP IDE_INITDEV ; EXIT VIA INITDEV ; ; TAKE ANY ACTIONS REQUIRED TO SELECT DESIRED PHYSICAL UNIT ; IDE_SELUNIT: #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" SELUNIT$") #ENDIF BIT 0,(IY+IDE_ACC) ; MASTER? JR Z,IDE_SELUNIT1 ; HANDLE SLAVE LD A,IDE_DRVMASTER ; MASTER #IF (IDETRACE >= 3) PRTS(" MASTER$") #ENDIF JR IDE_SELUNIT2 IDE_SELUNIT1: LD A,IDE_DRVSLAVE ; SLAVE #IF (IDETRACE >= 3) PRTS(" SLAVE$") #ENDIF IDE_SELUNIT2: LD (IDE_DRVHD),A ; SAVE IT XOR A ; SUCCESS RET ; ; ; IDE_PROBE: ; ; PROBE FOR A DRIVE ON THE INTERFACE (EITHER MASTER OR SLAVE). ; IDEALLY, THIS IS BEING CALLED IMMEDIATELY AFTER A HARD OR SOFT ; INTERFACE RESET. HOWEVER, THERE ARE SOME HARDWARE IMPLEMENTATTIONS ; WHICH ARE CAPABLE OF NEITHER A HARD NOR SOFT RESET. SO THIS ; CODE SHOULD TRY TO HANDLE THE SCENARIO WHERE NO INTERFACE RESET ; HAS OCCURRED. ; #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" PROBE$") ; LABEL FOR IO ADDRESS #ENDIF ; #IF (IDETRACE >= 3) CALL IDE_IN .DB IDE_REG_STAT CALL PC_SPACE CALL PRTHEXBYTE #ENDIF ; ; SELECT DEVICE (MASTER/SLAVE) LD A,(IDE_DRVHD) ;OUT (IDE_REG_DRVHD),A CALL IDE_OUT .DB IDE_REG_DRVHD #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF CALL DELAY ; DELAY ~16US ; ; THE RC2014 SD PICO TAKES A FEW SECONDS TO INITIALIZE. ATEMPTING TO ; ACCESS IT DURING THIS TIME WILL FAIL. THE DATA LINES ALL HAVE ; PULL-DOWN RESISTORS, SO WHILE IT IS INITIALIZING, READING ANY ; REGISTER WILL CONSISTENTLY RETURN $00. THE FOLLOWING BIT OF CODE ; WILL SCAN THE IDE REGISTER BLOCK. WHILE ALL REGISTERS REMAIN ZERO, ; WE WAIT (UNTIL TIMEOUT). IN MY TESTING, IT SEEMS VERY UNLIKELY ; THAT ANY OTHER DEVICE WILL RETURN $00 FOR ALL REGISTERS. ; LD A,(IY+IDE_MODE) ; GET MODE BITS CP IDEMODE_RC ; RCBUS? JR NZ,IDE_PROBE0 ; IF NOT, BYPASS ; LD A,(IDE_DRVHD) ; GET CURRENT SETTING BIT 4,A ; TEST SLAVE BIT JR NZ,IDE_PROBE0 ; IF SO, BYPASS ; CALL IDE_IN .DB IDE_REG_STAT #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF OR A ; SET FLAGS JR NZ,IDE_PROBE0 ; SKIP IF NOT $00 ; #IF (IDETRACE >= 3) PRTS(" PICO$") #ENDIF LD HL,500 ; 5 SECONDS IDE_WAIT001: ;CALL NEWLINE LD C,(IY+IDE_IOBASE) LD B,8 ; NUMBER OF REGISTERS TO CHECK IDE_WAIT002: IN A,(C) ; GET REGISTER VALUE ;CALL PC_SPACE ;CALL PRTHEXBYTE OR A ; SET FLAGS JR NZ,IDE_PROBE0 ; IF NOT ZERO, MOVE ON INC C ; NEXT REGISTER DJNZ IDE_WAIT002 ; CHECK ALL 8 REGS LD DE,10000/16 ; .01 SECONDS CALL VDELAY DEC HL LD A,H OR L JR NZ,IDE_WAIT001 ; LOOP ;JP IDE_NOMEDIA ; GIVE UP? ; ; IF WE GET HERE AND THE DRIVE IS STILL INITIALIZING, WE NEED TO ; WAIT UNTIL THE DRIVE IS READY. IN THIS CASE BUSY *WILL* BE HIGH. ; BASED ON TESTING, DRDY AND DSC VALUES VARY. EVERYTHING ELSE SEEMS ; TO BE ZERO. SO, WE FILTER OUT DRDY & DSC, THEN LOOK FOR BUSY=1 ; AND ALL ELSE ZERO. THIS GENERALLY AVOIDS VALUES THAT ARE TYPICAL ; FOR FLOATING PORTS AND SO CAN BE USED TO DETERMINE IF WE NEED TO ; WAIT FOR THE DEVICE TO BE READY. THIS WAIT IS MANDATORY BECAUSE ; SOME (IF NOT ALL) DEVICES WILL NOT PERSIST REGISTER VALUES UNTIL ; THE DRIVE IS READY. ; IDE_PROBE0: CALL IDE_IN .DB IDE_REG_STAT #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF ; AND %10101111 ; FILTER OUT DRDY & DSC CP $80 ; INIT IN PROGRESS? JR NZ,IDE_PROBE1 ; IF NOT, SKIP AHEAD ; #IF (IDETRACE >= 3) PRTS(" WAIT$") #ENDIF ; LD HL,(IDE_TIMEOUT) ; GET CURRENT TIMEOUT PUSH HL ; SAVE IT LD HL,IDE_TOSLOW ; SLOW TIMEOUT FOR THIS LD (IDE_TIMEOUT),HL ; SET IT CALL IDE_WAITBSY ; WAIT FOR BUSY TO CLEAR POP HL ; RECOVER TIMEOUT LD (IDE_TIMEOUT),HL ; SET IT ; #IF (IDETRACE >= 3) CALL IDE_IN .DB IDE_REG_STAT CALL PC_SPACE CALL PRTHEXBYTE #ENDIF ; ; TEST FOR PRESENCE OF IDE REGISTERS. USE LBA0/1 TO SEE ; IF VALUE CAN BE PERSISTED. THE USE OF BOTH LBA0 AND LBA1 ; IS TO MAINTAIN CONSISTENCY WITH THE THE PPIDE DRIVER BECAUSE ; PPI ITSELF WILL PERSIST THE LAST VALUE WRITTEN, SO WE USE ; MULTIPLE REGISTERS TO WORK AROUND THIS FALSE POSITIVE. ; IDE_PROBE1: ; $AA -> LBA0 LD A,$AA CALL IDE_OUT .DB IDE_REG_LBA0 ; ; $55 => LBA1 LD A,$55 CALL IDE_OUT .DB IDE_REG_LBA1 ; ; TEST LBA0 == $AA CALL IDE_IN .DB IDE_REG_LBA0 #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF CP $AA JP NZ,IDE_NOMEDIA ; ; TEST LBA1 == $55 CALL IDE_IN .DB IDE_REG_LBA1 #IF (IDETRACE >= 3) CALL PC_SPACE CALL PRTHEXBYTE #ENDIF CP $55 JP NZ,IDE_NOMEDIA ; #IF (IDETRACE >= 3) CALL IDE_REGDUMP #ENDIF ; XOR A RET ; ; (RE)INITIALIZE DEVICE ; IDE_INITDEV: ; #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" INITDEV$") ; LABEL FOR IO ADDRESS #ENDIF ; #IF (IDETRACE >= 3) CALL IDE_REGDUMP #ENDIF ; ; ON ENTRY, WE HAVE ALREADY CHECKED THAT THE BUSY BIT IS CLEARED AND ; DRDY SHOULD BE SET. IF DRDY IS NOT SET, IF COULD MEAN EITHER A ; NON-EXISTENT SLAVE DEVICE OR AN ATAPI DEVICE. TO AVOID UNNECESSARY ; TIMEOUTS, WE CHECK FOR DRDY. IF IT IS NOT SET, THEN WE ASSUME THIS ; MUST BE AN ATAPI DEVICE AND GO TRY TO DO THE ATAPI INITIALIZATION. ; IF THIS WAS ACTUALLY A NON-EXISTENT SLAVE, THE ATAPI INITIALIZATION ; WILL HANDLE THIS PRETTY WELL. ; CALL IDE_IN .DB IDE_REG_STAT BIT 6,A ; DRDY? JR Z,IDE_INITPDEV ; ODD, MIGHT BE ATAPI ; ; WE NEED TO SETUP 8-BIT MODE BEFORE DOING ANYTHING ELSE ; BIT 1,(IY+IDE_ACC) ; 8 BIT ACCESS? JR Z,IDE_INITDEV0 ; NO, DO 16 BIT INIT LD A,IDE_FEAT_ENABLE8BIT ; FEATURE VALUE = ENABLE 8-BIT PIO CALL IDE_SETFEAT ; SET FEATURE RET NZ ; BAIL OUT ON ERROR JR IDE_INITDEV00 ; CONTINUE ; IDE_INITDEV0: ; "REAL" IDE DRIVES MAY NOT ACCEPT THE DISABLE8BIT FEATURE COMMAND, ; SO IT IS ONLY AN ERROR IF WE ARE ATTEMPTING TO ENABLE8BIT. ; CREDIT TO ED BRINDLEY FOR THIS CORRECTION. SO ERROR RETURN IGNORED HERE. LD A,IDE_FEAT_DISABLE8BIT ; FEATURE VALUE = ENABLE 8-BIT PIO CALL IDE_SETFEAT ; SET FEATURE, IGNORE ERRORS ; IDE_INITDEV00: ; ; WE NOW USE AN IDENTIFY DEVICE COMMAND TO CONFIRM THE ; DEVICE IS REALLY THERE AND GET SOME ATTRIBUTES. IF THE ; COMMAND FAILS, IT MAY BE THAT WE HAVE AN ATAPI DEVICE AND ; SO WE GO TO THE ATAPI INITIALIZATION ON FAILURE. CALL IDE_IDENTIFY ; EXECUTE IDENTIFY COMMAND JR NZ,IDE_INITPDEV ; TRY ATAPI ON FAILURE ; ; DECLARE WE ARE ATA LD A,IDE_TYPEATA ; OTHERWISE TYPE=ATA LD (IY+IDE_TYPE),A ; SET IT IN INSTANCE DATA ; LD DE,HB_WRKBUF ; POINT TO BUFFER #IF (IDETRACE >= 4) CALL DUMP_BUFFER ; DUMP IT IF DEBUGGING #ENDIF ; LD (IY+IDE_MED),0 ; CLEAR MEDIA FLAGS ; #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" SIG=0x$") LD BC,(HB_WRKBUF) CALL PRTHEXWORD #ENDIF ; ; DETERMINE IF COMPACTFLASH MEDIA LD A,(HB_WRKBUF+(83*2)) ; LOW BYTE OF WORD 83 BIT 2,A ; TEST CFA FEATURE SET BIT JR Z,IDE_INITDEV1 ; IF NOT, SKIP SET 0,(IY+IDE_MED) ; ELSE SET FLAGS BIT FOR CF MEDIA ; IDE_INITDEV1: ; DETERMINE IF LBA CAPABLE LD A,(HB_WRKBUF+98+1) ; HIGH BYTE OF WORD 49 BIT 1,A ; CHECK THE LBA BIT JR Z,IDE_INITDEV2 ; NOT SET, BYPASS SET 1,(IY+IDE_MED) ; SET FLAGS BIT FOR LBA ; IDE_INITDEV2: ; GET DEVICE CAPACITY AND SAVE IT LD A,IDE_MEDCAP ; OFFSET TO CAPACITY FIELD CALL LDHLIYA ; HL := IY + A, REG A TRASHED PUSH HL ; SAVE POINTER LD HL,HB_WRKBUF ; POINT TO BUFFER START LD A,120 ; OFFSET OF SECTOR COUNT CALL ADDHLA ; POINT TO ADDRESS OF SECTOR COUNT CALL LD32 ; LOAD IT TO DE:HL POP BC ; RECOVER POINTER TO CAPACITY ENTRY CALL ST32 ; SAVE CAPACITY ; ; RECORD STATUS OK XOR A ; A := 0 (STATUS = OK) LD (IY+IDE_STAT),A ; SAVE IT ; RET ; RETURN, A=0, Z SET ; ; (RE)INITIALIZE PACKET DEVICE ; IDE_INITPDEV: ; #IF (IDETRACE >= 3) CALL IDE_PRTPREFIX PRTS(" INITPDEV$") ; LABEL FOR IO ADDRESS #ENDIF ; CALL IDE_IDENTIFYPACKET ; EXECUTE IDENTIFY COMMAND RET NZ ; BAIL OUT ON ERROR ; ; DECLARE WE ARE ATAPI LD A,IDE_TYPEATAPI ; OTHERWISE TYPE=ATAPI LD (IY+IDE_TYPE),A ; SET IT IN INSTANCE DATA ; LD DE,HB_WRKBUF ; POINT TO BUFFER #IF (IDETRACE >= 4) CALL DUMP_BUFFER ; DUMP IT IF DEBUGGING #ENDIF ; LD (IY+IDE_MED),0 ; CLEAR FLAGS SET 1,(IY+IDE_MED) ; SET FLAGS BIT FOR LBA (ASSUMED) ; ; WAIT FOR UNIT READY LD B,0 ; MAX LOOPS LD C,4 ; MAX ERRORS IDE_INITPDEV1: DEC B ; CHECK LOOP COUNTER EXCEEDED JP Z,IDE_NOMEDIA ; TREAT AS NO MEDIA PUSH BC ; SAVE LOOP CONTROL LD HL,IDE_PKTCMD_TSTRDY ; TEST UNIT READY XOR A ; READ DIRECTION LD (IDE_XFRDIR),A ; SAVE IT CALL IDE_RUNPCMD ; ISSUE PACKET COMMAND CALL NZ,IDE_CHKPCMD ; IF ERROR, DIAGNOSE IT POP BC ; RESTORE LOOP CONTROL JR Z,IDE_INITPDEV2 ; IF NO ERROR, CONTINUE CP IDE_STNOMEDIA ; EXPLICIT NO MEDIA RESULT? RET Z ; EXIT REPORTING NO MEDIA CP IDE_STNOTRDY ; BECOMING READY? JR Z,IDE_INITDEVP1A ; IF SO, NOT AN ERROR, LOOP DEC C ; DEC ERROR LIMIT RET Z ; BAIL OUT, ERR LIMIT EXCEEDED JR IDE_INITPDEV1 ; LOOP IDE_INITDEVP1A: LD DE,100000/16 ; WAIT 1/10 SECOND CALL VDELAY ; DO IT JR IDE_INITPDEV1 ; AND LOOP ; IDE_INITPDEV2: #IF (IDETRACE >= 3) LD A,B NEG PRTS("\r\nLOOPS=$") CALL PRTHEXBYTE #ENDIF ; ; GET AND RECORD CAPACITY LD HL,HB_WRKBUF LD (IDE_DSKBUF),HL LD HL,IDE_PKTCMD_RDCAP XOR A ; READ DIRECTION LD (IDE_XFRDIR),A ; SAVE IT CALL IDE_RUNPCMD JP NZ,IDE_CHKPCMD ; #IF (IDETRACE >= 3) PRTS("\r\nRDCAP:$") LD A,8 LD DE,HB_WRKBUF CALL PRTHEXBUF #ENDIF ; ; CAPACITY IS RETURNED IN A 4 BYTE, BIG ENDIAN FIELD AND ; INDICATES THE LAST LBA VALUE. WE NEED TO CONVERT THIS TO ; LITTLE ENDIAN AND INCREMENT THE VALUE TO MAKE IT A CAPACITY ; COUNT INSTEAD OF A LAST LBA VALUE. LD A,IDE_MEDCAP ; OFFSET IN CFG FOR CAPACITY CALL LDHLIYA ; POINTER TO HL PUSH HL ; SAVE IT LD HL,HB_WRKBUF ; POINT TO VALUE IN CMD RESULT CALL LD32 ; LOAD IT TO DE:HL LD A,L ; FLIP BYTES LD L,D ; ... BIG ENDIAN LD D,A ; ... TO LITTLE ENDIAN LD A,H LD H,E LD E,A CALL INC32 ; INCREMENT TO FINAL VALUE POP BC ; RECOVER SAVE LOCATION CALL ST32 ; STORE VALUE ; ; CHECK BLOCK LENGTH. WE CURRENTLY ONLY SUPPORT 512 BYTE ; BLOCKS. CD-ROM DEVICES (WHICH USE 2k BLOCKS) WILL FAIL ; HERE AS NOT SUPPORTED. LD HL,HB_WRKBUF+4 ; POINT TO BLK SIZE IN RESULT CALL LD32 ; LOAD IT TO DE:HL ; VALUE IS BIG ENDIAN, SO LH:ED MUST BE EXACTLY 0000:0200 LD A,L ; CHECK THAT LH OR H ; ... IS ZERO JP NZ,IDE_NOTSUP ; IF NOT, FAIL AS NOT SUP LD A,D ; LOAD D OR A ; SET FLAGS JP NZ,IDE_NOTSUP ; IF NOT ZERO, FAIL AS NOT SUP LD A,E ; LOAD E CP 2 ; CHECK IT IF IS 2 JP NZ,IDE_NOTSUP ; IF NOT, FAIL AS NOT SUP ; ; CHECK BLOCK LENGTH. WE CURRENTLY ONLY SUPPORT 512 BYTE ; BLOCKS. CD-ROM DEVICES (WHICH USE 2k BLOCKS) WILL FAIL ; HERE AS NOT SUPPORTED. LD HL,HB_WRKBUF+4 ; POINT TO BLK SIZE IN RESULT CALL LD32 ; LOAD IT TO DE:HL ; VALUE IS BIG ENDIAN, SO LH:ED MUST BE EXACTLY 0000:0200 LD A,L ; CHECK THAT LH OR H ; ... IS ZERO JP NZ,IDE_NOTSUP ; IF NOT, FAIL AS NOT SUP LD A,D ; LOAD E OR A ; SET FLAGS JP NZ,IDE_NOTSUP ; IF NOT ZERO, FAIL AS NOT SUP LD A,E ; LOAD D CP 2 ; CHECK IT IF IS 2 JP NZ,IDE_NOTSUP ; IF NOT, FAIL AS NOT SUP ; ; RECORD STATUS OK XOR A ; A := 0 (STATUS = OK) LD (IY+IDE_STAT),A ; SAVE IT RET ; ; SWITCH IY POINTER FROM CURRENT UNIT CFG TO PARTNER UNIT CFG ; IDE_GOPARTNER: PUSH HL ; SAVE HL LD L,(IY+IDE_PARTNER) ; GET PARTNER ENTRY LD H,(IY+IDE_PARTNER+1) ; ... PUSH HL ; MOVE HL POP IY ; ... TO IY POP HL ; RESTORE INCOMING HL RET ; AND DONE ; ; CHECK CURRENT DEVICE FOR ERROR STATUS AND ATTEMPT TO RECOVER ; VIA RESET IF DEVICE IS IN ERROR. ; IDE_CHKERR: LD A,(IY+IDE_STAT) ; GET STATUS OR A ; SET FLAGS CALL NZ,IDE_RESET ; IF ERROR STATUS, RESET BUS RET ; ; ; IDE_WAITRDY: LD A,(IDE_TIMEOUT) ; GET TIMEOUT IN 0.1 SECS LD B,A ; PUT IN OUTER LOOP VAR IDE_WAITRDY1: LD DE,(IDE_TOSCALER) ; CPU SPEED SCALER TO INNER LOOP VAR IDE_WAITRDY2: ;IN A,(IDE_REG_STAT) ; READ STATUS CALL IDE_IN .DB IDE_REG_STAT LD C,A ; SAVE IT AND %11000000 ; ISOLATE BUSY AND RDY BITS XOR %01000000 ; WE WANT BUSY(7) TO BE 0 AND RDY(6) TO BE 1 RET Z ; ALL SET, RETURN WITH Z SET DEC DE LD A,D OR E JR NZ,IDE_WAITRDY2 ; INNER LOOP RETURN DJNZ IDE_WAITRDY1 ; OUTER LOOP RETURN JP IDE_RDYTO ; EXIT WITH RDYTO ERR ; ; ; IDE_WAITDRQ: LD A,(IDE_TIMEOUT) ; GET TIMEOUT IN 0.1 SECS LD B,A ; PUT IN OUTER LOOP VAR IDE_WAITDRQ1: LD DE,(IDE_TOSCALER) ; CPU SPPED SCALER TO INNER LOOP VAR IDE_WAITDRQ2: ;IN A,(IDE_REG_STAT) ; READ STATUS CALL IDE_IN .DB IDE_REG_STAT LD C,A ; SAVE IT AND %10001000 ; TO FILL (OR READY TO FILL) XOR %00001000 RET Z DEC DE LD A,D OR E JR NZ,IDE_WAITDRQ2 DJNZ IDE_WAITDRQ1 JP IDE_DRQTO ; EXIT WITH BUFTO ERR ; ; ; IDE_WAITBSY: LD A,(IDE_TIMEOUT) ; GET TIMEOUT IN 0.1 SECS LD B,A ; PUT IN OUTER LOOP VAR IDE_WAITBSY1: LD DE,(IDE_TOSCALER) ; CPU SPPED SCALER TO INNER LOOP VAR IDE_WAITBSY2: ;IN A,(IDE_REG_STAT) ; READ STATUS CALL IDE_IN ; 17TS + 121TS .DB IDE_REG_STAT LD C,A ; SAVE IT ; 4TS AND %10000000 ; TO FILL (OR READY TO FILL) ; 7TS RET Z ; 5TS DEC DE ; 6TS LD A,D ; 4TS OR E ; 4TS JR NZ,IDE_WAITBSY2 ; 12TS DJNZ IDE_WAITBSY1 ; ----- JP IDE_BSYTO ; EXIT WITH BSYTO ERR ; 180 ; ; READ A VALUE FROM THE DEVICE POINTED TO BY IY AND RETURN IT IN A ; IDE_IN: EX (SP),HL ; GET PARM POINTER ; 19TS PUSH BC ; 11TS LD A,(HL) ; 7TS INC HL ; 6TS LD C,(IY+IDE_IOBASE) ; 19TS ADD A,C ; 4TS LD C,A ; 4TS IN A,(C) ; 12TS POP BC ; 10TS EX (SP),HL ; RESTORE STACK ; 19TS RET ; 10TS ; ; ---- ; OUTPUT VALUE IN A TO THE DEVICE POINTED TO BY IY ; 121TS ; IDE_OUT: EX (SP),HL ; GET PARM POINTER PUSH BC PUSH AF LD A,(HL) INC HL LD C,(IY+IDE_IOBASE) ADD A,C LD C,A POP AF OUT (C),A POP BC EX (SP),HL ; RESTORE STACK RET ; ;============================================================================= ; ERROR HANDLING AND DIAGNOSTICS ;============================================================================= ; ; ERROR HANDLERS ; IDE_INVUNIT: LD A,IDE_STINVUNIT JR IDE_ERR2 ; SPECIAL CASE FOR INVALID UNIT ; IDE_NOMEDIA: LD A,IDE_STNOMEDIA JR IDE_ERR ; IDE_CMDERR: LD A,IDE_STCMDERR JR IDE_ERR ; IDE_IOERR: LD A,IDE_STIOERR JR IDE_ERR ; IDE_RDYTO: LD A,IDE_STRDYTO JR IDE_ERR ; IDE_DRQTO: LD A,IDE_STDRQTO JR IDE_ERR ; IDE_BSYTO: LD A,IDE_STBSYTO JR IDE_ERR ; IDE_NOTSUP: LD A,IDE_STNOTSUP JR IDE_ERR ; IDE_NOTRDY: LD A,IDE_STNOTRDY JR IDE_ERR ; IDE_ERR: LD (IY+IDE_STAT),A ; SAVE NEW STATUS ; IDE_ERR2: #IF (IDETRACE >= 2) CALL IDE_PRTSTAT CALL IDE_REGDUMP #ENDIF OR A ; SET FLAGS RET ; ; ; IDE_PRTERR: RET Z ; DONE IF NO ERRORS ; FALL THRU TO IDE_PRTSTAT ; ; PRINT FULL DEVICE STATUS LINE ; IDE_PRTSTAT: PUSH AF PUSH DE PUSH HL LD A,(IY+IDE_STAT) CP IDE_STINVUNIT JR Z,IDE_PRTSTAT2 ; INVALID UNIT IS SPECIAL CASE CALL IDE_PRTPREFIX ; PRINT UNIT PREFIX JR IDE_PRTSTAT3 IDE_PRTSTAT2: CALL NEWLINE PRTS("IDE:$") ; NO UNIT NUM IN PREFIX FOR INVALID UNIT IDE_PRTSTAT3: CALL PC_SPACE ; FORMATTING CALL IDE_PRTSTATSTR POP HL POP DE POP AF RET ; ; PRINT STATUS STRING ; IDE_PRTSTATSTR: PUSH AF PUSH DE LD A,(IY+IDE_STAT) OR A LD DE,IDE_STR_STOK JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STINVUNIT JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STNOMEDIA JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STCMDERR JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STIOERR JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STRDYTO JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STDRQTO JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STBSYTO JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STNOTSUP JR Z,IDE_PRTSTATSTR1 INC A LD DE,IDE_STR_STNOTRDY JR Z,IDE_PRTSTATSTR1 LD DE,IDE_STR_STUNK IDE_PRTSTATSTR1: CALL WRITESTR POP DE POP AF RET ; ; PRINT ALL REGISTERS DIRECTLY FROM DEVICE ; DEVICE MUST BE SELECTED PRIOR TO CALL ; IDE_REGDUMP: PUSH AF PUSH BC CALL PC_SPACE CALL PC_LBKT ;LD C,IDE_REG_CMD LD A,(IY+IDE_IOBASE) ADD A,IDE_REG_CMD LD C,A LD B,7 IDE_REGDUMP1: IN A,(C) CALL PRTHEXBYTE DEC C DEC B CALL NZ,PC_SPACE JR NZ,IDE_REGDUMP1 CALL PC_RBKT POP BC POP AF RET ; ; PRINT DIAGNONSTIC PREFIX ; IDE_PRTPREFIX: PUSH AF CALL NEWLINE PRTS("IDE$") LD A,(IY+IDE_DEV) ; GET CURRENT DEVICE NUM CP $FE ; NOT YET ASSIGNED? JR Z,IDE_PRTPREFIX1 ; SKIP DEV NUM IF SO CALL PRTDECB IDE_PRTPREFIX1: CALL PC_COLON POP AF RET ; ;============================================================================= ; STRING DATA ;============================================================================= ; IDE_STR_STOK .TEXT "OK$" IDE_STR_STINVUNIT .TEXT "INVALID UNIT$" IDE_STR_STNOMEDIA .TEXT "NO MEDIA$" IDE_STR_STCMDERR .TEXT "COMMAND ERROR$" IDE_STR_STIOERR .TEXT "IO ERROR$" IDE_STR_STRDYTO .TEXT "READY TIMEOUT$" IDE_STR_STDRQTO .TEXT "DRQ TIMEOUT$" IDE_STR_STBSYTO .TEXT "BUSY TIMEOUT$" IDE_STR_STNOTSUP .TEXT "NOT SUPPORTED$" IDE_STR_STNOTRDY .TEXT "NOT READY$" IDE_STR_STUNK .TEXT "UNKNOWN ERROR$" ; IDE_STR_NO .TEXT "NO$" IDE_STR_NOHW .TEXT "NOT PRESENT$" IDE_STR_8BIT .TEXT " 8-BIT$" ; IDE_STR_MODE_DIO .TEXT "DIO$" IDE_STR_MODE_DIDE .TEXT "DIDE$" IDE_STR_MODE_MK4 .TEXT "MK4$" IDE_STR_MODE_RC .TEXT "RC$" ; IDE_STR_TYPEATA .TEXT " ATA$" IDE_STR_TYPEATAPI .TEXT " ATAPI$" ; ;============================================================================= ; DATA STORAGE ;============================================================================= ; IDE_TIMEOUT .DB IDE_TONORM ; WAIT FUNCS TIMEOUT IN TENTHS OF SEC IDE_TOSCALER .DW CPUMHZ * 556 ; WAIT FUNCS SCALER FOR CPU SPEED ; IDE_CMD .DB 0 ; PENDING COMMAND TO PROCESS IDE_IOFNADR .DW 0 ; PENDING IO FUNCTION ADDRESS IDE_DRVHD .DB 0 ; CURRENT DRIVE/HEAD MASK ; IDE_DSKBUF .DW 0 ; ACTIVE DISK BUFFER IDE_XFRDIR .DB 0 ; 0=READ, NON-0=WRITE ; IDE_DEVNUM .DB 0 ; TEMP DEVICE NUM USED DURING INIT ; ; SCSI COMMAND TEMPLATES (ALWAYS 12 BYTES FOR ATAPI) ; IDE_PKTCMD_RW .DB $00, $00, $00, $00, $01, $00, $00, $00, $00, $00, $00, $00 ; READ/WRITE SECTOR IDE_PKTCMD_SENSE .DB $03, $00, $00, $00, $FF, $00, $00, $00, $00, $00, $00, $00 ; REQUEST SENSE DATA IDE_PKTCMD_RDCAP .DB $25, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00 ; READ CAPACITY IDE_PKTCMD_RW10 .DB $28, $00, $00, $00, $00, $00, $00, $00, $01, $00, $00, $00 ; READ/WRITE SECTOR IDE_PKTCMD_TSTRDY .DB $00, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00 ; TEST UNIT READY