title 'Boot loader module for CP/M 3.0' maclib options.lib public ?init,?ldccp,?rlccp,?time public @bootdu,@bootsl extrn ?pmsg,?conin extrn ?mvinit,?bnkxlt,?xmove,?move extrn @civec,@covec,@aivec,@aovec,@lovec extrn @cbnk,?bnksl,?bank extrn @sysdr,@ccpdr extrn dph0 extrn @dtbl,@ctbl extrn @date,@hour,@min,@sec extrn @srch1 extrn @hbbio extrn addhla, bcd2bin, bin2bcd extrn cout, phex8, phex16, crlf, crlf2 include c:ver.lib bdos equ 5 if banked tpa$bank equ 1 else tpa$bank equ 0 endif dseg ; init done from banked memory ?init: call ?mvinit ; Install RomWBW CBIOS stamp in page zero ld hl,stpimg ld de,stploc ld bc,stpsiz ldir if banked ; Clone page zero from bank 0 to additional banks ld b,4 ; last bank ld c,0 ; src bank init$2: push bc ; save bank id's call ?xmove ; set src/dest banks ld bc,0100h ; size is one page ld hl,0 ; dest adr is 0 ld de,0 ; src adr is 0 call ?move ; do it pop bc ; restore bank id's djnz init$2 ; loop till done endif call cinit ; char device init ld hl,signon$msg ; signon message call ?pmsg ; print it ; Get boot disk unit and save it ld bc,0F8E0h ; HBIOS func: get boot info rst 08 ; do it, D := boot unit, E: := boot slice ld a,d ; move boot unit to A ld (@bootdu),a ; save it ld a,e ; move boot slice to A ld (@bootsl),a ; save it call dinit call clrram ret cinit: ; Setup CON: I/O vector based on HBIOS console device ld b,0FAh ; HBIOS Peek Function ld a,(@hbbio) ; HBIOS bank id ld d,a ; ... goes in D ld hl,112h ; Offset 112h is current console device rst 08 ; Call HBIOS, value in E push de ; save console unit value ld b,e ; Use as loop counter inc b ; ... but loop 1 extra time ld hl,0 ; Clear vector bitmap scf ; Set carry cinit$1: rr h ; Rotate carry flag rr l ; ... into correct vector position djnz cinit$1 ; loop as needed ld (@civec),hl ; assign to console input ld (@covec),hl ; assign to console output ; Setup AUX: I/O vector if there are 2+ char devices in system ld bc,0F800h ; HBIOS GET Character Device Count rst 08 ; do it, count in E ld a,e ; device count to accum pop de ; recover console unit num to E push af ; save device count cp 2 ; check for 2+ char devices jr c,cinit$3 ; if not, skip aux assignment ld a,e ; console unit num to A or a ; check for zero ld hl,4000h ; assume aux on second char device jr z,cinit$2 ; if console on unit 0, assumption good ld hl,8000h ; otherwise, aux goes to first char device cinit$2: ld (@aivec),hl ; assign to aux input ld (@aovec),hl ; assign to aux output cinit$3: pop af ; recover device count ; Truncate char table based on actual num of char devices rlca ; A still has char device count rlca ; * 8 for ctbl entry size rlca ; " ld hl,@ctbl ; Start of char table call addhla ; Skip used entries xor a ; Zero to accum ld (hl),0 ; Set table terminator ret ; done dinit: ; loop through all disk devices to count hard disk units ld b,0F8h ; SYS GET ld c,010h ; Disk Drive Unit Count rst 08 ; e := disk unit count ld b,e ; count to b ld a,b ; count to a or a ; set flags ret z ; !!! handle zero devices (albeit poorly) !!! ; loop thru devices to count total hard disk volumes ld c,0 ; init c as device list index ld d,0 ; init d as total device count ld e,0 ; init e for hard disk device count ld hl,drvlst ; init hl ptr to drive list ; dinit2: call dinit3 ; check drive inc c ; next unit djnz dinit2 ; loop ld a,d ; total device count to d ld (drvlstc),a ; save the count jr dinit4 ; continue dinit3: push de ; save de (hard disk volume counter) push hl ; save drive list ptr push bc ; save loop control ld b,17h ; hbios func: report device info rst 08 ; call hbios, unit to c ld a,d ; device type to a pop bc ; restore loop control pop hl ; restore drive list ptr pop de ; restore de cp 30h ; hard disk device? jr nc,dinit3a ; if so, handle special ld (hl),c ; save unit num in list inc hl ; bump ptr inc d ; inc total device count ret ; dinit3a: ; check for active and return if not push de ; save de (hard disk volume counter) push hl ; save drive list ptr push bc ; save loop control ld b,18h ; hbios func: sense media ld e,1 ; perform media discovery rst 08 pop bc ; restore loop control pop hl ; restore drive list ptr pop de ; restore de ret nz ; if no media, just return ; if active... ld (hl),c ; save unit num in list inc hl ; bump ptr inc d ; inc total device count inc e ; increment hard disk count ret ; and return dinit4: ; set slices per volume (hdspv) based on hard disk volume count ld a,e ; hard disk volume count to a ld e,8 ; assume 8 slices per volume dec a ; dec accum to check for count = 1 jr z,dinit5 ; yes, skip ahead to implement 8 hdspv ld e,4 ; now assume 4 slices per volume dec a ; dec accum to check for count = 2 jr z,dinit5 ; yes, skip ahead to implement 4 hdspv ld e,2 ; in all other cases, we use 2 hdspv dinit5: ld a,e ; slices per volume value to accum ld (hdspv),a ; save it ld hl,0 ; dph index ld a,(@bootdu) ; boot disk unit ld d,a ; ... to d ld a,(@bootsl) ; boot slice ld e,a ; ... to e ld b,1 ; one slice please call dinit8a ; make DPH for A: ld a,(drvlstc) ; active drive list count to accum ld b,a ; ... and move to b for loop counter ld de,drvlst ; de is ptr to active drive list dinit6: ; loop thru all units available push de ; preserve drive list ptr ex de,hl ; list ptr to hl ld c,(hl) ; get unit num from list ex de,hl ; list ptr back to de push bc ; preserve loop control push hl ; preserve dph pointer ld b,17h ; hbios func: report device info rst 08 ; call hbios, d := device type pop hl ; restore dph pointer pop bc ; get unit index back in c push bc ; resave loop control call dinit7 ; make drive map entry(s) pop bc ; restore loop control inc c ; increment list index pop de ; restore drive list ptr inc de ; increment active drive list ptr djnz dinit6 ; loop as needed ret ; ; zero out remaining dph table entries ; ld a,16 ; dph table entries ; sub l ; subtract entries used ; ret z ; return if all entries used ; ld b,a ; save as loop counter ; ld a,l ; current dph to accum ; rlca ; *2 for word entry ; ld hl,@dtbl ; start of dtbl ; call addhla ; hl now points to entry ; ;dinit6a: ; xor a ; zero accum ; ld (hl),a ; zero lsb ; inc hl ; next byte ; ld (hl),a ; zero msb ; inc hl ; next byte ; djnz dinit6a ; ret ; finished dinit7: ; process a unit (all slices) ld e,0 ; initialize slice index ld b,1 ; default loop counter ld a,d ; device type to accum ld d,c ; unit number to d cp 030h ; hard disk device? jr c,dinit8 ; nope, leave loop count at 1 ld a,(hdspv) ; get slices per volume to accum ld b,a ; move to b for loop counter dinit8: ; test to avoid reallocating boot disk unit/slice ld a,(@bootdu) ; boot disk unit to accum cp d ; compare to cur unit jr nz,dinit8a ; if ne, ok to continue ld a,(@bootsl) ; boot slice to accum cp e ; compare to cur slice jr nz,dinit8a ; if ne, ok to continue inc e ; is boot du/slice, skip it djnz dinit8 ; loop till done with unit ret dinit8a: ; d=unit, e=slice, l=dph#, b=slice cnt ld a,l ; dph # to accum cp 16 ; dph table size ret z ; bail out if overflow push hl ; save dph # rlca ; *2 for adr entry ld hl,@dtbl ; dph table start call addhla ; offset hl to desired entry ld a,(hl) ; dereference inc hl ld h,(hl) ld l,a dec hl ; backup to slice field ld (hl),e ; update slice number dec hl ; backup to unit number ld (hl),d ; update unit number pop hl ; restore dph # inc hl ; next dph # inc e ; next slice djnz dinit8 ; loop till done with unit ret ; RomWBW CBIOS page zero stamp starts at $40 ; $40-$41: Marker ('W', ~'W') ; $42-$43: Version bytes: major/minor, update/patch ; $44-$45: CBIOS Extension Info address stploc equ 40h stpimg db 'W',~'W' ; marker db rmj << 4 | rmn ; first byte of version info db rup << 4 | rtp ; second byte of version info dw cbx ; address of cbios ext data stpsiz equ $ - stpimg cseg ; ram disk init must be done from resident memory ; ; Initialize ram disk by filling directory with 'e5' bytes ; Fill first 8k of ram disk track 1 with 'e5' ; clrram: di ; no interrupts ld a,(0FFE0h) ; get current bank push af ; save it ;ld a,(bnkramd) ; first bank of ram disk ld a,080h ; first bank of ram disk ;call hb_bnksel ; select bank call 0FFF3h ; select bank ; Check first 32 directory entries. If any start with an invalid ; value, init the ram disk. Valid entries are e5 (empty entry) or ; 0-15 (user number). ld hl,0 ld de,32 ld b,32 clrram0: ld a,(hl) cp 0E5h jr z,clrram1 ; e5 is valid cp 16 jr c,clrram1 ; 0-15 is also valid jr clrram2 ; invalid entry! jump to init clrram1: add hl,de ; loop for 32 entries djnz clrram0 ; jr clrram2 ; *debug* jr clrram3 ; all entries valid, bypass init clrram2: ld hl,0 ; source adr for fill ld bc,2000h ; length of fill is 8k ld a,0E5h ; fill value call fill ; do it or 0ffh ; flag value for cleared ld (clrflg),a ; save it clrram3: ;ld a,(bnkuser) ; usr bank (tpa) pop af ; recover original bank ;call hb_bnksel ; select bank call 0FFF3h ; select bank ei ; resume interrupts ld a,(clrflg) ; get cleared flag or a ; set flags ld hl,clr$msg ; clear ram disk message call nz,?pmsg ; print msg if true ret ; ; Fill memory at hl with value a, length in bc. All regs used. ; Length *must* be greater than 1 for proper operation!!! ; fill: ld d,h ; set de to hl ld e,l ; so destination equals source ld (hl),a ; fill the first byte with desired value inc de ; increment destination dec bc ; decrement the count ldir ; do the rest ret ; return cseg ; boot loading most be done from resident memory ; This version of the boot loader loads the CCP from a file ; called CCP.COM on the system drive. ?ldccp: ; Force CCP to use system boot drive as initial default ld a,(@sysdr) ; get system boot drive ld (@ccpdr),a ; set CCP current drive ; First time, load the CCP.COM file into TPA ld a,(@sysdr) ; get system boot drive ;ld (4),a ; save in page zero??? inc a ; drive + 1 for FCB ld (ccp$fcb),a ; stuff into FCB add 'A' - 1 ; drive letter ld (ccp$msg$drv),a ; save for load msg xor a ld (ccp$fcb+15),a ld hl,0 ld (fcb$nr),hl ld de,ccp$fcb call open inc a jr z,no$CCP ld de,0100H call setdma ld de,128 call setmulti ld de,ccp$fcb call read if banked ld hl,0100h ; clone 3K, just in case ld bc,0C80h ld a,(@cbnk) ; save current bank push af ld$1: ld a,tpa$bank ; select TPA call ?bnksl ld a,(hl) ; get a byte push af ld a,2 ; select extra bank call ?bnksl pop af ; save the byte ld (hl),a inc hl ; bump pointer, drop count dec bc ld a,b ; test for done or c jr nz,ld$1 pop af ; restore original bank call ?bnksl endif ret no$CCP: ; here if we couldn't find the file ld hl,ccp$msg call ?pmsg call ?conin jp ?ldccp ?rlccp: if banked ld hl,0100h ; clone 3K ld bc,0C80h rl$1: ld a,2 ; select extra bank call ?bnksl ld a,(hl) ; get a byte push af ld a,tpa$bank ; select TPA call ?bnksl pop af ; save the byte ld (hl),a inc hl ; bump pointer, drop count dec bc ld a,b ; test for done or c jr nz,rl$1 ret else jr ?ldccp endif ?time: ; per CP/M 3 docs, *must* preserve HL, DE push hl push de ; force return through time$ret ld hl,time$ret push hl ; branch to get or set routine ld a,c ; get switch value or a ; test for zero jr z,time$get ; 0 means get time jr time$set ; else set time time$ret: ; restore HL, DE pop de pop hl ret time$get: ; RTC -> cpm date/time in SCB ; read time from RTC ld b,020h ; HBIOS func: get time ld hl,tim$buf ; time buffer rst 08 ; do it ret nz ; bail out on error ld a,(datehack) or a jr nz,time$get1 ; convert yymmss in time buffer -> cpm3 epoch date offset call date2cpm ; time buf (yr, mon, day) -> SCB (@date) time$get1: ; set time fields in SCB ld a,(tim$hr) ; get hour from time buf ld (@hour),a ; ... and put in SCB ld a,(tim$min) ; get minute from time buf ld (@min),a ; ... and put in SCB ld a,(tim$sec) ; get second from time buf ld (@sec),a ; ... and put in SCB ret time$set: ; CPM date/time in SCB -> RTC ; convert CPM3 epoch date offset in SCB -> yymmss in time buffer ;call cpm2date ; SCB (@date) -> time buf (yr, mon, day) ; this is a temporary hack!!! ; since we cannot actually set the date on the RTC, we ; just read the current RTC date and use that so that we ; don't clobber a potentially good date. ; read time from RTC ld b,020h ; HBIOS func: get time ld hl,tim$buf ; time buffer rst 08 ; do it ret nz ; bail out on error ; ; now we set a hack active flag so that future time$get ; calls do not update the date field in the SCB ; ld a,0FFh ; true value ld (datehack),a ; save it ; copy CPM3 time values from SCB -> time buffer ld a,(@hour) ; get hour from SCB ld (tim$hr),a ; ... and put in tim$hr ld a,(@min) ; get minute from SCB ld (tim$min),a ; ... and put in tim$min ld a,(@sec) ; get second from SCB ld (tim$sec),a ; ... and put in tim$sec ; send time to RTC ld b,021h ; HBIOS func: set time ld hl,tim$buf ; ... from time buffer rst 08 ; do it ret date2cpm: ; Convert YYMMSS from time buffer at HL ; into offset from CPM epoch and store ; result in SCB. ld hl,0 ; initialize day counter ; Add in days for elapsed years ld a,(tim$yr) ; get current year call bcd2bin ; convert to binary sub 78 ; epoch year jr nc,d2c1 ; if not negative, good to go add a,100 ; else, adjust for Y2K wrap d2c1: ld b,a ; loop counter ld c,3 ; leap counter, 78->79->80, so 3 ld de,365 ; days in non-leap year or a ; check for zero jr z,d2c10 ; skip if zero d2c2: add hl,de ; add non-leap days dec c ; dec leap counter jr nz,d2c3 ; if not leap, bypss leap inc inc hl ; add leap day ld c,4 ; reset leap year counter d2c3: djnz d2c2 ; loop for all years d2c10: ; Add in days for elapsed months ex de,hl ; save HL in DE ld hl,daystbl ; point to table of cum days by month ld a,(tim$mon) ; get current month call bcd2bin ; convert to binary dec a ; index from zero rlca ; table entries are 2 bytes call addhla ; offset to desired month entry ld a,(hl) ; get the entry into HL inc hl ; ... ld h,(hl) ; ... ld l,a ; ... ex de,hl ; HL = day count, DE = months count add hl,de ; add months count into day count ; Add leap day for current year if appropriate dec c ; C still has leap counter jr nz,d2c20 ; skip if not leap year ld a,(tim$mon) ; get cur mon cp 3 ; March? jr c,d2c20 ; skip if mon less than March inc hl ; add leap day for cur year d2c20: ; Add in days elapsed within month ; Note that we don't adjust the date to be a zero ; offset which seems wrong. From what I can tell ; the CP/M epoch is really 1/0/1978 rather than the ; 1/1/1978 that the documentation claims. Below seems ; to work correctly. ld a,(tim$day) ; get day call bcd2bin ; make binary call addhla ; add in days ld (@date),hl ; store in SCB ret cpm2date: ; Convert CPM epoch date offset in SCB ; into YYMMSS values and store result in ; time buffer at HL. ld a,019h ld (tim$yr),a ld a,001h ld (tim$mon),a ld a,001h ld (tim$day),a ret daystbl: ; cumulative days elapsed by month (non-leap year) dw 0 ; January dw 31 ; February (non-leap) dw 59 ; March dw 90 ; April dw 120 ; May dw 151 ; June dw 181 ; July dw 212 ; August dw 243 ; September dw 273 ; October dw 304 ; November dw 334 ; December ; RTC time buffer (all values packed bcd) tim$buf: tim$yr db 80h tim$mon db 05h tim$day db 10h tim$hr db 01h tim$min db 02h tim$sec db 03h datehack db 00h open: ld c,15 jp bdos setdma: ld c,26 jp bdos setmulti: ld c,44 jp bdos read: ld c,20 jp bdos clrflg db 0 ; RAM disk cleared flag clr$msg db 'RAM Disk Initialized',13,10,13,10,0 if zpm signon$msg db 13,10,'ZPM3' if banked db ' [BANKED]' endif db ' for HBIOS v' biosver db 13,10,13,10,0 ccp$msg db 13,10,'BIOS Err on ' ccp$msg$drv db '?' db ': No ZCCP.COM file',0 ccp$fcb db 0,'ZCCP ','COM',0,0,0,0 ds 16 fcb$nr db 0,0,0 else signon$msg db 13,10,'CP/M v3.0' if banked db ' [BANKED]' endif db ' for HBIOS v' biosver db 13,10,13,10,0 ccp$msg db 13,10,'BIOS Err on ' ccp$msg$drv db '?' db ': No CCP.COM file',0 ccp$fcb db 0,'CCP ','COM',0,0,0,0 ds 16 fcb$nr db 0,0,0 endif @bootdu db 0 ; boot disk unit @bootsl db 0 ; boot slice hdspv db 2 ; slices per volume for hard disks (must be >= 1) drvlst ds 32 ; active drive list used durint drv_init drvlstc db 0 ; entry count for active drive list ; The following section contains key information and addresses for the ; RomWBW CBIOS. A pointer to the start of this section is stored with ; with the CBX data in page zero at $44 (see above). cbx: devmapadr dw 0 ; device map address drvtbladr dw @dtbl ; drive map address (filled in later) dphtbladr dw dph0 ; dpb map address cbxsiz equ $ - cbx end