
RomWBW ROM Applications

Phillip Summers

Monday 20 September 2021

Contents
Summary 2

ROMWBW Monitor 3

FORTH 9

BASIC 11

TastyBASIC 12

Play a Game 13

Network Boot 15

Xmodem Flash Updater 15

1

Summary

RomWBW includes a small selection of built in utilities and programming
languages.

2

ROMWBW Monitor

The Monitor program is a low level utility that can be used for testing and
programming. It allows programs to be entered, memory to be examined,
and input/output devices to be read or written to.

It’s key advantage is that is available at boot up.

Its key disadvantages are that code cannot be entered in assembly language
and there is no ability to save to memory devices.

The available memory area for programming is 0200-EDFFh. The following
areas are reserved:

Memory Area Function

0000-00FFh Jump and restart (RST) vectors
0100-01FFh HBIOS configuration block
EE00-FDFFh MONITOR
FE00-FFFFh HBIOS proxy

Commands can be entered at the command prompt > Automatic case con-
version takes place on command entry and all arguments are expected to be
in hex format.

The current memory bank in low memory is displayed before the prompt i.e.:

8E>

The Monitor allows access to all memory locations but ROM and Flash
memory cannot be written to. Memory outside the normal address range
can be accessed using the B command. The first 256 bytes 0000-01FF is
critical for the HBIOS operation. Changing banks may make this information
inaccessible.

Refer to the RomWBW Architecture manual for details memory banking.

3

A quick guide to using the Monitor program follows:

? - Displays a summary of available commands.

Monitor Commands (all values in hex):

B - Boot system

D xxxx [yyyy] - Dump memory from xxxx to yyyy

F xxxx yyyy zz - Fill memory from xxxx to yyyy with zz

H - Halt system

I xxxx - Input from port xxxx

K - Keyboard echo

L - Load Intel hex data

M xxxx yyyy zzzz - Move memory block xxxx-yyyy to zzzz

O xxxx yy - Output value yy to port xxxx

P xxxx - Program RAM at address xxxx

R xxxx [[yy] [zzzz]] - Run code at address xxxx

Pass yy and zzzz to register A and BC

T xxxx - X-modem transfer to memory location xxxx

S xx - Set bank to xx

X - Exit monitor

Cold Boot

B - Performs a cold boot of the ROMWBW system. A complete re-initialization
of the system is performed and the system returns to the Boot Loader prompt.

Dump Memory

D xxxx [yyyy] - Dump memory from hex location xxxx to yyyy on the screen
as lines of 16 hexadecimal bytes with their ASCII equivalents (if within a set
range, else a ‘.’ is printed). If the end address is omitted then 256 bytes is
displayed.

4

A good tool to see where code is located, check for version id, obtain details
for chip configurations and execution paths.

Examples: D 100 1FF

0100: 10 0B 01 5A 33 45 4E 56 01 00 00 2A 06 00 F9 11 ...Z3ENV...*..ù.

0110: DE 38 37 ED 52 4D 44 0B 6B 62 13 36 00 ED B0 21 Þ87íRMD.kb.6.í°!

0120: 7D 32 E5 21 80 00 4E 23 06 00 09 36 00 21 81 00 }2å!..N#...6.!..

0130: E5 CD 6C 1F C1 C1 E5 2A C9 8C E5 CD 45 05 E5 CD åÍl.ÁÁå*É.åÍE.åÍ

0140: 59 1F C3 00 00 C3 AE 01 C3 51 04 C3 4C 02 C3 57 Y.Ã..î.ÃQ.ÃL.ÃW

0150: 02 C3 64 02 C3 75 02 C3 88 02 C3 B2 03 C3 0D 04 .Ãd.Ãu.Ã..ò.Ã..

0160: C3 19 04 C3 22 04 C3 2A 04 C3 35 04 C3 40 04 C3 Ã..Ã".Ã*.Ã5.Ã@.Ã

0170: 48 04 C3 50 04 C3 50 04 C3 50 04 C3 8F 02 C3 93 H.ÃP.ÃP.ÃP.Ã..Ã.

0180: 02 C3 94 02 C3 95 02 C3 85 04 C3 C7 04 C3 D1 01 .Ã..Ã..Ã..ÃÇ.ÃÑ.

0190: C3 48 02 C3 E7 04 C3 56 03 C3 D0 01 C3 D0 01 C3 ÃH.Ãç.ÃV.ÃÐ.ÃÐ.Ã

01A0: D0 01 C3 D0 01 C3 D0 01 C3 D0 01 01 02 01 CD 6B Ð.ÃÐ.ÃÐ.ÃÐ....Ík

01B0: 04 54 68 69 73 20 66 75 6E 63 74 69 6F 6E 20 6E .This function n

01C0: 6F 74 20 73 75 70 70 6F 72 74 65 64 2E 0D 0A 00 ot supported....

01D0: C9 3E FF 32 3C 00 3A 5D 00 FE 20 28 14 D6 30 32 É>¸2<.:].þ (.Ö02

01E0: AB 01 32 AD 01 3A 5E 00 FE 20 28 05 D6 30 32 AC �.2-

.:^.þ (.Ö02¬

01F0: 01 C5 01 F0 F8 CF E5 26 00 0E 0A CD 39 02 7D 3C .Å.ðøÏå&...Í9.}<

Fill Memory

F xxxx yyyy zz - Fill memory from hex xxxx to yyyy with a single value of zz
over the full range. The Dump command can be used to confirm that the
fill completed as expected. A good way to zero out memory areas before
writing machine data for debug purposes.

5

Halt System

H - Halt system. A Z80 HALT instruction is executed. The system remains
in the halt state until the system is physically rebooted. Interrupts will not
restart the system. On systems that support a HALT status LED, the LED
will be illuminated.

Input from port

I xxxx - Input data from port xxxx and display to the screen. This command
is used to read values from hardware I/O ports and display the contents in
hexadecimal.

Keyboard Echo

K - Echo any key-presses from the terminal. Press ‘ESC’ key to quit. This
facility provides that any key stroke sent to the computer will be echoed back
to the terminal. File down loads will be echoed as well while this facility is
‘on’.

Load Hex format file into memory

L - Load a Intel Hex format file via the terminal program. The load address is
defined in the hex file of the assembled code.

The terminal emulator program should be configured to give a delay at the
end of each line to allow the monitor enough time to parse the line and move
the data to memory.

Keep in mind that this will be a transient unless the system support battery
backed memory. Saving to memory drive is not supported.

6

Move memory

M xxxx yyyy zzzz - Move hex memory block xxxx to yyyy to memory starting
at hex location zzzz. Care should be taken to insure that there is enough
memory at the destination so that code does not get over-written or memory
wrapped around.

Output to port

O xxxx yy - Output data byte xx to port xxxx. This command is used to send
hexadecimal values to hardware I/O ports to verify their operation and is
the companion to the I operation. Use clip leaded LEDs to confirm the data
written.

Program memory location

P xxxx - Program memory location xxxx. This routine will allow you to
program a hexadecimal value ‘into memory starting at location xxxx. Press
’Enter’ on a blank line to return to the Monitor prompt.

The limitation around programming memory is that it must be entered in
hexadecimal. An alternative is to use the L command to load a program that
has been assembled to a hex file on the remote computer.

An excellent online resource for looking up opcodes for entry can be found
here: https://clrhome.org/table

Run program

R xxxx [[yy] [zzzz]] - Run program at location xxxx. If optional arguments yy
and zzzz are entered they are loaded into the A and BC register respectively.
The return address of the Monitor is saved on the stack so the program can
return to the monitor. On return to the monitor, the contents of the A, HL, DE
and BC registers are displayed.

7

https://clrhome.org/table

Set bank

S xx - Change the bank in memory to xx. Memory addresses 0000-7FFF
(i.e. bottom 32k) are affected. Because the interrupt vectors are stored in the
bottom page of this range, this function is disable when interrupt mode 1 is
being used (IM1). Interrupt mode 2 is not affected as the associated jump
vectors are stored in high memory.

Changing the bank also impacts the restart vectors (RST), so executing code
that call the HBIOS using the RST 08 assembly code will not work.

The monitor stack resides in high memory and is not affected but any code
that changes the stack to low memory will be affected.

Bank codes and descriptions

TYPE DESCRIPTION BANK DETAILS

RAM COMMON BANK 9F 1024K RAM SYSTEM
RAM USER BANK 9E 1024K RAM SYSTEM
RAM BIOS BANK 9D 1024K RAM SYSTEM
RAM AUX BANK 9C 1024K RAM SYSTEM
RAM OS BUFFERS END 9B 1024K RAM SYSTEM
RAM OS BUFFERS START 98 1024K RAM SYSTEM
RAM RAM DRIVE END 97 1024K RAM SYSTEM
RAM COMMON BANK 8F 512K RAM SYSTEM
RAM USER BANK 8E 512K RAM SYSTEM
RAM BIOS BANK 8D 512K RAM SYSTEM
RAM AUX BANK 8C 512K RAM SYSTEM
RAM OS BUFFERS 8B 512K RAM SYSTEM
RAM OS BUFFERS 8A 512K RAM SYSTEM
RAM OS BUFFERS 89 512K RAM SYSTEM
RAM OS BUFFERS 88 512K RAM SYSTEM
RAM RAM DRIVE END 87 512K RAM SYSTEM

8

TYPE DESCRIPTION BANK DETAILS

RAM RAM DRIVE START 80
ROM BOOT BANK 00 COLD START & HBIOS
ROM LOADER & IMAGES 01 MONITOR, FORTH
ROM ROM IMAGES CONTD. 02 BASIC, ETC
ROM FAT FILESYSTEM 03 UNA ONLY, ELSE UNUSED
ROM ROM DRIVE START 04
ROM ROM DRIVE END 0F 512K ROM SYSTEM
ROM ROM DRIVE END 1F 1024K ROM SYSTEM

X-modem transfer

T xxxx - Receive an X-modem file transfer and load it into memory starting
at location xxxx.

128 byte blocks and checksum mode is the only supported protocol.

If the monitor is assembled with the DSKY functionality, this feature will be
exclude due to space limitions.

NOTES:

The RTC utility on the CP/M ROM disk provides facilities to manipulate the
Real Time Clock non-volatile Memory. Use the C or Z option from the Boot
Loader to load CP/M and then run RTC to see the options list.

FORTH

CamelForth is the version of Forth included as part of the boot ROM in
ROMWBW. It has been converted from the Z80 CP/M version published here
www.camelforth.com/page.php?5. The author is Brad Rodriguez who is a

9

www.camelforth.com/page.php?5

prolific Forth enthusiast, whose work can be found here: www.bradrodrigue
z/papers/index.html

For those are who are not familiar with Forth, I recommend the wikipedia
article en.wikipedia.org/wiki/Forth_(programming_language and the Forth
Interest Group website www.forth.org

Important things to know

Forth is case sensitive.

To exit back to the boot loader type bye

To get a list of available words type WORDS

To reset Forth to its initial state type COLD

Most of the code you find on the internet will not run unless modified or
additional Forth words are added to the dictionary.

This implementation does not support loading or saving of programs. All
programs need to be typed in. Additionally, screen editing and code blocks
are not supported.

Structure of Forth source files

File Description

camel80.azm Code Primitives
camel80d.azm CPU Dependencies
camel80h.azm High Level words
camel80r.azm ROMWBW additions
glosshi.txt Glossary of high level words
glosslo.txt Glossary of low level words

10

www.bradrodriguez/papers/index.html
www.bradrodriguez/papers/index.html
www.forth.org

ROMWBW Additions

Extensions and changes to this implementation compared to the original
distribution are:

The source code has been converted from Z80mr assembler to Hector
Peraza’s zsm.

An additional file camel80r.azm has been added for including additional
words to the dictionary at build time. However, as currently configured there
is very little space allocated for addition words. Exceeding the allocated
ROM space will generate an error message when building.

James Bowman’s double precision words have been added from his RC2014
version: https://github.com/jamesbowman/camelforth-z80

Word Syntax Description

D+ d1 d2 – d1+d2 Add double numbers
2>R d – 2 to R
2R> d – fetch 2 from R
M*/ d1 n2 u3 – d=(d1*n2)/u3 double precision mult. div

BASIC

For those who are not familiar with BASIC, it stands for Beginners All purpose
Symbolic Instruction Code.

ROMWBW contains two versions of ROM BASIC, a full implementation and
a “tiny” BASIC.

The full implementation is a version of Microsoft BASIC from the NASCOM
Computer.

A comprehensive instruction manual is available in the Doc\Contrib directory.

11

https://github.com/jamesbowman/camelforth-z80

ROMWBW specific features

• Sound
• Graphics
• Terminal Support

ROMWBW unsupported features

• Cassette loading
• Cassette saving

TastyBASIC

TastyBASIC offers a minimal implementation of BASIC that is only 2304
bytes in size. It originates from Li-Chen Wangs Palo Alto Tiny BASIC from
around 1976. It’s small size suited the tiny memory capacities of the time.
This impementation is by Dimitri Theulings and his original souce can be
found here https://github.com/dimitrit/tastybasic

Features / Limitations

Integer arithmetic, numbers -32787 to 32767 Singles letter variables A-Z
1-dimensional array support Strings are not supported

Direct Commands

• LIST,RUN, NEW, CLEAR, BYE

Statements

• LET, IF, GOTO, GOSUB RETURN, REM, FOR TO NEXT STEP, INPUT, PRINT,
POKE, END

12

https://github.com/dimitrit/tastybasic

Functions

• PEEK, RND, ABS, USR, SIZE

Operators

• >=, #, >, =, <=, <

• Operator precedence is supported.

Play a Game

2048

2048 is a puzzle game that can be both mindless and challenging. It appears
deceptively simple but failure can creep up on you suddenly.

It requires an ANSI/VT-100 compatible colour terminal to play.

2048 is like a sliding puzzle game except the puzzle tiles are numbers instead
of pictures. Instead of moving a single tile all tiles are moved simultaneously
in the same direction. Where two tiles of the same number collide, they are
reduced to one tile with the combined value. After every move a new tile is
added with a starting value of 2.

The goal is to create a tile of 2048 before all tile locations are occupied.
Reaching the highest points score, which is the sum of all the tiles is a
secondary goal. The game will automatically end when there are no more
possible moves.

Play consists of entering a direction to move. Directions can be entered
using any of three different keyboard direction sets.

Direction | Keys

----------|----------

Up | w ^E 8

13

Down | s ^X 2

Left | a ^S 4

Right | d ^D 6

The puzzle board is a 4x4 grid. At start, the grid will be populated with two 2
tiles. An example game sequence is shown below with new tiles to the game
shown in brackets.

Start Move 1 - Up Move 2 - Left Move 3 - Left

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| | | |(2)| | | | | 4 | | 4 | | | | | 4 | | | |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| | | | | | | | | | | | | |(4)| | 4 | | | |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| | | |(2)| | | | | | | | | | | | | | | |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| | | | | | | |(2)| | | 2 | | | | | 2 | |(2)| |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

Move 4 - Left Move 5 - Up Move 6 - Right Move 7 - Up

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| 4 | | | | | 8 | | | 4 | | | | 8 | 4 | | | | 8 | 8 |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| 4 | | |(4)| | 4 | | | | | | | | 4 | | | | | 2 |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| | | | | | | | | | | | | | | | | | | |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

| 4 | | | | |(2)| | | | |(2)| | | 2 | |(2)| | | |

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ +---+---+---+---+

This is how I lost this game:

+---+---+---+---+

| 4 | 2 | 16| 4 |

14

+---+---+---+---+

| 32| 64| 8 | 2 |

+---+---+---+---+

| 4 | 8 |128| 32|

+---+---+---+---+

|(2)| 16| 8 | 4 |

+---+---+---+---+

Press Q at any time to bring up the option to Quit or Restart the game.

Network Boot

Xmodem Flash Updater

The ROMWBW Xmodem flash updater provides the capability to update
ROMWBW from the boot loader using an x-modem file transfer. It offers
similar capabilities to Will Sowerbutts FLASH4 utility except that the flashing
process occurs during the file transfer.

These are the key differences between the two methods are:

Xmodem Flash Updater FLASH4

Available from the boot loader Well proven and tested
Xmodem transfer is integrated Wider range of supported chips and hardware
Integrated checksum utilities Wider range of supported platforms
Capability to copy a ROM image Only reprograms sectors that have changed
More convenient one step process Ability save and verify ROM images
No intermediate storage required Progress display while flashing
. Displays chip identification information
. Faster file transfer

The major disadvantages of the Updater is that it is new and relatively

15

untested. There is the risk that a failed transfer will result in a partially
flashed and unbootable ROM. There are some limitations on serial transfer
speeds.

The updater utility was initially intended to support the Retrobrew SBC-V2-
005 platform using Atmel 39SF040 flash chips but has now been extended
to be more generic in operation.

Supported flash chips are 39SF040, 29F040, AT49F040, AT29C040,
M29F040 , MX29F040, A29010B, A29040B

The Atmel 39SF040 chip is recommended as it can erase and write 4Kb
sectors. Other chips require the whole chip to be erased.

Usage

In most cases, completing a ROM update is a simple as:

1. Booting to the boot loader prompt
2. Selecting option X - Xmodem Flash Updater
3. Selecting option U - Update
4. Initiating an X-modem transfer of your ROM image on your console

device
5. Selecting option R - Reboot

If your console device is not able to transfer a ROM image i.e. your console
is a VDU then you will have to use the console options to identify which
character-input/output device is to be used as the serial device for transfer.

When your console is the serial device used for the transfer, no progress
information is displayed as this would disrupt the x-modem file transfer. If you
use an alternate character-input/output devices as the serial device for the
transfer then progress information will be displayed on the console device.

Due to different platform processor speeds, serials speeds and flow con-
trol capabilities the default console or serial device speed may need to be

16

reduced for a successful transfer and flash to occur. The Set Console In-
terface/Baud code option at the Boot Loader can be used to change the
speed if required. Additionally, the Updater has options to set to and revert
from a recommended speed.

Console Options Option (C) - Set Console Device

Option (S) - Set Serial Device

By default the updater assumes that the current console is a serial device
and that the ROM file to be flashed will also be transferred across this device,
so the Console and Serial device are both the same.

Either device can be can be change to another character-input/output device
but the updater will always expect to receive the x-modem transfer on the
Serial Device

The advantage of transferring on a different device to the console is that
progress information can be displayed during the transfer.

Option (>) - Set Recommended Baud Rate

Option (<) - Revert to Original Baud Rate

Programming options

Option (U) - Begin Update

The will begin the update process. The updater will expect to start receiving
an x-modem file on the serial device unit.

X-modem sends the file in packets of 128 bytes. The updater will cache 32
packets which is 1 flash sector and then write that sector to the flash device.

If using separate console, bank and sector progress information will shown

BANK 00 s00 s01 s02 s03 s04 s05 s06 s06 s07

BANK 01 s00 s01 s02 s03 s04 s05 s06 s06 s07

BANK 02 s00 s01 s02 s03 s04 s05 s06 s06 s07 etc

17

The x-modem file transfer protocol does not provide any filename or size
information for the transfer so the updater does not perform any checks on
the file suitability.

The updater expects the file size to be a multiple of 4 kilobytes and will write
all data received to the flash device. A system update file (128kb .img) or
complete ROM can be received and written (512kb or 1024kb .rom)

If the update fails it is recommended that you retry before rebooting or exiting
to the Boot loader as your machine may not be bootable.

Option (D) - Duplicate flash #1 to flash #2

This option will make a copy of flash #1 onto flash #2. The purpose of this is
to enable making a backup copy of the current flash. Intended for systems
using 2x512Kb Flash devices.

Option (V) - Toggle Write Verify

By default each flash sector will be verified after being written. Slight perfor-
mance improvements can be gained if turned off and could be used if you
are experiencing reliable transfers and flashing.

Exit options

Option (R) - Reboot

Execute a cold reboot. This should be done after a successful update. If you
perform a cold reboot after a failed update then it is likely that your system
will be unusable and removing and reprogramming the flash will be required.

Option (Q) - Quit to boot loader.

The SBC Boot Loader is reloaded from ROM and executed. After a success-
ful update a Reboot should be performed. However, in the case of a failed
update this option could be used to attempt to load CP/M and perform the
normal x-modem / flash process to recover.

18

CRC Utility options

Option (1) and (2) - Calculate and display CRC32 of 1st or 2nd 512k ROM.
Option (3) - Calculate and display CRC32 of a 1024k (2x512Kb) ROM.

Can be used to verify if a ROM image has been transferred and flashed
correctly. Refer to the Teraterm section below for details on configuring the
automatic display of a files CRC after it has been transferred.

In Windows, right clicking on a file should also give you a context menu
option CRC SHA which will allow you to select a CRC32 calculation to be
done on the selected file.

Teraterm macro configuration

Macros are a useful tool for automatic common tasks. There are a number
of instances where using macros to facilitate the update process could be
worthwhile if you are:

• Following the ROMWBW development builds.
• Doing lots of configuration changes.
• Doing development on ROMWBW drivers

Macros can be used to automate sending ROM updates or images and for
my own purposed I have set up a separate macro for transferring each of the
standard build ROM, my own custom configuration ROM and update ROM.

An example macro file to send an *.upd file, using checksum mode and
display the crc32 value of the transmitted file:

Xmodem send, checksum, display crc32

xmodemsend '\\desktop\users\phillip\documents\github\romwbw\binary\sbc_std_cust.upd' 1

crc32file crc '\\desktop\users\phillip\documents\github\romwbw\binary\sbc_std_cust.rom'

sprintf '0x%08x' crc

messagebox inputstr 'crc32'

19

Serial speed guidelines

As identified in the introduction, there are limitations on serial speed depend-
ing on processor speed and flow control settings. Listed below are some of
the results identified during testing.

Platform / Configuration Processor Speed Maximum Serial Speed

Sbc-v2 uart no flow control 2mhz 9600
sbc-v2 uart no flow control 4mhz 19200
sbc-v2 uart no flow control 5mhz 19200
sbc-v2 uart no flow control 8mhz 38400
sbc-v2 uart no flow control 10mhz 38400
sbc-v2 usb-fifo 2mhz+ n/a
sbc-mk4 asci no flow control 18.432mhz 9600
sbc-mk4 asci with flow control 18.432mhz 38400

The Set Recommend Baud Rate option in the Updater menu follows the
following guidelines.

Processor Speed Baud Rate

1Mhz 4800
2-3Mhz 9600
4-7Mhz 19200
8-20Mhz 38400

These can be customized in the updater.asm source code in the CLKTBL
table if desired. Feedback to the ROMWBW developers on these guidelines
would be appreciated.

20

Notes:

All testing was done with Teraterm x-modem, Forcing checksum mode using
macros was found to give the most reliable transfer. Partial writes can
be completed with 39SF040 chips. Other chips require entire flash to be
erased before before being written. An SBC V2-005 MegaFlash or Z80 MBC
required for 1mb flash support. The Updater assumes both chips are same
type Failure handling has not been tested. Timing broadly calibrated on a
Z80 SBC-v2 Unabios not supported

21

	Summary
	ROMWBW Monitor
	FORTH
	BASIC
	TastyBASIC
	Play a Game
	Network Boot
	Xmodem Flash Updater

