
RomWBW

Applications

Wayne Warthen

Saturday 21 March 2020

Contents
Summary 2

ASSIGN 4

SYSCOPY 7

MODE 10

FDU 12

OSLDR 13

FORMAT 15

XM 16

FLASH 18

FDISK80 20

FAT 21

TUNE 24

1



Summary

RomWBW includes a small suite of custom applications to maximize the features available.
In general, these applications are operating system agnostic – they run under any of the
included operating systems. However, they all require RomWBW – they are not generic
CP/M applications.

Most of the applications are custom written for RomWBW. However, some are standard
CP/M applications that have been adapted to run under RomWBW (e.g., XModem). The
applications are generally matched to the version of RomWBW they are distributed with.
So, if you upgrade the version of RomWBW in your system ROM, you will want to copy the
corresponding applications to any storage devices you are using.

Most of the applications are included on the RomWBW ROM disk, so they are easy to
access.

The applications are also included with all of the operating system disk images provided
with RomWBW. So, a simple way to ensure you have matching applications is to write the
disk images onto your disk media when upgrading your ROM. Of course, this will destroy
any existing data on your disk media, so don’t do this if you are saving any data on the
media.

Most of the applications are included as source code in the RomWBW distribution and are
built in the normal build process. The source code is found in the Source\Apps directory of
the distribution. The binary executable applications are found in the Binary\Apps directory.

The following table clarifies where each of the applications can be found:

Application ROM Disk Boot Disks Apps Dir

ASSIGN Yes Yes Yes
SYSCOPY Yes Yes Yes
MODE Yes Yes Yes
FDU Yes Yes Yes
OSLDR Yes Yes Yes
FORMAT Yes Yes Yes
XM Yes Yes Yes
FLASH Yes Yes Yes
FDISK80 Yes Yes Yes
FAT No Yes Yes

2



Application ROM Disk Boot Disks Apps Dir

TUNE No Yes Yes

3



ASSIGN

RomWBW includes a flexible mechanism for associating the operating system drive letters
(A: - P:) to the physical devices in the system. Drive letter assignments can be changed on
a running operating system without rebooting. The ASSIGN command facilitates this by
allowing allows you to display, assign, reassign, or remove the drive letter assignments.

Syntax

ASSIGN /?

ASSIGN /L

ASSIGN [<drv> ],...

ASSIGN<drv> =[<device> :[<slice> ]],...

ASSIGN<tgtdrv> =<srcdrv> ,...

Usage

ASSIGN /? will display brief command usage and version information.

ASSIGN /L will display a list of all the devices available to be used in drive assignments
in the running system. The devices listed may or may not contain media. Although some
device types support the use of slices, the list does not indicate this.

ASSIGN with no parameters will list all of the current drive assignments.

ASSIGN<drv> will display the assignment for the specific drive For example, ASSIGN C: will
display the assignment for drive C:.

ASSIGN<drv> =<device> [:<slice> ] will assign (or reassign) a drive letter to a new device
and (optionally) slice. If no slice is specified, then slice 0 is assumed. For example, ASSIGN
C:=IDE0 will assign drive letter C: to device IDE0, slice 0. ASSIGN D:=IDE0:3 will assign
drive letter D: to device IDE0 slice 3.

ASSIGN<drv> = can be used to remove the assignment from a drive letter. So, ASSIGN E:=

will remove the association of drive letter E: from any previous device.

ASSIGN<tgtdrv> =<srcdrv> ‘is used to swap the assignments of two drive letters.

For example,ASSIGN C:=D:‘ will swap the device assignments of C: and D:.

The ASSIGN command supports “stacking” of instructions. For example, ASSIGN

4



C:=IDE0:0,D:=IDE0:1,E:= will assign C: and D: to the first two slices of IDE 0 and will
unassign E:.

When the command runs it will echo the resultant assignments to the console to confirm
it’s actions.

Notes

If the ASSIGN command encounters any rule violations or errors, it will abort with an error
and none of the drive assignments will be implemented. In other words, the command is
atomic and will either completely succeed or completely fail.

All assigned drives utilize disk buffer space from a limited pool. The ASSIGN command
will display the amount of buffer space remaining after an assign command is executed.
Buffer space is freed if a drive is unassigned. If the total assignments exceed the available
disk buffer space available, the command will abort with an error message.

The ASSIGN command does not check to see if the device and slice being assigned actually
contains readable media. If the assigned device has no media, you will receive an I/O error
when you attempt to use the drive letter.

The ASSIGN command will not allow you to specify a slice (other than zero) for devices that
do not support slices (such as floppy drives or RAM/ROM disks).

The ASSIGN command does not check that the media is large enough to support the slice
you specify. In other words, you could potentially assign a drive letter to a slice that is
beyond the end of the media in a device. In this case, subsequent attempts to use that
drive letter will result in an I/O error.

Additionally, the ASSIGN command does not check to see if the slice specified refers to an
area on your media that is occupied by other data (such as a FAT filesystem).

You will not be allowed to assign multiple drive letters to a single device and slice. In other
words, only one drive letter may refer to a single filesystem at a time.

Drive letter A: must always be assigned to a device and slice. The ASSIGN command will
enforce this.

The changes made by this command are not permanent. The assignments will persist
through a warm start, but when you reboot your system, all drive letters will return to their
default assignments. A SUBMIT batch file can be used to setup desired drive assignments

5



automatically at boot.

Floppy disk drives and RAM/ROM drives do not have slices. A slice should only be
specified for hard disk devices (SD, IDE, PPIDE).

Only one drive letter may be assigned to a specific device/unit/slice at a time. Attempts to
assign a duplicate drive letter will fail and display an error. If you wish to assign a different
drive letter to a device/unit/slice, unassign the the existing drive letter first.

Be aware that this command will allow you to reassign or remove the assignment of your
system drive letter. This can cause your operating system to fail and force you to reboot.

This command is particularly sensitive to being matched to the appropriate version of the
RomWBW ROM you are using. Be very careful to keep all copies of ASSIGN.COM up to
date with your ROM.

Etymology

The ASSIGN command is an original product and the source code is provided in the
RomWBW distribution.

6



SYSCOPY

To make disk media bootable, you must write a system boot image onto the system tracks
of the of the media. The SYSCOPY allows you to read or write the system boot image of disk
media.

Syntax

SYSCOPY<dest> =<src>

<dest> is the drive to receive the operating system image or alternatively a filename to
save the operating system image

<src> is the drive containing an operating system image or alternatively a filename
containing the system image to be placed on the destination

Usage

Both <dest> and <src> can refer to either a drive letter or a file. If a drive letter is specified,
the system boot image will be read or written to the system tracks of the drive. If a filename
is specified, the system boot image will be read or written to the specified filename.

SYSCOPY C:=ZSYS.SYS will read a system boot image from the file ZSYS.SYS and write it
onto the system tracks of drive C:.

SYSCOPY A:OS.SYS=C: will capture the system boot image from the system tracks of drive
C: and store it in the file A:OS.SYS.

SYSCOPY D:=C: will copy the system tracks from drive C: onto the system tracks of drive D:

Notes

The RomWBW ROM disk contains files with the system boot image for Z-System and
CP/M 2.2. These files are called CPM.SYS and ZSYS.SYS respectively. These files can be
used as the source of a SYSCOPY command to make a disk bootable with the corresponding
operating system.

CP/M 3 uses a two phase boot process. To make a CP/M 3 drive bootable, you need to
put “CPMLDR.SYS” on the boot tracks of the disk and be sure that the drive also contains

7



the “CPM.SYS” file. The “CPMLDR.SYS” file is not inlcuded on the ROM disk, but is found
on the CP/M 3 disk image.

ZPM3 is similar to CP/M 3. You also put “CPMLDR.SYS” on the system tracks of the drive
to make it bootable. The ZPM3 operating system is in the file called “CPM3.SYS” on the
ZPM3 disk image. It may seem confusing that ZPM3 is in the file called CPM3.SYS, but it
is normal for ZPM3.

For the purposes of booting an operating system, each disk slice is considered it’s own
operating system. Each slice can be made bootable with it’s own system tracks.

SYSCOPY uses drive letters to specify where to read/write the system boot images. However,
at startup, the boot loaded will require you to enter the actual disk device and slice to
boot from. So, you need to be careful to pay attention to the device and slice that is
assigned to a drive letter so you will know what to enter at the boot loader prompt. By way
of explanation, the boot loader does not know about drive letters because the operating
system is not loaded yet.

If you want to put a a boot system image on a device and slice that is not currently assigned
to a drive letter, you will need to assign a drive letter first.

Not all disk formats include space for system tracks. Such disk formats cannot contains
a system boot image and, therefore, cannot be made bootable. The best example of
such disk formats are the ROM and RAM disks. To maximize useable file space on these
drives, they do not have system tracks. Obviously, ROM operating system is supported
by choosing a ROM operating system at the boot loader prompt. Any attempt to write a
system boot image to disk media with no system tracks will cause SYSCOPY to fail with
an error message.

The system boot images are paired with the ROM version in your system. So, you must
take care to update the system tracks of any bootable disk when you upgrade your ROM
firmware.

The system boot images are not tied to specific hardware configurations. System boot
images and operating systems proviced with RomWBW will work with any supported
RomWBW platform or hardware as long as they are the same version as the RomWBW
firmware.

8



Etymology

The SYSCOPY command is an original product and the source code is provided in the
RomWBW distribution.

9



MODE

The MODE command allows you to adjust the operating characteristics such as baud rate,
data bits, stop bits, and parity bits of serial ports dynamically.

Syntax

MODE /? MODE COM<n> : [<baud> [,<parity> [,<databits> [,<stopbits> ]]]] [/P]

/? displays command usage and version information

<n> is the character device unit number

<baud> is numerical baudrate

<parity> is (N)one, (O)dd, (E)ven, (M)ark, or (S)pace

<databits> is number of data bits, typically 7 or 8

<stopbits> is number of stop bits, typically 1 or 2

/P prompts user prior to setting new configuration

Usage

MODE /? will display basic command usage and version information.

MODE with no parameters will list all devices and their current configuration.

MODE <n> will display the current configuration of the specified character device unit.

MODE COM<n> : [<baud> [,<parity> [,<databits> [,<stopbits> ]]]] [/P] requests
that the specified configuration be set on the character device unit. You can use commas
with no values to leave some values unchanged. As an example, MODE COM0: 9600�,2 will
setup character device unit 0 for 9600 baud and 2 stop bits while leaving data bits and
stop bits as is.

Appending /P in a command specifying a new configuration will cause the terminal output
to pause and wait for the user to press a key. This allows the user to change the local
terminal setup before continuing.

10



Notes

Specified baud rate and line characteristics must be supported by the serial unit. Any
parameters not specified will remain unchanged.

Changes are not persisted and will revert to system defaults at next system boot.

Not all character devices support all MODE options. Some devices (notably ASCI devices)
have limited baud rate divisors. An attempt to set a buad rate that the device cannot
support will fail with an error message.

Etymology

The SYSCOPY command is an original product and the source code is provided in the
RomWBW distribution.

11



FDU

The FDU application is a Floppy Disk Utility that provides functions to format and test floppy
disk media.

Syntax

FDU

Usage

This application has an interactive user interface. At startup, you will be prompted to select
the floppy interface hardware in your system. Following this, you will see the main menu of
the program with many functions to manage floppy disk drives.

The primary documentation for this application is in a file called “FDU.txt” in the Doc
directory of the RomWBW distribution. Please consult this file for usage information.

Notes

This application interfaces directly to the floppy hardware in your system. It does not use
the RomWBW HBIOS. This means that even if your system is not configured for floppy
drives, you can still use FDU to test your floppy drives and format floppy media. This also
means it is critical that you choose the correct hardware interface from the initial selection
when starting the application.

Etymology

The FDU command is an original product and the source code is provided in the RomWBW
distribution.

12



OSLDR

RomWBW supports loading new operating systems on-the-fly. For example, if CP/M 2.2
is currently running, you can load and run Z-System from the command line. The OSLDR

application provides this functionality.

Syntax

OSLDR [/F]<osimg> [<hbiosimg> ]

<osimg> is the name of a file containing an operating system image

<hbiosimg> is the name of a file containing an HBIOS firmware image

/F forces operation bypassing compatibility checking

Usage

OSLDR<osimg> will read the specified file, confirm it is an operating system image file,
then load it as though it was being booted. For example, OSLDR ZSYS.SYS would load the
Z-System operating system.

OSLDR<osimg> <hbiosimg> will first read and load the specified <hbiosimg> file as a new
HBIOS image and then read and load the specified <osimg> file. HBIOS image can be
produced by the RomWBW build process, but they are not produced by default. You are
encouraged to contact Wayne Warthen for more information on this capability.

Notes

The primary function of OSLDR is to allow switching to a new operating system while the
system if running without a full reboot.

OSLDR is considered generally reliable for when used simply to load a new operating system
(one parameter). However, using it to load an HBIOS image is considered experimental
and should not be relied upon.

OSLDR can also be used to load “test” versions of operating systems from files transferred
to your system. This is especially useful in when loading both an operating system and
HBIOS image because you can essentially simulate starting your system with new firmware
without reprogramming your ROM.

13



OSLDR attempts to check the file(s) specified for correctness before loading them, but it is
far from perfect. This application should be used with caution and may not work in some
cases that are hard to define.

Etymology

The OSLDR command is an original product and the source code is provided in the RomWBW
distribution.

14



FORMAT

This application is just a placeholder for a future version that will make it simpler to format
media including floppy disks.

Syntax

FORMAT

Notes

This application currently just displays a few lines of information briefly instructing a user
how to format media. It performs no actual fucntion beyond this display currently.

Etymology

The OSLDR command is an original product and the source code is provided in the RomWBW
distribution.

15



XM

An adaptation of Ward Christensen’s X-Modem protrocol for transferring files between
systems using a serial port.

Syntax

XM S<filename>

XM SK<filename>

XM L<library> <filename>

XM LK<library> <filename>

XM R<filename>

S: Send a file L: Send a file from a library R: Receive a file K: Use 1K blocksize for transfer

<filename> is the name of a file to send or receive

<library> is the name of a library (.lbr) to extract a file to send from

Usage

To transfer a file from your host computer to your RomWBW computer, do the following:

1. Enter one of the XM receive commands specifying the name you want to give to the
received file.

2. On your host compouter select a file to send and initiate the XModem send operation.

To transfer a file from your RomWBW computer to your host computer, do the following:

1. Enter one of the XM send commands specifying the name of the file to be sent.
2. On your host computer, specify the name to assign to the received file and initiate

and XModem receive operation.

Please refer to the doucmentation of your host computer’s terminal emulation software for
specific instructions on how to use XModem.

Notes

The XModem adaptation that comes with RomWBW will automatically use the primary
character device unit (character device unit 0) for the file transfer.

16



XM attempts to determine the best way to drive the serial port based on your hardware
configuration. When possible, it will bypass the HBIOS for faster operation. However, in
many cases, it will use HBIOS so that flow control can be used.

XM is dependent on a reliable communications channel. You must ensure that the serial port
can be serviced fast enough by either using a baud rate that is low enough or ensureing
that hardware flow control is fully functional (end to end).

Etymology

The XM application provided in RomWBW is an adaptation of a pre-existing XModem
application. Based on the source code comments, it was originally adapted from Ward
Christensen’s MODEM2 by Keith Petersen and is labeled version 12.5. The original source
of the application was found in the Walnut Creek CD-ROM and is called XMDM125.ARK
dated 7/15/86.

The actual application is virtually untouched in the RomWBW adaptation. The majority of
the work was in the modem driver which was enhanced to detect the hardware being used
and dynamically choose the appropriate driver.

The source code is provided in the RomWBW distribution.

17



FLASH

Most of the hardware platforms that run RomWBW support the use of EEPROMs –
Electronically Erasable Programmable ROMs. The FLASH application can be used to
reprogram such ROMS in-situ (in-place), thus making it possible to upgrade ROMs without
a programmer or even removing the ROM from your system.

This application was produced by Will Sowerbutts.

Syntax

FLASH READ<filename> [options]

FLASH VERIFY<filename> [options]

FLASH WRITE<filename> [options]

<filename> is the filename of the ROM image file

Options: (access method is auto-detected by default)

/PARTIAL: Allow flashing a large ROM from a smaller image file
/ROM: Allow read-only use of unknown chip types
/Z180DMA: Force Z180 DMA engine
/UNABIOS: Force UNA BIOS bank switching
/ROMWBW: Force RomWBW (v2.6+) bank switching
/ROMWBWOLD: Force RomWBW (v2.5 and earlier) bank switching
/P112: Force P112 bank switching

Usage

To program your EEPROM ROM chip, first transfer the file to your RomWBW sytem. Then
use the command FLASH WRITE *‘*. The application will auto-detect the type of EEPROM
chip you have and will program and verify it.

You can use the “READ” variant of the command to read the ROM image from your
system into a file. This is useful if you want to save a copy of your current ROM before
reprogramming it.

Although the “WRITE” variant automatically performs a verification, you can manually
perform a verification function with the “VERIFY” variant of the command.

18



The author’s documentation for the application is found in the RomWBW distribution in the
Doc\Contrib directory.

Notes

The application supports a significant number of EEPROM parts. It should automatically
detect your part. If it does not recognize your chip, make sure that you do not have a write
protect jumper set – this jumper will cause the ROM chip type to be unrecognized.

Reprogramming a ROM chip in-place is inherently dangerous. If anything goes wrong, you
will be left with a non-functional system and no ability to run the FLASH application again.
Use this application with caution and be prepared to use a hardware ROM programmer to
restore your system if needed.

Etymology

This application was written and provided by Will Sowerbutts. He provides it in binary
format and is included in the RomWBW distribution as a binary file.

The source code for this application can be found at the FLASH4 GitHub repository.

19

https://github.com/willsowerbutts/flash4


FDISK80

RomWBW supports disk media with MS-DOS FAT filesystems (see FAT application). If
you wish to put a FAT filesystem on your media, the FDISK80 application can be used to
partition your media which is required in order to add a FAT filesystem.

This application was produced by John Coffman.

Usage

FDISK80 is an interactive application. At startup it will ask you for the disk unit that you
want to partition. When your RomWBW system boots, it will display a table with the disk
unit numbers. Use the disk unit numbers from that table to enter the desired disk unit to
partition.

FDISK80 operates very much like other FDISK disk partitioning applications. Please refer
to the file called “FDisk Manual.pdf” in the Doc directory of the RomWBW distribution for
further instructions.

There is also more information on using FAT partitions with RomWBW in the “RomWBW
Getting Started.pdf” document in the Doc directory of the distribution.

Notes

Partitioning of RomWBW media is only required if you want to add a FAT filesystem to the
media. Do not partition your media if you are simply using it for RomWBW. To be clear,
RomWBW slices do not require partitioning.

As described in “RomWBW Getting Started.pdf”, you should be careful when adding a FAT
partition to your media that the partition does not overlap with the area of the media being
used for RomWBW slices. The “(R)eserve” function in FDISK80 can help prevent this.

Etymology

The source for this application was provided directly by John Coffman. It is a C program
and requires a build environment that includes the SDCC compiler. As such, it is not
included in the RomWBW build process, only the binary executable is included.

Please contact John Coffman if you would like a copy of the source.

20



FAT

The operating systems included with RomWBW do not have any native ability to access
MS-DOS FAT filesystems. The FAT application can be used overcome this. It will allow
you to transfer files between CP/M and FAT filesystems (wildcards supported). It can also
erase files, format, and list directories of FAT filesystems.

Syntax

FAT DIR<path>

FAT COPY<src> <dst>

FAT REN<from> <to>

FAT DEL<path>[<file>|<dir>]

FAT MD<path>

FAT FORMAT<drv>

<path> is a FAT path
<src>, <dst> are FAT or CP/M filenames
<from>, <to> are FAT filenames
<file> is a FAT filename
<dir> is a FAT directory name
<drv> is a RomWBW disk unit number

CP/M filespec: <d> :FILENAME.EXT (<d> is CP/M drive letter A-P)
FAT filespec: <u> :/DIR/FILENAME.EXT (<u> is RomWBW disk unit #)

Usage

The FAT application determines whether you are referring to a CP/M filesystem or a FAT
filesystem based on the way you specify the file or path. If the file or path is prefixed with a
number (n:), then it is assumed this is a FAT filesystem reference and is refering to the FAT
filesystem on RomWBW disk unit ‘n’. Otherwise, the file specification is assumed to be a
normal CP/M file specification.

If you wanted to list the directory of the FAT filesystem on RomWBW disk unit 2, you
would use FAT DIR 2:. If you only wanted to see the “.TXT” files, you would use FAT DIR

2:*.TXT

If you wanted to copy all of the files on CP/M drive B: to the FAT filesystem on RomWBW

21



disk unit 4, you would use the command FAT COPY B:*.* 4: If you wanted to copy the
files to the “FOO” directory, then you would use FAT COPY B:*.* 4:\FOO. To copy files in
the opposite direction, you just reverse the parameters.

To rename the file “XXX.DAT” to “YYY.DAT” on a FAT filesystem, you could use a command
like “FAT REN 2:XXX.DAT 2:YYY.DAT”.

To delete a file “XXX.DAT” on a FAT filesystem in director “FOO”, you would use a command
like FAT DEL 2:\FOO\XXX.DAT.

To make a directory called “FOO2” on a FAT filesystem, you would use a command line
FAT MD 2:\FOO2.

To format the filesystem on a FAT partition, you would use a command like FAT FORMAT 2:.
Use this with caution because it will destroy all data on any pre-existing FAT filesystem on
disk unit 2.

Notes

Partitioned or non-partitioned media is handled automatically. A floppy drive is a good
example of a non-partitioned FAT filesystem and will be recognized. Larger media will
typically have a partition table which will be recognized by the application to find the FAT
filesystem.

Although RomWBW-style CP/M media does not know anything about partition tables, it
is entirely possible to have media that has both CP/M and FAT file systems on it. This is
accomplished by creating a FAT filesystem on the media that starts on a track beyond the
last track used by CP/M. Each CP/M slice on a media will occupy a little over 8MB. So,
make sure to start your FAT partition beyond (slice count) * 8MB.

The application infers whether you are attempting to reference a FAT or CP/M filesystem
via the drive specifier (char before ‘:’). A numeric drive character specifies the HBIOS disk
unit number for FAT access. An alpha (A-P) character indicates a CP/M file system access
targeting the specified drive letter. If there is no drive character specified, the current CP/M
filesystem and current CP/M drive is assumed. For example:

“2:README.TXT” refers to FAT file README.TXT on disk unit #2 “C:README.TXT”
refers to CP/M file README.TXT on CP/M drive C “README.TXT” refers to CP/M file
README.TXT on current CP/M drive

Files with SYS, HIDDEN, or R/O only attributes are not given any special treatment. Such

22



files are found and processed like any other file. However, any attempt to write to a
read-only file will fail and the application will abort.

It is not currently possible to reference CP/M user areas other than the current user. To
copy files to alternate user areas, you must switch to the desired user number first or use
an additional step to copy the file to the desired user area.

Accessing FAT filesystems on a floppy requires the use of RomWBW HBIOS v2.9.1-pre.13
or greater.

Files written are not verified.

Wildcard matching in FAT filesystems is a bit unusual as implemented by FatFs. See FatFs
documentation.

Etymology

The FAT application is an original RomWBW work, but utilizes the FsFat library for all of
the FAT filesystem work. This application is written in C and requires SDCC to compile.
As such it is not part of the RomWBW build process. However, the full project and source
code is found in the FAT GitHub Repository.

23

https://github.com/wwarthen/FAT


TUNE

If your RomWBW system has a sound card based on either an AY-3-8190 or YM2149F
sound chip, you can use the TUNE application to play PT or MYM sound files.

Syntax

TUNE<filename>

<filename> is the name of a sound file ending in .PT2, .PT3, or .MYM

Usage

The TUNE application supports PT and YM sound file formats. It determines the format of
the file from the extension of the file, so your tune filenames should end in .PT2, .PT3, or
.MYM.

To play a sound file, just use the command and specify the file to play after the com-
mand. So, for example, TUNE ATTACK.PT2 will immedaitely begin playing the PT sound file
“ATTACK.PT2”.

Notes

The TUNE application automatically probes for compatible hardware at well known port
addresses at startup. It will auto-configure itself for the hardware found. If no hardware is
detected, it will abort with an error message.

On Z180 systems, I/O wait states are added when writing to the sound chip to avoid
exceeding it’s speed limitations.

The application probes for an active system timer and uses it to accurately pace the sound
file output. If no system timer is available, a delay loop is calculated instead. The delay
loop will not be as accurate as the system timer.

All RomWBW operating system boot disks include a selection of sound files in user area 3.

Etymology

The TUNE application was custom written for RomWBW. All of the hardware interface code
is specific to RomWBW. The sound file decoding software was adapted and embedded

24



from pre-existing sources. The YM player code is from MYMPLAY 0.4 by Lieves!Tuore and
the PT player code is (c)2004-2007 S.V.Bulba vorobey@mail.khstu.ru

The source code is provided in the RomWBW distribution.

25

mailto:vorobey@mail.khstu.ru

	Summary
	ASSIGN
	SYSCOPY
	MODE
	FDU
	OSLDR
	FORMAT
	XM
	FLASH
	FDISK80
	FAT
	TUNE

