
 1

 ZSDOS 1.1

 A replacement of the CP/M 2.2 BDOS

 Programmer's Manual

 (C) Copyright 1988, 89, 90

 by

 Harold F. Bower
 Cameron W. Cotrill
 Carson Wilson

 Translation from German by

 Wayne Hortensius

 Word/PDF conversion by

 Randy Merkel (2025)

 i

Table of Contents

1 Introduction ... 1
 1.1 Components of the operating system 1
 1.2 Memory allocation 2
 1.2.1 Storage area of the segments 2
 1.2.2 System page 3

2 BDOS functions ... 6
 2.1 Character I/O .. 6
 2.2 Disk I/O ... 6
 2.3 Control and status 7

3 ZSDOS data structures 8
 3.1 General .. 8
 3.2 Logical record ... 8
 3.3 File Control Block (FCB) 8
 3.4 Directory Record 10
 3.5 Disk Allocation Vector 11
 3.6 Disk Parameter Block 11
 3.7 Dates .. 12
 3.8 Stamp format ... 12

4 ZSDOS programming conventions 14
 4.1 General .. 14
 4.2 Reentrancy in ZSDOS calls 16
 4.3 ZSDOS configuration area 17
 4.3.1 Error vector table 18
 4.3.2 Path address (ZSDOS only) 18
 4.3.3 Address of the wheel byte 18
 4.3.4 Configuration byte 18
 4.3.5 Date vectors 20
 4.4 Routines to support time and date stamps 20

5 ZSDOS function calls 22
 5.1 Description of the returned values 22
 5.2 Functional description 23
 Function 0 - Terminate Program 23
 Function 1 - Console Input Byte 24
 Function 2 - Console Output Byte 25
 Function 3 - Reader Input 26
 Function 4 - Punch Output 27
 Function 5 - List Output Byte 28
 Function 6 - Direct Console I/O 29
 Function 7 - Get IOBYTE 31
 Function 8 - Set IOBYTE 32
 Function 9 - Console Output String 33
 Function 10 - Console Input Line 34
 Function 11 - Console Status Check 36
 Function 12 - Get System Identification 37
 Function 13 - Reset All Drives 38
 Function 14 - Select Drive 39
 Function 15 - Open Existing File 40
 Function 16 - Close Output File 42

 ii

 Function 17 - Search for First Entry 43
 Function 18 - Search for Next Entry 45
 Function 19 - Delete File 46
 Function 20 - Sequential Read 47
 Function 21 - Sequential Write 48
 Function 22 - Make New File 49
 Function 23 - Rename File 50
 Function 24 - Get Active Drive Map 51
 Function 25 - Get Default Drive Number 52
 Function 26 - Set File Buffer Address 53
 Function 27 - Get Allocation Vector 54
 Function 28 - Write protect drives 55
 Function 29 - Get Read-Only Map 56
 Function 30 - Set File Attributes 58
 Function 31 - Get Disk Parameters 59
 Function 32 - Get or Set User Area 60
 Function 33 - Direct Access Read 61
 Function 34 - Direct Access Write 62
 Function 35 - Get File End Address 63
 Function 36 - Get Random Address 64
 Function 37 - Reset Drives 65
 Function 39 - Get Vector of Fixed Disks 66
 Function 40 - Direct Access Write with Zero Fill 67
 Function 45 - Set BDOS Error Mode 68
 Function 47 - Get File Buffer Address 71
 Function 48 - Get BDOS Version Number 72
 Function 98 - Get System Time 73
 Function 99 - Set System Time 74
 Function 100 - Get Configuration Flags 75
 Function 101 - Set Configuration Flags 76
 Function 102 - Get Date Stamp 77
 Function 103 - Set Date Stamp 78

Quick overview of the functions of ZSDOS 79
Overview of the BDOS error codes 80
Brief overview of the BIOS functions 81

ZSDOS 1.1 Programmer's Manual

 1

1 Introduction

ZSDOS is a powerful replacement for the Basic Disk Operating
System (BDOS) of CP/M 2.2 or ZRDOS 1.x systems. It has various
new and numerous improved functions, but the compatibility with
existing CP/M 2.2 programs is largely preserved. Maintaining this
compatibility was also the main goal when developing ZSDOS. In
some cases, however, the possibilities of integrating elements
from CP/M Plus (also known as CP/M 3) and from ZRDOS seemed more
important to us than maintaining compatibility. Furthermore, ex-
pandable data structures were designed and integrated in ZSDOS to
create the basis for a more powerful operating system.

This manual describes in detail the functions, interfaces and
data structures of ZSDOS. In particular, the focus is on the new
features of ZSDOS, but also the less known or often misunderstood
properties of CP/M. Short examples in Z80 assembly language are
intended to illustrate the use of the ZSDOS function calls. In
the appendices you will find short overviews of the functions of
ZSDOS.

This programmer's manual was not designed as complete documenta-
tion of the CP/M operating system or the Z80 assembly language. A
certain knowledge of the conventions when using CP/M function
calls is required. For more comprehensive information on CP/M and
the Z80 assembly language, we recommend the works listed in the
bibliography of the ZSDOS User's Guide. Unless a special DOS is
indicated, the statements made in this manual about ZSDOS also
apply to ZDDOS.

1.1 Operating system components

The operating system CP/M 2.2 (or compatible) consists of three
separate segments; the Basic Input/Output System (BIOS), the
Basic Disk Operating System (BDOS) and the Console Command
Processor (CCP). Each of these segments is relatively independent
of the others and can be replaced quite easily. However, the pre-
requisite for this is compliance with defined interface
parameters.

The BIOS must exist in some form for every computer. It does all
hardware related tasks. All connected devices are controlled by
the BIOS as well as the internal hardware. Due to the very
different hardware of different computer types, the BIOS is also
very different. Usually the BIOS was written by the computer
manufacturer. However, there are also some fairly common third-
party BIOSes for special computers. ZSDOS has been designed to
run on almost any computer whose BIOS is compatible with CP/M 2.2
or ZRDOS 1.x.

The third system segment, the CCP, is the primary interface to
the user of the computer. This component is probably the most
frequently replaced. The ZCPR family in particular is extremely
popular. Since changes in the CCP are most clearly felt by the

ZSDOS 1.1 Programmer's Manual

 2

user, many consider it the most important part of the operating
system. In this manual, however, we want to show that the
properties of the BDOS determine how flexible and powerful the
computer ultimately becomes.

All logical inputs and outputs of the system are controlled by
the BDOS. It manages all resources in the form of logical
devices, such as Console, printer, and disk drive. The BDOS gives
the pure hardware drivers of the BIOS a fixed structure, which
creates a uniform appearance of a wide variety of CP/M computers
compared to the application programs. This strict separation of
hardware-independent routines from hardware-dependent was one of
the most significant advances that CP/M brought to the develop-
ment of operating systems for microcomputers.

ZSDOS is a complete replacement of the BDOS segment and is the
subject of this manual.

1.2 Memory allocation

The division of the main memory under ZSDOS is identical to CP/M
2.2 and ZRDOS 1.x systems. The reserved 256 bytes (0 - 0FFH) of
the system page are located at the absolute address 0. The TPA
(Transient Program Area) is located from address 0100H to the
lower end of the lowest system segment. All application programs
(e.g. word processing, databases, assemblers, etc.) are executed
there. The lower address of the lowest system segment is not
determined by ZSDOS.

1.2.1 Storage area of the segments

All program (part) s that are or remain in the system after a
warm start are referred to as system segments. Classic repre-
sentatives for such segments are BIOS and BDOS, which are indis-
pensable for application programs. The CCP can be overwritten by
programs and is reloaded each time it returns to the operating
system. Some CP/M 2.2 BIOSes reload both the CCP and the BDOS
after a warm start. This peculiarity is historical and goes back
to a statement by Digital Research that application programs can
also overwrite the BDOS if necessary. Practical experience shows,
however, that no program (known to us) overwrites the BDOS and
most modern BIOSes do not reload the BDOS. For some functions of
ZSDOS ("read-only vector received" and "fast re-login") the BDOS
must be resident, otherwise they have no effect. (Configuration
data will be overwritten)

In addition to the segments just mentioned, there may be other
system segments in a ZSDOS system. In contrast to the ones
already mentioned, these additional segments are not required to
operate a ZSDOS system. However, additional functions can be
provided by such segments.

Examples of these segments, which are also known as Resident
System Extension (RSX), are: BackGrounder ii and DosDisk, ZCPR3

ZSDOS 1.1 Programmer's Manual

 3

system components (such as ENV, RCP, IOP, NDR and FCP), utilities
such as DateStamperTM and last but not least the ZSDOS extensions
for date stamp support for files.

RSXs are usually in memory just below the CCP. All other system
extensions are usually located above the BIOS. In summary, the
memory allocation is shown in the following overview:

 FFFFH +--------------------------+
 | optional System segments |
 XXXXH +--------------------------+
 | BIOS |
 BIOS +--------------------------+
 | ZSDOS |
 BIOS-0E00H +--------------------------+
 | CCP |
 BIOS-1600H +--------------------------+
 | optional RSXs |
 XXXXH +--------------------------+
 | |
 | Transient Program |
 | Area |
 | |
 0100H +--------------------------+
 | System Page |
 0000H +--------------------------+

As can be seen from this illustration, only the addresses of the
system page and the start of the TPA area are precisely defined
in a ZSDOS system. All other system addresses depend on the BIOS.
The sizes of the system page, the ZSDOS and the CCP (except in
extended Z systems) are precisely defined. Other system segments
can be adapted to your own needs.

1.2.2 System page

The system page (address range from 0 - 0FFH) is used by ZSDOS
for important system information. For ZSDOS, the same specifica-
tions apply for the system page as under CP/M 2.2. The system
page forms the interface to ZSDOS, which is why understanding the
function of each individual area is extremely important.

00H - 02H jump to BIOS warm start routine (BIOS+03H)

No program may change this address. It is the only way to
determine the base address of the ZSDOS system segment with
certainty. An example of the "correct" use of the warm boot
vector follows later in this manual. If programs want to change
the BIOS jump vectors, only the values of the BIOS jump table may
be adapted, not the jump destination of address 0.

Only Alpha System's NZCOM changes the BIOS warm boot vector in an
acceptable manner. A BIOS including jump table is "imitated",
which is further down in the memory. The system segments of the

ZSDOS 1.1 Programmer's Manual

 4

ZCPR are loaded between the real system BIOS and the "imitation"
of NZCOM. The BIOS warm boot vector points to the "imitated"
BIOS. This means that all programs, except for system-specific
utilities, continue to run without errors. When writing or
revising a BIOS, one should note the functionality of NZCOM in
the system utilities.

03H IOBYTE

The IOBYTE contains a BIOS-dependent structure. It can be used by
the BIOS programmer to enable byte-oriented inputs/outputs to be
redirected. The byte itself contains 4 fields that stand for the
logical device console (CON:), reader (RDR:), punch (PUN:) and
list device (LST:). Each logical device can be assigned to one of
up to four different physical devices.

Because the integration of the IOBYTE is optional and system
dependent, please refer to the manuals of your computer to
determine the exact specifications for your system.

04H current CCP default drive and user area

The CCP stores the values for the current default drive and the
current user area in the byte of this memory location. The value
for the drive is saved in bits 0 to 3, starting with 0 for drive
A. Bits 4 to 7 store the user area with modulo 16. Please note
that only user areas 0 to 15 can be accessed directly. Since five
bits are available for the user area in the directory, files or
programs can also be stored in the user areas 16 to 31. From
version 3.3 of the ZCPR, logging into user areas 16 to 31 is op-
tionally possible at the command level. The additional CCP code
keeps the number of the high user area (with a few exceptional
cases).

05H - 07H jump to BDOS

A call to address 5 is used to perform a ZSDOS function. However,
the value at address 6 cannot be used as a direct pointer to
ZSDOS!

If the size of the available TPA area is required by a program,
the jump address stored at addresses 6 and 7 can be used for the
calculation. The most significant byte of the value at address 6
always points to the last page of the TPA area. Depending on
whether an RSX is loaded or not, the next page contains the ZSDOS
segment.

08H - 2FH free for system expansions

30H - 37H reserved

38H - 3FH restart vector 38H

This address is normally used by debuggers to save the breakpoint

ZSDOS 1.1 Programmer's Manual

 5

routine. During the test phase, the debugger only needs one byte
(opcode: RST 38H, value: 0FFH) to enter the breakpoint.

40H - 4FH free for system expansions

On some computers, parts of this memory area are used for system
functions. For example, on the Ampro Little Board, the ZCPR3 path
in stored bytes 40H to 4DH.

50H - 5BH free for programs

Various modem/BBS programs from the public domain area store
parameters such as the baud rate.

5CH - 6BH default file control block (FCB) 1

6CH - 7BH default file control block (FCB) 2

The CCP stores the first two parameters of the command line in
the file control blocks. When using the first file control block
to open a file, the content of the second file control block is
overwritten. When opening a file with the second file control
block, part of the DMA buffer is overwritten. The 16 bytes of the
second file control block should be copied to another memory area
before using 6CH and only used there. This means that the file
control block at address 5CH can be used unchanged. After opening
the file, the complete file control block is 36 bytes (from 5CH
to 7FH).

80H - 0FFH default DMA buffer/command line

This memory area is used for two tasks. If a program is started
by the CCP, it stores all arguments of the command line for
further use by the program. The first byte of the buffer (80H)
contains the number of valid characters. The rest of the command
line follows itself, starting with the space (on 81H), which
separates the arguments from the command.

This area is also used for the default DMA buffer. As long as the
address of the DMA buffer has not been changed via the BDOS
function 26, all data transfers between memory and disk take
place via this memory area. The program must therefore evaluate
the command parameters before the buffer is overwritten by disk
operations.

	

ZSDOS 1.1 Programmer's Manual

 6

2 BDOS functions

The BDOS works not only with floppy drives, but also with other
I/O devices, e.g. printer, console, clock, modem etc. Floppy disk
I/O is carried out with data blocks, while almost all other
devices only transfer single bytes. There are also a number of
BDOS calls to read or change data structures and manipulate the
file system. As you can see, the BDOS has something more to do
than just manage the floppy or file system.

2.1 Character I/O

With character I/O, only one character or byte is transferred at
a time. This type of transmission is normally used for the
terminal, printer or serial communication (modem) devices. The
BDOS incompletely supports four logical devices for character
I/O:

* Console (input/output)
* Reader (input)
* Punch (output)
* List output [printer]

In this context, "incomplete" means that the status (ready/not
ready) is not available for all logical devices. Because this was
overlooked in the development of the original CP/M system
segments BDOS and BIOS, the programming of special applications
is much more difficult. For example, serial port communication
programs to other computer types only work with great effort.

ZSDOS provides nine functions for character I/O. While the first
six only provide a direct interface to the corresponding BIOS
functions, the last three carry out rudimentary processes. The
nine functions are:

* Read a character from the console
* Display a character on the console
* Read a character from the reader
* Output a character to the punch
* Output a character to the list device [printer]
* Query the input status of the console
* Direct console I/O
* Display a character string on the console
* Read console buffer (get character string from console, with
 editing functions)

2.2 Disk I/O

The floppy disk operations of the BDOS save the data as logical
data blocks, which are grouped together to form a file. The file
is saved in one of up to 32 user areas of a logical drive. There
can be up to 16 logical drives in a CP/M system.

ZSDOS manages the data blocks as 128-byte logical records, as

ZSDOS 1.1 Programmer's Manual

 7

provided by the BIOS. ZSDOS carries out the necessary conversion
to determine the physical track and sector numbers. In this way,
the physical sector size that is processed in the BIOS remains
hidden from the application programs. Regardless of whether the
physical sector size is 128, 256, 512, 1024 or 2048 bytes, the
BDOS provides a uniform interface. The BDOS offers the following
file operations:

* Search for a file
* Rename a file
* Delete a file
* Create a new file
* Open an existing file
* Jump to a specific point in a file
* Read a record from a file
* Write a record to a file
* Close file
* Determine the size of a file

Some of these functions can be applied to closed files. These
include: Search, rename, delete, create, open and determine file
size. All other functions can only be applied to open files.

2.3 Control and status

The last large category of BDOS functions contains a series of
commands for controlling and influencing the status of the
system. This includes functions that deliver addresses of data
structures. It also defines the functions of connected I/O
devices.

Due to the extensions in ZSDOS, many new commands are available
in this category (e.g. for error mode, real time clock and date
stamp). To make the system even more flexible, some functions can
be activated or deactivated by using new control structures in
the running system.

Basically, the functions of this category can be divided as
follows:

* Return of data structures
 (12 commands)
* Define control elements
 (7 commands)
* System control
 (6 commands)
* Interface to the real time clock
 (2 commands)
* Time and date stamp for files
 (2 commands)

	

ZSDOS 1.1 Programmer's Manual

 8

3 ZSDOS Data Structures

3.1 General

Various data structures are used to exchange data between ZSDOS
and application programs. When the program transfers information
to ZSDOS, a ZSDOS function is called and a byte value in register
E or a word pointer to a data structure in register pair DE is
transferred.

Passing multiple values to ZSDOS is only a little more difficult.
Normally, no special precautions are necessary. If pointers to
certain data structures are passed in repeated calls, the data
structure should not be shifted between calls because the address
of the structure is passed to ZSDOS each time. An example: If a
file with the file control block (FCB) is opened at a certain
address, the FCB should not be moved to another address. Failure
to do this can lead to problems with DateStamperTM, BGii or other
programs.

If information from ZSDOS is returned to the program, it is
available in registers (byte or word), in the previously defined
buffer area, in the current DMA buffer or as a pointer to the
current data area. As far as possible, the same structures are
used for the transfer of information to and from ZSDOS. For
example, the file control block (FCB) corresponds largely to the
data structure with which the directory information is stored on
disk. If entries are to be made in the directory, the fields of
the FCB are initialized by the application program that cor-
respond to the directory fields.
3.2 Logical record

The most basic structure used by ZSDOS is the logical record. It
contains 128 bytes of data/information read from or written to a
floppy disk. Please note that the term "logical record" should
not be confused with the term "sector". Normally, a sector of the
disk contains several logical records.

With the disk functions "Read" or "Find first/next file", ZSDOS
reads the information of a logical record in the current DMA
buffer. In the same way, write to disk from there using the write
functions. The base address of the DMA buffer is defined via the
function call 26, the desired address being transferred in the
register pair DE. Function 47 can be used to query the current
DMA address, which is returned in register pair HL.

3.3 File Control Block (FCB)

Another basic structure is the file control block (hereinafter
referred to as FCB), which is used to transfer information to
ZSDOS for most file-related functions. The FCB is a 36-byte data
area that contains information required for file manipulation.
The FCB is structured as follows:
	

ZSDOS 1.1 Programmer's Manual

 9

FCB+00H Drive number (DR, 0=default drive, 1...16=A-P)
FCB+01H File name in uppercase ASCII letters [8 bytes] (Fn)
FCB+09H ASCII uppercase file type [3 bytes] (Tn)
FCB+0CH Logical extent number (EX)
FCB+0DH User area (S1)
FCB+0EH Data module (S2)
FCB+0FH Extent record counter (RC)
FCB+10H 16 byte disk map for this extent (AL)
FCB+20H Current record for R/W (CR)
FCB+21H Random access record number LSB (Rn)
FCB+22H Random access record number ISB
FCB+23H Random access record number MSB

The most significant bits in the file name and in the file type
are used to store the attributes. Such attributes mark a file as
read-only or archived. For more information on using file at-
tributes, see function 30 in section 5.2.30.

The logical extent (EX) is used by ZSDOS in order to be able to
process files that are larger than 128 logical records (16 kB).
For the first logical extent, this number is set to 0 and
increased by one each time for a further 128 records.

The data module number (S2) is used by ZSDOS to process files
that are larger than 32 logical extents (512 kB). It is also
initially set to 0 and is increased by one each time for a
further 64 logical extents.

These fields of the FCB are normally set to zero by the applica-
tion programs, but in certain cases are set to different values.
The logical extent number can take values between 0 and 31.
Values between 0 and 63 are permitted for the data module number.
You can find more detailed information in section 5.2.17
(Description of functions "Search for First File") of this
manual.

The last record used number is stored in the current logical
extent in the byte of the record counter. The allocation vector
represents the number of blocks occupied by the file. No data
from any of these fields is passed to ZSDOS.

The next record number is stored in the current extent in the
current record byte, which is accessed by the functions
"Sequential Read" or "Sequential Write". Normally, this byte is
set to zero by the user when searching or opening files. It
should not be changed between sequential write or read accesses.

The three-byte field with the number for the random record is
used by the functions "Random Access Read" and "Random Access
Write". The 24 bits can contain a number between 0 and 262,143.
This results in the maximum size of a file of 262,144 records.

There is a very important difference between ZSDOS and other DOS
segments for CP/M 2.2. ZSDOS only opens or creates new extents

ZSDOS 1.1 Programmer's Manual

 10

when they are needed and not when the last record of an extent is
read or written. This means that after the sequential reading or
writing of the last record of an extent, the bytes of the current
record and the record counter are set to 80H. Some older applica-
tion programs are unable to cope with this functionality of the
DOS and therefore do not run under ZSDOS. Because CP/M Plus deals
with extents in exactly the same way as ZSDOS, these programs do
not run under CP/M Plus.

It is extremely important to be aware of the importance of the
FCB for DOS in file operations. All status information is saved
there. If a program tries to change the FCB of an open file, the
entire DOS status will be destroyed! This is especially true when
DosDisk is running and the FCB is in MS-DOS format. It is
therefore strongly recommended that applications should never
change the FCB fields of an open file. The only exceptions are
the fields of the current record and the number for the random
record.

3.4 Directory Record

The directory record is a data structure that the BDOS writes to
disk. This contains information about the current assignment of
the files. Each directory record is 128 bytes long (a logical
record) and usually contains four directory entries. There is at
least one directory entry for each file on the disk. If a file is
so large that several directory entries are required for it, such
an entry is referred to as a "physical extent". Each physical
extent has its own number, so that ZSDOS can correctly access the
files.

Each directory entry is 32 bytes long and is structured similar
to the file control block. The main difference is that the fields
for the current record and for the random record are not
available in the directory entry. In addition, the user area of
the file is saved in the first byte of the directory entry rather
than the drive code or the value 0E5H if the file was deleted.

Directory entries are structured as follows:

DIR+0 User area of the file (0..31)
DIR+1..8 File name in uppercase ASCII letters [8 bytes]
DIR+9..11 ASCII uppercase file type [3 bytes]
DIR+12 (EX) Logical extent number
DIR+13 (S1) system byte (set to 0)
DIR+14 (S2) data module
DIR+15 (RC) Record counter
DIR+16..31 (AL) Allocation vector for this physical extent

As with the FCB, the most significant bits of the file name or
type are used to store the attributes.

	

ZSDOS 1.1 Programmer's Manual

 11

3.5 Disk Allocation Vector

The disk allocation vector is a structure of the BDOS that is
embedded in the BIOS. There is an allocation vector for each
logical drive in the system. It is a bit map of all blocks on the
floppy disk. If a bit is set to 1, this means that the assigned
block is used (occupied). Accordingly, a bit reset to 0 indicates
that the block is available. The minimum size of the allocation
vector in bytes for a drive can be calculated as follows: number
of blocks/8+1.

Access to this structure is very unusual for an application
program (apart from some directory programs that derive the
available disk space). Application programs must never change the
allocation vector directly. Function 27 returns the address of
the allocation vector for the current default drive in register
pair HL. However, we recommend that the vector should not be
accessed, as this may not be possible in future systems. This is,
for example, already the case with CP/M Plus and may also be the
case in future versions of ZSDOS.

3.6 Disk Parameter Block

The disk parameter block (DPB) is a BIOS structure that defines
the format of a logical drive for ZSDOS. If a program needs in-
formation from the DPB, it must access it directly. The DPB is
structured as follows:

DPB+0,1 Number of 128 byte records per track
DPB+2 Block shift factor
DPB+3 Block mask
DPB+4 Extent mask
DPB+5,6 Number of the maximum available blocks
DPB+7,8 Number of directory entries -1
DPB+9,10 Bit map of the directory and reserved blocks
DPB+11,12 Size of the directory check buffer
DPB+13,14 number of system tracks

A detailed description of the individual fields of the DPB would
go beyond the scope of this manual. We therefore recommend the
very good book "The Programmer's CP/M Handbook" by Andy Johnson-
Laird (see the bibliography in the ZSDOS User's Guide). Function
31 returns the address of the DPB for the default drive in
register pair HL.

	

ZSDOS 1.1 Programmer's Manual

 12

3.7 Dates

If the driver routines to support date stamps are installed,
ZSDOS supports two other structures. The first is the date
specification, which is used to exchange time and date informa-
tion between application programs and ZSDOS. The date is based on
a series of packed BCD numbers and is structured as follows:

TIME+0 last 2 digits of the year (from 78 to 99 is
 preceded by 19 for the century, otherwise 20)
TIME+1 month [1..12]
TIME+2 Day [1..31]
TIME+3 hour [0..23]
TIME+4 minute [0..59]
TIME+5 Second [0..59]

Anyone familiar with DateStamperTM will immediately recognize
this format. The only deviation from the DateStamperTM format is
the preceding century. DateStamperTM always assumes "19" for the
century. For more information about the DateStamperTM format, you
should refer to the DateStamperTM manual starting on page A-19.

When function 98 is called, ZSDOS returns the current time in the
buffer, the start address of which is passed in the register pair
DE. Calling function 99 sets the clock to the values in the
buffer, the start address of which is transferred in register
pair DE.

The relative clock known from DateStamperTM is also supported.
Only the hour and minute fields are required for this, the
seconds field is set to zero. The relative clock is just a simple
binary counter. The minute field is used as the low-order byte,
while the hour field is the high-order byte. To avoid confusing
the relative clock with a real-time clock, the most significant
bit (bit 7) is set in the hour field for a relative clock.

3.8 stamp format

The stamp format for files used by ZSDOS was also derived from
DateStamperTM. (Honestly folks, we didn't want to plagiarize
Bridger Mitchell's ideas. We carefully examined each existing
format before deciding on the method that best suited our
purposes.) Regardless of the stamp method used in the system -
DateStamperTM or P2DOS or CP/M Plus format - the format used in-
ternally is always the same.

The universal format consists of three fields that contain in-
formation about the creation, the last access and the last
change. The first 5 bytes of the date are used for this. If a
field is not supported or is only partially supported, the cor-
responding areas in the field are set to 0 when reading and
ignored when writing.

All stamp information is transferred in the current DMA buffer.

ZSDOS 1.1 Programmer's Manual

 13

Function 102 returns the date stamp information of a file, the
FCB address of which was transferred in the register pair DE.
Function 103 is used to transfer the stamp information from the
DMA buffer to a file whose FCB address in the DE register pair.
At the moment, the stamp information is only 15 bytes long.
However, this could change in future versions of ZSDOS, so that
for compatibility reasons we recommend reserving a 128-byte
buffer in the application program.

Stamp format for files (15 bytes packed BCD numbers):

DMA+0..4 Created date (first 5 bytes of the date)
DMA+5..9 Last Access date (first 5 bytes of the date)
DMA+10..14 Modified date (first 5 bytes of the date)

	

ZSDOS 1.1 Programmer's Manual

 14

4 ZSDOS programming conventions

4.1 General

ZSDOS is compatible with CP/M 2.2 and ZRDOS applications.
However, to create a solid foundation for future extensions of
ZSDOS and compatible BDOS substitutes, the following practices
should be considered during programming.

Under ZSDOS it is assumed that the system page has the same
structure as under CP/M 2.2 or ZRDOS - i.e. a jump to the warm
start routine of the BIOS (jump target: BIOS+3) at address 0000H
and a jump to the BDOS or the lowest resident system extension
(RSX) at address 0005H. A correct system address cannot be
derived from the jump destination of address 0005H, except for
the end of the TPA area. The following lines of source text are
intended to illustrate how the upper end of the TPA area can be
calculated using the jump instruction at address 0005H:

GETSIZ: LD HL,(0006H) ; Get the end address of the TPA
 DEC HL ; correct address now in HL
 ...

This address is often used by application programs to calculate
the start addresses of BDOS and BIOS. However, this method does
not work if resident system extensions (RSXs) such as BGii, ZEX,
DosDisk etc. are installed.

To correctly calculate the system addresses, the jump destination
of address 0000H must be used. The pointer of this address always
points to BIOS+3 and should never be changed by any program. When
programs need to intercept the BIOS entry points, e.g. for warm
start, console status etc., the jump table of the BIOS should be
changed and not the jump destination at address 0000H. The ZSDOS
entry point can be calculated correctly according to the
following example:

FINDZS: LD HL,(0001H) ; Get BIOS warm start address
 LD DE,-0DFDH ; Offset to start of ZSDOS
 ADD HL,DE ; HL points to ZSDOS entry point

As with CP/M 2.2, ZRDOS up to version 1.9 and most unbanked
systems, the base address of ZSDOS is 0DFDH below the jump des-
tination at address 0000H. The start address of the CCP can also
be calculated in this way. To do this, just subtract the value
1603H from the jump target. The start of the BIOS jump table
(cold start) is obtained by subtracting 3 from the jump target.

If you now combine the "correct" calculation method of the BDOS
entry point and the jump destination at address 0005H, you can
easily determine whether an RSX is installed.

	

ZSDOS 1.1 Programmer's Manual

 15

FINDZS: LD HL,(0001H) ; Get BIOS warm start address
 LD DE,-0DFDH ; The beginning of ZSDOS below
 ADD HL,DE ; HL points to ZSDOS entry point
 EX DE,HL
 LD HL,(0006H) ; Get BDOS jump vector
 AND A
 SBC HL,DE ; are the addresses identical?
 JR Z,NORSX ; yes - no RSX available
 ...

In ZCPR systems with an extended environment, the BIOS, BDOS and
CCP addresses are available in the environment. If an extended
environment is available, all system addresses must be taken from
the environment. The reason for this may be "abnormal" sizes of
BDOS and CCP of such systems.

ZSDOS functions are called up by storing the ZSDOS function
number in register C and values in register E or register pair
DE. A call (CALL) is then made to address 0005H. ZSDOS returns
values in register A and/or in register pair HL. All register
contents with the exception of IX, IY and the alternative
registers can be changed.

When developing BIOSes, BIOS extensions or IOPs with reentrancy,
it should be borne in mind that all registers that are not
included in the original 8080 register set must be backed up and
restored between calls. The application programs "owns" the reg-
isters AF', BC', DE', HL', IX and IY - not the system software!
According to the conventions, however, registers I and R are sub-
ject to the BIOS. With new processors like 64180 and Z280, all
new registers (with the exception of the Z280 SSP) belong to the
BIOS because they are hardware-specific and directly related to
inputs and outputs. The Z280 SSP should remain reserved for the
BDOS.

Many programmers have used techniques in file operations that
cause problems with advanced operating systems. For example, the
search for files is affected, which under certain circumstances
can lead to apparent malfunctions with ZSDOS when the path is
activated. The test for the existence of a file should be carried
out using the BDOS function 17 provided for this purpose and
should not be based on the evaluation of the returned code of the
opening function. When opening, ZSDOS searches for the specified
file along the path, but not when searching for the first entry
(function 17).

In addition, programmers have to take into account that with
ZSDOS much larger files can be created than under CP/M 2.2 or
ZRDOS. While the latter systems only support file sizes of up to
65,536 logical records (8,192 kB), files under ZSDOS can be up to
262,144 logical records (32,768 kB). Such files can also be
processed by CP/M 3.0.

	

ZSDOS 1.1 Programmer's Manual

 16

4.2 Reentrancy in ZSDOS calls

Reentrant ZSDOS function calls in the sense of the ZRDOS 1.x
specifications are fully supported by ZSDOS. This property is
generally only used by ZCPR I/O packages (IOPs).

A reenterant ZSDOS function call is triggered when ZSDOS calls a
BIOS function that is intercepted by an IOP, which in turn calls
a ZSDOS function. An example of this would be a printer spooler
(a program that redirects printer output to a file). ZSDOS would
call the BIOS function for the list output. The IOP intercepts
this function call and then calls ZSDOS functions to write the
intercepted data to a file.

The possibility of reentrancy is a very powerful tool, but it can
also cause unprecedented damage in the system! All important
internal status information from ZSDOS (including the address of
the DMA buffer) must be saved before each function call and then
restored again. In addition, some BIOS information must also be
saved or reinitialized. A basic rule is: No BDOS disk function
may be interrupted.

In order to offer maximum compatibility with existing programs
for ZRDOS Plus, the data areas of ZSDOS were located in the lower
part of the system segment. The addresses used and the method of
reentrancy are compatible with existing IOPs for ZRDOS Plus. Here
is a comparison of the ZSDOS parameters with the requirements of
ZRDOS Plus:

 Beginning length
ZSDOS Base+3 146 (92H) bytes
ZRDOS Plus Base+5 147 (93H) bytes

Because the data area of ZSDOS is smaller, there is no damage if
the 147 bytes required by ZRDOS Plus are saved. The different
start addresses are due to the fact that in ZSDOS there is an
internal error vector table on a CP/M 2.2 compatible offset. The
address of the BAD SECTOR error routine is located on the
affected bytes. The user should make sure that no routine at
ZSDOS reentrancy with ZRDOS parameters changes the BAD SECTOR
error vector. Otherwise strange things could happen.

As already shown, the base address of ZSDOS can be easily calcu-
lated using the BIOS warm start vector at addresses 0001 and
0002. Only 0DFDH has to be subtracted from the vector to get the
"base".

One last precautionary measure must be taken when using the
reentrancy options in the event that traps in the BIOS jump
vectors are used to initiate reentering ZSDOS calls: The user
must ensure that all registers, including the IX register, are
saved between the reentering calls!

	

ZSDOS 1.1 Programmer's Manual

 17

Example:

To integrate a reentrant function call, the address of the DMA
buffer must first be queried by the DOS and saved in your
program. Then the data area of the DOS must also be saved in your
program. From this point on, all function calls can be made
regardless of the previous state of the DOS. Once your routine
has been executed, you should restore the DOS by reversing the
steps at the beginning; first the saved data area is copied to
its original position and then the address of the DMA buffer is
set to the old value using function 26. The address must be
restored with the DOS function 26 in order to compare the DMA
address of the BIOS with that in the ZSDOS data area, if it is
changed by your program.

 LD C,47 ; Get current DMA address
 CALL 5 ; ... call the DOS entry point
 LD (DMASAV),HL ; Save DMA address locally
 CALL FINDZS ; Find ZSDOS base address
 ; ... (see section 4.1)
 LD DE,9-6 ; Offset of the data area
 ADD HL,DE ; ... from the DOS start
 LD DE,SAVAREA ; Local backup area pointer
 LD BC,147 ; ... and the whole area
 LDIR ; ... copy the block
 ... ; here is your routine
 CALL FINDZS ; Find ZSDOS base addr again
 LD DE,9-6 ; Offset of the data area
 ADD HL,DE ; ... from the start of DOS
 EX DE,HL ; in the reg. for the goal
 LD HL,SAVAREA ; Pointer to source on the
 ; ... the local security area
 LD BC,147 ; the whole area
 LDIR ; ... copy the block
 LD DE,(DMASAV) ; Get secured DMA address
 LD C,26 ; ... and with function 26
 CALL 5 ; ... set via DOS (and in BIOS)
 ... ; go on...

4.3 ZSDOS configuration area

The configuration area of ZSDOS is located at address ZSDOS
Base+3. Various vector tables, the addresses of the path and the
wheel byte as well as the configuration byte of the flags are
stored in this area. The same assignment is retained for all
versions 1.x of ZSDOS and ZDDOS. However, changed offsets may be
used in future publications.

	

ZSDOS 1.1 Programmer's Manual

 18

4.3.1 Error vector table

The error vector table is located at address base+3. This is a
CP/M 2.2 compatible structure that is used by some programs (e.g.
sector check programs) to intercept the BDOS errors. It was only
integrated into ZSDOS because of the compatibility with existing
programs. ZSDOS applications should use the new BDOS error modes
to intercept errors.

4.3.2 Path address (ZSDOS only)

The base address of the search path is stored at address base+11.
When opening files, ZSDOS uses the search path if the value at
this address is not equal to zero and bit 5 of the configuration
byte is set to 1.

Please note that if the CCP uses a command search path (as with
ZCPR or BGii), the DOS path is searched as often as there are
entries in the command search path of the CCP. Of course, this
slows down the work. Future versions of these replacement CCP
systems should check for a ZSDOS path to initiate one of the
following procedures. If it is determined that a DOS path is
available and activated, this is used instead of the CCP search
path. The second option would be to deactivate the DOS path via
bit 5 of the flag byte during the search along the CCP command
search path.

4.3.3 Address of the wheel byte

The address of the wheel byte is saved in base+13. The wheel byte
is a ZCPR control element with which the safety functions of the
system can be expanded. If the wheel byte is off (value equals
0), ZSDOS protects all files with the wheel protection attribute
(f8) set from being overwritten, deleted and renamed. If the
address of the wheel byte in the BDOS is set to 0 (pointer to the
jump to warm start), ZSDOS assumes that the user has all rights
of use and allows him unrestricted access to the files.

Please note that the wheel byte is an element of ZCPR3 and any
arbitrary address can be set for the independent DOS control
mechanism. If you use one of the ZCPR versions 3.x as a replace-
ment for the CCP, you will certainly use the same wheel byte for
both system segments. We just want to point out that different
memory cells are possible for special installations.

4.3.4 Configuration byte

Many properties of ZSDOS can be checked during runtime by
changing the configuration byte. The byte is based on address+15.
Not all flag bits are used by ZSDOS. If unused bits are set or
reset, this has no effect on ZSDOS.

	

ZSDOS 1.1 Programmer's Manual

 19

To ensure compatibility with later versions of ZSDOS, only the
functions 100 (hole flags) and 101 (set flags) should be used to
access the ZSDOS flags. The meaning of the flag bits in the con-
figuration byte is defined as follows:

Bit: 7 6 5 4 3 2 1 0
 | | | | | | | +- Public files on (1)/off (0)
 | | | | | | +--- Write public/path files on (1)/off (0)
 | | | | | +----- Get read-only vector on (1)/off (0)
 | | | | +------- quick login on (1)/off (0)
 | | | +--------- Floppy disk change warning on (1)/off (0)
 | | +----------- ZCPR2/3 path on (1)/off (0)
 | +------------- Path with/out system files on (1)/off (0)
 +--------------- reserved

Bit 0 controls whether ZSDOS finds files with the "public file"
(f2) attribute in other user areas on the same disk. If the bit
is set to 1, such files are found if a unique file name has been
specified.

Bit 1 decides whether it is allowed to write to files that were
found using the public attribute or the path (only ZSDOS). If the
function is switched on (bit 1 equals 1), files can be written
to. Otherwise (bit 1 equals 0) writing to files that were found
using the attribute public or the path is not possible.

Bit 2 specifies when the write protection vector in ZSDOS is
deleted. If the bit is set, the vector is never deleted (as long
as ZSDOS is not reloaded from the disk). If the bit is reset, the
write protection bit for a drive is deleted when it is logged in
again with function 13 or 37.

Bit 3 causes ZSDOS not to recreate the allocation vector of a
"fixed" disk (hard disk or RAM disk) if the drive has been logged
out with function 13. Setting this bit speeds up work with hard
disks considerably. Fixed disks can be logged in again at any
time using function 37.

Bit 4 switches the message from ZSDOS on or off when changing
floppy disks. If the bit is set, ZSDOS issues a message on the
screen each time a disk is changed. This message is of course
suppressed if the BDOS error mode is set accordingly; regardless
of the state of this bit.

Bit 5 enables the use of the DOS path when opening files if it is
set to 1 (ZSDOS only). If this bit is set and a non-zero value is
entered in the address for the path, the specified file with a
unique name is found by ZSDOS using the path. This bit has no
meaning for ZDDOS.

Bit 6 specifies the path access if the path is activated (ZSDOS
only). If bit 6 is set to 1, all files in directories along the
path are found regardless of the system attribute (path directory
access). If this function is switched off (bit 6 equals 0), only

ZSDOS 1.1 Programmer's Manual

 20

files with the system attribute set (path file access) are found
in the directories along the path. This bit has no meaning for
ZDDOS.

4.3.5 Date vectors

A vector table is integrated in ZSDOS, which allows drivers for
date stamps to integrate themselves into ZSDOS. The table
contains 6 entries and starts at address base+16. Another dummy
entry is only used to record the address of the switch-off
function in ZSDOS.

The special drivers for date stamps install themselves in ZSDOS
by entering the addresses of the supported functions in the
table. ZSDOS calls the required routines to perform the date
stamp functions. Before doing so, however, the directory buffer
is updated and a check is carried out to determine whether the
disk has read/write status.

Because ZDDOS already contains DateStamperTM, only the addresses
for the clock driver, for the removal and for the dummy entry are
necessary for this DOS.

The structure of the date vector table:

Base+16 Vector of the routine for reading/setting the RTC
Base+18 Vector of last access stamp routine
Base+20 Vector of the routine for creation stamp
Base+22 Vector of the routine for the modified stamp
Base+24 Vector of routine to get stamp
Base+26 Vector of routine to put stamp
Base+28 Vector of the dummy routine
Base+30 Address of the routine for removing the date stamp

4.4 Routines to support time and date stamps

ZSDOS and ZDDOS differ significantly with regard to the routines
for supporting time and date stamps. DateStamperTM is already in-
tegrated in ZDDOS, so that only one clock driver is required.
ZSDOS does not include a stamp routine. Both an external clock
driver and an external stamp routine are required for operation.

Different forms of date stamps are possible with ZSDOS. Supported
methods include Plu*Perfect's DateStamperTM and P2DOS (compatible
with CP/M Plus) date stamps. As long as no corresponding routine
for supporting date stamps is installed in the ZSDOS system, the
date stamps cannot be activated. It is not necessary to install
such routines to operate ZSDOS. They are only required if you
want to use functions 98, 99, 102 and 103.

Depending on the desired stamping method, different routines are
required. With the integrated DateStamperTM support, ZDDOS only
allows the use of this method. With ZSDOS, DateStamperTM, P2DOS
or both types of stamps can be used. Drivers for other stamping

ZSDOS 1.1 Programmer's Manual

 21

methods can be programmed and easily integrated into ZSDOS. For
this purpose, ZSDOS only provides defined connection points,
while the actual routine is located outside the BDOS segment,
typically above the BIOS. It is based on the same philosophy as
ZCPR - optional parts of the system are moved to reserved buffer
areas above the BIOS.

ZSDOS does most of the detail work for the routines. The
requested FCB is copied into the directory buffer, the disk is
checked for read/write status if necessary, the DMA buffer and
the offset of the directory buffer are provided according to the
method.

Due to the close connection of the DOS with the routines for date
stamping, the average memory requirement for DateStamperTM with a
real-time clock driver under ZSDOS is approx. 3/4 kByte - much
less than with earlier DateStampers. With ZDDOS and the in-
tegrated DateStamperTM, the memory requirement is reduced even
further, since only the clock driver is missing. This is usually
less than 400 bytes. If a clock driver is already available in
the system, no additional storage space is required under ZDDOS.

ZSDOS comes with special drivers for DateStamperTM, P2DOS (CP/M
Plus compatible) and to support both formats. The drivers for
both methods each read a format and write both. They are par-
ticularly interesting for users who require the highest level of
compatibility between CP/M Plus and ZSDOS systems.

	

ZSDOS 1.1 Programmer's Manual

 22

5 ZSDOS function calls

5.1 Description of the returned values

The ZSDOS functions return values to indicate the success or
errors that occurred when executing the function. There are five
categories of these codes - directory codes, error codes,
time/date codes, read/write codes and extended error codes. The
following overview shows the returned values of the codes of each
category:

Directory code:

 A = 00H, 01H, 02H, 03H if no error has occurred
 A = 0FFH, in the event of an error

Error code:

 A = 00H, no error
 A = 0FFH, error occurred

Time/date code:

 A = 01H if no error has occurred
 A = 0FFH, error occurred

Read/write code:

 A = 00H, if no error has occurred
 A = 01H, read - end of file write - directory full
 A = 02H, floppy disk full
 A = 03H, error while closing on random read/write
 A = 04H, empty record for random reading
 A = 05H, directory full of random writing
 A = 06H, random access record number during random
 reading/writing too large

extended error codes in error mode:

 A = 0FFH, further error codes in H
 H = 01H, disk I/O error (defective sector)
 H = 02H, floppy disk write-protected (read only)
 H = 03H, file read-only
 H = 04H, illegal drive selected

The following function descriptions show which values are
returned by each function. The only exception is the extended
error codes that are returned by any function that performs disk
access. However, these extended codes are only returned if one of
the two modes for returning the error code has been set using
function 41.

	

ZSDOS 1.1 Programmer's Manual

 23

5.2 Functional description

+---+
| Function 0 - Terminate Program |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | none |
+-------------------------------+-------------------------------+

This call, which is rarely used, clearly distinguishes it from
application programs. If this function is called, ZSDOS executes
a RST 0 command internally. In a ROM-based ZSDOS system, the RAM
data segment is initialized and loaded with the default values.

Most programmers use an RET command (if the CCP has not been
overwritten) or a jump to address 0 to end their program. Func-
tion 0 is a one-way street - it does not return to the calling
program.

The result of this call corresponds to the warm start of the
system - all drives with exchangeable media are reset, the DMA
address is set to 80H, the CCP is reloaded (unless it is pro-
tected by an RSX) and control is transferred to it. In addition,
the ZSDOS error mode is reset to the default by calling this
function.

DONE: LD C,0
 CALL BDOS ; One-way street - no way back

	

ZSDOS 1.1 Programmer's Manual

 24

+---+
| Function 1 - Console Input Byte |
+-------------------------------+-------------------------------+
| Input: | Output: |
| no | A = character |
+-------------------------------+-------------------------------+

This function returns the next character from the console. If no
character is available when this function is called, ZSDOS waits
for an input before returning to the calling program. The
returned character is output on the console, with control
characters being filtered.

Carriage return (0DH), line feed (0AH) and backspace (08H) are
reproduced unchanged. All tab stops (09H) are converted to the
corresponding number of spaces in order to position the cursor on
the next column that can be divided by 8. All other control
characters are not displayed on the console.

Control-S is intercepted by this function and treated as follows:
If a Control-S was detected, all outputs to the console are
stopped until any other character (except Control-C) is entered.
After that, console output continues. If a Control-C is
recognized after entering Control-S, ZSDOS resets the error mode
to the default mode and then carries out a warm start.

CONIN: LD C,1
 CALL BDOS ; next char from the console
 ... ; Character is now in register A

	

ZSDOS 1.1 Programmer's Manual

 25

+---+
| Function 2 - Console Output Byte |
+-------------------------------+-------------------------------+
| Input: | Output: |
| E = character | none (A = BIOS A register) |
+-------------------------------+-------------------------------+

The character contained in register E is output to the current
console device with this function. As with function 1, all tab
stops are converted to spaces, so that the cursor is positioned
on the next column that can be divided by 8.

The console input function controls this function when a Control-
S occurs. If a Control-S has been entered, the output to the
console will be blocked until any other character (except
Control-C) is entered. If a Control-C is entered after entering
Control-S, ZSDOS resets the error mode to the default mode and
then carries out a warm start.

Note: This function should not be used to output video control
characters because certain control characters are filtered.
Function 6 should be used for these purposes.

CONOUT: LD E,A ; suppose the char is in A
 LD C,2 ; Select function console output
 CALL BDOS ; Send characters to the console
 ...

	

ZSDOS 1.1 Programmer's Manual

 26

+---+
| Function 3 - Reader Input |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | A = character |
+-------------------------------+-------------------------------+

This function fetches the next character from the current reader
input device (RDR:). If no character is available when this
function is called, ZSDOS waits for an input before returning to
the calling program. If no device is defined for reader input,
the returned value depends on the dummy routine of the BIOS.
Control characters are not filtered by this function call.

In earlier BDOS systems such as CP/M 2.2, the "paper tape reader"
was defined as the device for the reader input. This term comes
from the time when paper tape was a common medium for data
storage.

The input from the reader device could be something like this:

AUXIN: LD C,3
 CALL BDOS ; next char from the reader
 ... ; Character is now in register A

	

ZSDOS 1.1 Programmer's Manual

 27

+---+
| Function 4 - Punch Output |
+-------------------------------+-------------------------------+
| Input: | Output: |
| E = character | none (A = BIOS A register) |
+-------------------------------+-------------------------------+

The punch output function sends the character in register E to
the current punch output device (PUN:). Before the character is
sent, the function waits for the device to be ready.

In earlier BDOS systems such as CP/M 2.2, paper tape was a common
media for data storage, and the "punch" was a paper tape punch.

A character can be sent to the punch output device as follows:

AUXOUT: LD E,A ; suppose the char is in A
 LD C,4 ; Select punch output
 CALL BDOS ; ... and send characters
 ...

	

ZSDOS 1.1 Programmer's Manual

 28

+---+
| Function 5 - List Output Byte |
+-------------------------------+-------------------------------+
| Input: | Output: |
| E = character | none (A = BIOS A register) |
+-------------------------------+-------------------------------+

The character contained in register E is transferred to the
current list device (LST:). The BIOS function for list output
waits for the device to be ready before the character is trans-
ferred and returned to the BDOS. The BDOS does not call the BIOS
routine for querying the list output status before sending the
byte.

LIST: LD E,A ; suppose the char is in A
 LD C,5 ; Select list output
 CALL BDOS ; ... and send characters
 ...

	

ZSDOS 1.1 Programmer's Manual

 29

+---+
| Function 6 - Direct Console I/O |
+-------------------------------+-------------------------------+
Input:	Output:
E = 0FFH (input)	A = input char (00=none)
E = 0FEH (input)	A = cons. status (00 = none)
E = 0FDH (input)	A = input char
E = 0..0FCH (output)	none (A = BIOS A register)
+-------------------------------+-------------------------------+

This function call (sometimes also called DCIO for short) is used
to bypass the normal filtered input and output of the BDOS and to
communicate directly with the console via the BIOS routines.
Normally, video control sequences are transmitted to the terminal
with this function.

In ZSDOS some shortcomings of the CP/M 2.2 BDOS were fixed, where
calls of function 6 were mixed with the normal BDOS console input
of function 1. This affects the internal character buffer of the
DOS if Control-S characters are used to start and stop the screen
output. Each time function 6 is called for character input or
status query, ZSDOS checks the character buffer in order to
always provide correct results when reading the console. At this
point we would like to thank Bridger Mitchell, who pointed out
the peculiarity of CP/M so that we were able to eliminate it.

With the value in register E, function call 6 in CP/M 2.2 and
ZSDOS systems determine the console function to be performed. All
returned values are made available in register A. The following
values are defined for register E:

0FFH get the next character from the console or 0 if no
 character is available

0FEH query the status of the console; 0 indicates that no
 character is available

0FDH* wait for the next character from the console and return
 it

0..0FCH* Output of the character in register E on the console

 * = new or changed functions in ZSDOS

The function added (0FDH) corresponds to that of CP/M Plus and
provides a more convenient routine for "get next character".

OLDCODE:LD E,0FEH ; Query console status
 LD C,6
 CALL BDOS
 AND A ; anything arrived?
 JR Z,OLDCODE ; ... no, repeat
 LD E,0FFH
 LD C,6

ZSDOS 1.1 Programmer's Manual

 30

 CALL BDOS ; finally ready, pick it up
 ... ; Characters now in A

; new method with ZSDOS ...

NEWCODE:LD E,0FDH ; get next character
 LD C,6 ; as soon as it's there
 CALL BDOS
 ... ; Character now in A

	

ZSDOS 1.1 Programmer's Manual

 31

+---+
| Function 7 - Get IOBYTE |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | A=IOBYTE (system page+03H) |
+-------------------------------+-------------------------------+

This function returns the value of the current IOBYTE in register
A. The IOBYTE is an optional and BIOS-dependent structure. It can
be used to redirect byte-oriented I/O of the logical devices
CON:, RDR:, PUN: and LST:. Please refer to your computer's
manuals to determine the exact specifications for your system.

Note: This function call may no longer be available in future
ZSDOS versions.

GETIOB: LD C,7 ; get IOBYTE
 CALL BDOS ; ... is returned in A.
 ...

	

ZSDOS 1.1 Programmer's Manual

 32

+---+
| Function 8 - Set IOBYTE |
+-------------------------------+-------------------------------+
| Input: | Output: |
| E = IOBYTE | none (A = IOBYTE) |
+-------------------------------+-------------------------------+

This function sets the IOBYTE to the value in register E. The
IOBYTE is an optional and BIOS-dependent structure. It can be
used to redirect byte-oriented I/O of the logical devices CON:,
RDR:, PUN: and LST:. Please refer to your computer's manuals to
determine the exact specifications for your system.

Note: This function call may no longer be available in future
ZSDOS versions.

SETIOB: LD E,A ; suppose IOBYTE is in A
 LD C,8
 CALL BDOS ; set IOBYTE
 ...

	

ZSDOS 1.1 Programmer's Manual

 33

+---+
| Function 9 - Console Output String |
+-------------------------------+-------------------------------+
Input:	Output:
DE = address of the string,	none (A = '$')
that ends with '$'	
+-------------------------------+-------------------------------+

A character string consisting of ASCII characters that ends with
a dollar sign '$' is output with this function on the console.
All characters in the chain with the exception of the dollar sign
are transferred to the console. All tab stops are converted to a
corresponding number of spaces in order to position the cursor on
the next column that can be divided by 8.

The console is checked for the input of Control-S while the
string is being output. In this case, the output is stopped until
another character is entered and then continued. If Control-S is
followed by Control-C, ZSDOS resets the error mode to the default
and then performs a warm start. In this way, the user can end
faulty programs without performing a cold start.

STROUT: LD DE,STRING ; what you want to display
 LD C,9 ; Select string output
 CALL BDOS
 ...
STRING: DEFB 'This is a string. $'
 ...

	

ZSDOS 1.1 Programmer's Manual

 34

+---+
| Function 10 - Console Input Line |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address input buffer | none (A = 0DH) |
+-------------------------------+-------------------------------+

This function returns a character string from the current input
device of the console. The caller myst pass the pointer to an
input buffer. This buffer is configured as follows:

BUFF+0 size of the buffer for the maximum number of characters
 to be read (maximum 255)
BUFF+1 actual number of read characters (set by BDOS when
 returning)
BUFF+2 up to max. Length+2 characters from the console

Some control characters are available in function 10 for editing
the input line:

 ^H deletes characters to the left of the cursor

 ^J ends the entry

 ^M ends the entry

 ^X deletes the entire line

 ^U as ^X

 ^R rewrites current line (ZSDOS only)

 DEL as ^H

All tab stops are converted to spaces by function 10 (as with
functions 1, 2 and 9), but only for screen output - ^I is
retained in the buffer. ZSDOS remembers the cursor position when
this function was called, so that tabs are expanded properly (as
long as something was not output with function 6 on the same
line). The non-printable control characters (all except tab and
edit control characters) are converted into two characters for
the screen output. The first character is a caret '^', followed
by the control character+40H. For example, Control-Z would be
displayed as '^Z'.

The function recognizes Control-P and switches the printer flag
accordingly. Control-S (to stop console output) is not recognized
by this function.

Function 10 ends in the following cases:

1. Enter (Carriage Return) or line feed was pressed.

2. The input buffer is full.

ZSDOS 1.1 Programmer's Manual

 35

3. If the first character entered in the line is a Control-C, the
 program is terminated and the system is restarted. In this
 case the Control-C remains in the buffer so that the ZCPR
 command processor does not get mixed up.

When returning to the calling program, the number of characters
read is entered in BUFF+1. The character string itself starts at
BUFF+2. Note that Enter or linefeed are read, but do not appear
in the buffer.

An example of using function 10:

BUFFRD: LD DE,BUFF ; Pointer to the text buffer
 LD C,10 ; Read console buffer function
 CALL BDOS
 ...
 ; Structure total of 128 chars
BUFF: DEFB 126 ; Max.B 126 characters are read
 DEFB 0 ; actual number here from ZSDOS
 DEFS 126 ; actual buffer area
 ...

	

ZSDOS 1.1 Programmer's Manual

 36

+---+
| Function 11 - Console Status Check |
+-------------------------------+-------------------------------+
Input:	Output:
none	A = 0, no character
	A = 1, character available
+-------------------------------+-------------------------------+

This function is used to query the console device whether a
character has been entered. ZSDOS returns the value 0 in register
A if no character is available or the value 1 in the other case.

CONST: LD C,11 ; Check console status
 CALL BDOS ; returns status in A.
 AND A ; something available?
 JR Z,NOCHAR ; ... jump if there is no char.
 ...

	

ZSDOS 1.1 Programmer's Manual

 37

+---+
| Function 12 - Get System Identification |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | HL = 22H (CP/M compatible) |
+-------------------------------+-------------------------------+

This function returns the value 22H in the HL register pair to
indicate compatibility with CP/M 2.2. Function 48 must be used to
query the version of ZSDOS.

In the case of ZDDOS or ZSDOS with DateStamperTM installed,
if register D contains the value 'D' (044H) when this function is
called, the address of the DateStamperTM is returned in register
pair DE and the ASCII character 'D' is returned in register H.
This functionality ensures that software written for
Plu*Perfect's DateStamperTM also runs under ZSDOS. Programs
specially adapted to ZSDOS should, however, use the function
calls from ZSDOS to access the clock and date stamp instead of
the old DateStamperTM method.

GETCPV: LD C,12
 CALL BDOS ; Get CP/M version number
 ...

	

ZSDOS 1.1 Programmer's Manual

 38

+---+
| Function 13 - Reset All Drives |
+-------------------------------+-------------------------------+
Input:	Output:
none	A = 0, no file named $*.*
	A = 0FFH, file named $*.*
	available
+-------------------------------+-------------------------------+

Function 13 logs out all drives and resets the address of the DMA
buffer to 80H. Drive A is set as the default drive. The current
user area is not changed. Before calling this function, all files
into which data has been written must be closed.

The CCP uses an undocumented property of CP/M 2.2 to process
submit files. Every time a drive is reset or selected under CP/M,
register A contains the value 0FFH, provided a file named $*.* is
available on the drive in the current user area. This returned
value is used by the CCP. It shows where the $$$.SUB file could
be located. The command processor then obtains the next input
line not from the user, but from this file.

Several DOS systems that skip logging in from hard disks have
difficulty passing this flag correctly to the CCP. ZSDOS checks
for the presence of a file called $*.* each time it logs in and
when files are created and deleted. The flag is set when a file
named $*.* os created or discovered when logging in (to any user
area). The flag is reset when the $*.* file has been successfully
deleted. With this procedure, the submit flag always correctly
reflects the presence of a $*.* file in the system - even if fast
re-login is activated.

Since this method does not fully correspond to CP/M 2.2, the CCP
can only function properly as long as there are not several files
named $*.* in the system (actually very unlikely!).

In contrast to function 13, which logs out all drives, function
37 works in a more differentiated manner. This will only reset
selected drives. Programs should therefore use function 37
instead of 13 if possible. Because changed disks are logged in
automatically, it is rarely necessary to reset drives or to
distinguish between fixed and removable disks when working under
ZSDOS.

RESSYS: LD C,13
 CALL BDOS ; Running reset, A: log in
 AND A ; Submit file available?
 JR NZ,DOSUB ; ... yes, so open the file
 ...

	

ZSDOS 1.1 Programmer's Manual

 39

+---+
| Function 14 - Select Drive |
+-------------------------------+-------------------------------+
Input:	Output:
E = drive number	A = 0, no file named $*.*
(0 = A, 1 = B ..)	A = 0FFH, file named $*.*
	available
+-------------------------------+-------------------------------+

This function is used to select a default drive. The default
drive is accessed if no drive is specified in the FCB for file
access. If the selected drive has not yet been logged in, this is
also done using function 14.

If one of the extended error modes of ZSDOS is active, the value
0FFH in the register does not necessarily indicate an error.
Rather, the content of register H must be checked. If the value
in H is zero, then no error has occurred, but ZSDOS indicates
that a submit file could be present on the drive. If the value in
register H is not zero, then there was a problem with the
selection of the drive (generally this means: drive does not
exist!).

If no extended error mode is active and the specified drive was
not found, ZSDOS terminates the application program after the
corresponding error message has been issued.

It should also be noted that CP/M 2.2 and all other compatible
BDOS substitutes (with the exception of ZRDOS 1.9) have an error
in this routine. If a drive that is not available was selected,
the BDOS still assumes that the unavailable drive is the default
drive. This error does not appear in normal CP/M 2.2 systems,
since the BIOS reloads the CCP and the first BDOS call made rep-
resents a separate selection. NZCOM uses the BDOS to reload the
CCP, which causes the error to appear.

; this source text assumes that a
; extended error mode is ACTIVE (return BDOS error)

SELDK: LD E,A ; suppose A contains drive no.
 LD C,14
 CALL BDOS ; Select drive
 AND A
 RET Z ; back if no error occurred
 LD A,H
 AND A ; Does 0FFH stand for submit file?
 RET Z ; was a submit file, Lw. OK
 ... ; otherwise drive not allowed

	

ZSDOS 1.1 Programmer's Manual

 40

+---+
| Function 15 - Open Existing File |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = directory code |
+-------------------------------+-------------------------------+

Compared to other Z80 BDOS systems, ZSDOS offers a greatly
expanded function for opening files. As mentioned earlier, ZSDOS
can use the public file attribute and the path to open the file
(both for reading and writing). If a file was opened success-
fully, FCB+13 contains the user area number, ORed with 80H:

FOPEN: LD A,(USER)
 LD E,A ; User area of the file
 LD C,32 ; Function call set user area
 CALL BDOS
 LD DE,FCB
 LD C,15
 CALL BDOS ; open file
 INC A
 JP Z,ERROR ; Error when opening the file
 ... ; FCB+13 = user area
 ; ... OR linked to 80H

In contrast to some other ZSDOS functions, this does not uncondi-
tionally accept the user area number in FCB+13. Digital Research
originally declared the S1 byte on FCB+13 as "reserved for the
system". However, it was not specified whether the byte must be
set to a certain value in order to open a file. Because many
programs reuse FCBs, this field can contain a valid number (and
often it is), but for the former file! After many experiments, we
decided that the safest way would be if ZSDOS ignored the value
on FCB+13 when opening the file, if the error mode of the BDOS
was zero. This is the only reliable way to support the user area
number in the FCB and still remain backwards compatible.

Programs that are written to work under ZSDOS should initialize
all bytes from FCB+0 to FCB+0EH. In addition to the drive and
file name entries, the value of the S1 byte must be set to zero
or the user area number ORed with 80H. In addition, the bytes of
the current extent (FCB+12), the data module (FCB+14) and the
current record (FCB+32) must be set to zero, unless the file
should not be opened at the beginning. It is possible to open a
file with any extent of the first data module (first 512 kBytes).
However, a non-zero value cannot be specified for the data
module.

If you want to use the S1 byte in an application to determine the
user area when opening a file (or another file-related function),
then the BDOS error mode must be used to indicate that the ap-
plication knows the conditions of ZSDOS. Only then can the user
area number be transferred in FCB+13. If the error mode was set
to a value not equal to zero, ZSDOS uses the field FCB+13 (see

ZSDOS 1.1 Programmer's Manual

 41

function 45).

After a file has been successfully opened with function 15, the
S1 byte is either set to the user area ORed with 80H or is
unchanged if the error mode was zero. The data module number is
always set to zero. The file name, the record counter (FCB+15)
and the allocation vector (FCB+16..31) are copied from the
directory entry of the corresponding file. The fields of extent,
current record and optional record are retained.

For some applications it is important whether the file was opened
via path or public access. ZSDOS also provides this information.
After opening the attribute bit f7 is set if the path or the
attribute public file were used. The code could look something
like this to branch out in the case of path or public access:

 LD C,15
 CALL BDOS ; open file
 INC A
 JP Z,ERROR ; ... jump when an error occurs
 LD HL,FCB+7 ; Pointer to the f7 bit
 BIT 7,(HL) ; Path/public access test
 JR NZ,ISPS ; ... jump when used
 ...

A bad programming habit is to move the FCB of a file that is
already open, or to use the same FCB multiple times to open
additional files, as long as one file was not closed before the
next was opened. Poor programming practices can cause problems
with various popular operating system extensions such as BGii.

	

ZSDOS 1.1 Programmer's Manual

 42

+---+
| Function 16 - Close Output File |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = directory code |
+-------------------------------+-------------------------------+

With this function, all internal buffers are transferred to disk
and the directory is updated when a file has been written to. A
good programming style also includes closing files with function
16 if they were only open for reading. This is the only way to
guarantee full compatibility with future versions of ZSDOS and
other operating system extensions.

FCLOSE: LD DE,FCB ; Pointer to the file to be closed
 LD C,16
 CALL BDOS ; Close file
 INC A ; everything OK?
 JR Z,ERROR ; ... jump when an error occurs
 ...

	

ZSDOS 1.1 Programmer's Manual

 43

+---+
| Function 17 - Search for First Entry |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = directory code |
+-------------------------------+-------------------------------+

This function returns the first occurrence of a matching
directory entry. The match is based on the first 13 bytes of the
FCB (drive, name, and extent number) as well as on the user area
number (either by default or via the content of FCB+13) and the
data module number (FCB+14) if a '?' is entered there. The search
is always started at the beginning of the directory. Wildcards
are allowed in the first 13 bytes of the FCB (FCB+0..12) and in
the data module number.

Question marks are used in two ways by the Search for First Entry
and Search for Next Entry functions. First, a '?' can be used in
bytes FCB+1 to FCB+14 to match any character for this position.
For example, if you enter a question mark in the first byte of
the file name (FCB+1), all files will be found regardless of the
first character (only the other characters in the file name are
decisive). If you use question marks in the bytes for extent and
data module, all physical extents of the file or files are found
accordingly. Programs that calculate the file size by summing all
extents set these two bytes to '?'.

For the second way of using question marks in the FCB, the byte
for the drive (FCB+0) is assigned a '?'. In this case, however,
not all drives are selected (as you might think), but all
directory entries of the default drive (including entries that
have already been deleted).

After calling function 17, the matching directory record is
copied into the current DMA buffer. If the directory code
returned in register A is shifted 5 places to the left and added
to the base address of the DMA buffer, it points to the first
byte of the matching directory entry.

SEARCF: LD DE,DMAADDR ; DMA address on own buffer
 LD C,26
 CALL BDOS
 LD DE,FCB ; seek this match
 LD C,17
 CALL BDOS ; search for matches
 CP 0FFH , Did it work?
 JR Z,NOMAT ; ... jump if there is no match
 ADD A,A
 ADD A,A
 ADD A,A
 ADD A,A
 ADD A,A ; Multiply index by 32
 LD L,A
 LD H,0 ; Make word value out of it

ZSDOS 1.1 Programmer's Manual

 44

 LD DE,DMAADDR ; Address of the buffer
 ADD HL,DE ; HL points to agreement entry
 ...

	

ZSDOS 1.1 Programmer's Manual

 45

+---+
| Function 18 - Search for Next Entry |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | A = directory code |
+-------------------------------+-------------------------------+

After a successful search for the first entry (function 17), this
function is used to search for further matches for the specified
FCB (one for each call). For this function to work correctly, two
conditions must be met: 1) The "Search for First Entry" function
must have been executed for the first match. 2) No other BDOS
calls that perform disk operations may be made between the
Search for First Entry and Search for Next Entry calls.

With two exceptions, the call and return sequences correspond to
those of function 17. Function 18 does not require a pointer to
the FCB, since it was saved internally by DOS after the search
for the first entry and is reused. Furthermore, register C must
be loaded with the value 18 instead of 17 in order to select the
"Search for Next Entry" function.

	

ZSDOS 1.1 Programmer's Manual

 46

+---+
| Function 19 - Delete File |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = error code |
+-------------------------------+-------------------------------+

This function deletes all files from the floppy disk whose
directory entry corresponds to the transferred FCB. The prerequi-
site for this, however, is that the disk and file(s) have
read/write status and the user has all Wheel usage rights,
provided the Wheel Protection attribute of the file is set. The
function allows the use of wild cards.

Like CP/M, ZSDOS also identifies deleted files by setting the
byte of the user area of the files (DIR+0) to 0E5H and deleting
the bits of the files in the allocation vector. This procedure
releases the directory entries for ZSDOS, but neither the data is
deleted nor the directory assignment vector (DIR+16) is changed.
As long as no write operations are carried out, it is therefore
often possible to undo the deletion process ("unerase"). To do
this, all the physical extents of the file need to be searched
for and their 0E5H changed to a permissible user area number.
Function 37 is then called to cause the allocation vector to be
revised.

FKILL: LD DE,FCB ; what should be deleted
 LD C,19
 CALL BDOS ; Execute delete
 INC A ; everything OK?
 JR Z,ERROR ; ... jump in case of problems
 ...

	

ZSDOS 1.1 Programmer's Manual

 47

+---+
| Function 20 - Sequential Read |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = read/write code |
+-------------------------------+-------------------------------+

After a file with function 15 has been opened, this function can
be used to transfer the next 128-byte record to the current DMA
buffer. In the FCB, the entries for the current record, the
current extent and the current data module number are revised to
provide the next position for sequential access. By calling
function 20 again, the next record can be read without interven-
tion by the application program.

READS: LD DE,FCB ; File must already be open
 LD C,20
 CALL BDOS ; Read next record in DMA buffer
 AND A ; Error occurred?
 JR NZ,ERROR ; ... jump if there were problems
 ...

	

ZSDOS 1.1 Programmer's Manual

 48

+---+
| Function 21 - Sequential Write |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = read/write code |
+-------------------------------+-------------------------------+

This function is the counterpart to function 20 - it writes the
content of the current DMA buffer on disk to the specified file
that was previously opened with function 11. In the FCB, the
entries for the current record, the current extent and the
data module number are revised to provide the next position for
sequential access. New assignment blocks and new extents are
opened or created as necessary.

With each write access to a file via the function call 21, the
"archive" attribute bit (t3) of the first extent is cleared when
the file is closed via function 16. A targeted backup with
programs such as COPY, ZFILER, PPIP, DATSWEEP and with all other
programs that support the archive attribute is possible via the
archive attribute.

WRITS: LD DE,FCB ; File must already be open
 LD C,21
 CALL BDOS ; Write DMA buffer to disk.
 AND A ; Error occurred?
 JR NZ,ERROR ; ... jump if there were problems
 ...

Because the BDOS sets the BIOS allocation vector of a data block
before sequential or random writing, it can happen that the FCB
assumes an inadmissible state if a "disk full" error occurs (code
02 returned). Therefore, function 16 must always be used to close
the file, which indicates errors that have occurred. Only then
can further BDOS operations (e.g. deleting the faulty file) be
carried out. The updated FCB is used to match the BIOS allocation
vector, whereas the corresponding bits of the vector are reset
after the erased file has been deleted.

	

ZSDOS 1.1 Programmer's Manual

 49

+---+
| Function 22 - Make New File |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = directory code |
+-------------------------------+-------------------------------+

This function creates a new file with the name specified in the
FCB on disk. The call does not occupy any data storage space on
the floppy disk, but reserves the space for the first extent of
the file in the directory. By using function 22, the file is
opened for reading and writing at the same time, so that function
15 no longer has to be called up separately.

WARNING: The "Make New File" function does not check whether a
file with the same name already exists on the disk before it is
created. The programmer must ensure that an existing file name is
not used again for the creation of the file.

Example:

FMAKE: LD DE,FCB ; this file is to be created
 LD C,17 ; secure against duplicates first
 CALL BDOS
 INC A
 JR Z,FMAKE1 ; ... not yet available - create
 LD DE,DUPWRN ; Alert users to their presence
 LD C,9
 CALL BDOS
 LD C,1
 CALL BDOS ; what does the user want to do?
 AND 5FH ; convert to uppercase
 CP 'Y'
 LD C,0
 CALL NZ,BDOS ; ... if NO, then termination
 LD DE,FCB
 LD C,19
 CALL BDOS ; otherwise delete duplicate
FMAKE1: LD DE,FCB
 LD C,22
 CALL BDOS ; now the file is created
 INC A ; Error occurred?
 JR Z,ERROR ; ... jump if there were problems
 ...
DUPWRN: DEFB 'File exists! Erase it (Y/N)? $'
 ...

	

ZSDOS 1.1 Programmer's Manual

 50

+---+
| Function 23 - Rename File |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = error code |
+-------------------------------+-------------------------------+

This function is used to rename the file that is named with the
first 13 bytes of the FCB (including the drive and optional user
area information). The new file name is transferred from byte 17
of the FCB. In contrast to CP/M 2.2 and ZRDOS, ZSDOS allows the
specification of wild cards for this function call. If there is a
question mark '?' at any point in the original file name, this
character is not changed in the directory by the rename function.
All attributes with the exception of "public file" are retained.
For security reasons, the renamed files are all given the
"private" attribute to prevent conflicts due to multiple public
files of the same name on a floppy disk.

As with the "Create file" function, the programmer is responsible
for avoiding duplicates in the directory with this function.

FCB format when renaming:

Offset: 0 1 9 12 13 14 15 16 17 25 28 29 30 31
 | | | | | | | | | | | | | |
Data: dr oldfn typ 0 us 0 0 0 newfn typ 0 0 0 0

Abbreviations: dr - drive
 oldfn - old filename
 typ - filetype
 us - user
 newfn - new filename

RENAME: ; Prereq: name not yet assigned
 LD DE,RENFCB ; appropriately formatted FCB
 LD C,23
 CALL BDOS ; Rename file
 INC A ; any problems?
 JR Z,ERROR ; ... jump when an error occurs
 ...

	

ZSDOS 1.1 Programmer's Manual

 51

+---+
| Function 24 - Get Active Drive Map |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | HL = login vector |
+-------------------------------+-------------------------------+

This function returns a bit map of the currently logged in drives
in register pair HL. The assignment is defined as follows:

Register: H L
Bit: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Drive: P O N M L K J I H G F E D C B A

GETLGV: LD C,24 ; Get login vector
 CALL BDOS ; Vector now in HL
 ...

	

ZSDOS 1.1 Programmer's Manual

 52

+---+
| Function 25 - Get Default Drive Number |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | A = default drive |
+-------------------------------+-------------------------------+

This function can be used to determine the default drive (the
drive that is used without specifying a drive number). A value
between 0 and 15 is returned in register A, which designates the
corresponding drive from A to P. For example, the value 0 means
drive A and 2 means drive C.

SHOWDD: LD C,25 ; get default drive
 CALL BDOS
 ADD A,41H ; Convert to ASCII
 LD C,2 ; output to console
 LD E,A ; for ZSDOS load in E.
 CALL BDOS ; output as ASCII on CON:.
 ...

	

ZSDOS 1.1 Programmer's Manual

 53

+---+
| Function 26 - Set File Buffer Address |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = DMA address | none (A = 00H) |
+-------------------------------+-------------------------------+

This function sets the address of the 128 byte buffer, which is
used for disk write and read functions as well as for the
transfer of the date stamp, to the address given in register pair
DE. By default, the DMA buffer starts at address 80H when a
program is started. The current address can be determined using
function 47.

Note that the term DMA is not entirely correct. The abbreviation
DMA stands for "Direct Memory Access", which is actually a
peripheral chip. Depending on the hardware and the BIOS of the
respective system, such a circuit may or may not be used for the
transmission of the disk data.

STDMA: LD DE,DMAADR ; Data transfers take place there
 LD C,26
 CALL BDOS
 ...

	

ZSDOS 1.1 Programmer's Manual

 54

+---+
| Function 27 - Get Allocation Vector |
+-------------------------------+-------------------------------+
Input:	Output:
none	HL = address of allocation
	vector
+-------------------------------+-------------------------------+

This function returns the address of the allocation vector for
the default drive in the HL register pair.

GETALV: LD E,0 ; Get allocation vector
 LD C,14 ; from drive A
 CALL BDOS ; Set A as the default drive
 LD C,27 ; get allocation vector now
 CALL BDOS
 ...

	

ZSDOS 1.1 Programmer's Manual

 55

+---+
| Function 28 - Write Protect Drives |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = write protection vector| none (A = 00H) |
+-------------------------------+-------------------------------+

This function is primarily used to write protect the disks in the
selected drives from attempts to write, rename, delete, etc. A
bit map for determining the drives is transferred in register
pair DE.

The possibility of resetting drives to read/write at a later time
depends on the status of the "Read-only vector received" flag bit
in the configuration byte (bit 2 of the memory cell at address
ZSDOS BASE+15). If the bit is set, the write protection vector is
never cleared. If the bit is cleared, the respective drive is set
to the read/write status by calling functions 13 or 37.

A drive is assigned to each bit in register pair DE:

Register: D E
Bit: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Drive: P O N M L K J I H G F E D C B A

SETDRO: LD C,25 ; get default drive
 CALL BDOS
 LD HL,1 ; Initialize the mask in HL
 AND A ; Test for drive A.
 JR Z,SETDR2 ; ... jump if drive is A
 LD B,A ; otherwise value = shift counter
SETDR1: ADD HL,HL ; Shift 16 bits to the left
 DJNZ SETDR1 ; ... repeat until done
SETDR2: EX DE,HL ; Vector in DE
 LD C,28 ; set default drive to R/O
 CALL BDOS
 ...

	

ZSDOS 1.1 Programmer's Manual

 56

+---+
| Function 29 - Get Read-Only Map |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | HL = read-only map vector |
+-------------------------------+-------------------------------+

This function returns an image of the drives that were write-
protected with function call 28. In contrast to CP/M, drives are
not automatically write-protected when a floppy disk change is
detected. The format of the write protection vector that is
returned in register pair HL is defined as follows:

Register: D E
Bit: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Drive: P O N M L K J I H G F E D C B A

CHKRO: LD C,25 ; get default drive
 CALL BDOS
 LD HL,1 ; Initialize the mask in HL
 AND A ; Test for drive A.
 JR Z,CHKRO2 ; ... jump if A is default
 LD B,A ; otherwise value = shift counter
CHKRO1: ADD HL,HL ; Shift 16 bits to the left
 DJNZ CHKRO1 ; ... repeat until done
CHKRO2: PUSH HL ; Secure mask
 LD C,29 ; get write protection vector
 CALL BDOS
 POP DE ; Restore mask
 LD A,E
 AND L
 LD L,A ; Match test by
 ; AND operation of the LSBs
 LD A,D
 AND H
 LD H,A ; ... and MSBs
 OR L ; Check for agreement
 JR NZ,ISWP ; if not zero then
 ; Standard drive read-only
 ...

; Routine to reset write protection for all drives

RST2RW: LD C,100 ; check the flags,
 CALL BDOS ; ... for "R/O vector received"
 ; is active
 BIT 2,L
 JR Z,RESET ; deactivated, reset works
 RES 2,L ; otherwise deactivate first
 EX DE,HL
 LD C,101
 CALL BDOS ; Set flags
RESET: LD C,29
 CALL BDOS ; check for a drive

ZSDOS 1.1 Programmer's Manual

 57

 ; is write protected
 LD A,H
 OR L
 RET Z ; no, so omit resetting
 EX DE,HL ; Write protection vector in DE
 LD C,37 ; reset multiple drives
 CALL BDOS ; ... to remove write protection
 ...

	

ZSDOS 1.1 Programmer's Manual

 58

+---+
| Function 30 - Set File Attributes |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = error code |
+-------------------------------+-------------------------------+

File attributes are used by ZSDOS to control the status of files
between BDOS calls. The attributes are contained in the most sig-
nificant bits (bit 7) of the file names (8 bytes name, 3 bytes
type) of the FCB and directory entry. The following meanings are
defined:

FCB+1 f1 (available for users; attribute "do not load" with
 Plu*Perfect)
FCB+2 public file
FCB+3 no access stamp
FCB+4 f4 (available for users)
FCB+5 reserved for internal use by ZSDOS
FCB+6 reserved for internal use by ZSDOS
FCB+7 reserved for internal use by ZSDOS
FCB+8 wheel protection
FCB+9 Read only (write protection)
FCB+10 system file
FCB+11 archived

This function allows the programmer to set or clear attributes by
setting or resetting the corresponding bits in the FCB, the
address of which is transferred in DE. Wildcards may appear in
the FCB.

The user must not change the attribute bits that are reserved for
internal use. These bits were already reserved under CP/M and
ZRDOS, so this is not a new restriction.

If the attribute bit for public files is set, this file can be
found by any user area on the same floppy disk if a unique file
specification is used for the search. It is the responsibility of
the programmer to ensure that there is no second file on a disk
that has the same name as a public file.

The wheel protection attribute prevents the file from being over-
written, deleted, renamed or one of its attributes changed as
long as the wheel byte is not on. In a system environment without
ZCPR, this attribute generally has no effect. ZSDOS then assumes
that the user has all rights of use.

The read-only attribute provides full protection against over-
writing, deleting or renaming a file.

SETATT: LD DE,FCB ; FCB has attributes to be set
 LD C,30 ; ... or reset
 CALL BDOS ; Set file attributes
 ...

ZSDOS 1.1 Programmer's Manual

 59

+---+
| Function 31 - Get Disk Parameters |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | HL = address of the DPB |
+-------------------------------+-------------------------------+

This function returns the address of the disk parameter block
(DPB) for the default drive in the HL pair of registers. Informa-
tion such as the capacity of the drive, the number of directory
entries, the number of tracks, etc. can be obtained.

GETDPB: LD E,0 ; Drive A DPB
 LD C,14
 CALL BDOS ; The default drive is now A
 LD C,31 ; get DPB
 CALL BDOS ; Pointer to DPB from A: in HL
 ...

	

ZSDOS 1.1 Programmer's Manual

 60

+---+
| Function 32 - Get or Set User Area |
+-------------------------------+-------------------------------+
Input:	Output:
E = 0FFH (get)	A = user area
E = 0-31 (set)	A = 0
+-------------------------------+-------------------------------+

This function gets or sets the default user area for file opera-
tions. Compared to CP/M and ZRDOS, ZSDOS allows the default user
area to be overwritten by specifying it separately in the FCB.
Otherwise the default user area is used for all file operations.

GETUSR: LD C,32
 LD E,0FFH ; get current user area
 CALL BDOS
 ...

SETUSR: LD E,A ; assumed, user area in A
 LD C 32
 CALL BDOS ; set new user area
 ...

	

ZSDOS 1.1 Programmer's Manual

 61

+---+
| Function 33 - Random Access Read |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = read/write code |
+-------------------------------+-------------------------------+

With this function the read access to the file specified in the
FCB is possible. Before calling the function, the random access
record number (FCB+33..FCB+35, LSB..MSB) must be set to the
number of the desired 128-byte record. Before this, the file must
have been opened with extent 0 using function 15.

While the sequential read function increments the current record
(FCB+32) after each access, function 33 leaves it unchanged. The
random access record number must be set by the application
program before each call.

RDRAN: ... ; FCB+33...35 already set
 LD DE,FCB ; File has already been opened
 LD C,33
 CALL BDOS ; read record into the DMA buffer
 AND A ; Error occurred?
 JR NZ,ERROR ; ... jump if there were problems
 ...

	

ZSDOS 1.1 Programmer's Manual

 62

+---+
| Function 34 - Random Access Write |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = read/write code |
+-------------------------------+-------------------------------+

This function allows random write access to the file specified in
the FCB. As with function 33, the random access record number
(FCB+33..FCB+35, LSB..MSB) must be set to the number of the
desired 128-byte record. The file must have already been opened
with function 15 or created with function 22. Please note that
when opening an existing file with function 15, the extent number
must be 0 (the base extent).

This function also does not affect the value for the current
record (FCB+32), so that the application program must set the
number for the optional record before each function call.

This function opens, closes and creates extents as needed. The
function also causes the archive bit of the first extent to be
reset using function 16 when the file is closed. This indicates
that the file has been changed.

Remarks:

1.) Under ZSDOS it is possible to create files that are too large
 to work under CP/M 2.2 or ZRDOS. While only up to 65,536
 records (8,192 kB) can be processed by CP/M 2.2 and ZRDOS
 files, ZSDOS supports files up to a size of 262,144 records
 (32,768 kB). Such large files can easily be used under CP/M
 3.0.

2.) Files that were created randomly and contain "holes" are not
 transmitted correctly by most copying programs, since they
 carry out sequential read and write operations. These
 programs include, for example, COPY, PIP and PPIP.

WRRAN: ... ; FCB+33...35 already set
 LD DE,FCB ; File has already been opened
 LD C,34
 CALL BDOS ; write record from DMA to disk
 AND A ; Error occurred?
 JR NZ,ERROR ; ... jump if any problems
 ...

If an "Disk full" error occurs, the same process applies as for
function 21: The file should be closed before performing other
operations (see also section 5.2.21).

	

ZSDOS 1.1 Programmer's Manual

 63

+---+
| Function 35 - Get File End Address |
+-------------------------------+-------------------------------+
Input:	Output:
DE = address of the FCB	A = error code
	FCB+33..35 = last record+1
+-------------------------------+-------------------------------+

This function calculates the "virtual" size of a file. The
returned size is determined by setting the random record number
in the FCB to that of the last record found plus one. Do not
confuse this value with the real size of the file on the disk -
files created randomly can contain "empty" extents, which do not
take up space on the disk, but are included in the calculation of
this function.

This function call is often used to set the number of the random
record to a value after the end of the file when adding further
records.

GETSIZ: LD DE,FCB ; Get the size of this file
 LD C,35
 CALL BDOS ; Read size in FCB+33...35
 AND A ; Error occurred?
 JR NZ,ERROR ; ... jump if there were problems
 ...

	

ZSDOS 1.1 Programmer's Manual

 64

+---+
| Function 36 - Get Random Address |
+-------------------------------+-------------------------------+
Input:	Output:
DE = address of the FCB	A = 00H
	FCB+33..35 = current record
+-------------------------------+-------------------------------+

This function sets the random record number in the FCB to the
current position in the file, which is accessed sequentially for
reading and/or writing. This information can be saved for later
use to quickly access the desired location in the file.

A possible application would be the creation of an index during
the sequential writing of a file. Using the index, the indexed
positions can be accessed quickly with random accesses. Please
note that sequential read and write functions do not change the
random record number.

SETRAN: LD DE,FCB ; File is already open
 LD C,36 ; ... and accessed sequentially
 CALL BDOS ; set FCB+33..FCB+35
 ... ; ... to current record number

	

ZSDOS 1.1 Programmer's Manual

 65

+---+
| Function 37 - Reset Drives |
+-------------------------------+-------------------------------+
Input:	Output:
DE = mask	A = 0 or
	A = 0FFH if file named
	$*.* exists on current disk
+-------------------------------+-------------------------------+

Under CP/M 2.2, this incorrectly programmed function could hardly
be used to log out several drives. Most programmers assumed that
function 37 would log in a reset drive under CP/M - but that was
not the case. Most BDOS substitutes adopted this bug, but it has
been fixed in ZSDOS. If the default drive is reset, it is then
logged in again and the allocation vector is rebuilt - even if it
is a hard disk. Before doing this, you should make sure that all
files on the disk are closed before the drive is reset with
function 37.

Note: If a program contains a place to change the floppy disk,
the function should only be carried out afterwards.

Function 37 offers the only available method for re-building the
allocation vectors of fixed disks when "fast re-login of fixed
disks" is enabled. Furthermore, this function must always be
carried out when direct BIOS calls have been used by an applica-
tion program that change directories or allocation vectors from
fixed disks.

A drive is assigned to each bit in register pair DE as follows:

Register: D E
Bit: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Drive: P O N M L K J I H G F E D C B A

Here is an example of how to log all fixed disks back into the
system:

 LD C,39 ; get vector fixed disks
 CALL BDOS
 EX DE,HL ; Vector transferred in DE
 LD C,37
 CALL BDOS ; log in fixed disks again
 ...

	

ZSDOS 1.1 Programmer's Manual

 66

+---+
| Function 39 - Get Vector of Fixed Disks |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | HL = vector of fixed disks |
+-------------------------------+-------------------------------+

Function 39 reproduces a bit image of the drives in the system
that are logged in as fixed disks when "fast re-login of fixed
disks" is enabled. An example of the use of this function call
can be found in the listing for function 37 in this section.

The bit map, which is returned by ZSDOS in the HL register pair,
is defined as follows:

Register: H L
Bit: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Drive: P O N M L K J I H G F E D C B A

	

ZSDOS 1.1 Programmer's Manual

 67

+---+
| Function 40 - Random Access Write with Zero Fill |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of the FCB | A = read/write code |
+-------------------------------+-------------------------------+

The function of this function is very similar to function 34,
however, all records of a newly occupied block are initialized by
filling with 00H. If records are created using function 34 in
blocks that have never been written to, undefined data may be
contained in the blocks.

WRRANZ: ... ; FCB+33...35 already set
 LD DE,FCB ; File has already been opened
 LD C,40
 CALL BDOS ; writes record from DMA to disk
 ; ... fill the rest with zeros
 AND A ; Error occurred?
 JR NZ,ERROR ; ... jump if any problems
 ...

	

ZSDOS 1.1 Programmer's Manual

 68

+---+
| Function 45 - Set BDOS Error Mode |
+-------------------------------+-------------------------------+
Input:	Output:
E = xxxxxxx1B: suppress the	none
error messages	
E = xxxxxx1xB: return error	
code to program	
E = 1xxxxx00B: set ZSDOS	
default error mode;	
display error message	
E = 00000000B: set CP/M	
default error mode;	
display error message	
+-------------------------------+-------------------------------+

Function 45 enables application programs to influence the error
handling of ZSDOS. All errors detected by the BDOS, including
select and write protect errors, can be transferred to the ap-
plication program and an additional screen message from ZSDOS can
be displayed or suppressed.

In order to define the error mode, the value is set in register E
when function 45 is called. If the value in register E has bit 0
reset, when an error occurs a message is output on the screen by
ZSDOS. If bit 0 is set, no message is output.

If bit 1 is register E is set, when an error occurs control is
passed back to the program. Register A then contains the value
0FFH and the extended error code is available in register H.

If register E is set to 0 when setting the error mode, ZSDOS sets
the default CP/M error mode. These values of the input parameters
correspond to those of function 45 under CP/M Plus.

The value passed to function 45 serves another purpose - it
informs the DOS that a ZSDOS program is running. Programs written
especially for ZSDOS set the S1 byte in the FCB to the user area
ORed with 80H and the S2 byte to the value 0 when file operations
such as opening, renaming, deleting etc. are carried out. If the
error mode has been set to a non-zero value, ZSDOS assumes that
the application program is setting these bytes correctly.

In order to inform the DOS that a ZSDOS program is running while
maintaining the default error mode, bit 7 in register E is used
as a flag during the transfer. The error mode bits are currently
set as follows:

Bit: 7 6 5 4 3 2 1 0
 | | | | | | | +- Display suppression flag
 | | | | | | +--- Error code return flag
 | +-+-+-+-+----- reserved
 +--------------- Flag for information "ZSDOS program"

ZSDOS 1.1 Programmer's Manual

 69

If an application program has changed the error mode, it must be
reset to zero before returning to the operating system level.
This is the only way to ensure full compatibility with programs
that were not specifically written for ZSDOS. If a program is
terminated from the BDOS, the error mode is set to 0 before
booting. Calling function 0 also resets the error mode to the
CP/M default.

When extended error codes are returned in the corresponding
modes, the value 0FFH in register A indicates the occurrence of
an error. The respective error code is returned in register H.
The codes have the following meaning:

 Value in H Meaning
 0 no extended error code
 1 disk I/O error (bad sector)
 2 disk is write-protected
 3 file is read-only
 4 illegal drive specification

Only 4 extended error codes are currently defined. However, it is
possible that more will be added in future versions. For this
reason, it should not be assumed during programming that only
certain errors can occur, but that all defined error codes are
tested.

Examples for setting the failure mode:

SETRETERR:
 LD E,03H ; Error code return, no error
 LD C,45 ; message displayed
 CALL BDOS
 ...

SET$QRET$ERR:
 LD E,02H ; Error code return, display
 LD C,45 ; error message
 CALL BDOS
 ...

SETDEFERR:
 LD E,0 ; Set default error mode
 LD C,45
 CALL BDOS
 ...

Examples of error handling:

FOPEN: LD DE,FCB
 LD C,15
 CALL BDOS ; open file

ZSDOS 1.1 Programmer's Manual

 70

 INC A
 JR NZ,OKOPEN ; no error, file is open
 LD A,H ; Load extended error code
 AND A ; Extended error code test
 JR Z,NOFILE ; not an advanced bug
 ; ...File was not found
 CP 1
 JR Z,BADSEC ; Bad sector error
;
; Write protection errors cannot occur when opening
;
 CP 4
 JR Z,SELERR ; "Illegal drive" error
;
; These extended error codes have been defined so far.
; There may be more in future versions, so
; you should plan this possibility!
;
 JR UNKERR ; ... else jump to routine
 ; "unknown error"
 ...

FWRITE: LD DE,FCB
 LD C,21
 CALL BDOS ; Write sector to file
 AND A
 JR Z,OKWR ; no error, file is open
 CP 0FFH ; Is it an advanced bug?
 JR NZ,NRMERR ; No, normal mistake
 ; ... like "disk full" etc.
 LD A,H ; else expanded error code
 CP 1
 JR Z,BADSEC ; ... "bad sector"
 CP 2
 JR Z,DISKWP ; ... "Disk R/O"
 CP 3
 JR Z,FILEWP ; ... "File R/O"
 CP 4
 JR Z,SELERR ; ... "illegal disk"
;
; These extended error codes have been defined so far.
; There may be more in future versions, so
; you should plan this possibility!
;
 JR UNKERR ; ... else jump to routine
 ; "unknown error"
 ...

	

ZSDOS 1.1 Programmer's Manual

 71

+---+
| Function 47 - Get File Buffer Address |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | HL = pointer to DMA buffer |
+-------------------------------+-------------------------------+

This function returns the address of the DMA buffer in register
pair HL. The DMA buffer is used for all transfers from and to the
disk as well as for the date stamp functions. Mainly IOPs that
re-enter ZSDOS use this function. The address of the DMA buffer
is fetched from the IOP in order to reset it to the old value
after the call comes back.

It should be noted that only the DMA address is returned as it is
known to the DOS. The DMA address in the BIOS can differ if an
application program has changed it through direct BIOS calls. In
order to remain compatible with later operating systems, the use
of BIOS routines should be minimized or completely avoided.

GETDMA: LD C,47 ; get address of the DMA buffer
 CALL BDOS ; is returned in HL
 ...

	

ZSDOS 1.1 Programmer's Manual

 72

+---+
| Function 48 - Get BDOS Version Number |
+-------------------------------+-------------------------------+
Input:	Output:
none	H = BDOS ID
	('S' for ZSDOS)
	('D' for ZDDOS)
	A, L = version number
+-------------------------------+-------------------------------+

With this function you can find out whether ZSDOS is running in a
system and if so, which version. It is absolutely necessary to
determine the presence of ZSDOS before using one of the new or
expanded ZSDOS functions. To ensure that ZSDOS is available,
first call function 12, from which 22H must be returned in
register A. Function 48 is then called.

The function for querying the labeling of extended operating
systems was developed in collaboration with Joe Wright, Bridger
Mitchell and the authors of ZSDOS. The call is identical to the
ZRDOS function "Get version number". The DOS substitutes can be
distinguished on the basis of the indicator returned in register
H. An extended DOS can be recognized by the fact that, in
contrast to CP/M, the version number is returned in registers A
and L. This function is not included in the normal CP/M BDOS and
only the value zero is returned. The following indicators are
currently assigned to the DOS:

 H Value DOS
 00H ZRDOS
 'D' ZDDOS
 'S' ZSDOS

The assignment of new values should be coordinated with one of
the above-mentioned persons in order to avoid any misunderstand-
ings regarding this function. Of the 256 different values, 253
are still available!

 LD C,12 ; get CP/M version
 CALL BDOS
 CP 22H ; compatible with version 2.2?
 JR NZ,NOTZS ; ... no, so it can't be ZSDOS
 LD C,48
 CALL BDOS ; get version of the extended DOS
 LD A,H ; Load version indicator
 CP 'S' ; Is it ZSDOS?
 JR NZ,NOTZS ; ... jump if not ZSDOS
 ...

	

ZSDOS 1.1 Programmer's Manual

 73

+---+
| Function 98 - Get System Time |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = time info block address| A = time/date code |
+-------------------------------+-------------------------------+

This function enables application programs to read the system
clock. In the register pair DE, a target address of a buffer area
is transferred, in which the time information from ZSDOS is
written.

Driver routines are required for this function. If no driver is
installed or the clock cannot be read, the value 0FFH is returned
in register A and the buffer remains unchanged. If register A
contains the value 1 on return, the time and date information of
the system clock is available in the buffer.

GETTIM: LD DE,TIMEAD ; Start address of the buffer
 LD C,98
 CALL BDOS ; get time information in buffer
 INC A ; Error occurred?
 JR Z,ERROR ; ... jump if not available
 ...

TIMEAD: DEFB 0,0,0,0,0,0 ; Buffer initialized with zeros
 ...

	

ZSDOS 1.1 Programmer's Manual

 74

+---+
| Function 99 - Set System Time |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = address of time block | A = time/date code |
+-------------------------------+-------------------------------+

With this function, an application program can set the system
clock. The start address of the buffer with the time information
is transferred in register pair DE.

Driver routines are required for this function. If no driver is
installed, the value 0FFH is returned in register A. If register
A contains the value 1 on return, the clock has been set.

SETTIM: LD DE,TIMEAD ; Start address of the buffer
 LD C,99
 CALL BDOS ; Set the clock
 INC A ; Error occurred?
 JR Z,ERROR ; ... jump, in case of errors or
 ; ... if there is no function
 ...

	

ZSDOS 1.1 Programmer's Manual

 75

+---+
| Function 100 - Get Configuration Flags |
+-------------------------------+-------------------------------+
| Input: | Output: |
| none | HL = flags |
+-------------------------------+-------------------------------+

This function returns the current ZSDOS configuration flags in
the HL register pair. In version 1.1 of ZSDOS, only register L is
important. For reasons of compatibility with later versions of
ZSDOS, which may use more status bits, the value 0 is returned in
register H.

Register H = 0, register L contains:

Bit: 7 6 5 4 3 2 1 0
 | | | | | | | +- Public files on (1)/off (0)
 | | | | | | +--- Write public/path files on (1)/off (0)
 | | | | | +----- Get read-only vector on (1)/off (0)
 | | | | +------- quick login on (1)/off (0)
 | | | +--------- Floppy disk change warning on (1)/off (0)
 | | +----------- ZCPR2/3 path on (1)/off (0)
 | +------------- Path with/out system files on (1)/off (0)
 +--------------- reserved

Please refer to section 4.3.4 for a detailed description of the
functions of the individual bits.

	

ZSDOS 1.1 Programmer's Manual

 76

+---+
| Function 101 - Set Configuration Flags |
+-------------------------------+-------------------------------+
| Input: | Output: |
| DE = flags | None |
+-------------------------------+-------------------------------+

With this function call, the ZSDOS configuration flags are set to
the values transferred in register pair DE. In version 1.1 of
ZSDOS, only the value in register E is important. Register D
should be loaded with the value 0 in order to remain compatible
with later versions.

Register D = 0, register E contains:

Bit: 7 6 5 4 3 2 1 0
 | | | | | | | +- Public files on (1)/off (0)
 | | | | | | +--- Write public/path files on (1)/off (0)
 | | | | | +----- Get read-only vector on (1)/off (0)
 | | | | +------- quick login on (1)/off (0)
 | | | +--------- Floppy disk change warning on (1)/off (0)
 | | +----------- ZCPR2/3 path on (1)/off (0)
 | +------------- Path with/out system files on (1)/off (0)
 +--------------- reserved

Please refer to section 4.3.4 for a detailed description of the
functions of the individual bits.

	

ZSDOS 1.1 Programmer's Manual

 77

+---+
| Function 102 - Get Date Stamp |
+-------------------------------+-------------------------------+
Input:	Output:
DE = address of the FCB	A = time/date code
	Date stamp in the DMA buffer
+-------------------------------+-------------------------------+

This function returns the date stamp of the file whose name is
passed in the FCB addressed by DE. The extent and module numbers
(FCB+12...FCB+4) must be set to zero before the function is
called. The correct user area must also be set. To do this,
either place the user area number ORed with 80H in FCB+13 (S1)
or call function 32 beforehand. The desired stamp information is
available in the first 15 bytes of the DMA buffer after calling
function 102. Future versions of ZSDOS may use an extended stamp
format, so we recommend providing a 128-byte buffer for the date
stamp.

In order to be able to carry out these functions, appropriate
driver routines must be installed. If no drivers are available or
the stamps cannot be read, the value 0FFH is returned in register
A. In this case the content of the DMA buffer is undefined. If
the value 1 is returned in register A, then valid stamp informa-
tion is available in the DMA buffer.

	

ZSDOS 1.1 Programmer's Manual

 78

+---+
| Function 103 - Set Date Stamp |
+-------------------------------+-------------------------------+
Input:	Output:
DE = address of the FCB	A = time/date code
Date stamp in the DMA buffer	
+-------------------------------+-------------------------------+

This function writes the stamp information in the DMA buffer to
disk. When the function is called, the register pair DE points to
the FCB with the name of the file to be stamped. As with function
call 102, the extent and module numbers must also be initialized
and the user area defined before the function is called.

In order to be able to carry out these functions, appropriate
driver routines must be installed. If no drivers are available or
the stamps cannot be written, register A contains the value 0FFH
when returning. If the value 1 is returned in register A, the
stamp information has been successfully written to disk. Please
note that ZSDOS does not call normal error handling if the disk
is write protected. In this case, the value 0FFH is returned in
register A and no date stamp is written to disk.

Example of using functions 102 and 103:

COPYDS: LD DE,DSBUF ; Buffer for stamp information
 LD C,26 ; set address of the DMA buffer
 CALL BDOS
 LD DE,SRCFCB ; Source FCB
 ; (User area already set)
 LD C,102
 CALL BDOS ; get stamp of the source file
 LD DE,DSTFCB ; Target FCB
 ; (User area already set)
 LD C,103
 CALL BDOS ; Transfer stamp to target file
 ...

	

ZSDOS 1.1 Programmer's Manual

 79

Quick overview of the functions of ZSDOS

Nr. Function name Input parameters Returned values
 0 Terminate Program none none
 1 Console Input none A=char
 2 Console Output E=char none (A=BIOS A)
 3 Reader Input none A=character
 4 Punch Output E=char none (A=BIOS A)
 5 List Output E=char none (A=BIOS A)
 6 Direct Console I/O E=0FFH (in) A=entered char
 E=0FEH (in) A=console status
 E=0FDH (in) A=entered char
 E=0..0FCH (out) none (A=BIOS A)
 7 Get IOBYTE none A=IOBYTE
 8 Set IOBYTE E=IOBYTE none (A=IOBYTE)
 9 Output String DE=string address B none (A='$')
10 Read Buffer DE=buffer address none (A=0DH)
11 Get Console Status none A=00H - no char
 A=01H - char
12 Get CP/M Version none HL=22H
13 Reset All Drives none A=00H no $*.* File
 A=0FFH $*.* Available
14 Select Drive E=drive number A=00H no $*.* File
 A=0FFH $*.* Available
15 Open existing file DE=FCB address A=directory code
16 Close output file DE=FCB address A=directory code
17 Search for First DE=FCB address A=directory code
18 Search for Next none A=directory code
19 Delete File DE=FCB address A=error code
20 Sequential Read DE=FCB address A=read/write code
21 Sequential Write DE=FCB address A=read/write code
22 Make New File DE=FCB address A=directory code
23 Rename File DE=FCB address A=error code
24 Get Login Vector none HL=login vector
25 Get Default Drive none A=default drive
26 Set File Buffer DE=DMA address none (A=00H)
27 Get Allocation none HL=allocation vector
 Vector
28 Set Read-Only DE=R/O vector none (A=00H)
 Vector
29 Get Read-Only none HL=R/O vector
 Vector
30 Set File Attributes DE=FCB address A=error code
31 Get DPB Address none HL=address DPB
32 Get/Set User Code E=0FFH (get) A=user area
 E=user area (put) A=00H
33 Random Access Read DE=FCB address A=read/write code
34 Random Access Write DE=FCB address A=read/write code
35 Calculate File Size DE=FCB address A=error code
 FCB+33..35=# Rec.+1
36 Set Direct Record DE=FCB address A=00H
37 Reset Drives DE=mask A=00H reset to default
 A=0FFH $*.* available
38 not included

ZSDOS 1.1 Programmer's Manual

 80

39 Get Fixed Disks none HL=fixed disks vector
40 Random Access Write DE=FCB address A=read/write code
 with Zero Fill
41 not included
42 not included
43 not included
44 not included
45 Set BDOS Error Mode E=0FFH code A=00H
 E=0FEH code+msg A=00H
 E=80H ZSDOS mode A=00H
 E=00H CP/M mode A=00H
46 not included
47 Get File Buffer none HL=pointer to DMA
48 Get BDOS Version none H=DOS type
 'S'=ZSDOS
 'D'=ZDDOS
 A,L=version (BCD)
98 Get System Time* DE=time block addr A=time/date code
99 Set System time* DE=time block addr A=time/date code
100 Get Config Flags none HL=flags
101 Set Config Flags DE=flags none
102 Get Date Stamp^ DE=FCB address A=time/date code
 Stamp in the DMA
103 Set Date Stamp^ DE=FCB address A=time/thumb code
 Stamp in the DMA

* Functions 98 and 99 are only available if a clock driver module
 is installed.
^ Functions 102 and 103 are only available under ZSDOS if a Date
 stamp module is installed.

Overview of the BDOS error codes

Directory code:
 A = 00H, 01H, 02H, 03H if no error has occurred
 A = 0FFH, in the event of an error

Error code:
 A = 00H, no error
 A = 0FFH, error occurred

Time/date code:
 A = 01H if no error has occurred
 A = 0FFH, error occurred

Read/write code:
 A = 00H if no error has occurred
 A = 01H, read - end of file
 write - Directory full
 A = 02H, floppy disk full
 A = 03H, error while closing on random Read Write
 A = 04H, empty record for random reading
 A = 05H, directory full of random writing
 A = 06H, record during random reading/writing too large

ZSDOS 1.1 Programmer's Manual

 81

extended error codes in error mode:
 A = 0FFH, further error codes in H
 H = 01H, disk I/O error (defective sector)
 H = 02H, floppy disk write-protected (read only)
 H = 03H, file read-only
 H = 04H, illegal drive selected

Brief overview of the BIOS functions

Number Function name Input parameters returned values
 0 BOOT none none
 1 WBOOT none none
 2 CONST none A=0FFH, ready
 A=00H, not ready
 3 CONIN none A=char from CON:
 4 CONOUT C=char to CON: none
 5 LIST C=char to LST: none
 6 PUNCH C=char to PUN: none
 7 READER none A=char from RDR:
 8 HOME none none
 9 SELDSK C=drive (0..15) HL=address DPH
 E=Init Select Flag
 HL=0 impermissible running
10 SETTRK BC=track number none
11 SETSEC BC=sector number none
12 SETDMA BC=DMA buffer address none
13 READ no A=00H okay
 A=01H error
14 WRITE C=00H write data A=00H okay
 C=01H Directory write A=01H error
 C=02H write new data
15 LISTST none A=00H ready
 A=0FFH not ready
16 SECTRN BC=log. sector # HL=phys. sec. #
 DE=translation addr

Note: The BIOS must not change the IX register!

	

ZSDOS 1.1 Programmer's Manual

 82

ZSDOS, the documentation and the utility programs are copyright
(C) 1987, 88, 89, 90 by Harold F. Bower, Cameron W. Cotrill and
Carson Wilson - All rights reserved.

 Harold F. Bower
 7914 Redglobe Court
 Severn, MD 21144
 Ladera Z node
 213/670-9465

 Cameron W. Cotrill
 2935 Manhattan Ave.
 La Crescenta, CA 91214
 Ladera Z node
 213/670-9465

 Carson Wilson
 1359 W. Greenleaf
 Chicago, IL 60626
 Antelope Freeway Z-Node
 312/764-5162

ZSDOS is now the original code, but originated from P2DOS 2.1 (C)
1985 by HAJ Ten Brugge - All rights reserved.

Trademark: Little Board, Ampro Computers; Z80, Z180, Z280, Zilog;
DDT, CP/M, Digital Research Inc.; ZCPR3, ZCPR33, ZRDOS, ZDH,
Alpha Systems ; WordStar, NewWord, MicroPro Int'l ; Dbase II,
Ashton-Tate ; BackGrounder ii, DateStamperTM, Plu*Perfect
Systems; DosDisk, Z3PLUS, Bridger Mitchell; Turborom, Advent;
NSC800, National Semiconductor; SB180, MicroMint; HD64180,
Hitachi; XBIOS, Malcolm Kemp; ZSDOS, ZDDOS, ZDS, Harold F. Bower
- Cameron W. Cotrill - Carson Wilson.

