Lhi3hl

RomWBW
Architecture

RetroBrew Computing
RomWBW Version 2.9.2

November 8, 2019

Contents
(0 1Y 7Y VT3V 2T

2 1ol =04 o TU 1o o ST
GENEIAl DESIZN STIAEEY . .viiiiiiiiee e it ccie e e ettt e e ertte e e e ete e e e etae e e eebteeeeebaeeeesabaaeeeantaeeeeanbeeeeeassaeeeennseeeeannranas
U ok e T=R |V =T o o T] 4V - 1Y o TU | AP PPPPPPPRRY
SYSTEIM BOOT PrOCESS .. eeeaaaaaaaaaasaasaasasanannaenanns

(@] 1V/ = Lo Yo) TN

DIFIVEE IO ...ttt s bttt sttt e bt e s bt e she e sat e st e e bt e bt e beesbeesaeeeateeateenbeesaeesanesas
Character / EMUIGLION / VI0B0O SEIVICES ...uuvvvieieiiieeeeieieeeee e e eeeeeet e et e e e eeeeaeeteeeeesssasssseeeeessssssssssseeeeesssesassnees
HBIOS RETFEIENCEceineiieetee ettt ettt et e s bt e bt e e s a b e e s bt e e sabeesabeesbeeesabeesbteessseesaneeesabeenn
[a1V o Tor- 1 (o] o KOOSR OPPUP O
FUNCTION OVEIVIEW ...ttt sttt e s sttt e e sttt e e s ab e e e s s mb e e e s s abeeesenreeeseanbeeesenreeesanrenas
Character INPUL/OULPUL (ClO) ...uiiiieieiee ettt ettt et e et e e et e e ebeeeebeeestbeeebeeeesseesaresensseesrenenns 11
DisK INPUL/OULPUL (DIO)....eiicuiieeeiieeeiee ettt ettt ettt e et e e e te e et e e e ate e e beeesabeeebeeessseesbesesnseeenteeensseeeseeennes 13
RUE 1IN0 T=T T Yol {3) SRS 18
Video Display AdAPLEr (VDA)eiicieeciee ettt eeteeeeeeete e e bt e e e te e s tee e bt eesbaeesaaeesabeessaeesasessnsaeesnseessseesasenan 20
SYSTEIM (SYS) ittt ettt et ettt st e e e be e e st e e sbee e bbe e e taeeabaeeassee e baeeaabee e bae e tbaeebaeeaabeearaeerreesraeanes 27

RomWBW Architecture Page 1

Overview

RomWBW provides a complete firmware package for all of the Z80 and Z180 based systems that are
available in the RetroBrew Computers Community (see http://www.retrobrewcomputers.org) as well as
support for the RC2014 platform. Each of these systems provides for a fairly large ROM memory
(typically, 512KB or more). RomWBW allows you to configure and build appropriate contents for such a
ROM.

Typically, a computer will contain a small ROM that contains the BIOS (Basic Input/Output System)
functions as well as code to start the system by booting an operating system from a disk. Since the
RetroBrew Computers Projects provide a large ROM space, RomWBW provides a much more
comprehensive software package. In fact, it is entirely possible to run a fully functioning RetroBrew
Computers System with nothing but the ROM.

RomWBW firmware includes:
e System startup code (bootstrap)
e A basic system/debug monitor

e HBIOS (Hardware BIOS) providing support for the vast majority of RetroBrew Computers I/O
components

e A complete operating system (either CP/M 2.2 or ZSDOS 1.1)

e A built-in CP/M filesystem containing the basic applications and utilities for the operating
system and hardware being used

It is appropriate to note that much of the code and components that make up a complete RomWBW
package are derived from pre-existing work. Most notably, the imbedded operating system is simply a
ROM-based copy of generic CP/M or ZSDOS. Much of the hardware support code was originally
produced by other members of the RetroBrew Computers Community.

The remainder of this document will focus on the HBIOS portion of the ROM. HBIOS contains the vast
majority of the custom-developed code for the RetroBrew Computers hardware platforms. It provides a
formal, structured interface that allows the operating system to be hosted with relative ease.

Background
The Z80 CPU architecture has a limited, 64K address range. In general, this address space must
accommodate a running application, disk operating system, and hardware support code.

All RetroBrew Computers Z80 CPU platforms provide a physical address space that is much larger than
the CPU address space (typically 512K or 1MB physical RAM). This additional memory can be made
available to the CPU using a technique called bank switching. To achieve this, the physical memory is
divided up into chunks (banks) of 32K each. A designated area of the CPU’s 64K address space is then

RomWBW Architecture Page 2

http://www.retrobrewcomputers.org/

reserved to “map” any of the physical memory chunks. You can think of this as a window that can be
adjusted to view portions of the physical memory in 32K blocks. In the case of RetroBrew Computers
platforms, the lower 32K of the CPU address space is used for this purpose (the window). The upper 32K
of CPU address space is assigned a fixed 32K area of physical memory that never changes. The lower
32K can be “mapped” on the fly to any of the 32K banks of physical memory at a time. The only
constraint is that the CPU cannot be executing code in the lower 32K of CPU address space at the time
that a bank switch is performed.

By cleverly utilizing the pages of physical RAM for specific purposes and swapping in the correct page
when needed, it is possible to utilize substantially more than 64K of RAM. Because the RetroBrew
Computers Project has now produced a very large variety of hardware, it has become extremely
important to implement a bank switched solution to accommodate the maximum range of hardware
devices and desired functionality.

General Design Strategy

The design goal is to locate as much of the hardware dependent code as possible out of normal 64KB
CP/M address space and into a bank switched area of memory. A very small code shim (proxy) is located
in the top 512 bytes of CPU memory. This proxy is responsible for redirecting all hardware BIOS (HBIOS)
calls by swapping the “driver code” bank of physical RAM into the lower 32K and completing the
request. The operating system is unaware this has occurred. As control is returned to the operating
system, the lower 32KB of memory is switched back to the original memory bank.

HBIOS is completely agnostic with respect to the operating system (it does not know or care what
operating system is using it). The operating system makes simple calls to HBIOS to access any desired
hardware functions. Since the HBIOS proxy occupies only 512 bytes at the top of memory, the vast
majority of the CPU memory is available to the operating system and the running application. As far as
the operating system is concerned, all of the hardware driver code has been magically implemented
inside of a small 512 byte area at the top of the CPU address space.

Unlike some other Z80 bank switching schemes, there is no attempt to build bank switching into the
operating system itself. This is intentional so as to ensure that any operating system can easily be
adapted without requiring invasive modifications to the operating system itself. This also keeps the
complexity of memory management completely away from the operating system and applications.

There are some operating systems that have built-in support for bank switching (e.g., CP/M 3). These
operating systems are allowed to make use of the bank switched memory and are compatible with
HBIOS. However, it is necessary that the customization of these operating systems take into account the
banks of memory used by HBIOS and not attempt to use those specific banks.

Note that all code and data are located in RAM memory during normal execution. While it is possible to
use ROM memory to run code, it would require that more upper memory be reserved for data storage.
It is simpler and more memory efficient to keep everything in RAM. At startup (boot) all required code
is copied to RAM for subsequent execution.

RomWBW Architecture Page 3

Runtime Memory Layout

RomWBW Bank Switched Memory Layout
$10000- — — — — — — — — — — — — N
° HBIOS Proxy (RST08)
L $FE00— / I
v BI
o Operating System| 4 CBIOS
5 HBIOS Function Call A l BDOS
<1 w/ Bank Switch CP/M or ZSYS 4
5 ccp o "\
9|2 f-spooo—
ol °
Nl x
Al
() ~
ks :
© \ 4 o
< --- S L “
5l E
Sl Application Area (TPA) S
—
R| g 5
2 HBIOS g
- (Hardware Drivers) 5
u I
= g
o g
o s
$0000— - — . g
Y
Bank O I . . IBank N—3|Bank N—ZIBank N—1| Bank N

Physical RAM (32K bainks)

RAM Disk

System Boot Process
A multi-phase boot strategy is employed. This is necessary because at cold start, the CPU is executing

code from ROM in lower memory which is the same area that is bank switched.

Boot Phase 1 copies the phase 2 code to upper memory and jumps to it to continue the boot process.

This is required because the CPU starts at address $0000 in low memory. However, low memory is used

as the area for switching ROM/RAM banks in and out. Therefore, it is necessary to relocate execution to

high memory in order to initialize the RAM memory banks.

RomWBW Architecture

Page 4

Boot Phase 2 manages the setup of the RAM page banks for HBIOS operation, performs hardware
initialization, and then executes the boot loader.

Boot Phase 3 is the loading of the selecting operating system (or debug monitor) by the Boot Loader.
The Boot Loader is responsible for prompting the user to select a target operating system to load,
loading it into RAM, then transferring control to it. The Boot Loader is capable of loading a target
operating system from a variety of locations including disk drives and ROM.

Note that the entire boot process is entirely operating system agnostic. It is unaware of the operating
system being loaded. The Boot Loader prompts the user for the location of the binary image to load,
but does not know anything about what is being loaded (the image is usually an operating system, but
could be any executable code image). Once the Boot Loader has loaded the image at the selected
location, it will transfer control to it. Assuming the typical situation where the image was an operating
system, the loaded operating system will then perform it’s own initialization and begin normal
operation.

There are actually two ways to perform a system boot. The first, and most commonly used, method is a
“ROM Boot”. This refers to booting the system directly from the startup code contained on the physical
ROM chip. A ROM Boot is always performed upon power up or when a hardware reset is performed.

Once the system is running (operating system loaded), it is possible to reboot the system from a system
image contained on the file system. This is referred to as an “Application Boot”. This mechanism allows
a temporary copy of the system to be uploaded and stored on the file system of an already running
system and then used to boot the system. This boot technique is useful to: 1) test a new build of a
system image before programming it to the ROM; or 2) easily switch between system images on the fly.

A more detailed explanation of these two boot processes is presented below.

ROM Boot

At power on (or hardware reset), ROM page 0 is automatically mapped to lower memory by hardware
level system initialization. Page Zero (first 256 bytes of the CPU address space) is reserved to contain

dispatching instructions for interrupt instructions. Address SO000 performs a jump to the start of the
phase 1 code so that this first page can be reserved.

The phase 1 code now copies the phase 2 code from lower memory to upper memory and jumps to it.

The phase 2 code now initializes the HBIOS by copying the ROM resident HBIOS from ROM to RAM. It

subsequently calls the HBIOS initialization routine. Finally, it starts the Boot Loader which prompts the
user for the location of the target system image to execute.

Once the boot loader transfers control to the target system image, all of the Phase 1, Phase 2, and Boot
Loader code is abandoned and the space it occupied is normally overwritten by the operating system.

RomWBW Architecture Page 5

Application Boot

When a new system image is built, one of the output files produced is an actual CP/M application (an
executable .COM program file). Once you have a running CP/M (or compatible) system, you can
upload/copy this application file to the filesystem. By executing this file, you will initiate an Application
Boot using the system image contained in the application file itself.

Upon execution, the Application Boot program is loaded into memory by the previously running
operating system starting at S0100. Note that program image contains a copy of the HBIOS to be
installed and run. Once the Application Boot program is loaded by the previous operating system,
control is passed to it and it performs a system initialization similar to the ROM Boot, but using the
image loaded in RAM.

Specifically, the code at $0100 (in low memory) copies phase 2 boot code to upper memory and
transfers control to it. The phase 2 boot code copies the HBIOS image from application RAM to RAM,
then calls the HBIOS initialization routine. At this point, the prior HBIOS code has been discarded and
overwritten. Finally, the Boot Loader is invoked just like a ROM Boot.

Notes
1. Size of ROM disk and RAM disk will be decreased as needed to accommodate RAM and ROM
memory bank usage for the banked BIOS.

2. There is no support for interrupt driven drivers at this time. Such support should be possible in
a variety of ways, but none are yet implemented.

Driver Model

The framework code for bank switching also allows hardware drivers to be implemented mostly without
concern for memory management. Drivers are coded to simply implement the HBIOS functions
appropriate for the type of hardware being supported. When the driver code gets control, it has already
been mapped to the CPU address space and simply performs the requested function based on
parameters passed in registers. Upon return, the bank switching framework takes care of restoring the
original memory layout expected by the operating system and application.

However, the one constraint of hardware drivers is that any data buffers that are to be returned to the
operating system or applications must be allocated in high memory. Buffers inside of the driver’s
memory bank will be swapped out of the CPU address space when control is returned to the operating
system.

If the driver code must make calls to other code, drivers, or utilities in the driver bank, it must make
those calls directly (it must not use RST 08). This is to avoid a nested bank switch which is not supported
at this time.

RomWBW Architecture Page 6

Character / Emulation / Video Services

In addition to a generic set of routines to handle typical character input/output, HBIOS also includes
functionality for managing built-in video display adapters. To start with there is a basic set of character
input/output functions, the CIOXXX functions, which allow for simple character data streams. These
functions fully encompass routing byte stream data to/from serial ports. Note that there is a special
character pseudo-device called “CRT”. When characters are read/written to/from the CRT character
device, the data is actually passed to a built-in terminal emulator which, in turn, utilizes a set of VDA
(Video Display Adapter) functions (such as cursor positioning, scrolling, etc.).

The following diagram depicts the relationship between these components of HBIOS video processing:

Character / Emulation / Video Services

HBIOS HARDWARE
CIOXXX Character
1/0 RS232
Services [g el
UART
ASCI j
VDU » ASCI RS-232 | :H:'[
" ¢
2
B
= EMUXXX Emulation
= .
2 Services
5
wv
4 ANSI — Video
E Others... —» Display > Vbu =
5 Adapter
8 VDAXXX Services aE
VGA]
- CVDU [——P»
SY6545 N ::
MC8563 p p| uPD7220 |22
uPD7220 N ::
TMS9918 > N

Normally, the operating system will simply utilize the CIOXXX functions to send and receive character
data. The Character I/O Services will route I/O requests to the specified physical device which is most
frequently a serial port (such as UART or ASCI). As shown above, if the CRT device is targeted by a

RomWBW Architecture Page 7

CIOXXX function, it will actually be routed to the Emulation Services which implement TTY, ANSI, etc.
escape sequences. The Emulation Services subsequently rely on the Video Display Adapter Services as
an additional layer of abstraction. This allows the emulation code to be completely unaware of the
actual physical device (device independent). Video Display Adapter (VDA) Services contains drivers as
needed to handle the available physical video adapters.

Note that the Emulation and VDA Services API functions are available to be called directly. Doing so
must be done carefully so as to not corrupt the “state” of the emulation logic.

Before invoking CIOXXX functions targeting the CRT device, it is necessary that the underlying layers
(Emulation and VDA) be properly initialized. The Emulation Services must be initialized to specify the
desired emulation and specific physical VDA device to target. Likewise, the VDA Services may need to be
initialized to put the specific video hardware into the proper mode, etc.

HBIOS Reference

Invocation

HBIOS functions are invoked by placing the required parameters in CPU registers and executing an RST
08 instruction. Note that HBIOS does not preserve register values that are unused. However, it must
not modify the Z80 alternate registers or IX/1Y (these registers can be used within HBIOS as long as they
are saved and restored internally).

Normally, applications will not call HBIOS functions directly. It is intended that the operating system
makes all HBIOS function calls. Applications that are considered system utilities may use HBIOS, but
must be careful not to modify the operating environment in any way that the operating system does not
expect.

In general, the desired function is placed in the B register. Register Cis frequently used to specify a
subfunction or a target device number. Additional registers are used as defined by the specific function.
Register A should be used to return function result information. A=0 should indicate success, other
values are function specific.

Some functions utilize pointers to memory buffers. Such memory buffers are required to be located in
the upper 32K for CPU RAM address space. This requirement significantly simplifies the HBIOS proxy
and improves performance by avoiding “double copies” of buffers.

RomWBW Architecture Page 8

Function Overview

Character Input/Output (CIO)

Character Input — CIOIN

Character Output — CIOOUT
Character Input Status — CIOIST
Character Output Status — CIOOST
Character I/O Initialization — CIOINIT
Character I/0 Query — CIOQUERY
Character |I/O Device — CIODEVICE

Disk Input/Output (DIO)

Disk Status — DIOSTATUS
Disk Reset — DIORESET

Disk Seek — DIOSEEK

Disk Read — DIORD

Disk Write — DIOWR

Disk Verify — DIOVERIFY
Disk Format — DIOFORMAT
Disk Device — DIODEVICE
Disk Media — DIOMEDIA
Disk Define Media — DIODEFMED
Disk Capacity — DIOCAP
Disk Geometry -- DIOGEOM

Real Time Clock (RTC)

RTC Get Time — RTCGETTIM

RTC Set Time — RTCSETTIM

RTC Get NVRAM Byte — RTCGETBYT
RTC Set NVRAM Byte — RTCSETBYT
RTC Get NVRAM Block — RTCGETBLK
RTC Set NVRAM Block — RTCSETBLK

Video Display Adapter (VDA)

VDA Initialize — VDAINI

VDA Query — VDAQRY

VDA Reset — VDARES

VDA Set Cursor Style — VDASCS
VDA Set Cursor Position — VDASCP
VDA Set Character Attribute — VDASAT
VDA Set Character Color — VDASCO
VDA Write Character — VDAWRC
VDA Fill - VDAFIL

VDA Copy — VDACPY

VDA Scroll — VDASCR

VDA Keyboard Status — VDAKST
VDA Keyboard Flush — VDAKFL
VDA Keyboard Read — VDAKRD

RomWBW Architecture

Page 9

System (SYS)

System Reset — SYSRESET
System Version — SYSVER
System Set Bank — SYSSETBNK
System Get Bank — SYSGETBNK
System Set Copy — SYSSETCPY
System Bank Copy — SYSBNKCPY
System Alloc — SYSALLOC
System Free — SYSFREE

System Get — SYSGET

System Set — SYSSET

System Peek — SYSPEEK
System Poke — SYSPOKE
System Int — SYSINT

RomWBW Architecture

Page 10

Character Input/Output (CIO)

Character input/output functions require that a character unit be specified in the C register. This is the
logical device number assigned during the boot process that identifies all character i/o devices uniquely.
Each character device is handled by an appropriate driver (UART, ASCI, etc.) which is identified by a
device type id from the table below.

Device Type
0x00 UART
0x10 ASCI

0x20 ProplO VGA

0x30 ParPortProp VGA

Character devices can usually be configured with line characteristics such as speed, framing, etc. A word
value (16 bit) is used to describe the line characteristics as indicated below:

RTS | Baud Rate (encoded) DTR | XON | Parity Stop | Data 8/7/6

15 | 14 13 12 [112 [10] 9 [8 7 6 5 [4 | 3 2 1 [o

The 5-bit baud rate value (V) is encoded as V = 75 * 2AX * 3AY. The bits are defined as YXXXX.

Character Input - CIOIN ($00)

Input Output
B=S00 (function) A=Status (0=0K, 1=Error)
C=Unit E=Character input

Wait for a single character to be available at the specified device and return the character in E. Function
will wait indefinitely for a character to be available.

Character Output - CIOOUT ($01)

Input Output

B=5S01 (function) A=Status (0=0K, 1=Error)
C= Unit

E=Character to output

Wait for unit to be ready to send a character, then send the character specified in E.

Character Input Status - CIOIST (302)

Input Output
B=502 (function) A=Status: # characters in input buffer
C=Unit

Return the number of characters available to read in the input buffer of the unit specified. If the device
has no input buffer, it is acceptable to return simply 0 or 1 where 0 means there is no character available
to read and 1 means there is at least one character available to read.

RomWBW Architecture Page 11

Character Output Status - CIOOST ($03)

Input
B=S03 (function)
C=Unit

Output
A=Status: output buffer space available

Return the space available in the output buffer expressed as a character count. If a 16 byte output
buffer contained 6 characters waiting to be sent, this function would return 10, the number of positions
available in the output buffer. If the port has no output buffer, it is acceptable to return simply 0 or 1
where 0 means the port is busy and 1 means the port is ready to output a character.

Character I0 Initialization - CIOINIT ($04)

Input

B=504 (function)
C=Unit

DE=Line Characteristics

Output
A=Status: 0=Success, otherwise failure

Setup line characteristics (baudrate, framing, etc.) of the specified unit. Register pair DE specifies line
characteristics. If DE contains -1 (OxFFFF), then the device will be reinitialized with the last line

characteristics used.

Character 10 Query - CIOQUERY ($05)

Input
B=S05 (function)
C=Unit

Output
A=Status: 0=Success, otherwise failure

DE=Line Characteristics

Reports the line characteristics (baudrate, framing, etc.) of the specified unit. Register pair DE contains

the line characteristics upon return.

Character 10 Device - CIODEVICE ($06)

Input
B=5S06 (function)
C=Unit

Output
A=Status: 0=Success, otherwise failure

C=Device Attributes
D=Device Type
E=Device Number

Reports information about the character device unit specified. Register C indicates the device
attributes: 0=RS-232 and 1=Terminal. Register D indicates the device type (driver) and register E
indicates the physical device number assigned by the driver.

RomWBW Architecture

Page 12

Disk Input/Output (DIO)

Character input/output functions require that a character unit be specified in the C register. This is the

logical disk unit number assigned during the boot process that identifies all disk i/o devices uniquely.

Each disk device is handled by an appropriate driver (IDE, SD, etc.) which is identified by a device type id

from the table below.

Disk Device Type

0x00 Memory Disk

0x10 Floppy Disk

0x20 RAM Floppy

0x30 IDE Disk

0x40 ATAPI Disk (not implemented)

0x50 PPIDE Disk

0x60 SD Card

0x70 ProplO SD Card

0x80 ParPortProp SD Card

0x90 SIMH HDSK Disk

The currently defined media types are:

Media ID Value | Format
MID_NONE 0 No media installed
MID_MDROM | 1 ROM Drive
MID_MDRAM | 2 RAM Drive
MID_RF 3 RAM Floppy (LBA)
MID_HD 4 Hard Disk (LBA)
MID_FD720 |5 3.5” 720K Floppy
MID_FD144 |6 3.5” 1.44M Floppy
MID_FD360 |7 5.25” 360K Floppy
MID_FD120 |8 5.25” 1.2M Floppy
MID_FD111 |9 8” 1.11M Floppy

Disk Status - DIOSTATUS ($10)

Input

B=510 (function)

C=Unit

Output
A=Status (0=0K, 1=Error)

Returns the current status (result code) of the specified disk unit. This function does not clear an error

status.

RomWBW Architecture

Page 13

Disk Reset - DIORESET ($11)

Input Output
B=S11 (function) A=Status (0=0K, 1=Error)
C=Unit

Reset the physical interface associated with the specified unit. Flag all units associated with the
interface for unit initialization at next 1/O call. Clear media identified unless locked. Reset result code of
all associated units of the physical interface.

Disk Seek - DIOSEEK ($12)

Input Output
B=512 (function) A=Status (0=0K, 1=Error)
C=Unit

D:7=Address Type (0=CHS, 1=LBA)
CHS: D:6-0=Head, E=Sector, HL=Track
LBA: DE:HL is 32 bit block address

Update target CHS or LBA for next I/O request on designated unit. Physical seek is typically deferred
until subsequent 1/O operation.

Bit 7 of D indicates whether the disk seek address is specified as cylinder/head/sector (CHS) or Logical
Block Address (LBA). If D:7=1, then the remaining bits of of the 32 bit register set DE:HL specify a linear,
zero offset, block number. If D:7=0, then the remaining bits of D specify the head, E specifies sector, and
HL specifies track.

Note that not all devices will accept both types of addresses. Specifically, floppy disk devices must have
CHS addresses. All other devices will accept either CHS or LBA. The DIOGEOM function can be used to
determine if the device supports LBA addressing.

Disk Read - DIOREAD ($13)

Input Output
B=513 (function) A=Status (0=0K, 1=Error)
C= Unit E=Blocks Read

HL=Buffer Address
E=Block Count

Read Block Count sectors to buffer address starting at current target sector. Current sector must be
established by prior seek function; however, multiple read/write/verify function calls can be made after
a seek function. Current sector is incremented after each sector successfully read. On error, current
sector is sector is sector where error occurred. Blocks read indicates number of sectors successfully
read. Caller must ensure buffer address is large enough to contain data for all sectors requested.

RomWBW Architecture Page 14

Disk Write - DIOWRITE ($14)

Input

B=$14 (function)
C=Unit

HL=Buffer Address
E=Block Count

Output
A=Status (0=0K, 1=Error)
E=Blocks Written

Write Block Count sectors to buffer address starting at current target sector. Current sector must be
established by prior seek function; however, multiple read/write/verify function calls can be made after
a seek function. Current sector is incremented after each sector successfully written. On error, current
sector is sector is sector where error occurred. Blocks written indicates number of sectors successfully
written. Caller must ensure buffer address is large enough to contain data for all sectors being written.

Disk Verify - DIOVERIFY ($15)

Input

B=$15 (function)

C=Unit

HL=Buffer Address

E=Block Count (not implemented)

Output
A=Status (0=0K, 1=Error)
E=Blocks Verified

Not Implemented

Disk Format - DIOFORMAT ($16)

Input

B=$15 (function)
C= Unit

D=Head

E=Fill Byte
HL=Cylinder

Output
A=Status (0=0K, 1=Error)

Not Implemented

RomWBW Architecture

Page 15

Disk Device - DIDEVICE ($17)

Input
B=$17 (function)
C=Unit

Output

A=Status (0=0K, 1=Error)
C=Attributes

D=Device Type

E=Device Number

Reports information about the character device unit specified. Register D indicates the device type
(driver) and register E indicates the physical device number assigned by the driver.

Register C reports the following device attributes:

Bit 7: 1=Floppy, O=Hard Disk (or similar, e.g. CF, SD, RAM)

If Floppy:

Bits 6-5: Form Factor (0=8", 1=5.25", 2=3.5", 3=0ther)

Bit 4: Sides (0=SS, 1=DS)

Bits 3-2: Density (0=SD, 1=DD, 2=HD, 3=ED)
Bits 1-0: Reserved

If Hard Disk:

Bit 6: Removable

Bits: 5-3: Type (0=Hard, 1=CF, 2=SD, 3=USB, 4=ROM, 5=RAM, 6=RAMF, 7=Reserved)

Bits 2-0: Reserved

Disk Media - DIOMED ($18)

Input

B=513 (function)

C=Unit

E:0 Enable Media Discovery

Output
A=Status (0-OK, 1=Error)
E=Media ID

Report the media definition for media in specified unit. If bit 0 of E is set, then perform media discovery
or verification. If no media in device, return no media error.

Disk Define Media - DIODEFMED ($19)

Input

B=519 (function)
C=Unit
E=Media ID

Output
A=Status (0-OK, 1=Error)

*** Not implemented ***

RomWBW Architecture

Page 16

Disk Capacity - DIOCAPACITY ($1A)

Input Output

B=S1A (function) A=Status (0-OK, 1=Error)
C=Unit DE:HL=Blocks on Device
HL=Buffer Address BC=Block Size

Report current media capacity information. ED:HL is a 32 bit number representing the total number of
blocks on the device. BC contains the block size. If media is unknown, an error will be returned.

Disk Geometry - DIOGEOMETRY ($1B)

Input Output

B=S1B (function) A=Status (0-OK, 1=Error)

C=Unit HL=Cylinders
D:6-0=Heads
D:7=LBA Capability
BC=Block Size

Report current media geometry information. If media is unknown, return error (no media).

RomWBW Architecture Page 17

Real Time Clock (RTC)

The Real Time Clock functions provide read/write access to the clock and related Non-Volatile RAM.

The time functions (RTCGTM and RTCSTM) require a 6 byte date/time buffer of the following format.

Each byte is BCD encoded.

Offset | Contents

Year (00-99)

Month (01-12)

Date (01-31)

Hours (00-24)

Minutes (00-59)

ihlWIN|FL|O

Seconds (00-59)

RTC Get Time - RTCGETTIM($20)

Input
B=520 (function)
HL=Time Buffer Address

Output
A=Status: 0=Success, otherwise failure

Read the current value of the clock and store the date/time in the buffer pointed to by HL.

RTC Set Time - RTCSETTIM($21)

Input
B=521 (function)

Output
A=Status: 0=Success, otherwise failure

Set the current value of the clock based on the date/time in the buffer pointed to by HL.

RTC Get NVRAM Byte - RTCGETBYT($22)

Input
B=522 (function)
C=Index

Output
A=Status: 0=Success, otherwise failure

E=Value

Read a single byte value from the Non-Volatile RAM at the index specified by C. The value is returned in

register E.

RTC Set NVRAM Byte - RTCSETBYT($23)

Input
B=523 (function)
C=Index

Output
A=Status: 0=Success, otherwise failure

E=Value

Write a single byte value into the Non-Volatile RAM at the index specified by C. The value to be written

is specified in E.

RomWBW Architecture

Page 18

RTC Get NVRAM Block - RTCGETBLK($24)

Input Output
B=524 (function) A=Status: 0=Success, otherwise failure
HL=Buffer

Read the entire contents of the Non-Volatile RAM into the buffer pointed to by HL. HL must point to a
location in the top 32K of CPU address space.

RTC Set NVRAM Block - RTCSETBLK($25)

Input Output
B=525 (function) A=Status: 0=Success, otherwise failure
HL=Buffer

Write the entire contents of the Non-Volatile RAM from the buffer pointed to by HL. HL must point to a
location in the top 32K of CPU address space.

RomWBW Architecture Page 19

Video Display Adapter (VDA)
The VDA functions are provided as a common interface to Video Display Adapters. Not all VDAs will
include keyboard hardware. In this case, the keyboard functions should return a failure status.

The VDA functions require that a VDA device/unit be specified in the C register. The upper nibble (upper
4 bits) specifies the device. The lower nibble specifies the unit (not currently used).

The currently defined video devices are:

VDA ID Value | Device

VDA_NONE 0 No VDA

VDA_VDU 1 ECB VDU board

VDA_CVDU 2 ECB Color VDU board

VDA_7220 3 ECB uPD7220 video display board
VDA_N8 4 TMS9918 video display built-in to N8

Depending on the capabilities of the hardware, the use of colors and attributes may or may not be
supported. If the hardware does not support these capabilities, they will be ignored.

Color byte values are constructed using typical RGBI (Red/Green/Blue/Intensity) bits. The high four bits
of the value determine the background color and the low four bits determine the foreground color. This
results in 16 unique color values for both foreground and background. The following table illustrates the
color byte value construction:

@
-+

Color

Intensity
Blue
Green
Red

Background

Intensity
Blue
Green
Red

Foreground

OR|INW AUV

RomWBW Architecture Page 20

The following table illustrates the resultant color for each of the possible 16 values for foreground or

background:
Foreground Background | Color Sample
_0|__ 0000 |0_|0000___ | Black
1| ___0001|1_|0001___ | Red
2| ____0010|2_|0010____ | Green
3| __ 0011 |3_|0011__ | Brown
4| ___ 0100 |4_|0100____ | Blue
5] 0101 |5_ |0101___ | Magenta
6| ___ 0110 | 6_|0110___ | Cyan
7| 0111 |7_|0111____ | White
_8|__ 1000|8 |1000___ | Gray
9| ___1001|9_ | 1001___ | LightRed
A | ___ 1010 | A_ | 1010____ | Light Green
B 1011 | B | 1011 Yellow
C 1100 | C | 1100 Light Blue
D 1101 | b_ | 1101 Light Magenta
E 1110 | E | 1110 Light Cyan
F 1111 | F | 1111 Bright White

Attribute byte values are constructed using the following bit encoding:

Bit Effect

7 n/a (0)

6 n/a (0)

5 n/a (0)

4 n/a (0)

3 n/a (0)

2 Reverse

1 Underline

0 Blink

RomWBW Architecture Page 21

The following codes are returned by a keyboard read to signify non-ASCll keystrokes:

Value | Keystroke Value | Keystroke
EO F1 FO Insert

El F2 F1 Delete

E2 F3 F2 Home

E3 F4 F3 End

E4 F5 F4 PageUp

E5 F6 F5 PadeDown
E6 F7 F6 UpArrow
E7 F8 F7 DownArrow
ES F9 F8 LeftArrow
E9 F10 F9 RightArrow
EA F11 FA Power

EB F12 FB Sleep

EC SysReq FC Wake

ED PrintScreen FD Break

EE Pause FE

EF App FF

Video Display Adapter Initialize -VDAINI ($40)

Input

B=540 (function)
C=Device/Unit

E=Video Mode (device specific)
HL=Character Bitmap (optional)

Output

A=Status: 0=Success, otherwise failure

Performs a full (re)initialization of the specified video device. The screen is cleared and the keyboard
buffer is flushed. If the specified VDA supports multiple video modes, the requested mode can be

specified in E (set to O for default/not specified). Mode values are specific to each VDA.

HL may point to a location in memory with the character bitmap to be loaded into the VDA video

processor. The location MUST be in the top 32K of the CPU memory space. HL must be set to zero if no

character bitmap is specified (the VDA video processor will utilize a default character bitmap).

RomWBW Architecture

Page 22

Video Display Adapter Query -VDAQRY ($41)

Input Output

B=541 (function) A=Status: 0=Success, otherwise failure
C=Device/Unit C=Video Mode

HL=Character Bitmap Data (optional) D=Row Count

E=Column Count
HL=Character Bitmap Data (zero if none)

Return information about the specified video device. C will be set to the current video mode. DE will
return the dimensions of the video display as measured in rows and columns. Note that this is the count
of rows and columns, not the last row/column number.

If HL is not zero, it must point to a suitably sized memory buffer in the upper 32K of CPU address space
that will be filled with the current character bitmap data. It is critical that HL be set to zero if it does not
point to a proper buffer area or memory corruption will result. The video device driver may not have
the ability to provide character bitmap data. In this case, on return, HL will be set to zero.

Video Display Adapter Reset -VDARES ($42)

Input Output
B=542 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit

Performs a soft reset of the Video Display Adapter. Should clear the screen, home the cursor, restore
active attribute and color to defaults. Keyboard should be flushed.

Video Display Adapter Set Cursor Style -VDASCS ($43)

Input Output
B=543 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
D=Start/End pixel
E=Style

If supported by the video hardware, adjust the format of the cursor such that the cursor starts at the
pixel specified in the top nibble of D and end at the pixel specified in the bottom nibble of D. So, if
D=$08, a block cursor would be used that starts at the top pixel of the character cell and ends at the
ninth pixel of the character cell.

Register E is reserved to control the style of the cursor (blink, visibility, etc.), but is not yet implemented.

Adjustments to the cursor style may or may not be possible for any given video hardware.

RomWBW Architecture Page 23

Video Display Adapter Set Cursor Position -VDASCP ($44)

Input Output

B=544 (function) A=Status: 0=Success, otherwise failure
C=Device/Unit

D=Row

E=Column

Reposition the cursor to the specified row and column. Specifying a row/column that exceeds the
boundaries of the display results in undefined behavior. Cursor coordinates are 0 based (0,0 is the
upper left corner of the display).

Video Display Adapter Set Character Attribute -VDASAT ($45)

Input Output
B=545 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Character Attribute Code

Assign the specified character attribute code to be used for all subsequent character writes/fills. This
attribute is used to fill new lines generated by scroll operations. Refer to the character attribute for a
list of the available attribute codes. Note that a given video display may or may not support any/all
attributes.

Video Display Adapter Set Character Color -VDASCO (3$46)

Input Output

B=546 (function) A=Status: 0=Success, otherwise failure
C=Device/Unit

E=Color Code

Assign the specified color code to be used for all subsequent character writes/fills. This color is also
used to fill new lines generated by scroll operations. Refer to color code table for a list of the available
color codes. Note that a given video display may or may not support any/all colors.

Video Display Adapter Write Character -VDAWRC ($47)

Input Output
B=547 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Character

Write the character specified in E. The character is written starting at the current cursor position and
the cursor is advanced. If the end of the line is encountered, the cursor will be advanced to the start of
the next line. The display will not scroll if the end of the screen is exceeded.

RomWBW Architecture Page 24

Video Display Adapter Fill -VDAFIL ($48)

Input Output
B=548 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Character
HL=Count

Write the character specified in E to the display the number of times specified in HL. Characters are
written starting at the current cursor position and the cursor is advanced by the number of characters
written. If the end of the line is encountered, the characters will continue to be written starting at the
next line as needed. The display will not scroll if the end of the screen is exceeded.

Video Display Adapter Copy -VDACPY (3$49)

Input Output
B=548 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
D=Source Row
E=Source Column
L=Count (max 255)

Copy count (L) bytes from the source row/column (DE) to current cursor position. The cursor position is
not updated. The maximum count is 255. Copying to/from overlapping areas is not supported and will
have an undefined behavior. The display will not scroll if the end of the screen is exceeded. Copying
beyond the active screen buffer area is not supported and results in undefined behavior.

Video Display Adapter Scroll -VDASCR ($4A)

Input Output
B=549 (function) A=Status: 0=Success, otherwise failure

C=Device/Unit
E=Scroll distance (# lines)

Scroll the video display by the number of lines specified in E. If E contains a negative number, then
reverse scroll should be performed.

Video Display Adapter Keyboard Status -VDAKST ($4B)

Input Output
B=S4A (function) A=Status: # key codes in keyboard buffer

C=Device/Unit

Return a count of the number of key codes in the keyboard buffer. If it is not possible to determine the
actual number in the buffer, it is acceptable to return 1 to indicate there are key codes available to read
and O if there are none available.

RomWBW Architecture Page 25

Video Display Adapter Keyboard Flush -VDAKFL ($4.C)

Input

B=54B (function)
C=Device/Unit

Output

A=Status: 0=Success, otherwise failure

If a keyboard buffer is in use, it should be purged and all contents discarded.

Video Display Adapter Keyboard Read -VDAKRD ($4D)

Input Output

B=5$4C (function)

C=Device/Unit C=Scancode
D=Keystate
E=Keycode

A=Status: 0=Success, otherwise failure

Read next key code from keyboard. If a keyboard buffer is used, return the next key code in the buffer.

If no key codes are available, wait for a keypress and return the keycode.

The scancode value is the raw scancode from the keyboard for the keypress. Scancodes are from
scancode set 2 standard.

The keystate is a bitmap representing the value of all modifier keys and shift states as they existed at the
time of the keystroke. The bitmap is defined as:

Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit O:

Set to indicate key pressed was from the num pad
Set to indicate Caps Lock was active

Set to indicate Num Lock was active

Set to indicate Scroll Lock was active

Set to indicate Windows key was held down

Set to indicate Alt key was held down

Set to indicate control key was held down

Set to indicate Shift key was held down

Keycodes are generally returned as appropriate ASCII values, if possible. Special keys, like function keys,

are returned as reserved codes as described at the start of this section.

RomWBW Architecture

Page 26

System (SYS)

System Reset - SYSRESET ($FO0)

Input
B=SFO0 (function)

Output
A=Previously active Bank ID

Perform a soft reset of HBIOS. Releases all HBIOS memory allocated by current OS. Does not reinitialize

physical devices.

System Version - SYSVER ($F1)

Input
B=SF1 (function)
C=Reserved (set to 0)

Output
A=Previously active Bank ID

DE=Version (Maj/Min/Upd/Pat)
L=Platform Id

This function will return the HBIOS version number. The version number is returned in DE. High nibble
of D is the major version, low nibble of D is the minor version, high nibble of E is the patch number, and

low nibble of E is the build number.
The hardware platform is identified in L:

:SBCV1orV2

: ZETA

1 ZETA 2

: N8

: MK4

: UNA

: RC2014 w/ Z80

: RC2014 w/ 7180
: Easy Z80

System Set Bank - SYSSETBNK ($F2)

Input
B=SF2 (function)
C=Bank ID

Output
A=Status: 0=Success, otherwise failure

C=Previously active Bank ID

Activates the Bank ID specified in C and returns the previously active Bank ID in C. The caller MUST be
invoked from code located in the upper 32K and the stack must be in the upper 32K.

System Get Bank - SYSGETBNK ($F3)

Input
B=SF2 (function)

Output
A=Status: 0=Success, otherwise failure

C=Active Bank ID

Returns the currently active Bank ID in C.

RomWBW Architecture

Page 27

System Set Copy - SYSSETCPY ($F4)

Input Output
B=SF4 (function) A=Status: 0=Success, otherwise failure

D=Destination Bank Id
E=Source Bank Id
HL=Count of Bytes to Copy

Prepare for a subsequent interbank memory copy (SYSBNKCPY) function by setting the source bank,
destination bank, and byte count for the copy. The bank id’s are not range checked and must be valid
for the system in use.

No bytes are copied by this function. The SYSBNKCPY must be called to actually perform the copy. The
values setup by this function will remain unchanged until another call is make to this function. So, after
calling SYSSETCPY, you may make multiple calls to SYSBNKCPY as long as you want to continue to copy
between the already established Source/Destination Banks and the same size copy if being performed.

System Bank Copy - SYSBNKCPY ($F5)

Input Output
B=SF5 (function) A=Status: 0=Success, otherwise failure

DE=Destination address
HL=Source address

Copy memory between banks. The source bank, destination bank, and byte count to copy MUST be
established with a prior call to SYSSETCPY. However, it is not necessary to call SYSSETCPY prior to
subsequent calls to SYSBNKCPY if the source/destination banks and copy length do not change.

WARNINGS:

e This function is inherently dangerous and does not prevent you from corrupting critical areas of
memory. Use with EXTREME caution.

e Overlapping source and destination memory ranges are not supported and will result in
undetermined behavior.

e Copying of byte ranges that cross bank boundaries is undefined.

System Alloc - SYSALLOC ($F6)

Input Output
B=SF6 (function) A=Status: 0=Success, otherwise failure
HL=Size in bytes HL=Address of allocated memory block

This function will attempt to allocate a block of memory of HL bytes from the internal HBIOS heap. The
HBIOS heap resides in the HBIOS bank in the area of memory left unused by HBIOS. If the allocation is
successful, the address of the allocated memory block is returned in HL. You will typically want to use
the SYSBNKCPY function to read/write the allocated memory.

RomWBW Architecture Page 28

System Free - SYSFREE ($F7)

Input
B=SF7 (function)

HL=Address of memory block to free

Output
A=Status: 0=Success, otherwise failure

*** This function is not yet implemented ***

System Get - SYSGET ($F8)

Input
B=SF8 (function)
C=Subfunction

Output
A=Status: 0=Success, otherwise failure

This function will report various system information based on the sub-function value. Additional input
and output registers may be used as defined by the sub-function.

CIOCNT (S00) Return count of serial units in E

DIOCNT ($10) Return count of disk units in E

VDACNT ($40) Return count of video display units in E
TIMER ($DO0) Return current timer tick count value in DE:HL

SECONDS ($D1)

Return current seconds count value in DE:HL

BOOTINFO ($E0)

Return boot bank id in L, disk unit in D, and disk slice in E

CPUINFO ($F0)

Return Z80 variant in H, CPU Speed in MHz in L, and CPU Speed in KHz in DE

MEMINFO ($F1)

Return count of 32K ROM banks in D and count of RAM banks in E

BNKINFO ($F2)

Return BIOS bank id in D and User bank id in E

System Set - SYSSET ($F9)

Input
B=SF9 (function)
C=Subfunction

Output
A=Status: 0=Success, otherwise failure

This function will set various system parameters based on the sub-function value. Additional input and
output registers may be used as defined by the sub-function.

TIMER ($DO0)

Set timer tick count value from DE:HL

SECONDS ($D1)

Set seconds count value from DE:HL

BOOTINFO (SE0)

Set boot bank id in L, disk unit in D, and disk slice in E

System Peek - SYSPEEK ($FA)

Input

B=SFA (function)
D=Bank
HL=Address

Output
A=Status: 0=Success, otherwise failure

E=Byte Value

This function gets a single byte value from the specified bank/address. The bank specified is not range

checked.

RomWBW Architecture Page 29

System Poke - SYSPOKE ($FB)

Input Output

B=SFB (function) A=Status: 0=Success, otherwise failure
D=Bank

E=Value

HL=Address

This function sets a single byte value in the specified bank/address. The bank specified is not range
checked.

RomWBW Architecture Page 30

System Int - SYSINT ($FC)

Input Output
B=SFC (function) A=Status: 0=Success, otherwise failure

C=Subfunction

This function allows the caller to query information about the interrupt configuration of the running
system and allows adding or hooking interrupt handlers dynamically. Register Cis used to specify a
subfunction. Additional input and output registers may be used as defined by the sub-function.

Note that during interrupt processing, the lower 32K of CPU address space will contain the RomWBW
HBIOS code bank, not the lower 32K of application TPA. As such, a dynamically installed interrupt
handler does not have access to the lower 32K of TPA and must be careful to avoid modifying the
contents of the lower 32K of memory. Invoking RomWBW HBIOS functions within an interrupt handler
is not supported.

Interrupt handlers are different for IM1 or IM2.

For IM1:

The new interrupt handler is responsible for chaining (JP) to the previous vector if the interrupt
is not handled. If the interrupt is handled, the new handler may simply return (RET). When
chaining to the previous interrupt handler, ZF must be set if interrupt is handled and ZF cleared
if not handled. The interrupt management framework takes care of saving and restoring AF, BC,
DE, HL, and IY. Any other registers modified must be saved and restored by the interrupt
handler.

For IM2:

The new interrupt handler may either replace or hook the previous interrupt handler. To
replace the previous interrupt handler, the new handler just returns (RET) when done. To hook
the previous handler, the new handler can chain (JP) to the previous vector. Note that initially
all IM2 interrupt vectors are set to be handled as “BAD” meaning that the interrupt is
unexpected. In most cases, you do not want to chain to the previous vector because it will
cause the interrupt to display a “BAD INT” system panic message.

The interrupt framework will take care of issuing an El and RETI instruction. Do not put these
instructions in your new handler. Additionally, interrupt management framework takes care of
saving and restoring AF, BC, DE, HL, and IY. Any other registers modified must be saved and
restored by the interrupt handler.

If the caller is transient, then the caller must remove the new interrupt handler and restore the original
one prior to termination. This is accomplished by calling this function with the Interrupt Vector set to
the Previous Vector returned in the original call.

The caller is responsible for disabling interrupts prior to making an INTSET call and enabling them
afterwards. The caller is responsible for ensuring that a valid interrupt handler is installed prior to
enabling any hardware interrupts associated with the handler. Also, if the handler is transient, the caller
must disable the hardware interrupt(s) associated with the handler prior to uninstalling it.

RomWBW Architecture Page 31

INTINF (S00) Return interrupt mode in D and size of interrupt vector table in E. For IM1, the
size of the table is the number of vectors chained together. For IM2, the size of
the table is the number of slots in the vector table.

INTGET ($10) On entry, register E must contain an index into the interrupt vector table. On
return, HL will contain the address of the current interrupt vector at the
specified index.

INTSET ($20) On entry, register E must contain an index into the interrupt vector table and
register HL must contain the address of the new interrupt vector to be inserted
in the table at the index. On return, HL will contain the previous address in the
table at the index.

RomWBW Architecture Page 32

