
ROMWBW
System Guide

Version 3.1 Pre-release
06 Feb 2023

RetroBrew Computers Group
www.retrobrewcomputers.org

Wayne Warthen
wwarthen@gmail.com

http://www.retrobrewcomputers.org
mailto:wwarthen@gmail.com

Contents

1 Overview 1

2 Background 3

3 General Design Strategy 4

4 Runtime Memory Layout 6

5 System Boot Process 8
5.1 ROM Boot . 9
5.2 Application Boot . 9
5.3 ROM-less Boot . 10
5.4 Notes . 10

6 Driver Model 11

7 Character / Emulation / Video Services 12

8 HBIOS Reference 15
8.1 Invocation . 15
8.2 Error Codes . 16
8.3 Character Input/Output (CIO) . 17

8.3.1 Function 0x00 – Character Input (CIOIN) 17
8.3.2 Function 0x01 – Character Output (CIOOUT) 18
8.3.3 Function 0x02 – Character Input Status (CIOIST) 18
8.3.4 Function 0x03 – Character Output Status (CIOOST) 18
8.3.5 Function 0x04 – Character IO Initialization (CIOINIT) 19
8.3.6 Function 0x05 – Character IO Query (CIOQUERY) 19
8.3.7 Function 0x06 – Character IO Device (CIODEVICE) 19

8.4 Disk Input/Output (DIO) . 21
8.4.1 Function 0x10 – Disk Status (DIOSTATUS) 21

RetroBrew Computing Group i

8.4.2 Function 0x11 – Disk Reset (DIORESET) 21
8.4.3 Function 0x12 – Disk Seek (DIOSEEK) 22
8.4.4 Function 0x13 – Disk Read (DIOREAD) 22
8.4.5 Function 0x14 – Disk Write (DIOWRITE) 23
8.4.6 Function 0x15 – Disk Verify (DIOVERIFY) 23
8.4.7 Function 0x16 – Disk Format (DIOFORMAT) 24
8.4.8 Function 0x17 – Disk DEVICE (DIODEVICE) 24
8.4.9 Function 0x18 – Disk Media (DIOMEDIA) 25
8.4.10 Function 0x19 – Disk Define Media (DIODEFMED) 26
8.4.11 Function 0x1A – Disk Capacity (DIOCAPACITY) 26
8.4.12 Function 0x1B – Disk Geometry (DIOGEOMETRY) 26

8.5 Real Time Clock (RTC) . 27
8.5.1 Function 0x20 – RTC Get Time (RTCGETTIM) 27
8.5.2 Function 0x21 – RTC Set Time (RTCSETTIM) 27
8.5.3 Function 0x22 – RTC Get NVRAM Byte (RTCGETBYT) 27
8.5.4 Function 0x23 – RTC Set NVRAM Byte (RTCSETBYT) 28
8.5.5 Function 0x24 – RTC Get NVRAM Block (RTCGETBLK) 28
8.5.6 Function 0x25 – RTC Set NVRAM Block (RTCSETBLK) 28
8.5.7 Function 0x26 – RTC Get Alarm (RTCGETALM) 29
8.5.8 Function 0x27 – RTC Set Alarm (RTCSETALM) 29
8.5.9 Function 0x28 – RTC DEVICE (RTCDEVICE) 29

8.6 Video Display Adapter (VDA) . 31
8.6.1 Function 0x40 – Video Initialize (VDAINI) 33
8.6.2 Function 0x41 – Video Query (VDAQRY) 33
8.6.3 Function 0x42 – Video Reset (VDARES) 34
8.6.4 Function 0x43 – Video Device (VDADEV) 34
8.6.5 Function 0x44 – Video Set Cursor Style (VDASCS) 35
8.6.6 Function 0x45 – Video Set Cursor Position (VDASCP) 35
8.6.7 Function 0x46 – Video Set Character Attribute (VDASAT) 36
8.6.8 Function 0x47 – Video Set Character Color (VDASCO) 36
8.6.9 Function 0x48 – Video Set Write Character (VDAWRC) 36
8.6.10 Function 0x49 – Video Fill (VDAFIL) 37
8.6.11 Function 0x4A – Video Copy (VDACPY) 37
8.6.12 Function 0x4B – Video Scroll (VDASCR) 37
8.6.13 Function 0x4C – Video Keyboard Status (VDAKST) 38
8.6.14 Function 0x4D – Video Keyboard Flush (VDAKFL) 38
8.6.15 Function 0x4E – Video Keyboard Read (VDAKRD) 38
8.6.16 Function 0x4F – Read a character at current video position (VDARDC) 40

8.7 Sound (SND) . 41
8.7.1 Function 0x50 – Sound Reset (SNDRESET) 41

RetroBrew Computing Group ii

8.7.2 Function 0x51 – Sound Volume (SNDVOL) 41
8.7.3 Function 0x52 – Sound Period (SNDPRD) 41
8.7.4 Function 0x53 – Sound Note (SNDNOTE) 42
8.7.5 Function 0x54 – Sound Play (SNDPLAY) 43
8.7.6 Function 0x55 – Sound Query (SNDQUERY) 43
8.7.7 Function 0x56 – Sound Duration (SNDDUR) 45
8.7.8 Function 0x57 – Sound Device (SNDDEVICE) 45

8.8 System (SYS) . 47
8.8.1 Function 0xF0 – System Reset (SYSRESET) 47
8.8.2 Function 0xF1 – System Version (SYSVER) 48
8.8.3 Function 0xF2 – System Set Bank (SYSSETBNK) 48
8.8.4 Function 0xF3 – System Get Bank (SYSGETBNK) 49
8.8.5 Function 0xF4 – System Set Copy (SYSSETCPY) 49
8.8.6 Function 0xF5 – System Bank Copy (SYSBNKCPY) 49
8.8.7 Function 0xF6 – System Alloc (SYSALLOC) 50
8.8.8 Function 0xF7 – System Free (SYSFREE) 50
8.8.9 Function 0xF8 – System Get (SYSGET) 50
8.8.10 Function 0xF9 – System Set (SYSSET) 56
8.8.11 Function 0xFA – System Peek (SYSPEEK) 57
8.8.12 Function 0xFB – System Poke (SYSPOKE) 58
8.8.13 Function 0xFC – System Interrupt Management (SYSINT) 58

9 Errors and diagnostics 61
9.1 Run time errors . 61

9.1.1 PANIC . 61
9.1.2 SYSCHK . 62
9.1.3 Error Level reporting . 63

9.2 Build time errors . 63
9.2.1 Build chain tool errors . 63
9.2.2 Assembly time check errors . 63

9.3 Diagnostics . 63
9.3.1 DIAG . 63
9.3.2 Appendix A Driver Instance Data fields 65

RetroBrew Computing Group iii

Chapter 1

Overview

RomWBW provides a complete firmware package for all of the Z80 and Z180 based systems
that are available in the RetroBrew Computers Community (see http://www.retrobrewcomput-
ers.org) as well as support for the RC2014 platform. Each of these systems provides for a
fairly large ROM memory (typically, 512KB or more). RomWBW allows you to configure and
build appropriate contents for such a ROM.

Typically, a computer will contain a small ROM that contains the BIOS (Basic Input/Output
System) functions as well as code to start the system by booting an operating system from a
disk. Since the RetroBrew Computers Projects provide a large ROM space, RomWBW provides
a much more comprehensive software package. In fact, it is entirely possible to run a fully
functioning RetroBrew Computers System with nothing but the ROM.

RomWBW firmware includes:

• System startup code (bootstrap)

• A basic system/debug monitor

• HBIOS (Hardware BIOS) providing support for the vastmajority of RetroBrew Computers
I/O components

• Diagnostics and customizable debugging information.

• A complete operating system (either CP/M 2.2 or ZSDOS 1.1)

• A built-in CP/M filesystem containing the basic applications and utilities for the operat-
ing system and hardware being used

It is appropriate to note that much of the code and components that make up a complete
RomWBW package are derived from pre-existing work. Most notably, the embedded operating

RetroBrew Computing Group 1

http://www.retrobrewcomputers.org/
http://www.retrobrewcomputers.org/

Chapter 1. Overview RomWBW System Guide

system is simply a ROM-based copy of generic CP/M or ZSDOS. Much of the hardware support
code was originally produced by other members of the RetroBrew Computers Community.

The remainder of this document will focus on the HBIOS portion of the ROM. HBIOS contains
the vast majority of the custom-developed code for the RetroBrew Computers hardware
platforms. It provides a formal, structured interface that allows the operating system to be
hosted with relative ease.

RetroBrew Computing Group 2

Chapter 2

Background

The Z80 CPU architecture has a limited, 64K address range. In general, this address space
must accommodate a running application, disk operating system, and hardware support code.

All RetroBrew Computers Z80 CPU platforms provide a physical address space that is much
larger than the CPU address space (typically 512K or 1MB physical RAM). This additional
memory can bemade available to the CPU using a technique called bank switching. To achieve
this, the physical memory is divided up into chunks (banks) of 32K each. A designated area of
the CPU’s 64K address space is then reserved to “map” any of the physical memory chunks.
You can think of this as a window that can be adjusted to view portions of the physical memory
in 32K blocks. In the case of RetroBrew Computers platforms, the lower 32K of the CPU
address space is used for this purpose (the window). The upper 32K of CPU address space
is assigned a fixed 32K area of physical memory that never changes. The lower 32K can be
“mapped” on the fly to any of the 32K banks of physical memory at a time. The only constraint
is that the CPU cannot be executing code in the lower 32K of CPU address space at the time
that a bank switch is performed.

By cleverly utilizing the pages of physical RAM for specific purposes and swapping in the
correct pagewhen needed, it is possible to utilize substantially more than 64K of RAM. Because
the RetroBrew Computers Project has now produced a very large variety of hardware, it has
become extremely important to implement a bank switched solution to accommodate the
maximum range of hardware devices and desired functionality.

RetroBrew Computing Group 3

Chapter 3

General Design Strategy

The design goal is to locate as much of the hardware dependent code as possible out of
normal 64KB CP/M address space and into a bank switched area of memory. A very small
code shim (proxy) is located in the top 512 bytes of CPU memory. This proxy is responsible
for redirecting all hardware BIOS (HBIOS) calls by swapping the “driver code” bank of physical
RAM into the lower 32K and completing the request. The operating system is unaware this
has occurred. As control is returned to the operating system, the lower 32KB of memory is
switched back to the original memory bank.

HBIOS is completely agnostic with respect to the operating system (it does not know or care
what operating system is using it). The operating system makes simple calls to HBIOS to
access any desired hardware functions. Since the HBIOS proxy occupies only 512 bytes at
the top of memory, the vast majority of the CPU memory is available to the operating system
and the running application. As far as the operating system is concerned, all of the hardware
driver code has been magically implemented inside of a small 512 byte area at the top of the
CPU address space.

Unlike some other Z80 bank switching schemes, there is no attempt to build bank switching
into the operating system itself. This is intentional so as to ensure that any operating system
can easily be adapted without requiring invasive modifications to the operating system itself.
This also keeps the complexity of memory management completely away from the operating
system and applications.

There are some operating systems that have built-in support for bank switching (e.g., CP/M
3). These operating systems are allowed to make use of the bank switched memory and are
compatible with HBIOS. However, it is necessary that the customization of these operating
systems take into account the banks of memory used by HBIOS and not attempt to use those
specific banks.

RetroBrew Computing Group 4

Chapter 3. General Design Strategy RomWBW System Guide

Note that all code and data are located in RAM memory during normal execution. While it
is possible to use ROM memory to run code, it would require that more upper memory be
reserved for data storage. It is simpler and more memory efficient to keep everything in RAM.
At startup (boot) all required code is copied to RAM for subsequent execution.

RetroBrew Computing Group 5

Chapter 4

Runtime Memory Layout

RetroBrew Computing Group 6

Chapter 4. Runtime Memory Layout RomWBW System Guide

$FE00

$D000

$8
0

00

HBIOS Proxy (RST 08)

Application Area (TPA)

Operating System

CP/M or ZSYS

CBIOS

BDOS

CCP

HBIOS
(Hardware Drivers)

Z8
0

C
PU

 A
dd

re
ss

 S
p

ac
e

B
an

ke
d

 L
o

w
er

 3
2

K
Fi

xe
d

 U
p

p
er

 3
2K

$10000

$0000

Bank 0 Bank N-3 Bank N-2 Bank N-1 Bank N• • •

Physical RAM (32K banks)

`

RAM Disk

HBIOS Function Call
w/ Bank Switch

RomWBW Bank Switched Memory Layout

Fi
xe

d
 M

ap
pi

ng
 o

f U
pp

er
 3

2K
 t

o
 L

as
t

B
an

k

Figure 4.1: Bank Switched Memory Layout

RetroBrew Computing Group 7

Chapter 5

System Boot Process

A multi-phase boot strategy is employed. This is necessary because at cold start, the CPU is
executing code from ROM in lower memory which is the same area that is bank switched.

Boot Phase 1 copies the phase 2 code to upper memory and jumps to it to continue the boot
process. This is required because the CPU starts at address $0000 in low memory. However,
low memory is used as the area for switching ROM/RAM banks in and out. Therefore, it is
necessary to relocate execution to high memory in order to initialize the RAM memory banks.

Boot Phase 2 manages the setup of the RAM page banks for HBIOS operation, performs
hardware initialization, and then executes the boot loader.

Boot Phase 3 is the loading of the selecting operating system (or debug monitor) by the Boot
Loader. The Boot Loader is responsible for prompting the user to select a target operating
system to load, loading it into RAM, then transferring control to it. The Boot Loader is capable
of loading a target operating system from a variety of locations including disk drives and ROM.

Note that the entire boot process is entirely operating system agnostic. It is unaware of the
operating system being loaded. The Boot Loader prompts the user for the location of the
binary image to load, but does not know anything about what is being loaded (the image is
usually an operating system, but could be any executable code image). Once the Boot Loader
has loaded the image at the selected location, it will transfer control to it. Assuming the typical
situation where the image was an operating system, the loaded operating system will then
perform it’s own initialization and begin normal operation.

There are actually two ways to perform a system boot. The first, and most commonly used,
method is a “ROM Boot”. This refers to booting the system directly from the startup code
contained on the physical ROM chip. A ROM Boot is always performed upon power up or when
a hardware reset is performed.

RetroBrew Computing Group 8

Chapter 5. System Boot Process RomWBW System Guide

Once the system is running (operating system loaded), it is possible to reboot the system
from a system image contained on the file system. This is referred to as an “Application Boot”.
This mechanism allows a temporary copy of the system to be uploaded and stored on the file
system of an already running system and then used to boot the system. This boot technique
is useful to: 1) test a new build of a system image before programming it to the ROM; or 2)
easily switch between system images on the fly.

A more detailed explanation of these two boot processes is presented below.

5.1 ROM Boot

At power on (or hardware reset), ROM page 0 is automatically mapped to lower memory by
hardware level system initialization. Page Zero (first 256 bytes of the CPU address space)
is reserved to contain dispatching instructions for interrupt instructions. Address $0000
performs a jump to the start of the phase 1 code so that this first page can be reserved.

The phase 1 code now copies the phase 2 code from lower memory to upper memory and
jumps to it. The phase 2 code now initializes the HBIOS by copying the ROM resident HBIOS
from ROM to RAM. It subsequently calls the HBIOS initialization routine. Finally, it starts the
Boot Loader which prompts the user for the location of the target system image to execute.

Once the boot loader transfers control to the target system image, all of the Phase 1, Phase 2,
and Boot Loader code is abandoned and the space it occupied is normally overwritten by the
operating system.

5.2 Application Boot

When a new system image is built, one of the output files produced is an actual CP/M appli-
cation (an executable .COM program file). Once you have a running CP/M (or compatible)
system, you can upload/copy this application file to the filesystem. By executing this file, you
will initiate an Application Boot using the system image contained in the application file itself.

Upon execution, the Application Boot program is loaded into memory by the previously running
operating system starting at $0100. Note that program image contains a copy of the HBIOS to
be installed and run. Once the Application Boot program is loaded by the previous operating
system, control is passed to it and it performs a system initialization similar to the ROM Boot,
but using the image loaded in RAM.

Specifically, the code at $0100 (in low memory) copies phase 2 boot code to upper memory
and transfers control to it. The phase 2 boot code copies the HBIOS image from application

RetroBrew Computing Group 9

Chapter 5. System Boot Process RomWBW System Guide

RAM to RAM, then calls the HBIOS initialization routine. At this point, the prior HBIOS code
has been discarded and overwritten. Finally, the Boot Loader is invoked just like a ROM Boot.

5.3 ROM-less Boot

Some hardware supported by RomWBW has a special mechanism for loading the initial code.
These systems have no ROM chips. However, they have a small hardware bootstrap that loads
a chunk of code from a disk device directlly into RAM at system startup.

The startup then proceeds very much like the Application Boot process described above.
HBIOS is installed in it’s operating bank and control is passed to the loader.

5.4 Notes

1. Size of ROM disk and RAM disk will be decreased as needed to accommodate RAM
and ROM memory bank usage for the banked BIOS.

2. There is no support for interrupt driven drivers at this time. Such support should be
possible in a variety of ways, but none are yet implemented.

RetroBrew Computing Group 10

Chapter 6

Driver Model

The framework code for bank switching also allows hardware drivers to be implemented
mostly without concern for memory management. Drivers are coded to simply implement the
HBIOS functions appropriate for the type of hardware being supported. When the driver code
gets control, it has already been mapped to the CPU address space and simply performs the
requested function based on parameters passed in registers. Upon return, the bank switching
framework takes care of restoring the original memory layout expected by the operating system
and application.

However, the one constraint of hardware drivers is that any data buffers that are to be returned
to the operating system or applications must be allocated in high memory. Buffers inside
of the driver’s memory bank will be swapped out of the CPU address space when control is
returned to the operating system.

If the driver code must make calls to other code, drivers, or utilities in the driver bank, it must
make those calls directly (it must not use RST 08). This is to avoid a nested bank switch which
is not supported at this time.

RetroBrew Computing Group 11

Chapter 7

Character / Emulation / Video Services

In addition to a generic set of routines to handle typical character input/output, HBIOS also
includes functionality for managing built-in video display adapters. To start with there is a
basic set of character input/output functions, the CIOXXX functions, which allow for simple
character data streams. These functions fully encompass routing byte stream data to/from
serial ports. Note that there is a special character pseudo-device called “CRT”.When characters
are read/written to/from the CRT character device, the data is actually passed to a built-in
terminal emulator which, in turn, utilizes a set of VDA (Video Display Adapter) functions (such
as cursor positioning, scrolling, etc.).

Figure 7.1 depicts the relationship between these components of HBIOS video processing:

Normally, the operating system will simply utilize the CIOXXX functions to send and receive
character data. The Character I/O Services will route I/O requests to the specified physical
device which is most frequently a serial port (such as UART or ASCI). As shown above, if the
CRT device is targeted by a CIOXXX function, it will actually be routed to the Emulation Services
which implement TTY, ANSI, etc. escape sequences. The Emulation Services subsequently rely
on the Video Display Adapter Services as an additional layer of abstraction. This allows the
emulation code to be completely unaware of the actual physical device (device independent).
Video Display Adapter (VDA) Services contains drivers as needed to handle the available
physical video adapters.

Note that the Emulation and VDA Services API functions are available to be called directly.
Doing so must be done carefully so as to not corrupt the “state” of the emulation logic.

Before invoking CIOXXX functions targeting the CRT device, it is necessary that the underlying
layers (Emulation and VDA) be properly initialized. The Emulation Services must be initialized
to specify the desired emulation and specific physical VDA device to target. Likewise, the VDA

RetroBrew Computing Group 12

Chapter 7. Character / Emulation / Video Services RomWBW System Guide

Character
I/O

Services

Emulation
Services

TTY

ANSI Video
Display
Adapter
Services

UART

ASCI

CVDU

UPD7220

N8

CIOXXX

VDAXXXO
p

e
ra

ti
n

g
Sy

st
e

m
 /

 U
ti

lit
ie

s

Others...

EMUXXX

RS-232

RS-232

VGA

VGA

NTSC

UART

ASCI

VDU

SY6545

MC8563

uPD7220

Character / Emulation / Video Services

HBIOS HARDWARE

TMS9918

VDU
NTSC

Figure 7.1: Character / Emulation / Video Services

RetroBrew Computing Group 13

Chapter 7. Character / Emulation / Video Services RomWBW System Guide

Services may need to be initialized to put the specific video hardware into the proper mode,
etc.

RetroBrew Computing Group 14

Chapter 8

HBIOS Reference

8.1 Invocation

HBIOS functions are invoked by placing the required parameters in CPU registers and executing
an RST 08 instruction. Note that HBIOS does not preserve register values that are unused.
However, it will not modify the Z80 alternate registers or IX/IY (these registers may be used
within HBIOS, but will be saved and restored internally).

Normally, applications will not call HBIOS functions directly. It is intended that the operating
system makes all HBIOS function calls. Applications that are considered system utilities may
use HBIOS, but must be careful not to modify the operating environment in any way that the
operating system does not expect.

In general, the desired function is placed in the B register. Register C is frequently used to
specify a subfunction or a target device unit number. Additional registers are used as defined
by the specific function. Register A should be used to return function result information. A=0
should indicate success, other values are function specific.

The character, disk, and video device functions all refer to target devices using a logical device
unit number that is passed in the C register. Keep in mind that these unit numbers are assigned
dynamically at HBIOS initialization during the device discovery process. The assigned unit
numbers are displayed on the consoled at the conclusion of device initialization. The unit
assignments will never change after HBIOS initialization. However, they can change at the
next boot if there have been hardware or BIOS customization changes. Code using HBIOS
functions should not assume fixed unit assignments.

Some functions utilize pointers to memory buffers. Unless otherwise stated, such buffers can
be located anywhere in the Z80 CPU 64K address space. However, performance sensitive

RetroBrew Computing Group 15

Chapter 8. HBIOS Reference RomWBW System Guide

buffers (primarily disk I/O buffers) will require double-buffering if the caller’s buffer is in the
lower 32K of CPU address space. For optimal performance, such buffers should be placed in
the upper 32K of CPU address space.

8.2 Error Codes

The following error codes are defined generically for all HBIOS functions. Most function calls
will return a result in register A.

Code Meaning

0 function succeeded
-1 undefined error
-2 function not implemented
-3 invalid function
-4 invalid unit numberr
-5 out of memory
-6 parameter out of range
-7 media not present
-8 hardware not present
-9 I/O error
-10 write request to read-only media
-11 device timeout
-12 invalid configuration

RetroBrew Computing Group 16

Chapter 8. HBIOS Reference RomWBW System Guide

8.3 Character Input/Output (CIO)

Character input/output functions require that a Character Unit be specified in the C register.
This is the logical device unit number assigned during the boot process that identifies all
character I/O devices uniquely. A special value of 0x80 can be used for Unit to refer to the
current console device.

Character devices can usually be configured with line characteristics such as speed, framing,
etc. A word value (16 bit) is used to describe the line characteristics as indicated below:

Bits Function

15-14 Reserved (set to 0)
13 RTS
12-8 Baud Rate (see below)
7 DTR
6 XON/XOFF Flow Control
5-3 Parity (???)
2 Stop Bits (???)
1-0 Data Bits (???)

The 5-bit baud rate value (V) is encoded as V = 75 * 2^X * 3^Y. The bits are defined as YXXXX.

8.3.1 Function 0x00 – Character Input (CIOIN)

Inputs Outputs

B: 0x00 A: Status (0-OK, else error)
C: Serial Device Unit Number E: Character Received
C: Serial Device Unit Number E: Character Received
C: Serial Device Unit Number E: Character Received

Entry Parameters
B: 0x00
C: Serial Device Unit Number

Exit Results
A: Status (0=OK, else error)
E: Character Received

RetroBrew Computing Group 17

Chapter 8. HBIOS Reference RomWBW System Guide

Read a character from the device unit specified in register C and return the character value in
E. If no character(s) are available, this function will wait indefinitely.

8.3.2 Function 0x01 – Character Output (CIOOUT)

Entry Parameters
B: 0x01
C: Serial Device Unit Number
E: Character to Send

Exit Results
A: Status (0=OK, else error)

Send character value in register E to device specified in register C. If device is not ready to
send, function will wait indefinitely.

8.3.3 Function 0x02 – Character Input Status (CIOIST)

Entry Parameters
B: 0x02
C: Serial Device Unit Number

Exit Results
A: Bytes Pending

Return the number of characters available to read in the input buffer of the unit specified. If
the device has no input buffer, it is acceptable to return simply 0 or 1 where 0 means there is
no character available to read and 1 means there is at least one character available to read.

8.3.4 Function 0x03 – Character Output Status (CIOOST)

Entry Parameters
B: 0x03
C: Serial Device Unit Number

Exit Results
A: Output Buffer Bytes Available

Return the space available in the output buffer expressed as a character count. If a 16 byte
output buffer contained 6 characters waiting to be sent, this function would return 10, the
number of positions available in the output buffer. If the port has no output buffer, it is
acceptable to return simply 0 or 1 where 0 means the port is busy and 1 means the port is
ready to output a character.

RetroBrew Computing Group 18

Chapter 8. HBIOS Reference RomWBW System Guide

8.3.5 Function 0x04 – Character IO Initialization (CIOINIT)

Entry Parameters
B: 0x04
C: Serial Device Unit Number
DE: Line Characteristics

Exit Results
A: Status (0=OK, else error)

Setup line characteristics (baudrate, framing, etc.) of the specified unit. Register pair DE
specifies line characteristics. If DE contains -1 (0xFFFF), then the device will be reinitialized
with the last line characteristics used. Result of function is returned in A with zero indicating
success.

8.3.6 Function 0x05 – Character IO Query (CIOQUERY)

Entry Parameters
B: 0x05
C: Serial Device Unit Number

Exit Results
A: Status (0=OK, else error)
DE: Line Characteristics

Reports the line characteristics (baudrate, framing, etc.) of the specified unit. Register pair DE
contains the line characteristics upon return.

8.3.7 Function 0x06 – Character IO Device (CIODEVICE)

Entry Parameters
B: 0x06
C: Serial Device Unit Number

Exit Results
A: Status (0=OK, else error)
C: Serial Device Attributes
D: Serial Device Type
E: Serial Device Number
H: Serial Device Unit Mode
L: Serial Device Unit I/O Base Address

Reports information about the character device unit specified. Register C indicates the device

RetroBrew Computing Group 19

Chapter 8. HBIOS Reference RomWBW System Guide

attributes: 0=RS-232 and 1=Terminal. Register D indicates the device type (driver) and register
E indicates the physical device number assigned by the driver.

Each character device is handled by an appropriate driver (UART, ASCI, etc.). The driver can be
identified by the Device Type. The assigned Device Types are listed below.

Id Device Type / Driver

0x00 UART
0x10 ASCI
0x20 Terminal
0x30 PropIO VGA
0x40 ParPortProp VGA
0x50 SIO
0x60 ACIA
0x70 PIO
0x80 UF

RetroBrew Computing Group 20

Chapter 8. HBIOS Reference RomWBW System Guide

8.4 Disk Input/Output (DIO)

Disk input/output functions require that a disk unit be specified in the C register. This is the
logical disk unit number assigned during the boot process that identifies all disk i/o devices
uniquely.

A fixed set of media types are defined. The currently defined media types are listed below.
Each driver will support a subset of the defined media types.

Media ID Value Format

MID_NONE 0 No media installed
MID_MDROM 1 ROM Drive
MID_MDRAM 2 RAM Drive
MID_RF 3 RAM Floppy (LBA)
MID_HD 4 Hard Disk (LBA)
MID_FD720 5 3.5” 720K Floppy
MID_FD144 6 3.5” 1.44M Floppy
MID_FD360 7 5.25” 360K Floppy
MID_FD120 8 5.25” 1.2M Floppy
MID_FD111 9 8” 1.11M Floppy
MID_HDNEW 10 Hard Disk with 1024 Directory entries

8.4.1 Function 0x10 – Disk Status (DIOSTATUS)

Entry Parameters
B: 0x10
C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)

8.4.2 Function 0x11 – Disk Reset (DIORESET)

Entry Parameters
B: 0x11
C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)

RetroBrew Computing Group 21

Chapter 8. HBIOS Reference RomWBW System Guide

Reset the physical interface associated with the specified unit. Flag all units associated with
the interface for unit initialization at next I/O call. Clear media identified unless locked. Reset
result code of all associated units of the physical interface.

8.4.3 Function 0x12 – Disk Seek (DIOSEEK)

Entry Parameters
B: 0x12
C: Disk Device Unit ID
D7: Address Type (0=CHS, 1=LBA)

if CHS:
D6-0: Head
E: Sector
HL: Track

if LBA:
DE:HL: Block Address

Exit Results
A: Status (0=OK, else error)

Update target CHS or LBA for next I/O request on designated unit. Physical seek is typically
deferred until subsequent I/O operation.

Bit 7 of D indicates whether the disk seek address is specified as cylinder/head/sector (CHS)
or Logical Block Address (LBA). If D:7=1, then the remaining bits of of the 32 bit register set
DE:HL specify a linear, zero offset, block number. If D:7=0, then the remaining bits of D specify
the head, E specifies sector, and HL specifies track.

Note that not all devices will accept both types of addresses. Specifically, floppy disk devices
must have CHS addresses. All other devices will accept either CHS or LBA. The DIOGEOM
function can be used to determine if the device supports LBA addressing.

8.4.4 Function 0x13 – Disk Read (DIOREAD)

Entry Parameters
B: 0x13
C: Disk Device Unit ID

D: Bank ID
E: Block Count
HL: Buffer Address

RetroBrew Computing Group 22

Chapter 8. HBIOS Reference RomWBW System Guide

Exit Results
A: Status (0=OK, else error)
E: Blocks Read

Read Block Count sectors to buffer address starting at current target sector. Current sector
must be established by prior seek function; however, multiple read/write/verify function calls
can bemade after a seek function. Current sector is incremented after each sector successfully
read. On error, current sector is sector where error occurred. Blocks read indicates number of
sectors successfully read.

Caller must ensure: 1) buffer address is large enough to contain data for all sectors requested,
and 2) does not cross a 32k memory bank boundary.

8.4.5 Function 0x14 – Disk Write (DIOWRITE)

Entry Parameters
B: 0x14
C: Disk Device Unit ID

D: Bank ID
E: Block Count
HL: Buffer Address

Exit Results
A: Status (0=OK, else error)
E: Blocks Written

Write Block Count sectors to buffer address starting at current target sector. Current sector
must be established by prior seek function; however, multiple read/write/verify function calls
can bemade after a seek function. Current sector is incremented after each sector successfully
written. On error, current sector is sector where error occurred. Blocks written indicates number
of sectors successfully written.

Caller must ensure the source buffer does not cross a 32k memory bank boundary.

8.4.6 Function 0x15 – Disk Verify (DIOVERIFY)

Entry Parameters
B: 0x15
C: Disk Device Unit ID
HL: Buffer Address
E: Block Count

RetroBrew Computing Group 23

Chapter 8. HBIOS Reference RomWBW System Guide

Exit Results
A: Status (0=OK, else error)
E: Blocks Verified

Not Implemented

8.4.7 Function 0x16 – Disk Format (DIOFORMAT)

Entry Parameters
B: 0x16
C: Disk Device Unit ID
D: Head
E: Fill Byte
HL: Cylinder

Exit Results
A: Status (0=OK, else error)

Not Implemented

8.4.8 Function 0x17 – Disk DEVICE (DIODEVICE)

Entry Parameters
B: 0x17
C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)
C: Attributes
D: Device Type
E: Device Number
H: Disk Device Unit Mode
L: Disk Device Unit I/O Base Address

Reports information about the character device unit specified. Register D indicates the device
type (driver) and register E indicates the physical device number assigned by the driver.

Register C reports the following device attributes:

Bit 7: 1=Floppy, 0=Hard Disk (or similar, e.g. CF, SD, RAM)

If Floppy:
Bits 6-5: Form Factor (0=8”, 1=5.25”, 2=3.5”, 3=Other)
Bit 4: Sides (0=SS, 1=DS)

RetroBrew Computing Group 24

Chapter 8. HBIOS Reference RomWBW System Guide

Bits 3-2: Density (0=SD, 1=DD, 2=HD, 3=ED)
Bits 1-0: Reserved

If Hard Disk:
Bit 6: Removable
Bits: 5-3: Type (0=Hard, 1=CF, 2=SD, 3=USB,

4=ROM, 5=RAM, 6=RAMF, 7=FLASH)
Bits 2-0: Reserved

Each disk device is handled by an appropriate driver (IDE, SD, etc.) which is identified by a
device type id from the table below.

Type ID Disk Device Type

0x00 Memory Disk
0x10 Floppy Disk
0x20 RAM Floppy
0x30 IDE Disk
0x40 ATAPI Disk (not implemented)
0x50 PPIDE Disk
0x60 SD Card
0x70 PropIO SD Card
0x80 ParPortProp SD Card
0x90 SIMH HDSK Disk

8.4.9 Function 0x18 – Disk Media (DIOMEDIA)

Entry Parameters
B: 0x18
C: Disk Device Unit ID
E0: Enable Media Discovery

Exit Results
A: Status (0=OK, else error)
E: Media ID

Report the media definition for media in specified unit. If bit 0 of E is set, then perform media
discovery or verification. If no media in device, function will return an error status.

RetroBrew Computing Group 25

Chapter 8. HBIOS Reference RomWBW System Guide

8.4.10 Function 0x19 – Disk Define Media (DIODEFMED)

Entry Parameters
B: 0x19
C: Disk Device Unit ID
E: Media ID

Exit Results
A: Status (0=OK, else error)

*** Not implemented ***

8.4.11 Function 0x1A – Disk Capacity (DIOCAPACITY)

Entry Parameters
B: 0x1A
C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)
DE:HL: Blocks on Device
BC: Block Size

Report current media capacity information. DE:HL is a 32 bit number representing the total
number of blocks on the device. BC contains the block size. If media is unknown, an error will
be returned.

8.4.12 Function 0x1B – Disk Geometry (DIOGEOMETRY)

Entry Parameters
B: 0x1B
C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)
HL: Cylinders
D7: LBA Capability
BC: Block Size

Report current media geometry information. If media is unknown, return error (no media).

RetroBrew Computing Group 26

Chapter 8. HBIOS Reference RomWBW System Guide

8.5 Real Time Clock (RTC)

The Real Time Clock functions provide read/write access to the clock and related Non-Volatile
RAM.

The time functions (RTCGTM and RTCSTM) require a 6 byte date/time buffer of the following
format. Each byte is BCD encoded.

Offset Contents

0 Year (00-99)
1 Month (01-12)
2 Date (01-31)
3 Hours (00-24)
4 Minutes (00-59)
5 Seconds (00-59)

8.5.1 Function 0x20 – RTC Get Time (RTCGETTIM)

Entry Parameters
B: 0x20
HL: Time Buffer Address

Exit Results
A: Status (0=OK, else error)

Read the current value of the clock and store the date/time in the buffer pointed to by HL.

8.5.2 Function 0x21 – RTC Set Time (RTCSETTIM)

Entry Parameters
B: 0x21
HL: Time Buffer Address

Exit Results
A: Status (0=OK, else error)

Set the current value of the clock based on the date/time in the buffer pointed to by HL.

8.5.3 Function 0x22 – RTC Get NVRAM Byte (RTCGETBYT)

Entry Parameters
B: 0x22

RetroBrew Computing Group 27

Chapter 8. HBIOS Reference RomWBW System Guide

C: Index

Exit Results
A: Status (0=OK, else error)
E: Value

Read a single byte value from the Non-Volatile RAM at the index specified by C. The value is
returned in register E.

8.5.4 Function 0x23 – RTC Set NVRAM Byte (RTCSETBYT)

Entry Parameters
B: 0x23
C: Index

Exit Results
A: Status (0=OK, else error)
E: Value

Write a single byte value into the Non-Volatile RAM at the index specified by C. The value to be
written is specified in E.

8.5.5 Function 0x24 – RTC Get NVRAM Block (RTCGETBLK)

Entry Parameters
B: 0x24
HL: Buffer

Exit Results
A: Status (0=OK, else error)

Read the entire contents of the Non-Volatile RAM into the buffer pointed to by HL. HL must
point to a location in the top 32K of CPU address space.

8.5.6 Function 0x25 – RTC Set NVRAM Block (RTCSETBLK)

Entry Parameters
B: 0x25
HL: Buffer

Exit Results
A: Status (0=OK, else error)

RetroBrew Computing Group 28

Chapter 8. HBIOS Reference RomWBW System Guide

Write the entire contents of the Non-Volatile RAM from the buffer pointed to by HL. HL must
point to a location in the top 32K of CPU address space.

8.5.7 Function 0x26 – RTC Get Alarm (RTCGETALM)

Entry Parameters
B: 0x26

Exit Results
A: Status (0=OK, else error)

Documentation required…

8.5.8 Function 0x27 – RTC Set Alarm (RTCSETALM)

Entry Parameters
B: 0x27

Exit Results
A: Status (0=OK, else error)

Documentation required…

8.5.9 Function 0x28 – RTC DEVICE (RTCDEVICE)

Entry Parameters
B: 0x28
C: RTC Device Unit ID

Exit Results
A: Status (0=OK, else error)
D: Device Type
E: Device Number
H: RTC Device Unit Mode
L: RTC Device Unit I/O Base Address

Reports information about the RTC device unit specified. Register D indicates the device type
(driver) and register E indicates the physical device number assigned by the driver.

Each RTC device is handled by an appropriate driver (DSRTC, BQRTC, etc.) which is identified
by a device type id from the table below.

RetroBrew Computing Group 29

Chapter 8. HBIOS Reference RomWBW System Guide

Type ID RTC Device Type

0x00 DS1302
0x10 BQ4845P
0x20 SIMH
0x30 System Periodic Timer
0x40 DS1307 (I2C)

RetroBrew Computing Group 30

Chapter 8. HBIOS Reference RomWBW System Guide

8.6 Video Display Adapter (VDA)

The VDA functions are provided as a common interface to Video Display Adapters. Not all
VDAs will include keyboard hardware. In this case, the keyboard functions should return a
failure status.

Depending on the capabilities of the hardware, the use of colors and attributes may or may
not be supported. If the hardware does not support these capabilities, they will be ignored.

Color byte values are constructed using typical RGBI (Red/Green/Blue/Intensity) bits. The
high four bits of the value determine the background color and the low four bits determine the
foreground color. This results in 16 unique color values for both foreground and background.
The following table illustrates the color byte value construction:

Bit Color

Background 7 Intensity
6 Blue
5 Green
4 Red

Foreground 3 Intensity
2 Blue
1 Green
0 Red

The following table illustrates the resultant color for each of the possible 16 values for fore-
ground or background:

Foreground Background Color

n0 nnnn0000 0n 0000nnnn Black
n1 nnnn0001 1n 0001nnnn Red
n2 nnnn0010 2n 0010nnnn Green
n3 nnnn0011 3n 0011nnnn Brown
n4 nnnn0100 4n 0100nnnn Blue
n5 nnnn0101 5n 0101nnnn Magenta
n6 nnnn0110 6n 0110nnnn Cyan
n7 nnnn0111 7n 0111nnnn White
n8 nnnn1000 8n 1000nnnn Gray
n9 nnnn1001 9n 1001nnnn Light Red
nA nnnn1010 An 1010nnnn Light Green

RetroBrew Computing Group 31

Chapter 8. HBIOS Reference RomWBW System Guide

Foreground Background Color

nB nnnn1011 Bn 1011nnnn Yellow
nC nnnn1100 Cn 1100nnnn Light Blue
nD nnnn1101 Dn 1101nnnn Light Magenta
nE nnnn1110 En 1110nnnn Light Cyan
nF nnnn1111 Fn 1111nnnn Bright White

Attribute byte values are constructed using the following bit encoding:

Bit Effect

7 n/a (0)
6 n/a (0)
5 n/a (0)
4 n/a (0)
3 n/a (0)
2 Reverse
1 Underline
0 Blink

The following codes are returned by a keyboard read to signify non-ASCII keystrokes:

Value Keystroke Value Keystroke

0xE0 F1 0xF0 Insert
0xE1 F2 0xF1 Delete
0xE2 F3 0xF2 Home
0xE3 F4 0xF3 End
0xE4 F5 0xF4 PageUp
0xE5 F6 0xF5 PadeDown
0xE6 F7 0xF6 UpArrow
0xE7 F8 0xF7 DownArrow
0xE8 F9 0xF8 LeftArrow
0xE9 F10 0xF9 RightArrow
0xEA F11 0xFA Power
0xEB F12 0xFB Sleep
0xEC SysReq 0xFC Wake
0xED PrintScreen 0xFD Break
0xEE Pause 0xFE

RetroBrew Computing Group 32

Chapter 8. HBIOS Reference RomWBW System Guide

Value Keystroke Value Keystroke

0xEF App 0xFF

8.6.1 Function 0x40 – Video Initialize (VDAINI)

Entry Parameters
B: 0x40
C: Video Device Unit ID
E: Video Mode (device specific)
HL: Font Bitmap Buffer Address (optional)

Exit Results
A: Status (0=OK, else error)

Performs a full (re)initialization of the specified video device. The screen is cleared and the
keyboard buffer is flushed. If the specified VDA supports multiple video modes, the requested
mode can be specified in E (set to 0 for default/not specified). Mode values are specific to
each VDA.

HL may point to a location in memory with the character bitmap to be loaded into the VDA
video processor. The location MUST be in the top 32K of the CPU memory space. HL must be
set to zero if no character bitmap is specified (the VDA video processor will utilize a default
character bitmap).

8.6.2 Function 0x41 – Video Query (VDAQRY)

Entry Parameters
B: 0x41
C: Video Device Unit ID
HL: Font Bitmap Buffer Address (optional)

Exit Results
A: Status (0=OK, else error)
C: Video Mode
D: Row Count
E: Column Count
HL: Font Bitmap Buffer Address (0 if N/A)

Return information about the specified video device. C will be set to the current video mode.
DE will return the dimensions of the video display as measured in rows and columns. Note
that this is the count of rows and columns, not the last row/column number.

RetroBrew Computing Group 33

Chapter 8. HBIOS Reference RomWBW System Guide

If HL is not zero, it must point to a suitably sized memory buffer in the upper 32K of CPU
address space that will be filled with the current character bitmap data. It is critical that HL be
set to zero if it does not point to a proper buffer area or memory corruption will result. The
video device driver may not have the ability to provide character bitmap data. In this case, on
return, HL will be set to zero.

8.6.3 Function 0x42 – Video Reset (VDARES)

Entry Parameters
B: 0x42
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)

Performs a soft reset of the Video Display Adapter. Should clear the screen, home the cursor,
restore active attribute and color to defaults. Keyboard should be flushed.

8.6.4 Function 0x43 – Video Device (VDADEV)

Entry Parameters
B: 0x43
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)
D: Device Type
E: Device Number
H: VDA Device Unit Mode
L: VDA Device Unit I/O Base Address

Reports information about the video device unit specified.

Register D reports the video device type (see below).

Register E reports the driver relative physical device number.

The currently defined video device types are:

VDA ID Value Device

VDA_NONE 0x00 No VDA
VDA_VDU 0x10 ECB VDU board
VDA_CVDU 0x20 ECB Color VDU board

RetroBrew Computing Group 34

Chapter 8. HBIOS Reference RomWBW System Guide

VDA ID Value Device

VDA_7220 0x30 ECB uPD7220 video display board
VDA_N8 0x40 TMS9918 video display built-in to N8
VDA_VGA 0x50 ECB VGA board

8.6.5 Function 0x44 – Video Set Cursor Style (VDASCS)

Entry Parameters
B: 0x44
C: Video Device Unit ID
D: Start/End Pixel Row
E: Style

Exit Results
A: Status (0=OK, else error)

If supported by the video hardware, adjust the format of the cursor such that the cursor starts
at the pixel specified in the top nibble of D and end at the pixel specified in the bottom nibble
of D. So, if D=$08, a block cursor would be used that starts at the top pixel of the character
cell and ends at the ninth pixel of the character cell.

Register E is reserved to control the style of the cursor (blink, visibility, etc.), but is not yet
implemented.

Adjustments to the cursor style may or may not be possible for any given video hardware.

8.6.6 Function 0x45 – Video Set Cursor Position (VDASCP)

Entry Parameters
B: 0x45
C: Video Device Unit ID
D: Row (0 indexed)
E: Column (0 indexed)

Exit Results
A: Status (0=OK, else error)

Reposition the cursor to the specified row and column. Specifying a row/column that exceeds
the boundaries of the display results in undefined behavior. Cursor coordinates are 0 based
(0,0 is the upper left corner of the display).

RetroBrew Computing Group 35

Chapter 8. HBIOS Reference RomWBW System Guide

8.6.7 Function 0x46 – Video Set Character Attribute (VDASAT)

Entry Parameters
B: 0x46
C: Video Device Unit ID
E: Character Attribute Code

Exit Results
A: Status (0=OK, else error)

Assign the specified character attribute code to be used for all subsequent character writes/fills.
This attribute is used to fill new lines generated by scroll operations. Refer to the character
attribute for a list of the available attribute codes. Note that a given video display may or may
not support any/all attributes.

8.6.8 Function 0x47 – Video Set Character Color (VDASCO)

Entry Parameters
B: 0x47
C: Video Device Unit ID
E: Character Color Code

Exit Results
A: Status (0=OK, else error)

Assign the specified color code to be used for all subsequent character writes/fills. This color
is also used to fill new lines generated by scroll operations. Refer to color code table for a list
of the available color codes. Note that a given video display may or may not support any/all
colors.

8.6.9 Function 0x48 – Video Set Write Character (VDAWRC)

Entry Parameters
B: 0x48
C: Video Device Unit ID
E: Character

Exit Results
A: Status (0=OK, else error)

Write the character specified in E. The character is written starting at the current cursor position
and the cursor is advanced. If the end of the line is encountered, the cursor will be advanced
to the start of the next line. The display will not scroll if the end of the screen is exceeded.

RetroBrew Computing Group 36

Chapter 8. HBIOS Reference RomWBW System Guide

8.6.10 Function 0x49 – Video Fill (VDAFIL)

Entry Parameters
B: 0x49
C: Video Device Unit ID
E: Character
HL: Count

Exit Results
A: Status (0=OK, else error)

Write the character specified in E to the display the number of times specified in HL. Characters
are written starting at the current cursor position and the cursor is advanced by the number
of characters written. If the end of the line is encountered, the characters will continue to be
written starting at the next line as needed. The display will not scroll if the end of the screen is
exceeded.

8.6.11 Function 0x4A – Video Copy (VDACPY)

Entry Parameters
B: 0x4A
C: Video Device Unit ID
D: Source Row
E: Source Column
L: Count

Exit Results
A: Status (0=OK, else error)

Copy count (L) bytes from the source row/column (DE) to current cursor position. The cursor
position is not updated. The maximum count is 255. Copying to/from overlapping areas is
not supported and will have an undefined behavior. The display will not scroll if the end of
the screen is exceeded. Copying beyond the active screen buffer area is not supported and
results in undefined behavior.

8.6.12 Function 0x4B – Video Scroll (VDASCR)

Entry Parameters
B: 0x4B
C: Video Device Unit ID
E: Scroll Distance (Line Count)

RetroBrew Computing Group 37

Chapter 8. HBIOS Reference RomWBW System Guide

Exit Results
A: Status (0=OK, else error)

Scroll the video display by the number of lines specified in E. If E contains a negative number,
then reverse scroll should be performed.

8.6.13 Function 0x4C – Video Keyboard Status (VDAKST)

Entry Parameters
B: 0x4C
C: Video Device Unit ID

Exit Results
A:Count of Key Codes in Keyboard Buffer

Return a count of the number of key codes in the keyboard buffer. If it is not possible to
determine the actual number in the buffer, it is acceptable to return 1 to indicate there are key
codes available to read and 0 if there are none available.

8.6.14 Function 0x4D – Video Keyboard Flush (VDAKFL)

Entry Parameters
B: 0x4D
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)

If a keyboard buffer is in use, it should be purged and all contents discarded.

8.6.15 Function 0x4E – Video Keyboard Read (VDAKRD)

Entry Parameters
B: 0x4E
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)
C: Scancode
D: Keystate
E: Keycode

RetroBrew Computing Group 38

Chapter 8. HBIOS Reference RomWBW System Guide

Read next key code from keyboard. If a keyboard buffer is used, return the next key code in
the buffer. If no key codes are available, wait for a keypress and return the keycode.

The scancode value is the raw scancode from the keyboard for the keypress. Scancodes are
from scancode set 2 standard.

The keystate is a bitmap representing the value of all modifier keys and shift states as they
existed at the time of the keystroke. The bitmap is defined as:

Bit Keystate Indication

7 Key pressed was from the num pad
6 Caps Lock was active
5 Num Lock was active
4 Scroll Lock was active
3 Windows key was held down
2 Alt key was held down
1 Control key was held down
0 Shift key was held down

Keycodes are generally returned as appropriate ASCII values, if possible. Special keys, like
function keys, are returned as reserved codes as described at the start of this section.

RetroBrew Computing Group 39

Chapter 8. HBIOS Reference RomWBW System Guide

8.6.16 Function 0x4F – Read a character at current video position (VDARDC)

Entry Parameters
B: 0x4F
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)
E: Character
B: Character Color Code
C: Character Attribute Code

Read a character from the current cursor position including it’s colour and attributes. If
the display does not support colours or attributes then return colour white on black and no
attributes. If the device does not support the ability to read a character, return error status

RetroBrew Computing Group 40

Chapter 8. HBIOS Reference RomWBW System Guide

8.7 Sound (SND)

8.7.1 Function 0x50 – Sound Reset (SNDRESET)

Entry Parameters
B: 0x50
C: Audio Device Unit ID

Exit Results
A: Status (0=OK, else error)

Reset the sound chip. Turn off all sounds and set volume on all channels to silence.

8.7.2 Function 0x51 – Sound Volume (SNDVOL)

Entry Parameters
B: 0x51
C: Audio Device Unit ID
L: Volume (00=Silence, FF=Maximum)

Exit Results
A: Status (0=OK, else error)

This function sets the sound chip volume parameter. The volume will be applied when the
next SNDPLAY function is invoked.

Note that not all sounds chips implement 256 volume levels. The driver will scale the volume
to the closest possible level the chip provides.

8.7.3 Function 0x52 – Sound Period (SNDPRD)

Entry Parameters
B: 0x52
C: Audio Device Unit ID
HL: Period

Returned Values
A: Status (0=OK, else error)

This function sets the sound chip period parameter. The period will be applied when the next
SNDPLAY function is invoked.

The period value is a driver specific value. To play standardized notes, use the SNDNOTE
function. A higher value will generate a lower note. The maximum value that can be used is

RetroBrew Computing Group 41

Chapter 8. HBIOS Reference RomWBW System Guide

driver specific. If value supplied is beyond driver capabilities, register A will be set to $FF.

8.7.4 Function 0x53 – Sound Note (SNDNOTE)

Entry Parameters
B: 0x53
C: Audio Device Unit ID
HL: Value of note to play

Returned Values
A: Status (0=OK, else error)

This function sets the sound chip period parameter with steps of quarter of a semitone. The
value of 0 (lowest) corresponds to Bb/A# in octave 0.

Increase by steps of 4 to select the next corresponding note.

Increase by steps of 48 to select the same note in next octave.

If the driver is able to generate the requested note, a success (0) is returned, otherwise a
non-zero error value will be returned.

The sound chip resolution and its oscillator limit the range and accuracy of the notes played.
The typical range of the AY-3-8910 is six octaves, Bb2/A#2-A7, where each value is a unique
tone. Values above and below can still be played but each quarter tone step may not result in
a note change.

The following table shows the mapping of the input value in HL to the corresponding octave
and note.

Note Oct 0 Oct 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7

C X 8 56 104 152 200 248 296
C#/Db X 12 60 108 156 204 252 300
D X 16 64 112 160 208 256 304
D#/Eb X 20 68 116 164 212 260 308
E X 24 72 120 168 216 264 312
F X 28 76 124 172 220 268 316
F#/Gb X 32 80 128 176 224 272 320
G X 36 84 132 180 228 276 324
G#/Ab X 40 88 136 184 232 280 328
A X 44 92 140 188 236 284 332
A#/Bb 0 48 96 144 192 240 288 336

RetroBrew Computing Group 42

Chapter 8. HBIOS Reference RomWBW System Guide

Note Oct 0 Oct 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7

B 4 52 100 148 196 244 292 340

8.7.5 Function 0x54 – Sound Play (SNDPLAY)

Entry Parameters
B: 0x54
C: Audio Device Unit ID
D: Channel

Returned Values
A: Status (0=OK, else error)

This function applies the previously specified volume and period by programming the sound
chip with the appropriate values. The values are applied to the specified channel of the chip.

For example, to play a specific note on Audio Device Unit 0, the following HBIOS calls would
need to be made:

HBIOS B=51 C=00 L=80 ; Set volume to half level
HBIOS B=53 C=00 HL=152 ; Select Middle C (C4)
HBIOS B=54 C=00 D=01 ; Play note on Channel 1

8.7.6 Function 0x55 – Sound Query (SNDQUERY)

Entry Parameters
B: 0x55
C: Audio Device Unit ID
E: Subfunction

Returned Values
A: Status (0=OK, else error)

This function will return the status of the current pending command or key aspects of the
specific Audio Device.

SNDQUERY Subfunction 0x01 – Get count of audio channels supported (SNDQ_CHCNT)

Entry Parameters
B: 0x55
E: 0x01

RetroBrew Computing Group 43

Chapter 8. HBIOS Reference RomWBW System Guide

Returned Values
A: Status (0=OK, else error)
B: Count of standard tone channels
C: Count of noise tone channels

SNDQUERY Subfunction 0x02 – Get current volume setting (SNDQ_VOL)

Entry Parameters
B: 0x55
E: 0x02

Returned Values
A: Status (0=OK, else error)
H: 0
L: Current volume setting

SNDQUERY Subfunction 0x03 – Get current period setting (SNDQ_PERIOD)

Entry Parameters
B: 0x55
E: 0x03

Returned Values
A: Status (0=OK, else error)
HL: Current period setting

SNDQUERY Subfunction 0x04 – Get device details (SNDQ_DEV)

Entry Parameters
B: 0x55
E: 0x04

Returned Values
A: Status (0=OK, else error)
B: Driver identity
HL: Driver specific port settings
DE: Driver specific port settings

Reports information about the audio device unit specified.

Register B reports the audio device type (see below).

Registers HL and DE contain relevant port addresses for the hardware specific to each device
type.

RetroBrew Computing Group 44

Chapter 8. HBIOS Reference RomWBW System Guide

The currently defined audio device types are:

AUDIO ID Value Device Returned registers

SND_SN76489 0x01 SN76489 E: Left channel port, L: Right channel port
SND_AY38910 0x02 AY-3-8910 D: Address port, E: Data port
SND_BITMODE 0x03 I/O PORT D: Address port, E: Bit mask
SND_YM2612 0x04 YM2612 D: Part 0 Address port, E: Part 0 Data port

H: Part 1
Address
port, L: Part
1 Data port

8.7.7 Function 0x56 – Sound Duration (SNDDUR)

Entry Parameters
B: 0x56
C: Audio Device Unit ID
HL: Duration

Returned Values
A: Status (0=OK, else error)

This function sets the duration of the note to be played in milliseconds.

If the duration is set to zero, then the play function will operate in a non-blocking mode. i.e. a
tone will start playing and the play function will return. The tone will continue to play until the
next tone is played. I/O PORT are not compatible and will not play a note if the duration is zero.

For other values, when a tone is played, it will play for the duration defined in HL and then
return.

8.7.8 Function 0x57 – Sound Device (SNDDEVICE)

Entry Parameters
B: 0x57
C: Sound Device Unit Number

Exit Results
A: Status (0=OK, else error)
D: Sound Device Type
E: Sound Device Number

RetroBrew Computing Group 45

Chapter 8. HBIOS Reference RomWBW System Guide

H: Sound Device Unit Mode
L: Sound Device Unit I/O Base Address

Reports information about the sound device unit specified. Register D indicates the device
type (driver) and register E indicates the physical device number assigned by the driver.

Each character device is handled by an appropriate driver (AY38910, SN76489, etc.). The driver
can be identified by the Device Type. The assigned Device Types are listed below.

Id Device Type / Driver

0x00 SN76489
0x10 AY38910
0x20 BITMODE
0x30 YM2612

RetroBrew Computing Group 46

Chapter 8. HBIOS Reference RomWBW System Guide

8.8 System (SYS)

8.8.1 Function 0xF0 – System Reset (SYSRESET)

Entry Parameters
B: 0xF0
C: Subfunction (see below)

Exit Results
A: Status (0=OK, else error)

This function performs various forms of a system reset depending on the value of the sub-
function. See subfunctions below.

SYSRESET Subfunction 0x00 – Internal HBIOS Reset (RESINT)

Entry Parameters
BC: 0xF000

Returned Values
A: Status (0=OK, else error)

Perform a soft reset of HBIOS. Releases all HBIOS memory allocated by current OS. Does not
reinitialize physical devices.

SYSRESET Subfunction 0x01 – Warm Start System (RESWARM)

Entry Parameters
BC: 0xF001

Returned Values

Warm start the system returning to the boot loader prompt. Does not reinitialize physical
devices.

SYSRESET Subfunction 0x02 – Cold Start System (RESCOLD)

Entry Parameters
BC: 0xF002

Returned Values

Perform a system cold start (like a power on). All devices are reinitialized.

RetroBrew Computing Group 47

Chapter 8. HBIOS Reference RomWBW System Guide

8.8.2 Function 0xF1 – System Version (SYSVER)

Entry Parameters
B: 0xF1
C: Reserved (set to 0)

Exit Results
A: Status (0=OK, else error)
DE: Version (Maj/Min/Upd/Pat)
L: Platform ID

This function will return the HBIOS version number. The version number is returned in DE. High
nibble of D is the major version, low nibble of D is the minor version, high nibble of E is the
patch number, and low nibble of E is the build number.

The hardware platform is identified in L:

Id Platform

1 SBC V1 or V2
2 Zeta
3 Zeta V2
4 N8
5 Mark IV
6 UNA
7 RC2014 w/ Z80
8 RC2014 w/ Z180 & banked memory module
9 RC2014 w/ Z180 & linear memory module
10 SCZ180 (SC126, SC130, SC131)
11 Dyno

8.8.3 Function 0xF2 – System Set Bank (SYSSETBNK)

Entry Parameters
B: 0xF2
C: Bank ID

Exit Results
A: Status (0=OK, else error)
C: Previously Active Bank ID

Activates the Bank ID specified in C and returns the previously active Bank ID in C. The caller
MUST be invoked from code located in the upper 32K and the stack must be in the upper 32K.

RetroBrew Computing Group 48

Chapter 8. HBIOS Reference RomWBW System Guide

8.8.4 Function 0xF3 – System Get Bank (SYSGETBNK)

Entry Parameters
B: 0xF3

Exit Results
A: Status (0=OK, else error)
C: Active Bank ID

Returns the currently active Bank ID in C.

8.8.5 Function 0xF4 – System Set Copy (SYSSETCPY)

Entry Parameters
B: 0xF4
D: Destination Bank ID
E: Source Bank ID
HL: Count of Bytes to Copy

Exit Results
A: Status (0=OK, else error)

Prepare for a subsequent interbank memory copy (SYSBNKCPY) function by setting the source
bank, destination bank, and byte count for the copy. The bank id’s are not range checked and
must be valid for the system in use.

No bytes are copied by this function. The SYSBNKCPY must be called to actually perform the
copy. The values setup by this function will remain unchanged until another call is make to
this function. So, after calling SYSSETCPY, you may make multiple calls to SYSBNKCPY as
long as you want to continue to copy between the already established Source/Destination
Banks and the same size copy if being performed.

8.8.6 Function 0xF5 – System Bank Copy (SYSBNKCPY)

Entry Parameters
B: 0xF5
DE: Destination Address
HL: Source Address

Exit Results
A: Status (0=OK, else error)

Copy memory between banks. The source bank, destination bank, and byte count to copy
MUST be established with a prior call to SYSSETCPY. However, it is not necessary to call

RetroBrew Computing Group 49

Chapter 8. HBIOS Reference RomWBW System Guide

SYSSETCPY prior to subsequent calls to SYSBNKCPY if the source/destination banks and
copy length do not change.

WARNINGS:

• This function is inherently dangerous and does not prevent you from corrupting critical
areas of memory. Use with extreme caution.

• Overlapping source and destination memory ranges are not supported and will result in
undetermined behavior.

• Copying of byte ranges that cross bank boundaries is undefined.

8.8.7 Function 0xF6 – System Alloc (SYSALLOC)

Entry Parameters
B: 0xF6
HL: Size in Bytes

Exit Results
A: Status (0=OK, else error)
HL: Address of Allocated Memory

This function will attempt to allocate a block of memory of HL bytes from the internal HBIOS
heap. The HBIOS heap resides in the HBIOS bank in the area of memory left unused by HBIOS.
If the allocation is successful, the address of the allocated memory block is returned in HL.
You will typically want to use the SYSBNKCPY function to read/write the allocated memory.

8.8.8 Function 0xF7 – System Free (SYSFREE)

Entry Parameters
B: 0xF7
HL: Address of Memory Block to Free

Returned Values
A: Status (0=OK, else error)

*** This function is not yet implemented ***

8.8.9 Function 0xF8 – System Get (SYSGET)

Entry Parameters
B: 0xF8
C: Subfunction (see below)

RetroBrew Computing Group 50

Chapter 8. HBIOS Reference RomWBW System Guide

Returned Values
A: Status (0=OK, else error)

This function will report various system information based on the sub-function value. The
following lists the subfunctions available along with the registers/information returned.

SYSGET Subfunction 0x00 – Get Serial Device Unit Count (CIOCNT)

Entry Parameters
BC: 0xF800

Returned Values
A: Status (0=OK, else error)
E: Count of Serial Device Units

SYSGET Subfunction 0x01 – Get Serial Unit Function (CIOFN)

Entry Parameters
BC: 0xF801
D: CIO Function
E: Unit

Returned Values
A: Status (0=OK, else error)
HL: Driver Function Address
DE: Unit Data Address

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the CIO function number to lookup in D and the CIO unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).
See Appendix A for details.

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

SYSGET Subfunction 0x10 – Get Disk Device Unit Count (DIOCNT)

Entry Parameters
BC: 0xF810

Returned Values
A: Status (0=OK, else error)

RetroBrew Computing Group 51

Chapter 8. HBIOS Reference RomWBW System Guide

E: Count of Disk Device Units

SYSGET Subfunction 0x11 – Get Disk Unit Function (DIOFN)

Entry Parameters
BC: 0xF811
D: DIO Function
E: Unit

Returned Values
A: Status (0=OK, else error)
HL: Driver Function Address
DE: Unit Data Address

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the DIO function number to lookup in D and the DIO unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

SYSGET Subfunction 0x20 – Get Disk Device Unit Count (RTCCNT)

Entry Parameters
BC: 0xF820

Returned Values
A: Status (0=OK, else error)
E: Count of RTC Device Units

SYSGET Subfunction 0x40 – Get Video Device Unit Count (VDACNT)

Entry Parameters
BC: 0xF840

Returned Values
A: Status (0=OK, else error)
E: Count of Video Device Units

RetroBrew Computing Group 52

Chapter 8. HBIOS Reference RomWBW System Guide

SYSGET Subfunction 0x41 – Get Video Unit Function (VDAFN)

Entry Parameters
BC: 0xF841
D: VDA Function
E: Unit

Returned Values
A: Status (0=OK, else error)
HL: Driver Function Address
DE: Unit Data Address

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the VDA function number to lookup in D and the VDA unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).
See Appendix A for details.

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

SYSGET Subfunction 0x50 – Get Sound Device Unit Count (SNDCNT)

Entry Parameters
BC: 0xF850

Returned Values
A: Status (0=OK, else error)
E: Count of Sound Device Units

SYSGET Subfunction 0x51 – Get Sound Unit Function (SNDFN)

Entry Parameters
BC: 0xF851
D: SND Function
E: Unit

Returned Values
A: Status (0=OK, else error)
HL: Driver Function Address
DE: Unit Data Address

RetroBrew Computing Group 53

Chapter 8. HBIOS Reference RomWBW System Guide

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the SND function number to lookup in D and the SND unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).
See Appendix A for details.

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

SYSGET Subfunction 0xD0 – Get Timer Tick Count (TIMER)

Entry Parameters
BC: 0xF8D0

Returned Values
A: Status (0=OK, else error)
DE:HL: Current Timer Tick Count Value
C: Tick frequency (typically 50 or 60)

SYSGET Subfunction 0xD1 – Get Seconds Count (SECONDS)

Entry Parameters
BC: 0xF8D1

Returned Values
A: Status (0=OK, else error)
DE:HL: Current Seconds Count Value
C: Ticks within Second Value

SYSGET Subfunction 0xE0 – Get Boot Information (BOOTINFO)

Entry Parameters
BC: 0xF8E0

Returned Values
A: Status (0=OK, else error)
L: Boot Bank ID
D: Boot Disk Device Unit ID
E: Boot Disk Slice

RetroBrew Computing Group 54

Chapter 8. HBIOS Reference RomWBW System Guide

SYSGET Subfunction 0xF0 – Get CPU Information (CPUINFO)

Entry Parameters
BC: 0xF8F0

Returned Values
A: Status (0=OK, else error)
H: Z80 CPU Variant
L: CPU Speed in MHz
DE: CPU Speed in KHz
BC: Oscillator Speed in KHz

SYSGET Subfunction 0xF1 – Get Memory Information (MEMINFO)

Entry Parameters
BC: 0xF8F1

Returned Values
A: Status (0=OK, else error)
D: Count of 32K ROM Banks
E: Count of 32K RAM Banks

SYSGET Subfunction 0xF2 – Get Bank Information (BNKINFO)

Entry Parameters
BC: 0xF8F2

Returned Values
A: Status (0=OK, else error)
D: BIOS Bank ID
E: User Bank ID

SYSGET Subfunction 0xF3 – Get CPU Speed (CPUSPD)

Entry Parameters
BC: 0xF8F3

Returned Values
A: Status (0=OK, else error)
L: Clock Mult (0:Half, 1:Full, 2: Double)
D: Memory Wait States
E: I/O Wait States

RetroBrew Computing Group 55

Chapter 8. HBIOS Reference RomWBW System Guide

This function will return the running CPU speed attributes of a system. Note that it is frequently
impossible to tell if a system is capable of dynamic speed changes. This function returns it’s
best guess. If either of the wait state settings is unknown, the function will return 0xFF.

8.8.10 Function 0xF9 – System Set (SYSSET)

Entry Parameters
B: 0xF9
C: Subfunction (see below)

Returned Values
A: Status (0=OK, else error)

This functionwill set various systemparameters based on the sub-function value. The following
lists the subfunctions available along with the registers/information used as input.

SYSSET Subfunction 0xD0 – Set Timer Tick Count (TIMER)

Entry Parameters
BC: 0xF9D0
DE:HL: Timer Tick Count Value

Returned Values
A: Status (0=OK, else error)

SYSSET Subfunction 0xD1 – Set Seconds Count (SECONDS)

Entry Parameters
BC: 0xF9D1
DE:HL: Seconds Count Value

Returned Values
A: Status (0=OK, else error)

SYSSET Subfunction 0xE0 – Set Boot Information (BOOTINFO)

Entry Parameters
BC: 0xF9E0
L: Boot Bank ID
D: Boot Disk Device Unit ID
E: Boot Disk Slice

RetroBrew Computing Group 56

Chapter 8. HBIOS Reference RomWBW System Guide

Returned Values
A: Status (0=OK, else error)

SYSSET Subfunction 0xF3 – Set CPU Speed (CPUSPD)

Entry Parameters
BC: 0xF9F3
L: Clock Mult (0:Half, 1:Full, 2: Double)
D: Memory Wait States
E: I/O Wait States

Returned Values
A: Status (0=OK, else error)

This functionwill modify the running CPU speed attributes of a system. Note that it is frequently
impossible to tell if a system is capable of dynamic speed changes. This function makes the
changes blindly. You can specify 0xFF for either of the wait state settings to have them left
alone. If an attempt is made to change the speed of a system that is definitely incapable of
doing so, then an error result is returned.

Some peripherals are dependant on the CPU speed. For example, the Z180 ASCI baud rate
and system timer are derived from the CPU speed. The Set CPU Speed function will attempt
to adjust these peripherals for correct operation after modifying the CPU speed. However,
in some cases this may not be possible. The baud rate of ASCI ports have a limited set of
divisors. If there is no satisfactory divisor to retain the existing baud rate under the new CPU
speed, then the baud rate of the ASCI port(s) will be affected.

8.8.11 Function 0xFA – System Peek (SYSPEEK)

Entry Parameters
B: 0xFA
D: Bank ID
HL: Memory Address

Returned Values
A: Status (0=OK, else error)
E: Byte Value

This function gets a single byte value at the specified bank/address. The bank specified is not
range checked.

RetroBrew Computing Group 57

Chapter 8. HBIOS Reference RomWBW System Guide

8.8.12 Function 0xFB – System Poke (SYSPOKE)

Entry Parameters
B: 0xFB
D: Bank ID
E: Value
HL: Memory Address

Returned Values
A: Status (0=OK, else error)

This function sets a single byte value at the specified bank/address. The bank specified is not
range checked.

8.8.13 Function 0xFC – System Interrupt Management (SYSINT)

Entry Parameters
B: 0xFC
C: Subfunction (see below)

Returned Values
A: Status (0=OK, else error)

This function allows the caller to query information about the interrupt configuration of the
running system and allows adding or hooking interrupt handlers dynamically. Register C is
used to specify a subfunction. Additional input and output registers may be used as defined
by the sub-function.

Note that during interrupt processing, the lower 32K of CPU address space will contain the
RomWBW HBIOS code bank, not the lower 32K of application TPA. As such, a dynamically
installed interrupt handler does not have access to the lower 32K of TPA andmust be careful to
avoidmodifying the contents of the lower 32K of memory. Invoking RomWBWHBIOS functions
within an interrupt handler is not supported.

Interrupt handlers are different for IM1 or IM2.

For IM1:

The new interrupt handler is responsible for chaining (JP) to the previous vector
if the interrupt is not handled. If the interrupt is handled, the new handler may
simply return (RET). When chaining to the previous interrupt handler, ZF must be
set if interrupt is handled and ZF cleared if not handled. The interrupt manage-
ment framework takes care of saving and restoring AF, BC, DE, HL, and IY. Any
other registers modified must be saved and restored by the interrupt handler.

RetroBrew Computing Group 58

Chapter 8. HBIOS Reference RomWBW System Guide

For IM2:

The new interrupt handler may either replace or hook the previous interrupt
handler. To replace the previous interrupt handler, the new handler just returns
(RET) when done. To hook the previous handler, the new handler can chain (JP)
to the previous vector. Note that initially all IM2 interrupt vectors are set to be
handled as “BAD” meaning that the interrupt is unexpected. In most cases, you
do not want to chain to the previous vector because it will cause the interrupt to
display a “BAD INT” system panic message.

The interrupt framework will take care of issuing an EI and RETI instruction. Do not put these
instructions in your new handler. Additionally, interrupt management framework takes care of
saving and restoring AF, BC, DE, HL, and IY. Any other registers modified must be saved and
restored by the interrupt handler.

If the caller is transient, then the caller must remove the new interrupt handler and restore
the original one prior to termination. This is accomplished by calling this function with the
Interrupt Vector set to the Previous Vector returned in the original call.

The caller is responsible for disabling interrupts prior to making an INTSET call and enabling
them afterwards. The caller is responsible for ensuring that a valid interrupt handler is installed
prior to enabling any hardware interrupts associated with the handler. Also, if the handler is
transient, the caller must disable the hardware interrupt(s) associated with the handler prior to
uninstalling it.

SYSINT Subfunction 0x00 – Interrupt Info (INTINF)

Entry Parameters
BC: 0xFC00

Returned Values
A: Status (0=OK, else error)
D: Interrupt Mode
E: Size (# entries) of Interrupt Vector Table

Return interrupt mode in D and size of interrupt vector table in E. For IM1, the size of the table
is the number of vectors chained together. For IM2, the size of the table is the number of slots
in the vector table.

SYSINT Subfunction 0x10 – Get Interrupt (INTGET)

Entry Parameters
BC: 0xFC10

RetroBrew Computing Group 59

Chapter 8. HBIOS Reference RomWBW System Guide

E: Interrupt Vector Table Index

Returned Values
A: Status (0=OK, else error)
HL: Current Interrupt Vector Address

On entry, register E must contain an index into the interrupt vector table. On return, HL will
contain the address of the current interrupt vector at the specified index.

SYSINT Subfunction 0x20 – Set Interrupt (INTSET)

Entry Parameters
BC: 0xFC20
E: Interrupt Vector Table Index
HL: Interrupt Address to be Assigned

Returned Values
A: Status (0=OK, else error)
HL: Previous Interrupt Vector Address
DE: Interrupt Routing Engine Address (IM2)

On entry, register E must contain an index into the interrupt vector table and register HL must
contain the address of the new interrupt vector to be inserted in the table at the index. On
return, HL will contain the previous address in the table at the index.

RetroBrew Computing Group 60

Chapter 9

Errors and diagnostics

ROMWBW tries to provide useful information when a run time or build time error occurs. Many
sections of the code also have code blocks that can be enable to aid in debugging and in some
cases the level of reporting detail can be customized.

9.1 Run time errors

9.1.1 PANIC

A panic error indicates a non-recoverable error. The processor status is displayed on the
console and interrupts are disabled and execution is halted. A cold boot or reset is required to
restart.

Example error message:

»> PANIC: @06C4 [DFA3:DFC3:0100:F103:04FC:0000:2B5E]

*** System Halted ***

The format of the information provided is

@XXXX [-AF-:-BC-:-DE-:-HL-:-SP-:-IX-:-IY-]

Where @XXXX is the address the panic was called from. The other information is the CPU
register contents.

Possible reasons a PANIC may occur are:

• RAM Bank range error when attempting a read or write to a RAM disk.
• Sector read function has not been setup but a read was attempted.

RetroBrew Computing Group 61

Chapter 9. Errors and diagnostics RomWBW System Guide

• An interrupt vector has not been set up when an interrupt was received.
• There was an attempt to add more devices than the device table had room for.
• An illegal SD card command was encountered.

The @XXXX memory address can be cross referenced with the build source code to identify
which section of the software or hardware caused the fault.

9.1.2 SYSCHK

A syschk error is identified when an internal error is detected. When this occurs an error code
is returned to the calling program in the A register. A non-zero result indicates an error.

Syschk errors may be reported to the console. Whether this occurs depends on the value of
the diagnosis level equate DIAGLVL. By default syschk errors are not reported to the console.

If the diagnosis level is set to display the diagnosis information, then memory address, register
dump and error code is displayed. A key differance with the PANIC error is that execution may
be continued.

Example error message:

»> SYSCHK: @06C4 [DFA3:DFC3:0100:F103:04FC:0000:2B5E] FD Continue (Y/N)

The format of the information provided is similar the PANIC report.

@XXXX [-AF-:-BC-:-DE-:-HL-:-SP-:-IX-:-IY-] YY

The syschk error codes YY is returned in the A register.

Error Code YY

Success 0x00
Undefined Error 0xFF
Function Not Implemented 0xFE
Invalid Function 0xFD
Invalid Unit Number 0xFC
Out Of Memory 0xFB
Parameter Out Of Range 0xFA
Media Not Present 0xF9
Hardware Not Present 0xF8
I/O Error 0xF7
Write Request To Read-Only Media 0xF6
Device Timeout 0xF5
Invalid Configuration 0xF4

RetroBrew Computing Group 62

Chapter 9. Errors and diagnostics RomWBW System Guide

Error Code YY

Internal Error 0xF3

9.1.3 Error Level reporting

placeholder

9.2 Build time errors

9.2.1 Build chain tool errors

place holder

9.2.2 Assembly time check errors

placeholder

9.3 Diagnostics

9.3.1 DIAG

Progress through the boot and initialization process can be difficult to monitor due to the lack
of console or video output. Access to these output devices does not become available until
late the in the boot process. If these output devices are also involved with the issue trying to
be resolved then trouble shooting is even more difficult.

ROMWBW can be configured to display boot progress with the assistance of additional hard-
ware. This take the form of an LED breakout debugging board connected to an 8-bit output
port. As the boot code executes, the LED output display is updated.

To use a LED breakout board, it must be connected the computers data, reset and port select
lines.

To enable the DIAG option the following settingsmust bemade in the systems .ini configuration
file, where 0xnn is the port address.

DIAGENABLE .SET TRUE DIAGPORT .SET 0xnn

The following table shows the ROMWBW process steps in relation to the LED display.

RetroBrew Computing Group 63

Chapter 9. Errors and diagnostics RomWBW System Guide

LED ROMWBW Processes

........ Initial boot
Jump to start address
Disable interrupts
Set interrupt mode 1
Initialize critical ports and initial speed

.......O Setup initial stack
Memory manager and CPU configuration
Set top bank to be RAM

......OO Get and save battery condition
Install HBIOS proxy in upper memory
If platform is MBC reconfigure memory manager
Setup “ROMLESS” HBIOS image or …
Copy HBIOS from ROM to RAM if RAM flag not set
Jump to HBIOS in RAM
Set running in RAM flag

.....OOO Finalize configuration for running in RAM
Check battery condition
Check for recovery mode boot

....OOOO Identify CPU type

...OOOOO Set cpu oscillator speed
Setup counter-timers
Setup heap

..OOOOOO Preconsole initialization

.OOOOOOO Boot delay
Set boot console device
Bios announcement

OOOOOOOO Display platform information
Display memory configuration
Display CPU family
Verify ROM checksum
Report battery condition
Perform device driver initialization
Report watchdog status
Mark HBIOS heap so it is preserved
Switch from boot console to CRT if active
Display device summary
Execute boot loader

RetroBrew Computing Group 64

Chapter 9. Errors and diagnostics RomWBW System Guide

9.3.2 Appendix A Driver Instance Data fields

The following section outlines the read only data referenced by the SYSGET, subfunctions
xxxFN for specific drivers.

TMS9918 Driver:

Name Offset Bytes Description

PPIA 0 1 PPI PORT A
PPIB 1 1 PPI PORT B
PPIC 2 1 PPI PORT C
PPIX 3 1 PPI CONTROL PORT
DATREG 4 1 IO PORT ADDRESS FOR MODE 0
CMDREG 5 1 IO PORT ADDRESS FOR MODE 1

Below are the register mirror values
that HBIOS used for initialisation

REG. 0 6 1 $00 - NO EXTERNAL VID
REG. 1 7 1 $50 or $70 - SET MODE 1 and interrupt if enabled
REG. 2 8 1 $00 - PATTERN NAME TABLE := 0
REG. 3 9 1 $00 - NO COLOR TABLE
REG. 4 10 1 $01 - SET PATTERN GENERATOR TABLE TO $800
REG. 5 11 1 $00 - SPRITE ATTRIBUTE IRRELEVANT
REG. 6 12 1 $00 - NO SPRITE GENERATOR TABLE
REG. 7 13 1 $F0 - WHITE ON BLACK
DCNTL* 14 1 Z180 DMA/WAIT CONTROL

• ONLY PRESENT FOR Z180 BUILDS

RetroBrew Computing Group 65

	Overview
	Background
	General Design Strategy
	Runtime Memory Layout
	System Boot Process
	ROM Boot
	Application Boot
	ROM-less Boot
	Notes

	Driver Model
	Character / Emulation / Video Services
	HBIOS Reference
	Invocation
	Error Codes
	Character Input/Output (CIO)
	Function 0x00 – Character Input (CIOIN)
	Function 0x01 – Character Output (CIOOUT)
	Function 0x02 – Character Input Status (CIOIST)
	Function 0x03 – Character Output Status (CIOOST)
	Function 0x04 – Character IO Initialization (CIOINIT)
	Function 0x05 – Character IO Query (CIOQUERY)
	Function 0x06 – Character IO Device (CIODEVICE)

	Disk Input/Output (DIO)
	Function 0x10 – Disk Status (DIOSTATUS)
	Function 0x11 – Disk Reset (DIORESET)
	Function 0x12 – Disk Seek (DIOSEEK)
	Function 0x13 – Disk Read (DIOREAD)
	Function 0x14 – Disk Write (DIOWRITE)
	Function 0x15 – Disk Verify (DIOVERIFY)
	Function 0x16 – Disk Format (DIOFORMAT)
	Function 0x17 – Disk DEVICE (DIODEVICE)
	Function 0x18 – Disk Media (DIOMEDIA)
	Function 0x19 – Disk Define Media (DIODEFMED)
	Function 0x1A – Disk Capacity (DIOCAPACITY)
	Function 0x1B – Disk Geometry (DIOGEOMETRY)

	Real Time Clock (RTC)
	Function 0x20 – RTC Get Time (RTCGETTIM)
	Function 0x21 – RTC Set Time (RTCSETTIM)
	Function 0x22 – RTC Get NVRAM Byte (RTCGETBYT)
	Function 0x23 – RTC Set NVRAM Byte (RTCSETBYT)
	Function 0x24 – RTC Get NVRAM Block (RTCGETBLK)
	Function 0x25 – RTC Set NVRAM Block (RTCSETBLK)
	Function 0x26 – RTC Get Alarm (RTCGETALM)
	Function 0x27 – RTC Set Alarm (RTCSETALM)
	Function 0x28 – RTC DEVICE (RTCDEVICE)

	Video Display Adapter (VDA)
	Function 0x40 – Video Initialize (VDAINI)
	Function 0x41 – Video Query (VDAQRY)
	Function 0x42 – Video Reset (VDARES)
	Function 0x43 – Video Device (VDADEV)
	Function 0x44 – Video Set Cursor Style (VDASCS)
	Function 0x45 – Video Set Cursor Position (VDASCP)
	Function 0x46 – Video Set Character Attribute (VDASAT)
	Function 0x47 – Video Set Character Color (VDASCO)
	Function 0x48 – Video Set Write Character (VDAWRC)
	Function 0x49 – Video Fill (VDAFIL)
	Function 0x4A – Video Copy (VDACPY)
	Function 0x4B – Video Scroll (VDASCR)
	Function 0x4C – Video Keyboard Status (VDAKST)
	Function 0x4D – Video Keyboard Flush (VDAKFL)
	Function 0x4E – Video Keyboard Read (VDAKRD)
	Function 0x4F – Read a character at current video position (VDARDC)

	Sound (SND)
	Function 0x50 – Sound Reset (SNDRESET)
	Function 0x51 – Sound Volume (SNDVOL)
	Function 0x52 – Sound Period (SNDPRD)
	Function 0x53 – Sound Note (SNDNOTE)
	Function 0x54 – Sound Play (SNDPLAY)
	Function 0x55 – Sound Query (SNDQUERY)
	Function 0x56 – Sound Duration (SNDDUR)
	Function 0x57 – Sound Device (SNDDEVICE)

	System (SYS)
	Function 0xF0 – System Reset (SYSRESET)
	Function 0xF1 – System Version (SYSVER)
	Function 0xF2 – System Set Bank (SYSSETBNK)
	Function 0xF3 – System Get Bank (SYSGETBNK)
	Function 0xF4 – System Set Copy (SYSSETCPY)
	Function 0xF5 – System Bank Copy (SYSBNKCPY)
	Function 0xF6 – System Alloc (SYSALLOC)
	Function 0xF7 – System Free (SYSFREE)
	Function 0xF8 – System Get (SYSGET)
	Function 0xF9 – System Set (SYSSET)
	Function 0xFA – System Peek (SYSPEEK)
	Function 0xFB – System Poke (SYSPOKE)
	Function 0xFC – System Interrupt Management (SYSINT)

	Errors and diagnostics
	Run time errors
	PANIC
	SYSCHK
	Error Level reporting

	Build time errors
	Build chain tool errors
	Assembly time check errors

	Diagnostics
	DIAG
	Appendix A Driver Instance Data fields

