
ROMWBW
System Guide

Version 3.6

Updated 29 Sep 2025

RetroBrew Computers Group
www.retrobrewcomputers.org

Wayne Warthen
wwarthen@gmail.com

http://www.retrobrewcomputers.org
mailto:wwarthen@gmail.com

Contents

1 Overview 1

2 Background 3

3 General Design Strategy 4

4 Runtime Memory Layout 6
4.1 Bank Id . 6
4.2 Bank Assignments . 8
4.3 Memory Managers . 10

5 Disk Layout 11
5.1 Floppy Disk Layout . 11
5.2 Hard Disk Layout . 11

5.2.1 Modern Hard Disk Layout (hd1k) 13
5.2.2 Classic Hard Disk Layout (hd512) 14
5.2.3 Mapping to Media ID . 15

6 System Boot Process 16
6.1 ROM Boot . 16
6.2 Application Boot . 17
6.3 RAM Boot . 18
6.4 Boot Recovery . 18

7 Configuration 19
7.1 RomWBW NVRAM Configuration . 19

7.1.1 Boot Options (NVSW_BOOTOPTS) 20
7.1.2 Auto Boot (NVSW_AUTOBOOT) 20
7.1.3 Status Reset (0xFF) . 20

8 Driver Model 22

RetroBrew Computing Group i

Contents RomWBW System Guide

9 Character / Emulation / Video Services 23

10 HBIOS Reference 26
10.1 Invocation . 26
10.2 Result Codes . 27
10.3 Character Input/Output (CIO) . 28

10.3.1 Function 0x00 – Character Input (CIOIN) 29
10.3.2 Function 0x01 – Character Output (CIOOUT) 29
10.3.3 Function 0x02 – Character Input Status (CIOIST) 29
10.3.4 Function 0x03 – Character Output Status (CIOOST) 30
10.3.5 Function 0x04 – Character I/O Initialization (CIOINIT) 30
10.3.6 Function 0x05 – Character I/O Query (CIOQUERY) 31
10.3.7 Function 0x06 – Character I/O Device (CIODEVICE) 31

10.4 Disk Input/Output (DIO) . 33
10.4.1 Function 0x10 – Disk Status (DIOSTATUS) 34
10.4.2 Function 0x11 – Disk Reset (DIORESET) 34
10.4.3 Function 0x12 – Disk Seek (DIOSEEK) 35
10.4.4 Function 0x13 – Disk Read (DIOREAD) 35
10.4.5 Function 0x14 – Disk Write (DIOWRITE) 36
10.4.6 Function 0x15 – Disk Verify (DIOVERIFY) 37
10.4.7 Function 0x16 – Disk Format (DIOFORMAT) 37
10.4.8 Function 0x17 – Disk Device (DIODEVICE) 37
10.4.9 Function 0x18 – Disk Media (DIOMEDIA) 39
10.4.10 Function 0x19 – Disk Define Media (DIODEFMED) 39
10.4.11 Function 0x1A – Disk Capacity (DIOCAPACITY) 39
10.4.12 Function 0x1B – Disk Geometry (DIOGEOMETRY) 40

10.5 Real Time Clock (RTC) . 41
10.5.1 Function 0x20 – RTC Get Time (RTCGETTIM) 41
10.5.2 Function 0x21 – RTC Set Time (RTCSETTIM) 42
10.5.3 Function 0x22 – RTC Get NVRAM Byte (RTCGETBYT) 42
10.5.4 Function 0x23 – RTC Set NVRAM Byte (RTCSETBYT) 42
10.5.5 Function 0x24 – RTC Get NVRAM Block (RTCGETBLK) 42
10.5.6 Function 0x25 – RTC Set NVRAM Block (RTCSETBLK) 43
10.5.7 Function 0x26 – RTC Get Alarm (RTCGETALM) 43
10.5.8 Function 0x27 – RTC Set Alarm (RTCSETALM) 43
10.5.9 Function 0x28 – RTC DEVICE (RTCDEVICE) 44

10.6 Display Keypad (DSKY) . 45
10.6.1 Function 0x30 – DSKY Reset (DSKYRESET) 45
10.6.2 Function 0x31 – DSKY (DSKYSTATUS) 46
10.6.3 Function 0x32 – DSKY Get Key (DSKYGETKEY) 46

RetroBrew Computing Group ii

Contents RomWBW System Guide

10.6.4 Function 0x33 – DSKY Show HEX (RTCSHOWHEX) 46
10.6.5 Function 0x34 – DSKY Show Segments (DSKYSHOWSEG) 47
10.6.6 Function 0x35 – DSKY Keypad LEDs (DSKYKEYLEDS) 47
10.6.7 Function 0x36 – DSKY Status LED (DSKYSTATLED) 48
10.6.8 Function 0x37 – DSKY Beep (DSKYBEEP) 48
10.6.9 Function 0x38 – DSKY Device (DSKYDEVICE) 48
10.6.10 Function 0x39 – DSKY Device (DSKYMESSAGE) 49
10.6.11 Function 0x3A – DSKY Device (DSKYEVENT) 49

10.7 Video Display Adapter (VDA) . 50
10.7.1 Function 0x40 – Video Initialize (VDAINI) 52
10.7.2 Function 0x41 – Video Query (VDAQRY) 52
10.7.3 Function 0x42 – Video Reset (VDARES) 53
10.7.4 Function 0x43 – Video Device (VDADEV) 53
10.7.5 Function 0x44 – Video Set Cursor Style (VDASCS) 54
10.7.6 Function 0x45 – Video Set Cursor Position (VDASCP) 55
10.7.7 Function 0x46 – Video Set Character Attribute (VDASAT) 55
10.7.8 Function 0x47 – Video Set Character Color (VDASCO) 55
10.7.9 Function 0x48 – Video Write Character (VDAWRC) 56
10.7.10 Function 0x49 – Video Fill (VDAFIL) 56
10.7.11 Function 0x4A – Video Copy (VDACPY) 57
10.7.12 Function 0x4B – Video Scroll (VDASCR) 57
10.7.13 Function 0x4C – Video Keyboard Status (VDAKST) 57
10.7.14 Function 0x4D – Video Keyboard Flush (VDAKFL) 58
10.7.15 Function 0x4E – Video Keyboard Read (VDAKRD) 58
10.7.16 Function 0x4F – Read a character at current video position (VDARDC) 60

10.8 Sound (SND) . 61
10.8.1 Function 0x50 – Sound Reset (SNDRESET) 61
10.8.2 Function 0x51 – Sound Volume (SNDVOL) 62
10.8.3 Function 0x52 – Sound Period (SNDPRD) 62
10.8.4 Function 0x53 – Sound Note (SNDNOTE) 62
10.8.5 Function 0x54 – Sound Play (SNDPLAY) 63
10.8.6 Function 0x55 – Sound Query (SNDQUERY) 64
10.8.7 Function 0x56 – Sound Duration (SNDDUR) 65
10.8.8 Function 0x57 – Sound Device (SNDDEVICE) 66
10.8.9 Function 0x58 – Sound Beep (SNDBEEP) 66

10.9 Extension (EXT) . 68
10.9.1 Function 0xE0 – Calculate Slice (EXTSLICE) 68

10.10 System (SYS) . 69
10.10.1 Function 0xF0 – System Reset (SYSRESET) 69
10.10.2 Function 0xF1 – System Version (SYSVER) 69

RetroBrew Computing Group iii

Contents RomWBW System Guide

10.10.3 Function 0xF2 – System Set Bank (SYSSETBNK) 70
10.10.4 Function 0xF3 – System Get Bank (SYSGETBNK) 71
10.10.5 Function 0xF4 – System Set Copy (SYSSETCPY) 71
10.10.6 Function 0xF5 – System Bank Copy (SYSBNKCPY) 72
10.10.7 Function 0xF6 – System Alloc (SYSALLOC) 72
10.10.8 Function 0xF7 – System Free (SYSFREE) 73
10.10.9 Function 0xF8 – System Get (SYSGET) 73
10.10.10Function 0xF9 – System Set (SYSSET) 80
10.10.11Function 0xFA – System Peek (SYSPEEK) 83
10.10.12Function 0xFB – System Poke (SYSPOKE) 83
10.10.13Function 0xFC – System Interrupt Management (SYSINT) 84

10.11 Proxy Functions . 87
10.11.1 Invoke HBIOS Function (INVOKE) 87
10.11.2 Bank Select (BNKSEL) . 87
10.11.3 Bank Copy (BNKCPY) . 88
10.11.4 Bank Call (BNKCALL) . 88

11 Errors and diagnostics 90
11.1 Run Time Errors . 90

11.1.1 PANIC . 90
11.1.2 SYSCHK . 91
11.1.3 Error Level reporting . 92

11.2 Build time errors . 92
11.2.1 Build chain tool errors . 92
11.2.2 Assembly time check errors . 92

11.3 Diagnostics . 92
11.3.1 Diagnostic LEDs . 92
11.3.2 Appendix A Driver Instance Data fields 95

RetroBrew Computing Group iv

Chapter 1

Overview

The objective of RomWBW is to provide firmware, operating systems, and applications targeting
the Z80 family of CPUs. The firmware, in the form of a ROM module, acts as the hardware
interface layer with a well-defined API (the HBIOS). The associated operating systems and
applications are adapted to the HBIOS API, not specific hardware.

The HBIOS is modular and configurable. New hardware interfaces can be added in the form of
straightforward driver modules. Within certain constraints, new hardware platforms can be
supported by simply adjusting values in a build configuration file.

RomWBW is geared toward hardware being developed in modern retro-computing hobbyist
communities, not as replacement software for legacy hardware. As a result, RomWBW requires
at least 128KB of bank switched RAM.

The CP/M family of operating systems has been adapted to run under RomWBW including
CP/M 2.2, Z-System, CP/M 3, and several other variants.

RomWBW firmware (ROM) includes:

• System startup code (bootstrap) and bootloader

• A basic system/debug monitor

• HBIOS (Hardware BIOS) with support for most typical hardware components used in
Z80 family computers

• Diagnostics and customizable debugging information.

• ROM-hosted operating systems (both CP/M 2.2 and Z-System)

RetroBrew Computing Group 1

Chapter 1. Overview RomWBW System Guide

• A ROM disk containing the standard OS applications and a RAM disk for working
storage.

It is appropriate to note that much of the code and components that make up a complete
RomWBW package are derived from pre-existing work. Most notably, the embedded operating
systems are simply ROM-based copies of generic CP/M or ZSDOS. Much of the hardware sup-
port code was originally produced by other members of the RetroBrew Computers Community.

The remainder of this document focuses on RomWBW HBIOS which is the fundamental basis
of RomWBW.

RetroBrew Computing Group 2

Chapter 2

Background

The Z80 CPU architecture has a limited, 64K address range. In general, this address space
must accommodate a running application, disk operating system, and hardware support code.

Modern retro-computing Z80 CPU platforms provide a physical address space that is much
larger than the CPU address space (typically 512K or 1MB of physical RAM). This additional
memory can bemade available to the CPU using a technique called bank switching. To achieve
this, the physical memory is divided up into chunks (banks) of 32K each. A designated area of
the CPU’s 64K address space is then reserved to “map” any of the physical memory chunks.
You can think of this as a window that can be adjusted to view portions of the physical memory
in 32K blocks. In the case of RomWBW, the lower 32K of the CPU address space is used for
this purpose (the window). The upper 32K of CPU address space is assigned a fixed 32K area
of physical memory that never changes. The lower 32K can be “mapped” on the fly to any of
the 32K banks of physical memory at a time. The primary constraint is that the CPU cannot
be executing code in the lower 32K of CPU address space at the time that a bank switch is
performed.

By utilizing the pages of physical RAM for specific purposes and swapping in the correct
page when needed, it is possible to utilize substantially more than 64K of RAM. Because the
retro-computing community has now produced a very large variety of hardware, it has become
extremely important to implement a bank switched solution to accommodate the maximum
range of hardware devices and desired functionality.

RetroBrew Computing Group 3

Chapter 3

General Design Strategy

The design goal is to locate as much of the hardware dependent code as possible out of
normal 64KB CP/M address space and into a bank switched area of memory. A very small
code shim (proxy) is located in the top 512 bytes of CPU memory. This proxy is responsible
for redirecting all hardware BIOS (HBIOS) calls by swapping the “driver code” bank of physical
RAM into the lower 32K and completing the request. The operating system is unaware this
has occurred. As control is returned to the operating system, the lower 32KB of memory is
switched back to the original memory bank.

The HBIOS functions are invoked simply by placing function parameters in Z80 registers
and calling an address within the HBIOS proxy. Additionally, HBIOS implements a complete
hardware interruptmanagement framework. When a hardware interrupt occurs, control vectors
through the HBIOS proxy which saves the machine state, selects the HBIOS driver bank into
memory, and transfers control to the registered driver’s interrupt handler. Upon completion
of interrupt processing, control returns via the HBIOS proxy, machine state is restored, and
normal processing resumes. The interrupt management framework supports Z80 interrupt
modes 1, 2, and 3 (Z280).

HBIOS is completely agnostic with respect to the operating system (it does not know or care
what operating system is using it). The operating system makes simple calls to HBIOS to
access any desired hardware functions. Since the HBIOS proxy occupies only 512 bytes at
the top of memory, the vast majority of the CPU memory is available to the operating system
and the running application. As far as the operating system is concerned, all of the hardware
driver code has been magically implemented inside of the small 512 byte area at the top of
the CPU address space.

Unlike some other Z80 bank switching schemes, there is no attempt to build bank switching
into the operating system itself. This is intentional so as to ensure that any operating system

RetroBrew Computing Group 4

Chapter 3. General Design Strategy RomWBW System Guide

can easily be adapted without requiring invasive modifications to the operating system itself.
This also keeps the complexity of memory management completely away from the operating
system and applications.

There are some operating systems that have built-in support for bank switching (e.g., CP/M
3). These operating systems are allowed to make use of the bank switched memory and are
compatible with HBIOS. However, it is necessary that the customization of these operating
systems take into account the banks of memory used by HBIOS and not attempt to use those
specific banks.

Note that all code and data are located in RAM memory during normal execution. While it
is possible to use ROM memory to run code, it would require that more upper memory be
reserved for data storage. It is simpler and more memory efficient to keep everything in RAM.
At startup (boot) all required code is copied to RAM (shadowed) for subsequent execution.

RetroBrew Computing Group 5

Chapter 4

Runtime Memory Layout

RomWBW divides the standard 64KB Z80 address space into 2 sections. The lower 32KB is
the “banked” area. This is the area that will contain any of the 32KB chunks of physical RAM
based on which bank is currently selected. The upper 32KB is “fixed”. This area of memory is
never swapped out and is used to contain software and operating systems that must remain
in the Z80 address space.

Throughout this document, this mechanism of selecting banks of memory into the lower 32K
is referred to as memory management. Achieving this functionality requires some type of
hardware which is generally referred to as the system’s Memory Management Unit (MMU).
RomWBW supports a variety of MMUs – but they all perform the same function of swapping
in/out banks of memory in the lower 32K of CPU address space.

Figure 4.1 depicts the memory layout for a system running the CP/M operating system. Appli-
cations residing in TPA invoke BDOS services of CP/M, BDOS invokes the custom CBIOS APIs,
and finally CBIOS invokes HBIOS functions as needed by calling into the HBIOS proxy. The
HBIOS proxy swaps in the HBIOS bank as needed to perform the requested function.

Additional banks of RAM are used to create a virtual disk drive.

4.1 Bank Id

RomWBW utilizes a specific assignment of memory banks for dedicated purposes. A numeric
Bank Id is used to refer to the memory banks. The Bank Id is a single byte. In general, the Bank
Id simply refers to each of the 32K banks in sequential order. In other words, Bank Id 0 is the
first physical 32K, Bank Id 1 is the second, etc. However, the high order bit of the Bank Id has a
special meaning. If it is 0, it indicates a ROM bank is being referred to. If it is 1, it indicates a

RetroBrew Computing Group 6

Chapter 4. Runtime Memory Layout RomWBW System Guide

$FE00

$D000

$
8

0
0

0

HBIOS Proxy (RST 08)

Applica�on Area (TPA)

Opera�ng System

CP/M or ZSYS

CBIOS

BDOS

CCP

HBIOS
(Hardware Drivers)

Z8
0

 C
P

U
 A

d
d

re
ss

 S
p

ac
e

B
an

ke
d

 L
o

w
er

 3
2

K
Fi

xe
d

 U
p

p
er

 3
2

K

$10000

$0000

Bank 0 App/OS Banks Bank N-1 Bank N• • •

Physical RAM (32K per bank)

`

RAM Disk

HBIOS Func�on Call
w/ Bank Switch

RomWBW Bank Switched Memory Layout

Fi
xe

d
 M

ap
p

in
g

o
f

U
p

p
er

 3
2

K
 t

o
 L

as
t

B
an

k

Figure 4.1: Bank Switched Memory Layout

RetroBrew Computing Group 7

Chapter 4. Runtime Memory Layout RomWBW System Guide

RAM bank is being referred to.

For example, let’s say we have a typical system with 512KB of ROM and 512KB of RAM. The
following table demonstrates how Bank Ids represent areas of physical memory.

Physical Memory Type Physical Bank Bank Id

0x000000-0x007FFF ROM 0 0x00
0x008000-0x00FFFF ROM 1 0x01
0x010000-0x07FFFF ROM 2-15 0x02-0x0F
0x080000-0x087FFF RAM 16 0x80
0x088000-0x08FFFF RAM 17 0x81
0x090000-0x0FFFFF RAM 18-31 0x82-0x8F

Note that Bank Id 0x00 is always the first bank of ROM and 0x80 is always the first bank of
RAM. If there were more banks of physical ROM, they would be assigned Bank Ids starting
with 0x10. Likewise, additional bank of physical RAM would be assigned Bank Ids starting
with 0x90.

The Bank Id is used in all RomWBW API functions when referring to the mapping of banks to
the lower 32K bank area of the processor. In this way, all RomWBW functions can refer to a
generic Bank Id without needing to understand how a specific hardware platform accesses the
physical memory areas. A single routine within the HBIOS is implemented for each memory
manager that maps Bank Ids to physical memory.

4.2 Bank Assignments

RomWBW requires dedicated banks of memory for specific purposes. It uses Bank Ids via
an algorithm to make these assignments. The following table describes the way the banks
are assigned. The Typical column shows the specific values that would be assigned for a
common system with 512KB of ROM and 512KB of RAM (nROM=16, nRAM=16).

Bank Id Identity Typical Purpose

0x00 BID_BOOT 0x00 Boot Bank (HBIOS image)
0x01 BID_IMG0 0x01 Boot Loader, Monitor, ROM OSes, ROM

Apps
0x02 BID_IMG1 0x02 ROM Apps
0x03 BID_IMG2 0x03 <Reserved>
0x04 BID_ROMD0 0x04 First ROM Disk Bank

RetroBrew Computing Group 8

Chapter 4. Runtime Memory Layout RomWBW System Guide

Bank Id Identity Typical Purpose

nROM - 1 0x0F Last ROM Disk Bank
0x80 BID_BIOS 0x80 HBIOS (working copy)
0x81 BID_RAMD0 0x81 First RAM Disk Bank
0x80 + nRAM - 8 0x88 Last RAM Disk Bank
0x80 + nRAM - 7 BID_APP0 0x89 First Application Bank
0x80 + nRAM - 5 0x8B Last Application Bank
0x80 + nRAM - 4 BID_BUF 0x8C OS Disk Buffers
0x80 + nRAM - 3 BID_AUX 0x8D OS Code Bank
0x80 + nRAM - 2 BID_USR 0x8E User Bank (CP/M TPA)
0x80 + nRAM - 1 BID_COM 0x8F Common Bank

In this table, nROM and nRAM refer to the number of corresponding ROM and RAM banks in
the the system.

The contents of the banks referred to above are described in more detail below:

Boot Bank: The Boot Bank receives control when a system is first powered on. It contains a
ROM (read-only) copy of the HBIOS. At boot, it does minimal hardware initialization,
then copies itself to the HBIOS bank in RAM, then resumes execution from the RAM
bank.

Boot Loader: The application that handles loading of ROM or Disk based applications includ-
ing operating systems. It copies itself to a RAM bank at the start of it’s execution.

Monitor: The application that implements the basic system monitor functions. It copies itself
to a RAM bank at the start of it’s execution.

ROM OSes: Code images of CP/M 2.2 and Z-System which are copied to RAM and executed
when a ROM-based operating system is selected in the Boot Loader.

ROM Applications: Various ROM-based application images such as BASIC, FORTH, etc. They
can be selected in the Boot Loader. The Boot Loader will copy the application image to
a RAM bank, then transfer control to it.

ROM Disk: A sequential series of banks assigned to provide the system ROM Disk contents.

HBIOS: This bank hosts the running copy of the RomWBW HBIOS.

RAM Disk: A sequential series of banks assigned to provide the system RAM Disk.

Application Bank: A sequential series of banks that are available for use by applications that
wish to utilize banked memory.

RetroBrew Computing Group 9

Chapter 4. Runtime Memory Layout RomWBW System Guide

OS Disk Buffers: This bank is used by CP/M 3 and ZPM3 for disk buffer storage.

OS Code Bank: This bank is used by CP/M 3 and ZPM3 as an alternate bank for code. This
allows these operating systems tomake additional TPA space available for applications.

User Bank: This is the default bank for applications to use. This includes the traditional TPA
space for CP/M.

Common Bank: This bank is mapped to the upper 32K of the processors memory space. It is
a fixed mapping that is never changed in normal RomWBW operation hence the name
“Common”.

4.3 Memory Managers

The following hardware memory managers are supported by RomWBW. The operation of
these memory managers is not documented here – please refer to the documentation of your
hardware provider for that.

Z2: Memory memory manager introduced by Sergey Kiselv in the Zeta 2 SBC. Popular in many
RCBus systems.

Z180: Memory manager built into the Z180 CPU

Z280: Memory manager built into the Z280 CPU

ZRC: Memory manager onboard the ZRC series of computers by Bill Shen.

SBC: Memory manager onboard the N8VEM SBC series of computers by Andrew Lynch.

MBC: Memory manager onboard the Nhyodyne computer system by Andrew Lynch.

N8: Memory manager onboard the N8 SBC computer by Andrew Lynch.

EZ512: Memory manager onboard the EaZy80-512 Z80 CPU Module by Bill Shen.

RPH: Memory manager onboard the Rhyophyre computer system by Andrew Lynch.

The memory manager used is determined by the configuration choices that are part of a
RomWBW build process. A given ROM can only have a single memory manager – it is not
selected dynamically.

The configuration variable MEMMGR sets the memory mannager used by the ROM build. It must
be set to one of the above memory manager types. For example, for the Z2 memory manager,
MEMMGR should be set to MM_Z2.

Note that the term memory manager (MM) and memory management unit (MMU) are used
interchangeably in the documentation and code.

RetroBrew Computing Group 10

Chapter 5

Disk Layout

5.1 Floppy Disk Layout

RomWBVW generally handles floppy disks in the same physical formats as MS-DOS. However,
the filesystem will normally be CP/M. The following table lists the floppy disk formats used by
RomWBW. In all cases, the sector size is 512 bytes.

HBIOS Media ID Capacity Tracks Heads Sectors

MID_FD720 720KB 80 2 9
MID_FD144 1440KB 80 2 18
MID_FD360 360KB 40 2 9
MID_FD120 1200KB 80 2 15
MID_FD111 1155KB 77 2 15

5.2 Hard Disk Layout

RomWBW supports the use of PC MBR hard disk partitioning (see https://en.wikipedia.org
/wiki/Disk_partitioning). When accessing a hard disk device, HBIOS will look for a partition
with type id 0x2E and will use that partition exclusively for all storage. If a hard disk does not
have a valid partition table with a partition of type 0x2E, the HBIOS will treat the hard disk as
dedicated storage and will store data starting at the first sector of the disk.

The use of a partition of type 0x2E is preferred for RomWBW and is referred to as a “Modern”
disk layout. If there is no RomWBW partition on the disk, then the disk is designated as having
a “Classic” disk layout.

RetroBrew Computing Group 11

https://en.wikipedia.org/wiki/Disk_partitioning
https://en.wikipedia.org/wiki/Disk_partitioning

Chapter 5. Disk Layout RomWBW System Guide

When a disk uses a RomWBW partition (type 0x2E) for storage (Modern layout), the CP/M
filesystems on that disk will utilize a format with 1,024 directory entries per filesystem. If there
is no RomWBW partition, the CP/M filesystems will have 512 directory entries per filesystem.
As a result, the Modern disk layout with a RomWBW partition is also referred to as the “hd1k”
layout indicating 1024 directory entries. Similarly, the Classic disk layout (no partition of type
0x2E) is also referred to as the “hd512” layout indicating 512 directory entries.

The layout type of any hard disk is simply dictated by the existence of a RomWBW partition.
This also means that if you add or remove a partition table entry of type 0x2E on existing hard
disk media, you will lose access to any pre-existing CP/M data on the disk. If used, partitioning
should be done before putting any data on the disk.

WARNING: You can not mix the two hard disk layouts on one hard disk device. You can use
different layouts on different hard disk devices in a single system though.

Regardless of whether a disk is Modern or Classic, RomWBW supports the concept of CP/M
filesystem slices. In general, CP/M filesystems are limited to 8MB. Since current disk media
is dramatically larger than this, RomWBW implements a mechanism to put many (up to 256)
CP/M filesystems on a single disk. Each such filesystem is called a slice referring to the idea
that the disk has been sliced into many independent CP/M filesystems. RomWBW allows
the disk slices to be mapped to the limited (16) drive letters of CP/M. The mapping can be
modified on-the-fly on a running system as desired.

If the case of a Modern disk layout (with a RomWBW partition), the slices are contained within
the defined partition area and the number of slices is dictated by the size of the partition. In
the case of a Classic disk layout (no RomWBW partition), the slices are located at the start of
the disk (first sector). In either case, the slices are just sequential areas of space on the hard
disk.

RomWBW accesses all hard disks using Logical Block Addressing (pure sector offset). When
necessary, RomWBW simulates the following disk geometry for operating systems:

• Sector = 512 Bytes
• Track = 16 Sectors (8KB per Track)
• Cylinder = 16 Tracks (256 Sectors per Cylinder, 128KB per Cylinder)

If one is used, the FAT Partition must not overlap the CP/M slices. The FAT partition does not
need to start immediately after the CP/M slices nor does it need to extend to the end of the
hard disk. Its location and size are entirely determined by its corresponding partition table
entry.

Drive letters in CP/M are ASSIGNed to the numbered slices as desired.
At boot, RomWBW automatically assigns up to 8 slices to drive letters starting with the first
available drive letter (typically C:).

RetroBrew Computing Group 12

Chapter 5. Disk Layout RomWBW System Guide

Microsoft Windows will assign a single drive letter to the FAT partition when the CF/SD Card is
inserted. The drive letter assigned has no relationship to the CP/M drive letters assigned to
CP/M slices.

In general, Windows, MacOS, or Linux know nothing about the CP/M slices and CP/M knows
nothing about the FAT partition. However, the FAT application can be run under CP/M to access
the FAT partition programmatically.

Before being used, A CP/M slice must be (re)initialized using the CP/M command CLRDIR.
A CP/M slice can be made bootable by copying a system image to the System Area using
SYSCOPY.

The FAT partition can be created from CP/M using the FDISK80 application. The FAT partition
can be initialized using the FAT application from CP/M using the command FAT FORMAT n:
where n is the RomWBW disk unit number containing the FAT partition to be formatted.

5.2.1 Modern Hard Disk Layout (hd1k)

0 1 2 3 . . . N

RomWBW Hard Disk Anatomy (Modern / hd1k)

RomWBW Hard Disk (IDE/ATA/ATAPI/CF/SD/USB)

FAT Par��on

Sector 0
Type 2E
Type 06

Par��on Table

CP/M System Area (16 KB)

RomWBW Par��on (8MB * N)

Prefix (1 MB typical)

MBR

Slice (8 MB)

CP/M File System (8,176 KB)

Figure 5.1: Modern Disk Layout

The CP/M filesystem on a Modern disk will accommodate 1,024 directory entries.

The CP/M slices reside entirely within a hard disk partition of type 0x2E. The number of slices
is determined by the number of slices that fit within the partition spaces allocated up to the
maximum of 256.

RetroBrew Computing Group 13

Chapter 5. Disk Layout RomWBW System Guide

5.2.2 Classic Hard Disk Layout (hd512)

RomWBW Hard Disk Anatomy (Classic / hd512)

0 1 2 3 . . . N

RomWBW Hard Disk (IDE/ATA/ATAPI/CF/SD/USB)

FAT Par��on

Sector 0
Type 06

Par��on Table

CP/M System Area (128 KB)

RomWBW Data (8,320 KB * N)

MBR

Slice (8,320 KB)

CP/M File System (8 MB)

Figure 5.2: Classic Disk Layout

The CP/M filesystem on a Classic disk will accommodate 512 directory entries.

The CP/M slices reside on the hard disk starting at the first sector of the hard disk. The number
of CP/M slices is not explicitly recorded anywhere on the hard disk. It is up to the system user
to know how many slices are being used based on the size of the hard disk media and/or the
start of a FAT partition.

A partition table may exist within the first sector of the first slice. For Classic disks, the partition
table defines only the location and size of the FAT partition. The Partition Table does not
control the location or number of CP/M slices in any way.

The Partition Table resides in a sector that is shared with the System Area of CP/M Slice 0.
However, the RomWBW implementation of CP/M takes steps to avoid changing or corrupting
the Partition Table area.

The FAT partition can be created from CP/M using the FDISK80 application. The user is
responsible for ensuring that the start of the FAT partition does not overlap with the area they
intend to use for CP/M slices. FDISK80 has a Reserve option to assist with this.

RetroBrew Computing Group 14

Chapter 5. Disk Layout RomWBW System Guide

5.2.3 Mapping to Media ID

HBIOS has a definition of “Media ID”, which defines the type and physical properties of disk
media provided by an underlying storage device. For a complete list of Media ID’s please see
Disk Input/Output (DIO).

There are two important Media ID’s relating to Hard Disk Layouts:

Media ID Format / Meaning

MID_HD 4 Classic Disk Layout (hd512) –and– HBIOS Hard Disk Drive
MID_HDNEW 10 Modern Disk Layout (hd1k)

HBIOS typically does not understand the format of data on a device, instead just treating all
hard disks as raw sectors. MID_HD is the typical Media ID used by HBIOS to describe high
capacity hard disk media

When the Modern Disk Layout was added, the MID_HDNEW, was added to differentiate (at the
operating system level) between the Classic and Modern layouts.

However HBIOS itself typically does NOT make this distinction, since the use of these two
formats is determined by the operating system based on the partition table on the media.
There are two important HBIOS functions that deal with Media ID.

• Function 0x18 – Disk Media (DIOMEDIA)

• Function 0xE0 – Calculate Slice (EXTSLICE)

RetroBrew Computing Group 15

Chapter 6

System Boot Process

A multi-phase boot strategy is employed. This is necessary because at cold start, the CPU is
executing code from ROM in lower memory which is the same area that is bank switched.

RomWBW supports multiple boot techniques as described below. The most common of these
is the ROM boot.

6.1 ROM Boot

The ROM boot process normally begins with a system cold start (power on or hardware reset).
The hardware is responsible for ensuring that the lower 32K of CPU memory (bank window) is
mapped to the initial 32K of the ROM. The Z80 CPU begins execution at address zero which
will be address zero of the ROM.

The following steps occur during the ROM boot process:

1. The ROM code performs basic hardware initialization and ensures that the top 32K of
CPU memory is mapped to the proper RAM bank.

2. The ROM code installs the HBIOS proxy code into the top 512 bytes of the CPU memory
(0xFE00-0xFFFF).

3. Using the proxy code services, the full HBIOS code is copied from the ROM bank to the
RAM bank that it will use for normal processing.

4. Again using the proxy code services, the RAM copy of HBIOS is activated in the bank
window and execution transitions to the RAM copy of HBIOS.

RetroBrew Computing Group 16

Chapter 6. System Boot Process RomWBW System Guide

5. The HBIOS initializes the system console so that output can now be displayed to the
user.

6. The HBIOS now performs the full hardware discovery and initialization process while
displaying it’s progress.

7. The HBIOS displays a final summary of the hardware device unit assignments and
various configuration information.

8. The HBIOS loads the RomWBW Boot Loader from ROM into RAM and jumps to it.

At this point, the user would normally use Boot Loader commands to select and launch an
operating system or applications from either ROM or disk.

Note that the boot process is entirely operating system agnostic. It is unaware of the operating
system being loaded. The Boot Loader prompts the user for the location of the binary image to
load, but does not know anything about what is being loaded (the image is usually an operating
system, but could be any executable code image). Once the Boot Loader has loaded the image
at the selected location, it will transfer control to it. Assuming the typical situation where
the image was an operating system, the loaded operating system will then perform its own
initialization and begin normal operation.

6.2 Application Boot

Once the system is running (operating system loaded), it is possible to reboot the system from
a system image (file) contained on the OS file system. This is referred to as an “Application
Boot”. The process is similar to a ROM boot, but the HBIOS code is loaded from an image file
instead of ROM. This boot technique is useful to: 1) test a new build of a system image before
programming it to the ROM; or 2) easily switch between system images on the fly.

During the RomWBW build process, one of the output files produced is an actual CP/M
application (an executable .COM program file). Like the normal .ROM files, this file is placed in
the Binary directory with the same name as the ROM file, but with the file extension of .ROM.
Once you have a running CP/M (or compatible) system, you can upload/copy this application
file to the filesystem. By executing this file, you will initiate an Application Boot using the
system image contained in the application file itself.

Upon execution, the Application Boot program is loaded into memory by the previously running
operating system starting at $0100. Note that the program image contains a full copy of the
HBIOS to be installed and run. Once the Application Boot program is loaded by the previous
operating system, control is passed to it and it performs a system initialization similar to the
ROM Boot, but using the image loaded in RAM. Once the new HBIOS completes its initialization,
it will launch the Boot Loader just like a ROM boot.

RetroBrew Computing Group 17

Chapter 6. System Boot Process RomWBW System Guide

The Application Boot program actually contains two other components beyond the new HBIOS.
It has a copy of the Boot Loader and a copy of the Z-System OS. This is done in case the new
HBIOS requires updated versions of the Boot Loader or OS to run. The Boot Loader is aware
of this boot mode and automatically adapts it’s menu appropriately.

If you restart your system, then it will revert to a ROM Boot from the currently installed ROM.

6.3 RAM Boot

Some hardware supported by RomWBW has a special mechanism for loading the boot and
HBIOS code. These systems have no ROM chips. However, they have a small hardware
bootstrap that loads a chunk of code from a disk device directly into RAM at system startup.

The startup then proceeds very much like the Application Boot process described above.
HBIOS is installed in its operating bank and control is passed to the Boot Loader.

6.4 Boot Recovery

To assist users when driver faults or mis-configuration causes a boot failure, RomWBW
supports a limited recovery capability. This is achieved by allowing the user to reboot their
machine, loading a minimal driver set. Implementation of this feature requires a hardware
input “BOOT RECOVERY” button to be available and appropriate software configuration to be
completed in the HBIOS.

When implemented, holding the “BOOT RECOVERY” button in after a reset or power cycle will
cause the normal driver load process to be skipped in preference to a minimal set of drivers
being loaded.

Typically this would be: Serial communication, RAM disk and parallel port IDE interface drivers.

Platforms supporting this option currently are the MBC, Duodyne and latter version of the SBC.

RetroBrew Computing Group 18

Chapter 7

Configuration

7.1 RomWBW NVRAM Configuration

On systems with RTC devices (that have Non-Volatile RAM), RomWBW supports storing some
limited configuration option options inside this RAM.

Several configuration options are currently supported; these are referred to as Switches. In
this case the term Switches refers to “soft” switches stored in NVRAM, not physical panel
switches. The following switch ID’s are defined, and described in sections below.

Switch Number Name Description

0x00 -reserved- Reserved
0x01 Boot Options ROM or Disk Boot Settings
0x02 -n/a- -n/a- high order byte of previous switch
0x03 Auto Boot Automatically boot enabled without user input
0x04 - 0xFE -future- Future general usage
0xFF Status Reset Get Status or Reset Switches to Default

RomWBW uses bytes located at the start of RTC NVRAM, and includes a Parity check of the
bytes in NVRAM to check for authenticity before using the configuration.

NVRAM Byte Name Description

0x00 Header Byte Header Signature Byte ‘W’
0x01 - 0x03 Switch Data Actual Switch Data
0x04 Parity Check Checksum byte to check integrity

RetroBrew Computing Group 19

Chapter 7. Configuration RomWBW System Guide

The above data is copied into the HBIOS Configuration Block (HCB) at startup at the location
starting at CB_SWITCHES.

Although the switch data is stored in NVRAM, it is intended that you use SYSGET Subfunction
0xC0 – Get Switches (SWITCH) or SYSSET Subfunction 0xC0 – Set Switches (SWITCH) to
read or write the switch values described here.

7.1.1 Boot Options (NVSW_BOOTOPTS)

16 bit Switch defining the ROM application or Disk device to boot if automatic booting is
enabled.

Bit 15 Bits 14-8 Bits 7-0

1 = ROM App -undefined- App to Boot (Char)
0 = Disk Disk Unit (0-127) Disk Slice (0-255)

7.1.2 Auto Boot (NVSW_AUTOBOOT)

8 bit Switch defining if the system should auto boot at startup.

Bits 7-6 Bit 5 Bit 4 Bits 3-0

-unused- 1 = Auto Boot Enabled -unused- 0 = Immediate Boot with no delay
-unused- 1 = Auto Boot Enabled -unused- (1-15) Timeout (seconds) before boot
-unused- 0 = Auto Boot Disabled -unused- -undefined-

7.1.3 Status Reset (0xFF)

The Status Reset switch is a virtual switch that does not have a corresponding stored value.
It is a control mechanism to allow the global status of all switches to be determined. The
meaning of the switch is different for Read (Get Status) and Write (Reset NVRAM)

GET (Get Status)

When the switch number 0xFF is read (using the Get Switches function), the status of the
NVRAM switches will be returned as follows:

Status A Register Z / NZ Flag

NVRAM does not exist A=0 NZ flag set

RetroBrew Computing Group 20

Chapter 7. Configuration RomWBW System Guide

Status A Register Z / NZ Flag

NVRAM exists, but has not been initialised A=1 NZ flag set
NVRAM exists, and has been fully initialised A=‘W’ Z flag set

SET (Reset NVRAM)

When the switch number 0xFF is written (using the Set Switches function), the stored values
of all switches will be reset to their default values. This will wipe any existing data and set
default values into NVRAM.

RetroBrew Computing Group 21

Chapter 8

Driver Model

The framework code for bank switching also allows hardware drivers to be implemented
mostly without concern for memory management. Drivers are coded to simply implement the
HBIOS functions appropriate for the type of hardware being supported. When the driver code
gets control, it has already been mapped to the CPU address space and simply performs the
requested function based on parameters passed in registers. Upon return, the bank switching
framework takes care of restoring the original memory layout expected by the operating system
and application.

Drivers do need to be aware of the bank switching if a buffer address is being used in the
function call.

• If the buffer address is in the lower 32K of RAM, then the memory it points to will be
from the User Bank, not the HBIOS bank which is now active. In this case, the driver
must use an inter-bank copy to access the data.

• If the buffer address is in the top 32K of RAM, then the driver will have access to it
directly even after a bank switch, so no special steps are required.

For some functions, the location of the buffer is required to be in the top 32K of RAM to simplify
the operation of the driver.

It is usually better if the OS or application calling a buffered function places the buffer in the
top 32K because this may avoid a double-copy operation.

If driver code must make calls to other code, drivers, or utilities in the HBIOS bank, it must
make those calls directly (it must not use RST 08). This is to avoid a nested bank switch which
is not supported at this time.

RetroBrew Computing Group 22

Chapter 9

Character / Emulation / Video Services

In addition to a generic set of routines to handle typical character input/output, HBIOS also
includes functionality for managing built-in video display adapters. To start with there is a
basic set of character input/output functions, the CIOXXX functions, which allow for simple
character data streams. These functions fully encompass routing byte stream data to/from
serial ports. Note that there is a special character pseudo-device called “CRT”.When characters
are read/written to/from the CRT character device, the data is actually passed to a built-in
terminal emulator which, in turn, utilizes a set of VDA (Video Display Adapter) functions (such
as cursor positioning, scrolling, etc.).

Figure 9.1 depicts the relationship between these components of HBIOS video processing:

Normally, the operating system will simply utilize the CIOXXX functions to send and receive
character data. The Character I/O Services will route I/O requests to the specified physical
device which is most frequently a serial port (such as UART or ASCI). As shown above, if the
CRT device is targeted by a CIOXXX function, it will actually be routed to the Emulation Services
which implement TTY, ANSI, etc. escape sequences. The Emulation Services subsequently rely
on the Video Display Adapter Services as an additional layer of abstraction. This allows the
emulation code to be completely unaware of the actual physical device (device independent).
Video Display Adapter (VDA) Services contains drivers as needed to handle the available
physical video adapters.

Note that the Emulation and VDA Services API functions are available to be called directly.
Doing so must be done carefully so as to not corrupt the “state” of the emulation logic.

Before invoking CIOXXX functions targeting the CRT device, it is necessary that the underlying
layers (Emulation and VDA) be properly initialized. The Emulation Services must be initialized
to specify the desired emulation and specific physical VDA device to target. Likewise, the VDA

RetroBrew Computing Group 23

Chapter 9. Character / Emulation / Video Services RomWBW System Guide

Character
I/O

Services

Emula�on
Services

TTY

ANSI Video
Display
Adapter
Services

UART

ASCI

CVDU

UPD7220

N8

CIOXXX

VDAXXXO
p

e
ra
�

n
g

Sy
st

e
m

 /
 U
�

li�
e

s

Others...

EMUXXX

RS-232

RS-232

VGA

VGA

NTSC

UART

ASCI

VDU

SY6545

MC8563

uPD7220

Character / Emula�on / Video Services

HBIOS HARDWARE

TMS9918

VDU
NTSC

Figure 9.1: Character / Emulation / Video Services

RetroBrew Computing Group 24

Chapter 9. Character / Emulation / Video Services RomWBW System Guide

Services may need to be initialized to put the specific video hardware into the proper mode,
etc.

RetroBrew Computing Group 25

Chapter 10

HBIOS Reference

10.1 Invocation

HBIOS functions are invoked by placing the required parameters in CPU registers and executing
an RST 08 instruction. Note that HBIOS does not preserve register values that are unused.
However, the values of the Z80 alternate registers and IX/IY will be preserved (these registers
may be used within HBIOS, but will be saved and restored internally).

An alternate method of invoking HBIOS functions is to use CALL $FFF0. Since the RST 08
vector exists in page zero of the CPU address space, it may be paged out when alternate
memory banks are selected. If this may be true when you are invoking a function, you should
use the CALLmethod.

Normally, applications will not call HBIOS functions directly. It is intended that the operating
system makes all HBIOS function calls. Applications that are considered system utilities may
use HBIOS, but must be careful not to modify the operating environment in any way that the
operating system does not expect.

In general, the desired function is placed in the B register. Register C is frequently used to
specify a sub-function or a target device unit number. Additional registers are used as defined
by the specific function. Register A should be used to return function result information. See
below for result code definitions.

The character, disk, and video device functions all refer to target devices using a logical device
unit number that is passed in the C register. Keep in mind that these unit numbers are assigned
dynamically at HBIOS initialization during the device discovery process. The assigned unit
numbers are displayed on the console at the conclusion of device initialization. The unit
assignments will never change after HBIOS initialization. However, they can change at the

RetroBrew Computing Group 26

Chapter 10. HBIOS Reference RomWBW System Guide

next boot if there have been hardware or BIOS customization changes. Code using HBIOS
functions should not assume fixed unit assignments.

Some functions utilize pointers to memory buffers. Unless otherwise stated, such buffers can
be located anywhere in the Z80 CPU 64K address space. However, performance sensitive
buffers (primarily disk I/O buffers) will require double-buffering if the caller’s buffer is in the
lower 32K of CPU address space. For optimal performance, such buffers should be placed in
the upper 32K of CPU address space.

HBIOS also implements a small number of core functions in the HBIOS proxy area at the top of
RAM. These exist primarily to facilitate the operation of normal HBIOS function calls. However,
they are available to be used by OSes and applications. These functions can only be invoked
by calling into a jump table in upper RAM.

10.2 Result Codes

The following function result codes are defined generically for all HBIOS functions. Most
function calls will return a result in register A.

Code Definition

0 function succeeded
-1 undefined error
-2 function not implemented
-3 invalid function
-4 invalid unit number
-5 out of memory
-6 parameter out of range
-7 media not present
-8 hardware not present
-9 I/O error

-10 write request to read-only media
-11 device timeout
-12 invalid configuration

RetroBrew Computing Group 27

Chapter 10. HBIOS Reference RomWBW System Guide

10.3 Character Input/Output (CIO)

Character Input/Output functions require that a Character Unit number be specified in register
C. This is the logical device unit number assigned during the boot process that identifies all
character devices uniquely. A special value of 0x80 can be used for the Character Unit to refer
to the current console device.

All character units are assigned a Device Type ID which indicates the specific hardware device
driver that handles the unit. The table below enumerates these values.

Device Type ID Description Driver

CIODEV_UART 0x00 16C550 Family Serial Interface uart.asm
CIODEV_ASCI 0x01 Z180 Built-in Serial Ports asci.asm
CIODEV_TERM 0x02 Terminal ansi.asm
CIODEV_PRPCON 0x03 PropIO Serial Console Interface prp.asm
CIODEV_PPPCON 0x04 ParPortProp Serial Console Interface ppp.asm
CIODEV_SIO 0x05 Zilog Serial Port Interface sio.asm
CIODEV_ACIA 0x06 MC68B50 Asynchronous Interface acia.asm
CIODEV_PIO 0x07 Zilog Parallel Interface Controller pio.asm
CIODEV_UF 0x08 FT232H-based ECB USB FIFO uf.asm
CIODEV_DUART 0x09 SCC2681 Family Dual UART duart.asm
CIODEV_Z2U 0x0A Zilog Z280 Built-in Serial Ports z2u.asm
CIODEV_LPT 0x0B Parallel I/O Controller lpt.asm
CIODEV_ESPCON 0x0C ESP32 VGA Console esp.asm
CIODEV_ESPSER 0x0D ESP32 Serial Port esp.asm
CIODEV_SCON 0x0E S100 Console scon.asm
CIODEV_SSER 0x0F Simple Serial Console sser.asm
CIODEV_EZ80UART 0x10 eZ80 Built-in UART0 Interface ez80uart.asm

Character devices can usually be configured with line characteristics such as speed, framing,
etc. A word value (16 bit) is used to describe the line characteristics as indicated below:

Bits Characteristic

15-14 Reserved (set to 0)
13 RTS

12-8 Baud Rate (see below)
7 DTR
6 XON/XOFF Flow Control
5 1 = Stick Parity(Mark/Space), 0 = Normal Parity (odd/even)

RetroBrew Computing Group 28

Chapter 10. HBIOS Reference RomWBW System Guide

Bits Characteristic

4 1 = Even/Space, 0 = Odd/Mark
3 Parity Enable (set for true)
2 Stop Bits (set for true)

1-0 Data Bits (5-8 encoded as 0-3)

The 5-bit Baud Rate value (V) is encoded as V = 75 * 2^X * 3^Y. The bits are defined as YXXXX.

Actual character values are a single byte (8 bits). The Character I/O functions do not modify or
interpret the values being sent/received so they can be used to pass 8-bit binary data without
corruption. Note that some OSes will modify character data (truncate to 7 bits, etc.).

10.3.1 Function 0x00 – Character Input (CIOIN)

Entry Parameters Returned Values

B: 0x00 A: Status
C: Character Unit E: Character

Read and return a Character (E) from the specified Character Unit (C). If no character(s) are
available in the unit’s input buffer, this function will wait indefinitely. The returned Status (A) is
a standard HBIOS result code.

10.3.2 Function 0x01 – Character Output (CIOOUT)

Entry Parameters Returned Values

B: 0x01 A: Status (0-OK, else error)
C: Character Unit
E: Character

Send a Character (E) via the specified Character Unit (C). If there is no space available in the
unit’s output buffer, the function will wait indefinitely. The returned Status (A) is a standard
HBIOS result code.

10.3.3 Function 0x02 – Character Input Status (CIOIST)

RetroBrew Computing Group 29

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

B: 0x02 A: Status / Characters Pending
C: Character Unit

Return the count of Characters Pending (A) in the input buffer of the specified Character Unit
(C). If the unit has no input buffer or the buffer utilization is not available, the function may
return simply 0 or 1 where 0 means there is no character available and 1 means there is at
least one character available.

The value returned in register A is used as both a Status (A) code and the return value. Negative
values (bit 7 set) indicate a standard HBIOS result (error) code. Otherwise, the return value
represents the number of characters in the input buffer.

10.3.4 Function 0x03 – Character Output Status (CIOOST)

Entry Parameters Returned Values

B: 0x03 A: Status / Space Free
C: Character Unit

Return the count of buffer Space Free (A) for the specified Character Unit (C). For example, if a
16 byte output buffer contains 6 characters waiting to be sent out the unit’s serial interface,
this function would return 10; the number of positions available in the output buffer. If the port
has no output buffer or the buffer utilization is not available, the function may return simply
0 or 1 where 0 means there is no buffer space available and 1 means there is space in the
output buffer for at least one character.

The return value in register A is used as both a status code and the return value. Negative
values (bit 7 set) indicate a standard HBIOS result (error) code. Otherwise, the return value
represents the buffer space available.

10.3.5 Function 0x04 – Character I/O Initialization (CIOINIT)

Entry Parameters Returned Values

B: 0x04 A: Status
C: Character Unit
DE: Line Characteristics

RetroBrew Computing Group 30

Chapter 10. HBIOS Reference RomWBW System Guide

Condition the interface of the specified Character Unit (C) according to the specified Line
Characteristics (DE). The definition of the line characteristics value is described above. If DE
contains -1 (0xFFFF), then the device will be reinitialized with the previous line characteristics
used (a reset) and any buffer contents will be flushed. The Status (A) is a standard HBIOS
result code.

Not all line characteristics are supported by all character interfaces. It is up to the driver of the
character unit to decide how to deal with characteristics that are not available. For example,
many character drivers do not allow flow control settings (RTS/CTS, XON/XOFF) to bemodified
dynamically. In most cases, these settings are ignored by the driver in this function call.

10.3.6 Function 0x05 – Character I/O Query (CIOQUERY)

Entry Parameters Returned Values

B: 0x05 A: Status
C: Character Unit DE: Line Characteristics

Returns the current Line Characteristics (DE) of the specified Character Unit (C). The definition
of the line characteristics value is described above. The returned status (A) is a standard
HBIOS result code.

10.3.7 Function 0x06 – Character I/O Device (CIODEVICE)

Entry Parameters Returned Values

B: 0x06 A: Status
C: Character Unit C: Device Attributes

D: Device Type
E: Device Number
H: Device Mode
L: Device I/O Base Address

Returns device information for the specified Character Unit (C). The status (A) is a standard
HBIOS result code.

The two high bits of Device Attribute (C) are: 00 = RS/232, 01 = Terminal, 10 = Parallel. The
remaining bits should be ignored and are used internally.

Device Type (D) indicates the specific hardware driver that handles the specified Character
Unit. Values are listed at the start of this section. Device Number (E) indicates the physical

RetroBrew Computing Group 31

Chapter 10. HBIOS Reference RomWBW System Guide

device number assigned per driver. For example, a Device Type of 0x50 with a Device Number
of 2 refers to the third port being handled by the SIO driver.

DeviceMode (H) is used to indicate the variant of the chip or circuit that is used by the specified
unit. For example, for a UART, the value indicates the chip variant. The Device I/O Base Address
(L) indicates the starting port address of the hardware interface that is servicing the specified
unit. Both of these values are considered driver specific. Refer to the associated hardware
driver for the values used.

RetroBrew Computing Group 32

Chapter 10. HBIOS Reference RomWBW System Guide

10.4 Disk Input/Output (DIO)

Disk Input/Output functions require that a Disk Unit number be specified in register C. This is
the logical device unit number assigned during the boot process that identifies all disk devices
uniquely.

All character units are assigned a Device Type ID which indicates the specific hardware device
driver that handles the unit. The table below enumerates their values.

Device Type ID Description Driver

DIODEV_MD 0x00 Memory Disk md.asm
DIODEV_FD 0x01 Floppy Disk fd.asm
DIODEV_RF 0x02 RAM Floppy rf.asm
DIODEV_IDE 0x03 IDE Disk ide.asm
DIODEV_ATAPI 0x04 ATAPI Disk (not implemented)
DIODEV_PPIDE 0x05 PPIDE Disk ppide.asm
DIODEV_SD 0x06 SD Card sd.asm
DIODEV_PRPSD 0x07 PropIO SD Card prp.asm
DIODEV_PPPSD 0x08 ParPortProp SD Card ppp.asm
DIODEV_HDSK 0x09 SIMH HDSK Disk hdsk.asm
DIODEV_PPA 0x0A Iomega PPA Disk ppa.asm
DIODEV_IMM 0x0B Iomega IMM Disk imm.asm
DIODEV_SYQ 0x0C Syquest Sparq Disk syq.asm
DIODEV_CHUSB 0x0D CH375/376 USB Disk ch.asm
DIODEV_CHSD 0x0E CH375/376 SD Card ch.asm
DIODEV_USB 0x0F CH376 Native USB Device ch376.asm
DIODEV_ESPSD 0x10 S100 ESP32 SD Card espsd.asm

A fixed set of media types are defined. The currently defined media types identifiers are listed
below. Each driver will support one or more of the defined media types.

Media ID Format

MID_NONE 0 No media installed
MID_MDROM 1 ROM Drive
MID_MDRAM 2 RAM Drive
MID_RF 3 RAM Floppy (LBA)
MID_HD 4 Hard Disk (LBA) w/ 512 directory entries
MID_FD720 5 3.5” 720K Floppy
MID_FD144 6 3.5” 1.44M Floppy

RetroBrew Computing Group 33

Chapter 10. HBIOS Reference RomWBW System Guide

Media ID Format

MID_FD360 7 5.25” 360K Floppy
MID_FD120 8 5.25” 1.2M Floppy
MID_FD111 9 8” 1.11M Floppy
MID_HDNEW 10 Hard Disk (LBA) w/ 1024 directory entries

NOTE: HBIOS typically does not actually differentiate between MID_HD and MID_HDNEW, it
will generally only use MID_HD. See the section Mapping to Media ID for information on this.

HBIOS supports both Cylinder/Head/Sector (CHS) and Logical Block Addresses (CHS) when
locating a sector for I/O (see DIOSEEK function). For devices that are natively CHS (e.g., floppy
disk), the HBIOS driver can convert LBA values to CHS values according to the geometry of the
current media. For devices that are natively LBA (e.g., hard disk), the HBIOS driver simulates
CHS using a fictitious geometry provided by the driver (typically 16 sectors per track and 16
heads per cylinder).

10.4.1 Function 0x10 – Disk Status (DIOSTATUS)

Entry Parameters Returned Values

B: 0x10 A: Status
C: Disk Unit

Returns the driver specific Status (A) of the specified disk device unit (C) based on the last
operation performed.

The return value in register A is used as both a device status and a standard HBIOS result
code. Negative values (bit 7 set) indicate a standard HBIOS result (error) code. Otherwise, the
return value represents a driver-specific device status. In all cases, the value 0 means OK.

10.4.2 Function 0x11 – Disk Reset (DIORESET)

Entry Parameters Returned Values

B: 0x11 A: Status
C: Disk Unit

This function performs a device dependent reset operation on the Disk Unit specified (C). The
driver will clear any error status on the disk unit, attempt to reset the interface, and flag the

RetroBrew Computing Group 34

Chapter 10. HBIOS Reference RomWBW System Guide

disk unit for initialization on the next I/O function call. Any prior media identification will be
cleared. The returned Status (A) is a standard HBIOS result code.

If the specified disk unit (C) is one of multiple units on a single hardware bus, then all units on
that bus will be reset. For example, if the master disk on an IDE bus is reset, then the slave
disk will also be reset.

10.4.3 Function 0x12 – Disk Seek (DIOSEEK)

Entry Parameters Returned Values

B: 0x12 A: Status
C: Disk Unit
DEHL: Sector Address

This function will set the desired sector to be used for the next I/O operation on the specified
Disk Unit (C). The returned Status (A) is a standard HBIOS result code.

An actual seek operation is generally not performed on the disk hardware by this function. The
function typically just records the sector address for subsequent I/O function calls.

The double-word Sector Address (DEHL) can represent either a Logical Block Address (LBA)
or a Cylinder/Head/Sector (CHS). Bit 7 of D is set (1) for LBA mode and cleared (0) for CHS
mode.

For LBA mode operation, the high bit is set and the rest of the double-word is then treated as
the logical sector address.

For CHS mode operation, the Sector Address (DEHL) registers are interpreted as: D=Head,
E=Sector, and HL=Track. All values (including sector) are 0 relative.

Prior versions of the floppy driver did not accept LBAmode addresses. However, this restriction
has been removed as of HBIOS v3.1. At this point, all disk drivers support both LBA and CHS
addressing.

10.4.4 Function 0x13 – Disk Read (DIOREAD)

Entry Parameters Returned Values

B: 0x13 A: Status
C: Disk Unit E: Sectors Read
D: Buffer Bank ID

RetroBrew Computing Group 35

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

E: Sector Count
HL: Buffer Address

Read Sector Count (E) sectors into the buffer located in Buffer Bank ID (D) at Buffer Address
(HL) starting at the Current Sector. The returned Status (A) is a standard HBIOS result code.

The Current Sector is established by a prior DIOSEEK function call; however, multiple
read/write/verify function calls can be made after a seek function. The Current Sector is
incremented after each sector successfully read. On error, the Current Sector will be the sector
where the error occurred. Sectors Read (E) indicates the number of sectors successfully read.

The caller must ensure that the Buffer Address is large enough to contain all sectors requested.
Disk data transfers will be faster if the buffer resides in the top 32K of memory because it
avoids a double buffer copy.

Also for buffers in the top 32K of memory the Bank ID is not strictly required as this memory
is alway mapped to the common bank. For buffers in the bottom 32KB ram, the Bank ID is
used to identify the bank to use for the buffer. If you do not wih to use banked memory you
will need to provide the current Bank ID, which can be obtained using Function 0xF3 – System
Get Bank (SYSGETBNK)

10.4.5 Function 0x14 – Disk Write (DIOWRITE)

Entry Parameters Returned Values

B: 0x14 A: Status
C: Disk Unit E: Sectors Written
D: Buffer Bank ID
E: Sector Count
HL: Buffer Address

Write Sector Count (E) sectors from the buffer located in Buffer Bank ID (D) at Buffer Address
(HL) starting at the Current Sector. The returned Status (A) is a standard HBIOS result code.

The Current Sector is established by a prior DIOSEEK function call; however, multiple
read/write/verify function calls can be made after a seek function. The Current Sector is
incremented after each sector successfully written. On error, the Current Sector will be
the sector where the error occurred. Sectors Written (E) indicates the number of sectors
successfully written.

RetroBrew Computing Group 36

Chapter 10. HBIOS Reference RomWBW System Guide

Disk data transfers will be faster if the buffer resides in the top 32K of memory because it
avoids a double copy.

10.4.6 Function 0x15 – Disk Verify (DIOVERIFY)

Entry Parameters Returned Values

B: 0x15 A: Status
C: Disk Unit E: Sectors Verified
E: Sector Count

*** Function Not Implemented ***

10.4.7 Function 0x16 – Disk Format (DIOFORMAT)

Entry Parameters Returned Values

B: 0x16 A: Status
C: Disk Unit
D: Head
E: Fill Byte
HL: Cylinder

*** Function Not Implemented ***

10.4.8 Function 0x17 – Disk Device (DIODEVICE)

Entry Parameters Returned Values

B: 0x17 A: Status
C: Disk Unit C: Device Attributes

D: Device Type
E: Device Number
H: Device Unit Mode
L: Device I/O Base Address

Reports device information about the specified Disk Unit (C). The Status (A) is a standard
HBIOS result code.

RetroBrew Computing Group 37

Chapter 10. HBIOS Reference RomWBW System Guide

The Device Attribute (C) value returned indicates various feature indicators related to the
device being referenced by the specified Disk Unit (C). The high 3 bits apply to all devices. The
definition of the low 5 bits depends on whether the device is a Floppy (indicated by bit 5).

The common bits are:

Bits Definition

7 Floppy
6 Removable
5 High Capacity (>8 MB)

The Floppy specific bits are:

Bits Definition

4-3 Form Factor: 0=8”, 1=5.25”, 2=3.5”, 3=Other
2 Sides: 0=SS, 1=DS

1-0 Density: 0=SD, 1=DD, 2=HD, 3=ED

The non-Floppy specific bits are:

Bits Definition

4 LBA Capable
3-0 Media Type: 0=Hard Disk, 1=CF, 2=SD, 3=USB,

4=ROM, 5=RAM, 6=FLASH, 7=RAMF, 8=CD-ROM,
9=Cartridge

Device Type (D) indicates the specific hardware driver that handles the specified Disk Unit (C).
Values are listed at the start of this section. Device Number (E) indicates the physical device
number assigned per driver. For example, a Device Type of 0x30 with a Device Number of 1
refers to the second disk being handled by the IDE driver.

DeviceMode (H) is used to indicate the variant of the chip or circuit that is used by the specified
unit. For example, for an IDE unit, the value indicates the IDE circuit variant. The Device I/O
Base Address (L) indicates the starting port address of the hardware interface that is servicing
the specified unit. Both of these values are considered driver specific. Refer to the associated
hardware driver for the values used.

RetroBrew Computing Group 38

Chapter 10. HBIOS Reference RomWBW System Guide

10.4.9 Function 0x18 – Disk Media (DIOMEDIA)

Entry Parameters Returned Values

B: 0x18 A: Status
C: Disk Unit E: Media ID
E: Flags

Report the Media ID (E) for the for media in the specified Disk Unit (C). If bit 0 of Flags (E) is
set, then media discovery or verification will be performed. The Status (A) is a standard HBIOS
result code. If there is no media in device, function will return an error status.

NOTE: This function will always return MID_HD for hard disk devices. See the section Mapping
to Media ID for information on this. To determine if an HD1K formatted partition exists on the
hard disk please see the following function.

Function 0xE0 – Calculate Slice (EXTSLICE)

10.4.10 Function 0x19 – Disk Define Media (DIODEFMED)

Entry Parameters Returned Values

B: 0x19 A: Status
C: Disk Unit
E: Media ID

*** Function Not Implemented ***

10.4.11 Function 0x1A – Disk Capacity (DIOCAPACITY)

Entry Parameters Returned Values

B: 0x1A A: Status
C: Disk Unit DEHL: Sector Count

BC: Block Size

Report the current media capacity information for the specified Disk Unit (C). The Sector Count
(DEHL) is a double-word number representing the total number of blocks on the device. Block
Size (BC) contains the block size in bytes. The Status (A) is a standard HBIOS result code. If
the media is unknown, an error will be returned.

RetroBrew Computing Group 39

Chapter 10. HBIOS Reference RomWBW System Guide

This function will not attempt to discover or verify the media loaded in the unit specified. You
can use precede this function with the DIOMEDIA function to force this if desired.

10.4.12 Function 0x1B – Disk Geometry (DIOGEOMETRY)

Entry Parameters Returned Values

B: 0x1B A: Status
C: Disk Unit D: Heads / LBA

E: Sectors
HL: Cylinder Count
BC: Block Size

Report the geometry for the media in the specified Disk Unit (C). If a device uses LBA mode
addressing natively, then the drivers simulated geometry will be returned. The Status (A) is a
standard HBIOS result code. If the media is unknown, an error will be returned.

LBA capability is indicated by D:7. When set, the device is capable of LBA addressing. Refer
to Function 0x12 – Disk Seek (DIOSEEK) for more information on specifying LBA vs. CHS
addresses.

Heads (D:6-0) refers to the number of heads per cylinder. Sectors (E) refers to the number
of sectors per track. Cylinder Count (HL) is the total number of cylinders addressable for the
media. Block Size (BC) is the number of bytes in one sector.

RetroBrew Computing Group 40

Chapter 10. HBIOS Reference RomWBW System Guide

10.5 Real Time Clock (RTC)

The Real Time Clock functions provide read/write access to the clock and related Non-Volatile
RAM.

HBIOS only supports a single RTC device since there is no reason to have more than one at a
time. The RTC unit is assigned a Device Type ID which indicates the specific hardware device
driver that handles the unit. The table below enumerates these values.

Device Type ID Description Driver

RTCDEV_DS 0x00 Maxim DS1302 Real-Time Clock w/ NVRAM dsrtc.asm
RTCDEV_BQ 0x01 BQ4845P Real Time Clock bqrtc.asm
RTCDEV_SIMH 0x02 SIMH Simulator Real-Time Clock simrtc.asm
RTCDEV_INT 0x03 Interrupt-based Real Time Clock intrtc.asm
RTCDEV_DS7 0x04 Maxim DS1307 PCF I2C RTC w/ NVRAM ds7rtc.asm
RTCDEV_RP5 0x05 Ricoh RPC01A Real-Time Clock w/ NVRAM rp5rtc.asm
RTCDEV_EZ80 0x07 eZ80 on-chip RTC ez80rtc.asm
RTCDEV_PC 0x08 MC146818/DS1285/DS12885 RTC w/

NVRAM
pcrtc.asm

The time functions to get and set the time (RTCGTM and RTCSTM) require a 6 byte date/time
buffer in the following format. Each byte is BCD encoded.

Offset Contents

0 Year (00-99)
1 Month (01-12)
2 Date (01-31)
3 Hours (00-24)
4 Minutes (00-59)
5 Seconds (00-59)

10.5.1 Function 0x20 – RTC Get Time (RTCGETTIM)

Entry Parameters Returned Values

B: 0x20 A: Status
HL: Date/Time Buffer Address

RetroBrew Computing Group 41

Chapter 10. HBIOS Reference RomWBW System Guide

Read the current value of the real-time clock and store the date/time in the Date/Time Buffer
pointed to by HL. The Status (A) is a standard HBIOS result code.

10.5.2 Function 0x21 – RTC Set Time (RTCSETTIM)

Entry Parameters Returned Values

B: 0x21 A: Status
HL: Date/Time Buffer Address

Set the current value of the real-time clock based on the Date/Time Buffer pointed to by HL.
The Status (A) is a standard HBIOS result code.

10.5.3 Function 0x22 – RTC Get NVRAM Byte (RTCGETBYT)

Entry Parameters Returned Values

B: 0x22 A: Status
C: Index E: Value

Read a single byte Value (E) from the Non-Volatile RAM of the RTC at the byte offset Index (C).
The Status (A) is a standard HBIOS result code.

10.5.4 Function 0x23 – RTC Set NVRAM Byte (RTCSETBYT)

Entry Parameters Returned Values

B: 0x23 A: Status
C: Index
E: Value

Set a single byte Value (E) of the Non-Volatile RAM of the RTC at the byte offset Index (C). The
Status (A) is a standard HBIOS result code.

10.5.5 Function 0x24 – RTC Get NVRAM Block (RTCGETBLK)

RetroBrew Computing Group 42

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

B: 0x24 A: Status
HL: Buffer Address

Read the entire contents of the Non-Volatile RAM into to a buffer pointed to by Buffer Address
(HL). The Status (A) is a standard HBIOS result code.

10.5.6 Function 0x25 – RTC Set NVRAM Block (RTCSETBLK)

Entry Parameters Returned Values

B: 0x25 A: Status
HL: Buffer Address

Write the entire contents of the Non-Volatile RAM from the buffer pointed to by Buffer Address
(HL). The Status (A) is a standard HBIOS result code.

10.5.7 Function 0x26 – RTC Get Alarm (RTCGETALM)

Entry Parameters Returned Values

B: 0x26 A: Status
HL: Date/Time Buffer Address

Work in progress, documentation required…

10.5.8 Function 0x27 – RTC Set Alarm (RTCSETALM)

Entry Parameters Returned Values

B: 0x27 A: Status
HL: Date/Time Buffer Address

Work in progress, documentation required…

RetroBrew Computing Group 43

Chapter 10. HBIOS Reference RomWBW System Guide

10.5.9 Function 0x28 – RTC DEVICE (RTCDEVICE)

Entry Parameters Returned Values

B: 0x28 A: Status
C: Device Attributes
D: Device Type
E: Device Number
H: Device Unit Mode
L: Device I/O Base Address

Returns device information for the RTC unit. The Status (A) is a standard HBIOS result code.

Device Attributes (C) values are not yet defined. Device Type (D) indicates the specific hardware
driver that handles the RTC unit. Values are listed at the start of this section. Device Number
(E) indicates the physical device number assigned per driver which is always 0 for RTC.

DeviceMode (H) is used to indicate the variant of the chip or circuit that is used by the specified
unit. The Device I/O Base Address (L) indicates the starting port address of the hardware
interface that is servicing the specified unit. Both of these values are considered driver specific.
Refer to the associated hardware driver for the values used.

RetroBrew Computing Group 44

Chapter 10. HBIOS Reference RomWBW System Guide

10.6 Display Keypad (DSKY)

The Display Keypad functions provide access to a segment or LCD style display and associated
optional keypad

HBIOS only supports a single DSKY device since there is no reason to have more than one
at a time. If the system contains multiple DSKY devices, only the first device discovered will
be used. The DSKY unit is assigned a Device Type ID which indicates the specific hardware
device driver that handles the unit. The table below enumerates these values.

Device Type ID Description Driver

DSKYDEV_ICM 0x01 Original ICM7218 based DSKY icm.asm
DSKYDEV_PKD 0x02 Next Gen Intel P8279 based DSKY pkd.asm
DSKYDEV_GM7303 0x03 GM7303 LCD Display + Keypad gm7303.asm
DSKYDEV_LCD 0x04 HD44780-based LCD Display lcd.asm

The keypad keys are identified by the following key ids. Not all keypads will contain all keys.

Key Id Key Definition Key Id Key Definition

$00 Hex Numeric 0 $10 Forward
$01 Hex Numeric 1 $11 Backward
$02 Hex Numeric 2 $12 Clear
$03 Hex Numeric 3 $13 Enter
$04 Hex Numeric 4 $14 Deposit
$05 Hex Numeric 5 $15 Examine
$06 Hex Numeric 6 $16 Go
$07 Hex Numeric 7 $17 Boot
$08 Hex Numeric 8 $18 F4
$09 Hex Numeric 9 $19 F3
$0A Hex Numeric A $1A F2
$0B Hex Numeric B $1B F1
$0C Hex Numeric C
$0D Hex Numeric D
$0E Hex Numeric E
$0F Hex Numeric F

10.6.1 Function 0x30 – DSKY Reset (DSKYRESET)

RetroBrew Computing Group 45

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

B: 0x30 A: Status

This function performs a device dependent reset operation on the DSKY. The display will be
cleared, keyboard queue will be flushed, and chip will be reinitialized. The returned Status (A)
is a standard HBIOS result code.

10.6.2 Function 0x31 – DSKY (DSKYSTATUS)

Entry Parameters Returned Values

B: 0x31 A: Status / Characters Pending

Return the count of Characters Pending (A) in the input buffer of the DSKY. If the unit has no
input buffer or the buffer utilization is not available, the function may return simply 0 or 1 where
0 means there is no character available and 1 means there is at least one character available.

The value returned in register A is used as both a Status (A) code and the return value. Negative
values (bit 7 set) indicate a standard HBIOS result (error) code. Otherwise, the return value
represents the number of characters in the buffer.

10.6.3 Function 0x32 – DSKY Get Key (DSKYGETKEY)

Entry Parameters Returned Values

B: 0x32 A: Status
E: Character Value

Read and return a Character (E) from the DSKY. If no character(s) are available in the unit’s
input buffer, this function will wait indefinitely. The returned Status (A) is a standard HBIOS
result code.

The Character Value (E) returned is not ASCII. It is a keypad key id. The possible id values are
listed at the start of this section.

10.6.4 Function 0x33 – DSKY Show HEX (RTCSHOWHEX)

RetroBrew Computing Group 46

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

B: 0x33 A: Status
DE:HL=Binary Value

Display the 32-bit binary value (DE:HL) in hex on the DSKY segment display. All decimal points
of the display will be off. The Status (A) is a standard HBIOS result code.

10.6.5 Function 0x34 – DSKY Show Segments (DSKYSHOWSEG)

Entry Parameters Returned Values

B: 0x34 A: Status
HL: Buffer Address

Display the segment-encoded values on the segment display. The encoding uses a small
alphabet as defined below. The actual representation of a character is determined by the driver.
The entire display is updated and it is assumed that an 8 character buffer will be pointed to by
HL. The buffer must reside in high memory. The Status (A) is a standard HBIOS result code.

0x00: ‘0’ 0x01: ‘1’ 0x02: ‘2’ 0x03: ‘3’
0x04: ‘4’ 0x05: ‘5’ 0x06: ‘6’ 0x07: ‘7’
0x08: ‘8’ 0x09: ‘9’ 0x0A: ‘A’ 0x0B: ‘B’
0x0C: ‘C’ 0x0D: ‘D’ 0x0E: ‘E’ 0x0F: ‘F’
0x10: ’ ’ 0x11: ‘-’ 0x12: ‘.’ 0x13: ‘p’
0x14: ‘o’ 0x15: ‘r’ 0x16: ‘t’ 0x17: ‘A’
0x18: ‘d’ 0x19: ‘r’ 0x1A: ‘G’

10.6.6 Function 0x35 – DSKY Keypad LEDs (DSKYKEYLEDS)

Entry Parameters Returned Values

B: 0x35 A: Status
HL: Buffer Address

Light the LEDs for the keypad keys according to the bitmap contained in the buffer pointed to
by HL. The buffer must be located in high memory and is assumed to be 8 bytes.

At this time, the bitmap is specific to the PKD hardware andwill be ignored by all other hardware.

RetroBrew Computing Group 47

Chapter 10. HBIOS Reference RomWBW System Guide

10.6.7 Function 0x36 – DSKY Status LED (DSKYSTATLED)

Entry Parameters Returned Values

B: 0x36 A: Status
D: LED Number
E: LED State

Set or clear the status LED specified in D. The state of the LED is contained in E. If E=0, the
LED will be turned off. If E=1, the LED will be turned on.

This function is specific to the PKD hardware and will be ignored by all other hardware. The
Status (A) is a standard HBIOS result code.

10.6.8 Function 0x37 – DSKY Beep (DSKYBEEP)

Entry Parameters Returned Values

B: 0x37 A: Status

Beep the onboard speaker of the DSKY. This function is specific to the PKD hardware. It will
be ignored by the ICM hardware. The Status (A) is a standard HBIOS result code.

10.6.9 Function 0x38 – DSKY Device (DSKYDEVICE)

Entry Parameters Returned Values

B: 0x38 A: Status
C: Device Attributes
D: Device Type
E: Device Number
H: Device Unit Mode
L: Device I/O Base Address

Returns device information for the DSKY unit. The Status (A) is a standard HBIOS result code.

Device Attribute (C) values are not yet defined. Device Type (D) indicates the specific hardware
driver that handles the specified character unit. Values are listed at the start of this section.
Device Number (E) indicates the physical device number assigned per driver which is always 0
for DSKY.

RetroBrew Computing Group 48

Chapter 10. HBIOS Reference RomWBW System Guide

DeviceMode (H) is used to indicate the variant of the chip or circuit that is used by the specified
unit. The Device I/O Base Address (L) indicates the starting port address of the hardware
interface that is servicing the specified unit. Both of these values are considered driver specific.
Refer to the associated hardware driver for the values used.

10.6.10 Function 0x39 – DSKY Device (DSKYMESSAGE)

Entry Parameters Returned Values

B: 0x39 A: Status
C: Message ID

Instructs the display to show a textual representation of the associatedmessage on the display.
The IDs are defined in std.asm.

10.6.11 Function 0x3A – DSKY Device (DSKYEVENT)

Entry Parameters Returned Values

B: 0x3A A: Status
C: Event ID

Instructs the display to update itself in response to an internal HBIOS state change. At this
time the the events are:

0: CPU Speed Change
1: Disk Activity

RetroBrew Computing Group 49

Chapter 10. HBIOS Reference RomWBW System Guide

10.7 Video Display Adapter (VDA)

The VDA functions are provided as a common interface to Video Display Adapters. Not all
VDAs will include keyboard hardware. In this case, the keyboard functions should return a
failure status.

All video units are assigned a Device Type ID which indicates the specific hardware device
driver that handles the unit. The table below enumerates their values.

Device Type ID Description Driver

VDADEV_VDU 0x00 MC6845 Family Video Display Controller vdu.asm
VDADEV_CVDU 0x01 MC8563-based Video Display Controller cvdu.asm
VDADEV_GDC 0x02 uPD7220 Video Display Controller gdc.asm
VDADEV_TMS 0x03 TMS9918/38/58 Video Display Controller tms.asm
VDADEV_VGA 0x04 HD6445CP4-based Video Display Controller vga.asm
VDADEV_VRC 0x05 VGARC vrc.asm
VDADEV_EF 0x06 EF9345 ef.asm
VDADEV_FV 0x07 S100 FPGA VGA fv.asm
VDADEV_XOSERA 0x08 Xosera FPGA-based Video Display Controller xosera.asm

Depending on the capabilities of the hardware, the use of colors and attributes may or may
not be supported. If the hardware does not support these capabilities, they will be ignored.

Color byte values are constructed using typical RGBI (Red/Green/Blue/Intensity) bits. The
high four bits of the value determine the background color and the low four bits determine the
foreground color. This results in 16 unique color values for both foreground and background.
The following table illustrates the color byte value construction:

Bit Color

Background 7 Intensity
6 Blue
5 Green
4 Red

Foreground 3 Intensity
2 Blue
1 Green
0 Red

The following table illustrates the resultant color for each of the possible 16 values for fore-
ground or background:

RetroBrew Computing Group 50

Chapter 10. HBIOS Reference RomWBW System Guide

Foreground Background Color

n0 nnnn0000 0n 0000nnnn Black
n1 nnnn0001 1n 0001nnnn Red
n2 nnnn0010 2n 0010nnnn Green
n3 nnnn0011 3n 0011nnnn Brown
n4 nnnn0100 4n 0100nnnn Blue
n5 nnnn0101 5n 0101nnnn Magenta
n6 nnnn0110 6n 0110nnnn Cyan
n7 nnnn0111 7n 0111nnnn White
n8 nnnn1000 8n 1000nnnn Gray
n9 nnnn1001 9n 1001nnnn Light Red
nA nnnn1010 An 1010nnnn Light Green
nB nnnn1011 Bn 1011nnnn Yellow
nC nnnn1100 Cn 1100nnnn Light Blue
nD nnnn1101 Dn 1101nnnn Light Magenta
nE nnnn1110 En 1110nnnn Light Cyan
nF nnnn1111 Fn 1111nnnn Bright White

Attribute byte values are constructed using the following bit encoding:

Bit Effect

7 n/a (0)
6 n/a (0)
5 n/a (0)
4 n/a (0)
3 n/a (0)
2 Reverse
1 Underline
0 Blink

The following codes are returned by a keyboard read to signify non-ASCII keystrokes:

Value Keystroke Value Keystroke

0xE0 F1 0xF0 Insert
0xE1 F2 0xF1 Delete
0xE2 F3 0xF2 Home
0xE3 F4 0xF3 End

RetroBrew Computing Group 51

Chapter 10. HBIOS Reference RomWBW System Guide

Value Keystroke Value Keystroke

0xE4 F5 0xF4 PageUp
0xE5 F6 0xF5 PadeDown
0xE6 F7 0xF6 UpArrow
0xE7 F8 0xF7 DownArrow
0xE8 F9 0xF8 LeftArrow
0xE9 F10 0xF9 RightArrow
0xEA F11 0xFA Power
0xEB F12 0xFB Sleep
0xEC SysReq 0xFC Wake
0xED PrintScreen 0xFD Break
0xEE Pause 0xFE
0xEF App 0xFF

10.7.1 Function 0x40 – Video Initialize (VDAINI)

Entry Parameters Returned Values

B: 0x40 A: Status
C: Video Unit
E: Video Mode
HL: Font Bitmap

Performs a full (re)initialization of the specified Video Unit (C). The screen is cleared and the
keyboard buffer is flushed. If the specified Video Unit (C) supports multiple video modes, a
Video Mode (E) can be specified (set to 0 for default/not specified). Video Mode (E) values
are specific to each VDA. The returned Status (A) is a standard HBIOS result code.

If the hardware and driver supports it, you can specify a Font Bitmap (HL) buffer address
containing the character bitmap data to be loaded into the video processor. The buffer must
be located entirely in the top 32K of the CPU memory space. HL must be set to zero if no
character bitmap is specified (the driver will utilize a default character bitmap).

10.7.2 Function 0x41 – Video Query (VDAQRY)

Entry Parameters Returned Values

B: 0x41 A: Status

RetroBrew Computing Group 52

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

C: Video Unit C: Video Mode
HL: Font Bitmap D: Rows

E: Columns
HL: Font Bitmap

Return information about the specified Video Unit (C). Video Mode (C) will be set to the current
video mode. Rows (D) and Columns (E) will return the dimensions of the video display as
measured in rows and columns. Note that this is the count of rows and columns, not the last
row/column number. The returned Status (A) is a standard HBIOS result code.

If the hardware and driver support it, you can specify a Font Bitmap (HL) buffer address that
will be filled with the current character bitmap data. The buffer must be located entirely in the
top 32K of the CPU memory space. Font Bitmap (HL) must be set to zero if it does not point
to a proper buffer area or memory corruption will result.

If HL is not zero, it must point to a suitably sized memory buffer in the upper 32K of CPU
address space that will be filled with the current character bitmap data. It is critical that HL
be set to zero if it does not point to a proper buffer area or memory corruption will result. If
the video device driver does not have the ability to provide character bitmap data, then Font
Bitmap (HL) will be set to zero on return.

10.7.3 Function 0x42 – Video Reset (VDARES)

Entry Parameters Returned Values

B: 0x42 A: Status
C: Video Unit

Performs a non-destructive reset of the specified Video Unit (C).
Should re-initialize the video hardware without destroying the screen contents or cursor posi-
tion. The current video mode will not be changed. The returned Status (A) is a standard HBIOS
result code.

10.7.4 Function 0x43 – Video Device (VDADEV)

RetroBrew Computing Group 53

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

B: 0x43 A: Status
C: Video Unit C: Device Attributes

D: Device Type
E: Device Number
H: Device Unit Mode
L: Device I/O Base Address

Reports device information about the specified Video Unit (C). The Status (A) is a standard
HBIOS result code.

Device Attribute (C) values are not yet defined.

Device Type (D) indicates the specific hardware driver that handles the specified Video Unit
(C). Values are listed at the start of this section. Device Number (E) indicates the physical
device number assigned per driver.

DeviceMode (H) is used to indicate the variant of the chip or circuit that is used by the specified
unit. For example, for an TMS video unit, the value indicates the TMS circuit variant. The
Device I/O Base Address (L) indicates the starting port address of the hardware interface that
is servicing the specified unit. Both of these values are considered driver specific. Refer to the
associated hardware driver for the values used.

10.7.5 Function 0x44 – Video Set Cursor Style (VDASCS)

Entry Parameters Returned Values

B: 0x44 A: Status
C: Video Unit
D: Start/End
E: Style

If supported by the specified Video Unit (C), adjust the format of the cursor such that the cursor
starts at the pixel specified in the top nibble of Start/End (D) and ends at the pixel specified in
the bottom nibble of Start/End (D). So, if D=0x08, a block cursor would be used that starts at
the top pixel of the character cell and ends at the ninth pixel of the character cell. The Status
(A) is a standard HBIOS result code.

Style (E) is reserved to control the style of the cursor (blink, visibility, etc.), but is not yet
implemented.

RetroBrew Computing Group 54

Chapter 10. HBIOS Reference RomWBW System Guide

Adjustments to the cursor style may or may not be possible for any given video hardware and
may be dependent on the active video mode.

10.7.6 Function 0x45 – Video Set Cursor Position (VDASCP)

Entry Parameters Returned Values

B: 0x45 A: Status
C: Video Unit
D: Row
E: Column

Reposition the cursor of the specified Video Unit (C) to the specified Row (D) and Column
(E). Specifying a row/column that exceeds the boundaries of the display results in undefined
behavior. Cursor coordinates are 0 based (0,0 is the upper left corner of the display). The
Status (A) is a standard HBIOS result code.

10.7.7 Function 0x46 – Video Set Character Attribute (VDASAT)

Entry Parameters Returned Values

B: 0x46 A: Status
C: Video Unit
E: Attribute

Assign the specified character Attribute (E) code to be used for all subsequent character
writes/fills on the specified Video Unit (C). This attribute is used to fill new lines generated by
scroll operations. The character attributes values are listed above. Note that a given video
display may or may not support any/all attributes. The Status (A) is a standard HBIOS result
code.

10.7.8 Function 0x47 – Video Set Character Color (VDASCO)

Entry Parameters Returned Values

B: 0x47 A: Status
C: Video Unit
D: Scope

RetroBrew Computing Group 55

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

E: Color

Assign the specified Color (E) code for character foreground/background. If Scope (D) is 0,
the specified color will be used for all subsequent character writes/fills. This color is also
used to fill new lines generated by scroll operations. If Scope (D) is 1, then the specified
foreground/background color will be applied immediately to the entire screen. Refer to the
color code table above for a list of the available color codes. Note that a given video display
may or may not support any/all colors. The Status (A) is a standard HBIOS result code.

10.7.9 Function 0x48 – Video Write Character (VDAWRC)

Entry Parameters Returned Values

B: 0x48 A: Status
C: Video Unit
E: Character

Write the Character (E) value to the display of the specified Video Unit (C). The character is
written starting at the current cursor position and the cursor is advanced. If the end of the line
is encountered, the cursor will be advanced to the start of the next line. The display will not
scroll if the end of the screen is exceeded. The Status (A) is a standard HBIOS result code.

10.7.10 Function 0x49 – Video Fill (VDAFIL)

Entry Parameters Returned Values

B: 0x49 A: Status
C: Video Unit
E: Character
HL: Count

Write the Character (E) value to the Video Unit (C) display the number of times specified
by Count (HL). Characters are written starting at the current cursor position and the cursor
is advanced by the number of characters written. If the end of the line is encountered, the
characters will continue to be written starting at the next line as needed. The display will not
scroll if the end of the screen is exceeded. Writing characters beyond the end of the screen
results in undefined behavior. The Status (A) is a standard HBIOS result code.

RetroBrew Computing Group 56

Chapter 10. HBIOS Reference RomWBW System Guide

10.7.11 Function 0x4A – Video Copy (VDACPY)

Entry Parameters Returned Values

B: 0x4A A: Status
C: Video Unit
D: Source Row
E: Source Column
L: Count

Copy Count (L) bytes from the specified Video Unit (C) display Source Row (D) and Source
Column (E) to the current cursor position. The cursor position is not updated. The maximum
Count (L) value is 255. Copying to/from overlapping areas is not supported and will have an
undefined behavior. The display will not scroll if the end of the screen is exceeded. Copying
beyond the active screen buffer area is not supported and results in undefined behavior. The
Status (A) is a standard HBIOS result code.

10.7.12 Function 0x4B – Video Scroll (VDASCR)

Entry Parameters Returned Values

B: 0x4B A: Status
C: Video Unit
E: Lines

Scroll the video display of the specified Video Unit (C) forward or backwards by number of
Lines (E) specified. If Lines (E) is positive, then a forward scroll is performed. If Lines (E)
contains a negative number, then a reverse scroll will be performed. This function will scroll
the entire screen contents. New lines revealed during the scroll operation will be filled with
space characters (0x20) using the active character attribute and color. The cursor position
will not be updated. The Status (A) is a standard HBIOS result code.

10.7.13 Function 0x4C – Video Keyboard Status (VDAKST)

Entry Parameters Returned Values

B: 0x4C A: Status / Codes Pending
C: Video Unit

RetroBrew Computing Group 57

Chapter 10. HBIOS Reference RomWBW System Guide

Return a count of the number of key Codes Pending (A) in the keyboard buffer for the specified
Video Unit (C). If it is not possible to determine the actual number in the buffer, it is acceptable
to return 1 to indicate there are key codes available to read and 0 if there are none available.

The value returned in register A is used as both a Status (A) code and the return value. Negative
values (bit 7 set) indicate a standard HBIOS result (error) code. Otherwise, the return value
represents the number of key codes pending.

10.7.14 Function 0x4D – Video Keyboard Flush (VDAKFL)

Entry Parameters Returned Values

B: 0x4D A: Status
C: Video Unit

If a keyboard buffer is in use on the Video Unit (C) specified, it should be purged and all contents
discarded. The Status (A) is a standard HBIOS result code.

10.7.15 Function 0x4E – Video Keyboard Read (VDAKRD)

Entry Parameters Returned Values

B: 0x4E A: Status
C: Video Unit C: Scancode

D: Keystate
E: Keycode

Read the next key data from keyboard of the specified Video Unit (C). If a keyboard buffer is
used, return the next Keycode in the buffer. If no key data is available, this function will wait
indefinitely for a keypress. The Status (A) is a standard HBIOS result code.

The Scancode (C) value is the raw scancode from the keyboard for the keypress. Scancodes
are optional and may not be implemented by the driver. The Scancode values are driver
dependent. In the case of a PS/2 keyboard driver, they should be the PS/2 scancode. Other
keyboard drivers may return values appropriate for their specific keyboard. If the driver does
not implement this, it should return 0 in C.

The Keystate (D) is a bitmap representing the value of all modifier keys and shift states as
they existed at the time of the keystroke. The bitmap is defined as:

RetroBrew Computing Group 58

Chapter 10. HBIOS Reference RomWBW System Guide

Bit Keystate Indication

7 Key pressed was from the num pad
6 Caps Lock was active
5 Num Lock was active
4 Scroll Lock was active
3 Windows key was held down
2 Alt key was held down
1 Control key was held down
0 Shift key was held down

Not all of these bits may be relevant for all keyboards. Any bit that is not relevant should be
returned as 0.

The Keycode (E) is generally returned as appropriate ASCII values, if possible. Special keys,
like function keys and arrows, are returned as reserved codes as described at the start of this
section.

RetroBrew Computing Group 59

Chapter 10. HBIOS Reference RomWBW System Guide

10.7.16 Function 0x4F – Read a character at current video position
(VDARDC)

Entry Parameters Returned Values

B: 0x4F A: Status
C: Video Unit E: Character

B: Color
E: Attribute

This function will return the character data from the current cursor position of the display
of the specified Video Unit (C). The data returned includes the Character (E) value, the Color
(B), and the Attribute (E) corresponding to the current cursor position. If the display does not
support colors or attributes then this function will return color white on black with no attributes.
The ability to perform this function may not be available for all video devices. The Status (A)
is a standard HBIOS result code.

RetroBrew Computing Group 60

Chapter 10. HBIOS Reference RomWBW System Guide

10.8 Sound (SND)

Sound functions require that a Sound Unit number be specified in register C. This is the logical
device unit number assigned during the boot process that identifies all sound devices uniquely.

All sound units are assigned a Device Type ID which indicates the specific hardware device
driver that handles the unit. The table below enumerates these values.

Device Type ID Description Driver

SND-
DEV_SN76489

$00 SN76489 Programmable Sound Generator sn76489.asm

SND-
DEV_AY38910

$01 AY-3-8910/YM2149 Programmable Sound
Generator

ay38910.asm

SNDDEV_BIT-
MODE

$02 Bit-bang Speaker spk.asm

SND-
DEV_YM2612

$03 YM2612 Programmable Sound Generator ym2612.asm

The Sound functions defer the actual programming of the sound chip until the SNDPLAY
function is called. You will call the volume and period/note functions to preset the desired
sound output, then call SNDPLAY when you want the sound to change.

The Sound functions do not manage the duration of the sound played. A sound will play
indefinitely – the caller must implement an appropriate timing mechanism to manage the
playing of a series of sounds.

HBIOS B=51 C=00 L=80 ; Set volume to half level
HBIOS B=53 C=00 HL=152 ; Select Middle C (C4)
HBIOS B=54 C=00 D=01 ; Play note on Channel 1

10.8.1 Function 0x50 – Sound Reset (SNDRESET)

Entry Parameters Returned Values

B: 0x50 A: Status
C: Sound Unit

Reset the sound chip of specified Sound Unit (C). Turn off all sounds and set volume on all
channels to silence. The returned Status (A) is a standard HBIOS result code.

RetroBrew Computing Group 61

Chapter 10. HBIOS Reference RomWBW System Guide

10.8.2 Function 0x51 – Sound Volume (SNDVOL)

Entry Parameters Returned Values

B: 0x51 A: Status
C: Sound Unit
L: Volume

This function sets the sound chip Volume (L) for the specified Sound Unit (C). Volume (L) is a
binary value ranging from 0 (silence) to 255 (maximum). The volume will be applied when the
next SNDPLAY function is invoked. The returned Status (A) is a standard HBIOS result code.

Note that not all sounds chips implement 256 volume levels. The driver will scale the volume
to the closest possible level the chip provides.

10.8.3 Function 0x52 – Sound Period (SNDPRD)

Entry Parameters Returned Values

B: 0x52 A: Status
C: Sound Unit
HL: Period

This function sets the sound chip Period (HL) for the specified Sound Unit (C). The period will
be applied when the next SNDPLAY function is invoked. The returned Status (A) is a standard
HBIOS result code.

The Period (HL) value is not a standardized value. The value is programmed directly into the
period or frequency register of the sound chip. It is therefore a hardware dependent value. To
play standardized notes, use the SNDNOTE function.

10.8.4 Function 0x53 – Sound Note (SNDNOTE)

Entry Parameters Returned Values

B: 0x53 A: Status
C: Sound Unit
HL: Note

RetroBrew Computing Group 62

Chapter 10. HBIOS Reference RomWBW System Guide

This function sets the frequency generated by the sound of the specified Sound Unit (C). The
frequency is standardized and is specified by using values that correspond to musical notes.
The frequency will be applied when the next SNDPLAY function is invoked. The returned Status
(A) is a standard HBIOS result code.

The Note (HL) values correspond to eighth tones. Increasing/decreasing the value by 8 results
in a full tone increment/decrement.
Increasing/decreasing the value by 48 results in a full octave increment/decrement. The value
0 corresponds to Bb/A# in octave 0.

The sound chip resolution and its oscillator limit the range and accuracy of the notes played.
The typical range of the AY-3-8910 is six octaves: Bb2/A#2 to A7, where each value is a unique
tone. Values above and below can still be played but each eighth tone step may not result in a
tone change.

The following table shows the mapping of the Note (HL) value to the corresponding octave
and note.

Note
Octave
0 1 2 3 4 5 6 7

C - 8 56 104 152 200 248 296
C#/Db - 12 60 108 156 204 252 300
D - 16 64 112 160 208 256 304
D#/Eb - 20 68 116 164 212 260 308
E - 24 72 120 168 216 264 312
F - 28 76 124 172 220 268 316
F#/Gb - 32 80 128 176 224 272 320
G - 36 84 132 180 228 276 324
G#/Ab - 40 88 136 184 232 280 328
A - 44 92 140 188 236 284 332
A#/Bb 0 48 96 144 192 240 288 336
B 4 52 100 148 196 244 292 340

10.8.5 Function 0x54 – Sound Play (SNDPLAY)

Entry Parameters Returned Values

B: 0x54 A: Status
C: Sound Unit
D: Channel

RetroBrew Computing Group 63

Chapter 10. HBIOS Reference RomWBW System Guide

This function applies the previously specified volume and frequency of the specified Sound
Unit (C) by programming the sound chip with the appropriate values. The values are applied to
the specified Channel (D) of the chip. The returned Status (A) is a standard HBIOS result code.

Note that there is no duration for the sound output – the programmed sound will be played
indefinitely. It is up to the user to wait the desired amount of time, then change or silence the
sound output as desired.

The number of channels available on a sound chip varies. It is up to the caller to ensure that
the appropriate number of channels are being programmed.

10.8.6 Function 0x55 – Sound Query (SNDQUERY)

Entry Parameters Returned Values

B: 0x55 A: Status
C: Sound Unit
E: Subfunction

This function will return a variety of information for a specified Sound Unit (C) according to
the Subfunction (E) specified. The returned Status (A) is a standard HBIOS result code.

SNDQUERY Subfunction 0x01 – Get count of audio channels supported (SNDQ_CHCNT)

Entry Parameters Returned Values

B: 0x55 A: Status
C: Sound Unit B: Tone Channels
E: 0x01 C: Noise Channels

SNDQUERY Subfunction 0x02 – Get current volume setting (SNDQ_VOL)

Entry Parameters Returned Values

B: 0x55 A: Status
C: Sound Unit L: Volume
E: 0x02

RetroBrew Computing Group 64

Chapter 10. HBIOS Reference RomWBW System Guide

SNDQdERY Subfunction 0x03 – Get current period setting (SNDQ_PERIOD)

Entry Parameters Returned Values

B: 0x55 A: Status
C: Sound Unit HL: Period
E: 0x03

SNDQUERY Subfunction 0x04 – Get device details (SNDQ_DEV)

Entry Parameters Returned Values

B: 0x55 A: Status
C: Sound Unit B: Driver Identity
E: 0x04 HL: Ports

DE: Ports

This subfunction reports detailed device information for the specified Sound Unit (C).

Driver Identity (B) reports the audio device type. Ports (HL & DE) return relevant port addresses
for the hardware specific to each device type.

The following table defines the specific port information per device type:

Audio ID Value Device Returned Registers

SND_SN76489 0x01 SN76489 E=Left channel port, L=Right channel port
SND_AY38910 0x02 AY-3-8910 D=Address port, E=Data port
SND_BITMODE 0x03 I/O PORT D=Address port, E=Bit mask
SND_YM2612 0x04 YM2612 Part 0: D=Address port, E=Data port

Part 1: D=Address port, L=Part 1 Data port

10.8.7 Function 0x56 – Sound Duration (SNDDUR)

Entry Parameters Returned Values

B: 0x56 A: Status
C: Sound Unit
HL: Duration

RetroBrew Computing Group 65

Chapter 10. HBIOS Reference RomWBW System Guide

This function sets the Duration (HL) of the note to be played in milliseconds for the specified
Sound Unit (C). This function just sets the duration, the actual duration is applied in the
SNDPLAY function.

If the Duration (HL) is set to zero, then the SNDPLAY function will operate in a non-blocking
mode. i.e. a tone will start playing and the play function will return. The tone will continue to
play until the next tone is played. If the Duration (HL) is greater than zero, the sound will play
for the duration defined in HL and then return.

***** Function Not Implemented ****

10.8.8 Function 0x57 – Sound Device (SNDDEVICE)

Entry Parameters Returned Values

B: 0x57 A: Status
C: Sound Unit C: Device Attributes

D: Device Type
E: Device Number
H: Device Unit Mode
L: Device I/O Base Address

Reports device information about the specified Sound Unit (C). The Status (A) is a standard
HBIOS result code.

The Device Attributes (C) value is not yet defined.

Device Type (D) indicates the specific hardware driver that handles the specified Sound Unit
(C). Values are listed at the start of this section. Device Number (E) indicates the physical
device number assigned per driver.

DeviceMode (H) is used to indicate the variant of the chip or circuit that is used by the specified
unit. The Device I/O Base Address (L) indicates the starting port address of the hardware
interface that is servicing the specified unit. Both of these values are considered driver specific.
Refer to the associated hardware driver for the values used.

10.8.9 Function 0x58 – Sound Beep (SNDBEEP)

Entry Parameters Returned Values

B: 0x58 A: Status

RetroBrew Computing Group 66

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

C: Sound Unit

Play a beep tone on the specified Sound Unit (C). The beep will normally be about 1/3 second
in duration and the tone will be approximately B5.

RetroBrew Computing Group 67

Chapter 10. HBIOS Reference RomWBW System Guide

10.9 Extension (EXT)

Helper (extension) functions that are not a core part of a BIOS.

10.9.1 Function 0xE0 – Calculate Slice (EXTSLICE)

Entry Parameters Returned Values

B: 0xE0 A: Status
D: Disk Unit B: Device Attributes
E: Slice C: Media ID

DEHL: Sector Address

Report the Media ID (C), and Device Attributes (B) for the for media in the specified Disk Unit
(D), and for hard disks the absolute Sector offset to the start of the Slice (E). The Status (A) is
a standard HBIOS result code.

This function extends upon Function 0x18 – Disk Media (DIOMEDIA) for hard disk media
by scanning for a partition to determine if the disk uses HD512 or HD1K, correctly reporting
MID_HD or MID_HDNEW respectively. See the following for some background Mapping to
Media ID

It will also return the sector number of the first sector in the slice if the slice number is valid. If
the slice number is invalid (it wont fix on the media) an error will be returned.

The slice calculation is performed by considering the partition start (if it exists), the size of a
slice for the given format type, and ensuring that the slice fits within the media or partition
size, taking into consideration other partitions that may exist.

The Device Attributes (B) are the same as defined in Function 0x17 – Disk Device (DIODEVICE)

If the Unit specified is not a hard disk the Media ID will be returned and the slice parameter
ignored. If there is no media in device, or the slice number is invaid (Parameter Out Of Range)
the function will return an error status.

NOTE: This function was placed in HBIOS to be shared between the different CP/M variants
supported by RomWBW. It is not strictly a BIOS function, and may be moved in future.

RetroBrew Computing Group 68

Chapter 10. HBIOS Reference RomWBW System Guide

10.10 System (SYS)

10.10.1 Function 0xF0 – System Reset (SYSRESET)

Entry Parameters Returned Values

B: 0xF0 A: Status
C: Subfunction

This function performs various forms of a system reset depending on the value of Subfunction
(C):

Soft Reset (0x00): Perform a soft reset of HBIOS. Releases all HBIOS memory allocated by
current OS. Does not reinitialize physical devices.

Warm Start (0x01): Warm start the system returning to the boot loader prompt. Does not
reinitialize physical devices.

Cold Start (0x02): Perform a system cold start (like a power on). All devices are reinitialized.

User Restart (0x03): Perform a video terminal reset. Terminal emulation and visual display
systems are reset.

The Status (A) is a standard HBIOS result code.

10.10.2 Function 0xF1 – System Version (SYSVER)

Entry Parameters Returned Values

B: 0xF1 A: Status
C: Reserved DE: Version

L: Platform

This function will return the HBIOS Version (DE) number and Platform (L) identifier. The Status
(A) is a standard HBIOS result code.

The Version (DE)number is encoded as BCD where the 4 digits are:

[Major Version][Minor Version][Patch Level][Build Number]

So, for example, a Version (DE) number of 0x3102 would indicate version 3.1.0, build 2.

The hardware Platform (L) is identified as follows:

RetroBrew Computing Group 69

Chapter 10. HBIOS Reference RomWBW System Guide

Name Id Platform

PLT_SBC 1 ECB Z80 SBC
PLT_ZETA 2 ZETA Z80 SBC
PLT_ZETA2 3 ZETA Z80 V2 SBC
PLT_N8 4 N8 (HOME COMPUTER) Z180 SBC
PLT_MK4 5 MARK IV
PLT_UNA 6 UNA BIOS
PLT_RCZ80 7 RCBUS W/ Z80
PLT_RCZ180 8 RCBUS W/ Z180
PLT_EZZ80 9 EASY/TINY Z80
PLT_SCZ180 10 SMALL COMPUTER CENTRAL Z180
PLT_DYNO 11 DYNO MICRO-ATX MOTHERBOARD
PLT_RCZ280 12 RCBUS W/ Z280
PLT_MBC 13 NHYODYNE MULTI-BOARD COMPUTER
PLT_RPH 14 RHYOPHYRE GRAPHICS SBC
PLT_Z80RETRO 15 Z80 RETRO COMPUTER
PLT_S100 16 S100 COMPUTERS Z180
PLT_DUO 17 DUODYNE Z80 SYSTEM
PLT_HEATH 18 HEATHKIT H8 Z80 SYSTEM
PLT_EPITX 19 Z180 MINI-ITX
PLT_MON 20 MONSPUTER (DEPRECATED)
PLT_GMZ180 21 GENESIS Z180 SYSTEM
PLT_NABU 22 NABU PC W/ ROMWBW OPTION BOARD
PLT_FZ80 23 S100 FPGA Z80
PLT_RCEZ80 24 RCBUS W/ eZ80

For more information on these platforms see RomWBW Hardware

10.10.3 Function 0xF2 – System Set Bank (SYSSETBNK)

Entry Parameters Returned Values

B: 0xF2 A: Status
C: Bank ID C: Prior Bank ID

Activates the specified memory Bank ID (C) and returns the Prior Bank ID (C).

The function must be invoked from code located in the upper 32K and the stack must be in
the upper 32K. The Status (A) is a standard HBIOS result code.

RetroBrew Computing Group 70

https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Hardware.pdf

Chapter 10. HBIOS Reference RomWBW System Guide

If the system is using interrupt mode 1 interrupts, the you must take steps to ensure interrupts
are properly handled. You generally have two choices:

• Disable interrupts while the User Bank is switched out
• Duplicate the interruptmode 1 vector from the User Bank into the bank you are switching
to.

If the User Bank has been switched out, you will not be able to invoke the HBIOS API functions
using an RST 08 instruction. You can use the alternative mechanism using CALL $FFF0 as
described in Invocation.

10.10.4 Function 0xF3 – System Get Bank (SYSGETBNK)

Entry Parameters Returned Values

B: 0xF3 A: Status
C: Bank ID

Returns the currently active Bank ID (C). The Status (A) is a standard HBIOS result code.

10.10.5 Function 0xF4 – System Set Copy (SYSSETCPY)

Entry Parameters Returned Values

B: 0xF4 A: Status
D: Destination Bank ID
E: Source Bank ID
HL: Byte Count

Prepare for a subsequent interbank memory copy (SYSBNKCPY) function call by setting the
Source Bank ID (E), Destination Bank ID (D), and Byte Count (HL) to be copied. The bank ID’s
are not range checked and must be valid for the system in use. The Status (A) is a standard
HBIOS result code.

No bytes are copied by this function. The SYSBNKCPY function must be called to actually
perform the copy. The values setup by this function will remain unchanged until another call is
make to this function. So, after calling SYSSETCPY, youmaymakemultiple calls to SYSBNKCPY
as long as you want to continue to copy between the already established Source/Destination
Banks and the same size copy is being performed.

RetroBrew Computing Group 71

Chapter 10. HBIOS Reference RomWBW System Guide

10.10.6 Function 0xF5 – System Bank Copy (SYSBNKCPY)

Entry Parameters Returned Values

B: 0xF5 A: Status
DE: Destination Address DE: New Destination Address
HL: Source Address HL: New Source Address

Copy a block of memory between banks. The Source Bank, Destination Bank, and Byte Count
to copy must be established with a prior call to SYSSETCPY. However, it is not necessary to
call SYSSETCPY prior to subsequent calls to SYSBNKCPY if the source/destination banks and
copy length do not change.

On return, the New Destination Address (DE) will be value of the original Destination Address
(DE) incremented by the count of bytes copied. Likewise for the New Source Address (HL).
This allows iterative invocations of this function to continue copying where the prior invocation
left off.

The Status (A) is a standard HBIOS result code.

WARNINGS:

• This function is inherently dangerous and does not prevent you from corrupting critical
areas of memory. Use with extreme caution.

• Overlapping source and destination memory ranges are not supported and will result in
undetermined behavior.

• Copying of byte ranges that cross bank boundaries is undefined.

10.10.7 Function 0xF6 – System Alloc (SYSALLOC)

Entry Parameters Returned Values

B: 0xF6 A: Status
HL: Block Size HL: Block Address

This function will attempt to allocate a Block Size (HL) bytes block of memory from the internal
HBIOS heap. The HBIOS heap resides in the HBIOS bank in the area of memory left unused by
HBIOS. If the allocation is successful, the Block Address (HL) of the allocated memory block
is returned in HL. You will typically need to use the SYSBNKCPY function to read/write the
allocated memory. The Status (A) is a standard HBIOS result code.

RetroBrew Computing Group 72

Chapter 10. HBIOS Reference RomWBW System Guide

10.10.8 Function 0xF7 – System Free (SYSFREE)

Entry Parameters Returned Values

B: 0xF7 A: Status
HL: Block Address

*** Function Not Implemented ***

Note that all allocated memory can be freed by calling the SYSRESET function with a subfunc-
tion code of 0x00 (Soft Reset).

10.10.9 Function 0xF8 – System Get (SYSGET)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: Subfunction

This function will report various system information based on the sub-function value. The
following lists the subfunctions available along with the registers/information utilized. The
Status (A) is a standard HBIOS result code.

SYSGET Subfunction 0x00 – Get Character Device Unit Count (CIOCNT)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x00 E: Count

Return the Count (E) of character device units. The Status (A) is a standard HBIOS result code.

SYSGET Subfunction 0x01 – Get Serial Unit Function (CIOFN)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x01 HL: Function Address
D: Function DE: Unit Data Address

RetroBrew Computing Group 73

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

E: Unit

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the CIO function number to lookup in D and the CIO unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).
See Appendix A for details. The returned Status (A) is a standard HBIOS result code.

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

SYSGET Subfunction 0x10 – Get Disk Device Unit Count (DIOCNT)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x10 E: Count

Return the Count (E) of disk device units. The Status (A) is a standard HBIOS result code.

SYSGET Subfunction 0x11 – Get Disk Unit Function (DIOFN)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x11 HL: Function Address
D: Function DE: Unit Data Address
E: Unit

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the DIO function number to lookup in D and the DIO unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).
See Appendix A for details. The returned Status (A) is a standard HBIOS result code.

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

RetroBrew Computing Group 74

Chapter 10. HBIOS Reference RomWBW System Guide

SYSGET Subfunction 0x20 – Get RTC Device Unit Count (RTCCNT)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x20 E: Count

Return the Count (E) of RTC device units. The Status (A) is a standard HBIOS result code.

SYSGET Subfunction 0x40 – Get Video Device Unit Count (VDACNT)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x40 E: Count

Return the Count (E) of video device units. The Status (A) is a standard HBIOS result code.

SYSGET Subfunction 0x41 – Get Video Unit Function (VDAFN)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x41 HL: Function Address
D: Function DE: Unit Data Address
E: Unit

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the VDA function number to lookup in D and the VDA unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).
See Appendix A for details. The returned Status (A) is a standard HBIOS result code.

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

SYSGET Subfunction 0x50 – Get Sound Device Unit Count (SNDCNT)

RetroBrew Computing Group 75

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x50 E: Count

Return the Count (E) of sound device units. The Status (A) is a standard HBIOS result code.

SYSGET Subfunction 0x51 – Get Sound Unit Function (SNDFN)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0x51 HL: Function Address
D: Function DE: Unit Data Address
E: Unit

This function will lookup the actual driver function address and unit data address inside the
HBIOS driver. On entry, place the SND function number to lookup in D and the SND unit number
in E. On return, HL will contain the address of the requested function in the HBIOS driver (in
the HBIOS bank). DE will contain the associated unit data address (also in the HBIOS bank).
See Appendix A for details. The returned Status (A) is a standard HBIOS result code.

This function can be used to speed up HBIOS calls by looking up the function and data address
for a specific driver function. After this, the caller can use interbank calls directly to the function
in the driver which bypasses the overhead of the normal function invocation lookup.

SYSGET Subfunction 0xC0 – Get Switches (SWITCH)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xC0 HL: Switch Value
D: Switch Key

This function will return the current value (HL) of the switch (D) from NVRAM.

Switches may be returned as a 16 bit (HL) or 8 bit (L) value. It is up to the caller to process the
returned value correctly. Note for Switch 0xFF (status) the returned value is primarily in the
Status (A) register.

RetroBrew Computing Group 76

Chapter 10. HBIOS Reference RomWBW System Guide

Errors are signaled in the return by setting the NZ flag. When set the (A) register may contain
an error code, but this code does not conform to RomWBW standard

Success is indicated by setting the Z flag

For a description of switches please see RomWBW NVRAM Configuration

SYSGET Subfunction 0xD0 – Get Timer Tick Count (TIMER)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xD0 DEHL: Tick Count

C: Frequency

Return the value of the global system timer Tick Count (DEHL). This is a double-word binary
value. The frequency of the system timer in Hertz is returned in Frequency (C). The returned
Status (A) is a standard HBIOS result code.

The tick count is a 32 bit binary value. It will rollover to zero if the maximum value for a 32 bit
number is reached.

Note that not all hardware configuration have a system timer. You can determine if a timer
exists by calling this function repeatedly to see if it is incrementing.

SYSGET Subfunction 0xD1 – Get Seconds Count (SECONDS)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xD1 DEHL: Seconds Count

C: Remainder Ticks

Return the Seconds Count (DEHL) with the number of seconds that have elapsed since the
system was started. This is a double-word binary value. Additionally, Remainder Ticks (C) is
returned and contains the number of ticks that have elapsed within the current second.

Note that Remainder Ticks (C) will have a value from 0 to 49 since there are 50 ticks per second.
So, Remainder Ticks does not represent a fraction of the current second. Remainder Ticks (C)
can be doubled to derive the hundredths of milliseconds elapsed within the current second.

The availability of the Seconds Count (DEHL) is dependent on having a system timer active. If
the hardware configuration has no system timer, then Seconds Count (DEHL) will not increment.

RetroBrew Computing Group 77

Chapter 10. HBIOS Reference RomWBW System Guide

SYSGET Subfunction 0xE0 – Get Boot Information (BOOTINFO)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xE0 L: Boot Bank ID

D: Boot Disk Unit
E: Boot Disk Slice

This function returns information about the most recent boot operation performed. It includes
the Boot Bank ID (L), the Boot Disk Unit (D), and the Boot Disk Slice (E). The returned Status
(A) is a standard HBIOS result code.

SYSGET Subfunction 0xF0 – Get CPU Information (CPUINFO)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xF0 H: Z80 CPU Variant

L: CPU Speed MHz
DE: CPU Speed KHz
BC: Oscillator Speed KHz

This function returns information about the active CPU environment. The Z80 CPU Variant
(H) will be one of: 0=Z80, 1=Z180, 2=Z180-K, 3=Z180-N, 4=Z280. The current CPU speed is
provided as both CPU Speed MHz (L) and CPU Speed KHz (DE). The raw oscillator speed is
provided as Oscillator Speed KHz (BC). The returned Status (A) is a standard HBIOS result
code.

SYSGET Subfunction 0xF1 – Get Memory Information (MEMINFO)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xF1 D: ROM Bank Count

E: RAM Bank Count

This function returns the systems ROM Bank Count (D) and RAM Bank Count (E). Each bank is
32KB by definition. The returned Status (A) is a standard HBIOS result code.

RetroBrew Computing Group 78

Chapter 10. HBIOS Reference RomWBW System Guide

SYSGET Subfunction 0xF2 – Get Bank Information (BNKINFO)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xF2 D: BIOS Bank ID

E: User Bank ID

Certain memory banks within a RomWBW system are special. The exact bank id for each
of these varies depending on the configuration of the system. This function can be used to
determine the BIOS Bank ID (D) and the User Bank ID (E). The returned Status (A) is a standard
HBIOS result code.

SYSGET Subfunction 0xF3 – Get CPU Speed (CPUSPD)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xF3 L: Clock Mult

D: Memory Wait States
E: I/O Wait States

This function will return the running CPU speed attributes of a system. The Clock Mult (L)
returned indicates the frequency multiple being applied to the raw oscillator clock. If is defined
as: 0=Half, 1=Full, and 2=Double. The wait states for the system are also provided as Memory
Wait States (D) and I/O Wait States (E). The value of Memory Wait States (D) is the actual
number of wait states, not the number of wait states added. The returned Status (A) is a
standard HBIOS result code.

SYSGET Subfunction 0xF4 – Get Front Panel Swithes (PANEL)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xF4 L: Switches

This function will return the current value of the switches (L) from the front panel of the system.
If no front panel is available in the system, the returned Status (A) will indicate a No Hardware
error.

RetroBrew Computing Group 79

Chapter 10. HBIOS Reference RomWBW System Guide

SYSGET Subfunction 0xF5 – Get Application Banks Information (APPBNKS)

Entry Parameters Returned Values

B: 0xF8 A: Status
C: 0xF5 H: App Banks Start ID

L: App Banks Count
E: Bank Size

HBIOS may be configured to reserve a number of RAM memory banks that will be available for
application use. This function returns information about the RAM memory banks currently
available for application use. The function provides the bank id of the first available application
bank (H) and the count of banks available (L). It also returns the size of a bank expressed as a
number of 256-byte pages (E). The returned Status (A) is a standard HBIOS result code.

The application banks are always a contiguous set of banks, so the App Banks Start ID can
be incremented to address additional banks up to the limit indicated by App Banks Count. If
the App Banks Count is zero, then there are no application banks available (regardless of the
value of App Banks Start ID).

HBIOSdoes not provide anymechanism to reserve application banks. Any concept of allocation
of application banks must be implemented within the OS or application.

This function does not change the current bank selected. You must use Function 0xF2 –
System Set Bank (SYSSETBNK) or the proxy function Bank Select (BNKSEL) for this. Be sure
to observe the warnings in the description of this function.

10.10.10 Function 0xF9 – System Set (SYSSET)

Entry Parameters Returned Values

B: 0xF9 A: Status
C: Subfunction

This functionwill set various systemparameters based on the sub-function value. The following
lists the subfunctions available along with the registers/information utilized. The Status (A) is
a standard HBIOS result code.

SYSSET Subfunction 0xC0 – Set Switches (SWITCH)

RetroBrew Computing Group 80

Chapter 10. HBIOS Reference RomWBW System Guide

Entry Parameters Returned Values

B: 0xF9 A: Status
C: 0xC0
D: Switch Key
HL: Switch Value

This function will set the value (HL) into the switch (D) and store it into NVRAM.

Switches may be passed as a 16 bit (HL) or 8 bit (L) value. It is up to the caller to send the
value correctly. Note for Switch 0xFF (reset) the value (HL) is ignored

Errors are signalled in the return by setting the NZ flag. When set the (A) register may contain
an error code, but this code does not conform to RomWBW standard

Success is indicated by setting the Z flag

For a description of switches please see RomWBW NVRAM Configuration

SYSSET Subfunction 0xD0 – Set Timer Tick Count (TIMER)

Entry Parameters Returned Values

B: 0xF9 A: Status
C: 0xD0 DEHL: Timer Tick Count

This function will explicitly set the system Timer Tick Count (DEHL) value. DEHL is a double-
word binary value. The Status (A) is a standard HBIOS result code.

SYSSET Subfunction 0xD1 – Set Seconds Count (SECONDS)

Entry Parameters Returned Values

B: 0xF9 A: Status
C: 0xD1
DEHL: Seconds Count

This function will explicitly set the system Seconds Count (DEHL) value. DEHL is a double-word
binary value. The Status (A) is a standard HBIOS result code.

RetroBrew Computing Group 81

Chapter 10. HBIOS Reference RomWBW System Guide

SYSSET Subfunction 0xE0 – Set Boot Information (BOOTINFO)

Entry Parameters Returned Values

B: 0xF9 A: Status
C: 0xE0
L: Boot Bank ID
D: Boot Disk Unit
E: Boot Disk Slice

This function sets information about the most recent boot operation performed. It includes
the Boot Bank ID (L), the Boot Disk Unit (D), and the Boot Disk Slice (E). The returned Status
(A) is a standard HBIOS result code.

SYSSET Subfunction 0xF3 – Set CPU Speed (CPUSPD)

Entry Parameters Returned Values

B: 0xF9 A: Status
C: 0xF3
L: Clock Mult
D: Memory Wait States
E: I/O Wait States

This functionwill modify the running CPU speed attributes of a system. Note that it is frequently
impossible to tell if a system is capable of dynamic speed changes. This function makes the
changes blindly. You can specify 0xFF for either of the wait state settings to have them left
alone. If an attempt is made to change the speed of a system that is definitely incapable of
doing so, then an error result is returned. The returned Status (A) is a standard HBIOS result
code.

The function will attempt to set the CPU speed based on the Clock Mult (L) value: 0=Half,
1=Full, 2=Double. Memory Wait States (D) and I/O Wait States (E) will be set if possible. The
value of Memory Wait States (D) is the actual number of wait states, not the number of wait
states added.

Some peripherals are dependent on the CPU speed. For example, the Z180 ASCI baud rate
and system timer are derived from the CPU speed. The Set CPU Speed function will attempt
to adjust these peripherals for correct operation after modifying the CPU speed. However,
in some cases this may not be possible. The baud rate of ASCI ports have a limited set of

RetroBrew Computing Group 82

Chapter 10. HBIOS Reference RomWBW System Guide

divisors. If there is no satisfactory divisor to retain the existing baud rate under the new CPU
speed, then the baud rate of the ASCI port(s) will be affected.

SYSSET Subfunction 0xF4 – Set Front Panel LEDs (PANEL)

Entry Parameters Returned Values

B: 0xF9 A: Status
C: 0xF4
L: LEDs

This function will set the front panel LEDs based on the bits in L. If no front panel is available
in the system, the returned Status (A) will indicate a No Hardware error.

10.10.11 Function 0xFA – System Peek (SYSPEEK)

Entry Parameters Returned Values

B: 0xFA A: Status
D: Bank ID E: Byte Value
HL: Memory Address

This function retrieves and returns the Byte Value from the specified Bank ID (D) and Memory
Address (HL). The bank specified is not range checked. The Status (A) is a standard HBIOS
result code.

10.10.12 Function 0xFB – System Poke (SYSPOKE)

Entry Parameters Returned Values

B: 0xFB A: Status
D: Bank ID
HL: Memory Address
E: Byte Value

This function sets the Byte Value (E) in the specified Bank ID (D) and Memory Address (HL).
The bank specified is not range checked. The Status (A) is a standard HBIOS result code.

RetroBrew Computing Group 83

Chapter 10. HBIOS Reference RomWBW System Guide

10.10.13 Function 0xFC – System Interrupt Management (SYSINT)

Entry Parameters Returned Values

B: 0xFC A: Status
C: Subfunction

This function allows the caller to query information about the interrupt configuration of the
running system and allows adding or hooking interrupt handlers dynamically. Register C is
used to specify a sub-function. Additional input and output registers may be used as defined
by the sub-function. The Status (A) is a standard HBIOS result code.

Note that during interrupt processing, the lower 32K of CPU address space will contain the
RomWBW HBIOS code bank, not the lower 32K of application TPA. As such, a dynamically
installed interrupt handler does not have access to the lower 32K of TPA andmust be careful to
avoidmodifying the contents of the lower 32K of memory. Invoking RomWBWHBIOS functions
within an interrupt handler is not supported.

Interrupt handlers are different under IM1 and IM2.

Interrupt Mode 1: The new interrupt handler is responsible for chaining (JP) to the previous
vector if the interrupt is not handled. If the interrupt is handled, the new handler may
simply return (RET). When chaining to the previous interrupt handler, ZF must be set if
interrupt is handled and ZF cleared if not handled. The interruptmanagement framework
takes care of saving and restoring AF, BC, DE, HL, and IY. Any other registers modified
must be saved and restored by the interrupt handler.

Interrupt Mode 2: The new interrupt handler may either replace or hook the previous interrupt
handler. To replace the previous interrupt handler, the new handler just returns (RET)
when done. To hook the previous handler, the new handler can chain (JP) to the
previous vector. Note that initially all IM2 interrupt vectors are set to be handled as
“BAD” meaning that the interrupt is unexpected. In most cases, you do not want to
chain to the previous vector because it will cause the interrupt to display a “BAD INT”
system panic message.

The interrupt framework will take care of issuing an EI and RETI instruction. Do not put these
instructions in your new handler. Additionally, interrupt management framework takes care of
saving and restoring AF, BC, DE, HL, and IY. Any other registers modified must be saved and
restored by the interrupt handler.

If the caller is transient, then the caller must remove the new interrupt handler and restore
the original one prior to termination. This is accomplished by calling this function with the
Interrupt Vector set to the Previous Vector returned in the original call.

RetroBrew Computing Group 84

Chapter 10. HBIOS Reference RomWBW System Guide

The caller is responsible for disabling interrupts prior to making an INTSET call and enabling
them afterwards. The caller is responsible for ensuring that a valid interrupt handler is installed
prior to enabling any hardware interrupts associated with the handler. Also, if the handler is
transient, the caller must disable the hardware interrupt(s) associated with the handler prior to
uninstalling it.

SYSINT Subfunction 0x00 – Interrupt Info (INTINF)

Entry Parameters Returned Values

B: 0xFC A: Status
C: 0x00 D: Interrupt Mode

E: IVT Size

Return current Interrupt Mode (D) of the system. Also return the number of Interrupt Vector
Table (IVT) entries in IVT (E). For IM1, the size of the table is the number of vectors chained
together. For IM2, the size of the table is the number of slots in the vector table. The Status
(A) is a standard HBIOS result code.

SYSINT Subfunction 0x10 – Get Interrupt (INTGET)

Entry Parameters Returned Values

B: 0xFC A: Status
C: 0x10 HL: IVT Address
E: IVT Index

This function will return the IVT Address (HL) of the current interrupt vector for the specified
IVT Index (C). The Status (A) is a standard HBIOS result code.

SYSINT Subfunction 0x20 – Set Interrupt (INTSET)

Entry Parameters Returned Values

B: 0xFC A: Status
C: 0x20 HL: Previous Interrupt Address
E: IVT Index
HL: Interrupt Address

RetroBrew Computing Group 85

Chapter 10. HBIOS Reference RomWBW System Guide

This function will set a new Interrupt Address (HL) at the IVT Index (E) specified. On return,
the Previous Interrupt Address (HL) will be provided.

RetroBrew Computing Group 86

Chapter 10. HBIOS Reference RomWBW System Guide

10.11 Proxy Functions

The following special functions are implemented inside of the HBIOS proxy area at the top of
RAM. They do not cause a bank switch and are, therefore, much faster than their corresponding
HBIOS API functions.

The functions are invoked via the following dedicated jump table:

Function Address ** Equate **

Invoke HBIOS Function (INVOKE) 0xFFF0 HB_INVOKE
Bank Select (BNKSEL) 0xFFF3 HB_BNKSEL
Bank Copy (BNKCPY) 0xFFF6 HB_BNKCPY
Bank Call (BNKCALL) 0xFFF9 HB_BNKCALL

The function addresses are also defined as equates in hbios.inc. It is suggested that you use
the equates when possible.

To use the functions, you may either call or jump to them. Some examples:

CALL $FFF0
JP $FFF3
CALL HB_BNKCPY

These functions are inherently dangerous and generally not value checked. Use with extreme
caution.

10.11.1 Invoke HBIOS Function (INVOKE)

Address 0xFFF0

This function is an alternate mechanism for invoking the normal HBIOS API functions. The
parameters and return values are as documented above. To put it another way, CALL $FFF0 is
equivalent to RST 08, but it can be used in any scenario when the normal bank is not selected.

10.11.2 Bank Select (BNKSEL)

Address 0xFFF3

Entry Parameters Returned Values

A: Bank ID

RetroBrew Computing Group 87

Chapter 10. HBIOS Reference RomWBW System Guide

This function will select the memory bank identified by Bank ID (A). Register AF is destroyed.
All other registers are preserved.

Thewarnings described in Function 0xF2 – SystemSet Bank (SYSSETBNK) should be observed.

10.11.3 Bank Copy (BNKCPY)

Address 0xFFF6

Entry Parameters Returned Values

HL: Source Address HL: Ending Source Address
DE: Destination Address DE: Ending Destination Address
BC: Count BC: 0
HB_SRCBNK: Source Bank ID
HB_DSTBNK: Destination Bank ID

This function will copy Count (BC) bytes from Source Address (HL) in Source Bank ID (HB_SR-
CBNK) to Destination Address (DE) in Destination Bank ID (HB_DSTBNK). The HB_SRCBNK
and HB_DSTBNK fields are dedicated locations in the proxy. These locations are defined in
hbios.inc:

• Source Bank ID: HB_SRCBNK = $FFE4
• Destination Bank ID: HB_DSTBNK = $FFE7

The Source Bank ID and Destination Bank ID values must be populated in the specified ad-
dresses before calling this function.

During processing, HL and DE, will be incremented. At termination, HL and DE will contain
the “next” source/destination addresses that would be copied. This allows this function to be
invoked repeatedly to copy continuous blocks of data.

Register AF is destroyed by this function. Register BC will be 0.

10.11.4 Bank Call (BNKCALL)

Address 0xFFF9

Entry Parameters Returned Values

A: Target Bank ID
IX: Target Address

RetroBrew Computing Group 88

Chapter 10. HBIOS Reference RomWBW System Guide

This function will perform a function call to a routine in another bank. It does this by selecting
the Target Bank ID (A) and then calling the Target Address (IX). On return from the target
function, the originally active bank is selected.

Register usage is determined by the routine that is called.

Since a different bankwill be selectedwhile the target function is active, thewarnings described
in Function 0xF2 – System Set Bank (SYSSETBNK) should be observed.

RetroBrew Computing Group 89

Chapter 11

Errors and diagnostics

ROMWBW tries to provide useful information when a run time or build time error occurs. Many
sections of the code also have code blocks that can be enable to aid in debugging and in some
cases the level of reporting detail can be customized.

11.1 Run Time Errors

11.1.1 PANIC

A panic error indicates a non-recoverable error. The processor status is displayed on the
console and interrupts are disabled and execution is halted. A cold boot or reset is required to
restart.

Example error message:

>>> PANIC: @06C4[DFA3:DFC3:0100:F103:04FC:0000:2B5E]

*** System Halted ***

The format of the information provided is

@XXXX [-AF-:-BC-:-DE-:-HL-:-SP-:-IX-:-IY-]

Where @XXXX is the address the panic was called from. The other information is the CPU
register contents.

Possible reasons a PANIC may occur are:

• RAM Bank range error when attempting a read or write to a RAM disk.

RetroBrew Computing Group 90

Chapter 11. Errors and diagnostics RomWBW System Guide

• Sector read function has not been setup but a read was attempted.
• An interrupt vector has not been set up when an interrupt was received.
• There was an attempt to add more devices than the device table had room for.
• An illegal SD card command was encountered.

The @XXXXmemory address can be cross referenced with the build source code to identify
which section of the software or hardware caused the fault.

11.1.2 SYSCHK

A syschk error is identified when an internal error is detected. When this occurs an error code
is returned to the calling program in the A register. A non-zero result indicates an error.

Syschk errors may be reported to the console. Whether this occurs depends on the value of
the diagnosis level equate DIAGLVL. By default syschk errors are not reported to the console.

If the diagnosis level is set to display the diagnosis information, then memory address, register
dump and error code is displayed. A key difference with the PANIC error is that execution may
be continued.

Example error message:

»> SYSCHK: @06C4 [DFA3:DFC3:0100:F103:04FC:0000:2B5E] FD Continue (Y/N)

The format of the information provided is similar the PANIC report.

@XXXX [-AF-:-BC-:-DE-:-HL-:-SP-:-IX-:-IY-] YY

The syschk error codes YY is returned in the A register.

Error Code YY

Success 0x00
Undefined Error 0xFF
Function Not Implemented 0xFE
Invalid Function 0xFD
Invalid Unit Number 0xFC
Out Of Memory 0xFB
Parameter Out Of Range 0xFA
Media Not Present 0xF9
Hardware Not Present 0xF8
I/O Error 0xF7
Write Request To Read-Only Media 0xF6
Device Timeout 0xF5

RetroBrew Computing Group 91

Chapter 11. Errors and diagnostics RomWBW System Guide

Error Code YY

Invalid Configuration 0xF4
Internal Error 0xF3

11.1.3 Error Level reporting

placeholder

11.2 Build time errors

11.2.1 Build chain tool errors

place holder

11.2.2 Assembly time check errors

placeholder

11.3 Diagnostics

11.3.1 Diagnostic LEDs

Progress through the boot and initialization process can be difficult to monitor due to the lack
of console or video output. Access to these output devices does not become available until
late the in the boot process. If these output devices are also involved with the issue trying to
be resolved then trouble shooting is even more difficult.

ROMWBW can be configured to display boot progress with the assistance of additional hard-
ware. This can take the form of a front panel LED display or LED breakout debugging board
connected to an 8-bit output port. Or it can utilize existing platform status LEDS.

As the boot code executes, the LED output display is updated to indicate the execution progress.

Platforms that have these capabilities built in have them enabled by default.

Front Panel display

A LED front panel or breakout board needs to be connected the computers data, reset and
port select lines.

RetroBrew Computing Group 92

Chapter 11. Errors and diagnostics RomWBW System Guide

To enable this option the following settings can bemade in the platforms custom configuration
file.

FPLED_ENABLE .SET TRUE ; ENABLE FRONT PANEL

Custom hardware can be configured with :

FPLED_IO .SET $nn ; USE PORT ADDRESS nn
FPLED_INV .SET FALSE ; INVERTED LED BITS

Platform Status LEDS

These status LEDs use preexisting status LEDs on each platform.

Enable using:

LEDENABLE .SET TRUE ; ENABLES STATUS LED

Customize using:

LEDMODE .SET LEDMODE_STD ; LEDMODE_[STD|SC|RTC|NABU]
LEDPORT .SET $nn ; STATUS LED PORT ADDRESS

The following table shows the ROMWBW process steps in relation to the panel display.

PANEL RomWBW Processes

........ Initial boot
Jump to start address
Disable interrupts
Set interrupt mode
Initialize critical ports and baud rate

.......O Setup initial stack
Memory manager and CPU configuration
Set top bank to be RAM

......OO Get and save battery condition
Install HBIOS proxy in upper memory
If platform is MBC reconfigure memory manager
Setup “ROMLESS” HBIOS image or …
Copy HBIOS from ROM to RAM if RAM flag not set
Jump to HBIOS in RAM
Set running in RAM flag

.....OOO Finalize configuration for running in RAM
Check battery condition

RetroBrew Computing Group 93

Chapter 11. Errors and diagnostics RomWBW System Guide

PANEL RomWBW Processes

Check for recovery mode boot
....OOOO Identify CPU type
...OOOOO Set cpu oscillator speed

Setup counter-timers
Setup heap

..OOOOOO Preconsole initialization

.OOOOOOO Boot delay
Set boot console device
Bios announcement

OOOOOOOO Display platform information
Display memory configuration
Display CPU family
Verify ROM checksum
Report battery condition
Perform device driver initialization
Report watchdog status
Mark HBIOS heap so it is preserved
Switch from boot console to CRT if active
Display device summary
Execute boot loader

RetroBrew Computing Group 94

Chapter 11. Errors and diagnostics RomWBW System Guide

11.3.2 Appendix A Driver Instance Data fields

This section is a work in progress…

The following section outlines the read only data referenced by the SYSGET, subfunctions
xxxFN for specific drivers.

TMS9918 Driver:

Name Offset Bytes Description

PPIA 0 1 PPI PORT A
PPIB 1 1 PPI PORT B
PPIC 2 1 PPI PORT C
PPIX 3 1 PPI CONTROL PORT
DATREG 4 1 IO PORT ADDRESS FOR MODE 0
CMDREG 5 1 IO PORT ADDRESS FOR MODE 1

Below are the register mirror values
that HBIOS used for initialisation

REG. 0 6 1 $00 - NO EXTERNAL VID
REG. 1 7 1 $50 or $70 - SET MODE 1 and interrupt if enabled
REG. 2 8 1 $00 - PATTERN NAME TABLE := 0
REG. 3 9 1 $00 - NO COLOR TABLE
REG. 4 10 1 $01 - SET PATTERN GENERATOR TABLE TO $800
REG. 5 11 1 $00 - SPRITE ATTRIBUTE IRRELEVANT
REG. 6 12 1 $00 - NO SPRITE GENERATOR TABLE
REG. 7 13 1 $F0 - WHITE ON BLACK
DCNTL* 14 1 Z180 DMA/WAIT CONTROL

• ONLY PRESENT FOR Z180 BUILDS

RetroBrew Computing Group 95

	Overview
	Background
	General Design Strategy
	Runtime Memory Layout
	Bank Id
	Bank Assignments
	Memory Managers

	Disk Layout
	Floppy Disk Layout
	Hard Disk Layout
	Modern Hard Disk Layout (hd1k)
	Classic Hard Disk Layout (hd512)
	Mapping to Media ID

	System Boot Process
	ROM Boot
	Application Boot
	RAM Boot
	Boot Recovery

	Configuration
	RomWBW NVRAM Configuration
	Boot Options (NVSW_BOOTOPTS)
	Auto Boot (NVSW_AUTOBOOT)
	Status Reset (0xFF)

	Driver Model
	Character / Emulation / Video Services
	HBIOS Reference
	Invocation
	Result Codes
	Character Input/Output (CIO)
	Function 0x00 – Character Input (CIOIN)
	Function 0x01 – Character Output (CIOOUT)
	Function 0x02 – Character Input Status (CIOIST)
	Function 0x03 – Character Output Status (CIOOST)
	Function 0x04 – Character I/O Initialization (CIOINIT)
	Function 0x05 – Character I/O Query (CIOQUERY)
	Function 0x06 – Character I/O Device (CIODEVICE)

	Disk Input/Output (DIO)
	Function 0x10 – Disk Status (DIOSTATUS)
	Function 0x11 – Disk Reset (DIORESET)
	Function 0x12 – Disk Seek (DIOSEEK)
	Function 0x13 – Disk Read (DIOREAD)
	Function 0x14 – Disk Write (DIOWRITE)
	Function 0x15 – Disk Verify (DIOVERIFY)
	Function 0x16 – Disk Format (DIOFORMAT)
	Function 0x17 – Disk Device (DIODEVICE)
	Function 0x18 – Disk Media (DIOMEDIA)
	Function 0x19 – Disk Define Media (DIODEFMED)
	Function 0x1A – Disk Capacity (DIOCAPACITY)
	Function 0x1B – Disk Geometry (DIOGEOMETRY)

	Real Time Clock (RTC)
	Function 0x20 – RTC Get Time (RTCGETTIM)
	Function 0x21 – RTC Set Time (RTCSETTIM)
	Function 0x22 – RTC Get NVRAM Byte (RTCGETBYT)
	Function 0x23 – RTC Set NVRAM Byte (RTCSETBYT)
	Function 0x24 – RTC Get NVRAM Block (RTCGETBLK)
	Function 0x25 – RTC Set NVRAM Block (RTCSETBLK)
	Function 0x26 – RTC Get Alarm (RTCGETALM)
	Function 0x27 – RTC Set Alarm (RTCSETALM)
	Function 0x28 – RTC DEVICE (RTCDEVICE)

	Display Keypad (DSKY)
	Function 0x30 – DSKY Reset (DSKYRESET)
	Function 0x31 – DSKY (DSKYSTATUS)
	Function 0x32 – DSKY Get Key (DSKYGETKEY)
	Function 0x33 – DSKY Show HEX (RTCSHOWHEX)
	Function 0x34 – DSKY Show Segments (DSKYSHOWSEG)
	Function 0x35 – DSKY Keypad LEDs (DSKYKEYLEDS)
	Function 0x36 – DSKY Status LED (DSKYSTATLED)
	Function 0x37 – DSKY Beep (DSKYBEEP)
	Function 0x38 – DSKY Device (DSKYDEVICE)
	Function 0x39 – DSKY Device (DSKYMESSAGE)
	Function 0x3A – DSKY Device (DSKYEVENT)

	Video Display Adapter (VDA)
	Function 0x40 – Video Initialize (VDAINI)
	Function 0x41 – Video Query (VDAQRY)
	Function 0x42 – Video Reset (VDARES)
	Function 0x43 – Video Device (VDADEV)
	Function 0x44 – Video Set Cursor Style (VDASCS)
	Function 0x45 – Video Set Cursor Position (VDASCP)
	Function 0x46 – Video Set Character Attribute (VDASAT)
	Function 0x47 – Video Set Character Color (VDASCO)
	Function 0x48 – Video Write Character (VDAWRC)
	Function 0x49 – Video Fill (VDAFIL)
	Function 0x4A – Video Copy (VDACPY)
	Function 0x4B – Video Scroll (VDASCR)
	Function 0x4C – Video Keyboard Status (VDAKST)
	Function 0x4D – Video Keyboard Flush (VDAKFL)
	Function 0x4E – Video Keyboard Read (VDAKRD)
	Function 0x4F – Read a character at current video position (VDARDC)

	Sound (SND)
	Function 0x50 – Sound Reset (SNDRESET)
	Function 0x51 – Sound Volume (SNDVOL)
	Function 0x52 – Sound Period (SNDPRD)
	Function 0x53 – Sound Note (SNDNOTE)
	Function 0x54 – Sound Play (SNDPLAY)
	Function 0x55 – Sound Query (SNDQUERY)
	Function 0x56 – Sound Duration (SNDDUR)
	Function 0x57 – Sound Device (SNDDEVICE)
	Function 0x58 – Sound Beep (SNDBEEP)

	Extension (EXT)
	Function 0xE0 – Calculate Slice (EXTSLICE)

	System (SYS)
	Function 0xF0 – System Reset (SYSRESET)
	Function 0xF1 – System Version (SYSVER)
	Function 0xF2 – System Set Bank (SYSSETBNK)
	Function 0xF3 – System Get Bank (SYSGETBNK)
	Function 0xF4 – System Set Copy (SYSSETCPY)
	Function 0xF5 – System Bank Copy (SYSBNKCPY)
	Function 0xF6 – System Alloc (SYSALLOC)
	Function 0xF7 – System Free (SYSFREE)
	Function 0xF8 – System Get (SYSGET)
	Function 0xF9 – System Set (SYSSET)
	Function 0xFA – System Peek (SYSPEEK)
	Function 0xFB – System Poke (SYSPOKE)
	Function 0xFC – System Interrupt Management (SYSINT)

	Proxy Functions
	Invoke HBIOS Function (INVOKE)
	Bank Select (BNKSEL)
	Bank Copy (BNKCPY)
	Bank Call (BNKCALL)

	Errors and diagnostics
	Run Time Errors
	PANIC
	SYSCHK
	Error Level reporting

	Build time errors
	Build chain tool errors
	Assembly time check errors

	Diagnostics
	Diagnostic LEDs
	Appendix A Driver Instance Data fields

