You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

887 lines
20 KiB

;
;==================================================================================================
; DSKY NEXT GENERATION PKD (DISPLAY AND KEYBOARD) ROUTINES
;==================================================================================================
;
; A PKD CAN SHARE A PPI BUS WITH EITHER A PPIDE OR PPISD.
; SEE PPI_BUS.TXT FOR MORE INFORMATION.
;
; LED SEGMENTS (BIT VALUES)
;
; +--01--+
; 20 02
; +--40--+
; 10 04
; +--08--+ 80
;
; KEY CODE MAP (KEY CODES) CSCCCRRR
; ||||||||
; |||||+++-- ROW
; ||+++----- COL
; |+-------- SHIFT
; +--------- CONTROL
;
; _____C0_________C1_________C2_________C3__________C4____
; R0 | $00 [D] $08 [E] $10 [F] $18 [BO] $20 [F4]
; R1 | $01 [A] $09 [B] $11 [C] $19 [GO] $21 [F3]
; R2 | $02 [7] $0A [8] $12 [9] $1A [EX] $22 [F2]
; R3 | $03 [4] $0B [5] $13 [6] $1B [DE] $23 [F1]
; R5 | $04 [1] $0C [2] $14 [3] $1C [EN] +$40 [SH]
; R6 | $05 [FW] $0D [0] $15 [BK] $1D [CL] +$80 [CTL]
;
; LED BIT MAP (BIT VALUES)
;
; $08 $09 $0A $0B $0C $0D $0E $0F
; --- --- --- --- --- --- --- ---
; 01 01 01 01 01
; 02 02 02 02 02
; 04 04 04 04 04
; 08 08 08 08 08
; 10 10 10 10 10
; 20 20 20 20 20 L1 L2 BUZZ
;
PKD_PPIA .EQU PKDPPIBASE + 0 ; PORT A
PKD_PPIB .EQU PKDPPIBASE + 1 ; PORT B
PKD_PPIC .EQU PKDPPIBASE + 2 ; PORT C
PKD_PPIX .EQU PKDPPIBASE + 3 ; PPI CONTROL PORT
;
PKD_PPIX_RD .EQU %10010010 ; PPIX VALUE FOR READS
PKD_PPIX_WR .EQU %10000010 ; PPIX VALUE FOR WRITES
;
PKD_ROWS .EQU 1 ; DISPLAY ROWS
PKD_COLS .EQU 8 ; DISPLAY COLUMNS
;
; PIO CHANNEL C:
;
; 7 6 5 4 3 2 1 0
; RES 0 0 CS CS /RD /WR A0
;
; SETTING BITS 3 & 4 WILL ASSERT /CS ON 3279
; CLEAR BITS 1 OR 2 TO ASSERT READ/WRITE
;
PKD_PPI_IDLE .EQU %00000110
;
PKD_CMD_CLR .EQU %11011111 ; CLEAR (ALL OFF)
PKD_CMD_CLRX .EQU %11010011 ; CLEAR (ALL ON)
PKD_CMD_WDSP .EQU %10010000 ; WRITE DISPLAY RAM
PKD_CMD_RDSP .EQU %01110000 ; READ DISPLAY RAM
PKD_CMD_CLK .EQU %00100000 ; SET CLK PRESCALE
PKD_CMD_FIFO .EQU %01000000 ; READ FIFO
;
PKD_PRESCL .EQU PKDOSC/100000 ; PRESCALER
;
DEVECHO "PKD: IO="
DEVECHO PKDPPIBASE
DEVECHO ", SIZE="
DEVECHO PKD_COLS
DEVECHO "X"
DEVECHO PKD_ROWS
DEVECHO "\n"
;
;__PKD_PREINIT_____________________________________________________________________________________
;
; CONFIGURE PARALLEL PORT AND INITIALIZE 8279
;__________________________________________________________________________________________________
;
;
; HARDWARE RESET 8279 BY PULSING RESET LINE
;
PKD_PREINIT:
LD A,(DSKY_DISPACT) ; DSKY DISPATCHER ALREADY SET?
OR A ; SET FLAGS
RET NZ ; IF ALREADY ACTIVE, ABORT
;
; CHECK FOR PPI
CALL PKD_PPIDETECT ; TEST FOR PPI HARDWARE
RET NZ ; BAIL OUT IF NOT THERE
;
; SETUP PPI TO IDLE STATE
CALL PKD_PPIIDLE
LD A,PKD_PPI_IDLE
OUT (PKD_PPIC),A
;
; PULSE RESET SIGNAL ON 8279
SET 7,A
OUT (PKD_PPIC),A
RES 7,A
OUT (PKD_PPIC),A
;
; INITIALIZE 8279
CALL PKD_REINIT
;
; NOW SEE IF A PKD IS REALLY THERE...
LD A,$71
LD C,0
CALL PKD_PUTBYTE
LD C,0
CALL PKD_GETBYTE
CP $71
RET NZ ; BAIL OUT IF MISCOMPARE
;
; RECORD HARDWARE PRESENT
LD A,$FF
LD (PKD_PRESENT),A
;
; REGISTER DRIVER WITH HBIOS
LD BC,PKD_DISPATCH
CALL DSKY_SETDISP
;
CALL PKD_SHOWVER
;
RET
;
PKD_REINIT:
CALL PKD_PPIIDLE
; SET CLOCK SCALER TO 20
LD A,PKD_CMD_CLK | PKD_PRESCL
CALL PKD_CMD
JP PKD_RESET
;
PKD_SHOWVER:
LD HL,PKD_VERSTR
LD DE,PKD_BUF
LD BC,PKD_COLS
LDIR
LD HL,PKD_BUF + 5
LD A,RMJ
LD A,(PKD_SEGMAP + RMJ)
OR $80
LD (HL),A
INC HL
LD A,(PKD_SEGMAP + RMN)
OR $80
LD (HL),A
INC HL
LD A,(PKD_SEGMAP + RUP)
LD (HL),A
;
; DISPLAY VERSION ON PKD
LD C,0
LD B,8
LD HL,PKD_BUF
CALL PKD_PUTSTR
RET
;
;__PKD_INIT________________________________________________________________________________________
;
; DISPLAY DSKY INFO
;__________________________________________________________________________________________________
;
PKD_INIT:
CALL NEWLINE ; FORMATTING
PRTS("PKD:$") ; FORMATTING
;
PRTS(" IO=0x$") ; FORMATTING
LD A,PKDPPIBASE ; GET BASE PORT
CALL PRTHEXBYTE ; PRINT BASE PORT
;
LD A,(PKD_PRESENT) ; PRESENT?
OR A ; SET FLAGS
JR NZ,PKD_INIT1 ; YES, CONTINUE
PRTS(" NOT PRESENT$") ; NOT PRESENT
RET
;
PKD_INIT1:
CALL PC_SPACE
LD A,PKD_COLS
CALL PRTDEC8
LD A,'X'
CALL COUT
LD A,PKD_ROWS
CALL PRTDEC8
RET
;
; DSKY DEVICE FUNCTION DISPATCH ENTRY
; A: RESULT (OUT), 0=OK, Z=OK, NZ=ERR
; B: FUNCTION (IN)
;
PKD_DISPATCH:
LD A,B ; GET REQUESTED FUNCTION
AND $0F ; ISOLATE SUB-FUNCTION
JP Z,PKD_RESET ; RESET DSKY HARDWARE
DEC A
JP Z,PKD_STAT ; GET KEYPAD STATUS
DEC A
JP Z,PKD_GETKEY ; READ A KEY FROM THE KEYPAD
DEC A
JP Z,PKD_SHOWHEX ; DISPLAY A 32-BIT BINARY VALUE IN HEX
DEC A
JP Z,PKD_SHOWSEG ; DISPLAY SEGMENTS
DEC A
JP Z,PKD_KEYLEDS ; SET KEYPAD LEDS
DEC A
JP Z,PKD_STATLED ; SET STATUS LED
DEC A
JP Z,PKD_BEEP ; BEEP DSKY SPEAKER
DEC A
JP Z,PKD_DEVICE ; DEVICE INFO
DEC A
JP Z,PKD_MESSAGE ; HANDLE MESSAGE
DEC A
JP Z,PKD_EVENT ; HANDLE EVENT
SYSCHKERR(ERR_NOFUNC)
RET
;
; RESET DSKY -- CLEAR RAM AND FIFO
;
PKD_RESET:
LD A,PKD_CMD_CLR
CALL PKD_CMD
;
; 8259 TAKES ~160US TO CLEAR RAM DURING WHICH TIME WRITES TO
; DISPLAY RAM ARE INHIBITED. HIGH BIT OF STATUS BYTE IS SET
; DURING THIS WINDOW. TO PREVENT A DEADLOCK, A LOOP COUNTER
; IS USED TO IMPLEMENT A TIMEOUT.
LD B,0 ; TIMEOUT LOOP COUNTER
PKD_RESET1:
PUSH BC ; SAVE COUNTER
CALL PKD_ST ; GET STATUS BYTE
POP BC ; RECOVER COUNTER
BIT 7,A ; BIT 7 IS DISPLAY RAM BUSY
JR Z,PKD_RESET2 ; MOVE ON IF DONE
DJNZ PKD_RESET1 ; LOOP TILL TIMEOUT
;
PKD_RESET2:
RET
;
; CHECK FOR KEY PRESS, SAVE RAW VALUE, RETURN STATUS
;
PKD_STAT:
LD A,(PKD_PRESENT) ; DOES IT EXIST?
OR A ; SET FLAGS
RET Z ; ABORT WITH A=0 IF NOT THERE
CALL PKD_ST
AND $0F ; ISOLATE THE CUR FIFO LEN
RET
;
; WAIT FOR A DSKY KEYPRESS AND RETURN
;
PKD_GETKEY:
LD A,(PKD_PRESENT) ; DOES IT EXIST?
OR A ; SET FLAGS
JR Z,PKD_GETKEY1A ; ABORT IF NOT PRESENT
CALL PKD_STAT
JR Z,PKD_GETKEY ; LOOP IF NOTHING THERE
LD A,PKD_CMD_FIFO
CALL PKD_CMD
CALL PKD_DIN
XOR %11000000 ; FLIP POLARITY OF SHIFT/CTL BITS
PUSH AF ; SAVE VALUE
AND $3F ; STRIP SHIFT/CTL BITS FOR LOOKUP
LD B,28 ; SIZE OF DECODE TABLE
LD C,0 ; INDEX
LD HL,PKD_KEYMAP ; POINT TO BEGINNING OF TABLE
PKD_GETKEY1:
CP (HL) ; MATCH?
JR Z,PKD_GETKEY2 ; FOUND, DONE
INC HL
INC C ; BUMP INDEX
DJNZ PKD_GETKEY1 ; LOOP UNTIL EOT
POP AF ; FIX STACK
PKD_GETKEY1A:
LD A,$FF ; NOT FOUND ERR, RETURN $FF
RET
PKD_GETKEY2:
; RETURN THE INDEX POSITION WHERE THE SCAN CODE WAS FOUND
; THE ORIGINAL SHIFT/CTRL BITS ARE RESTORED
POP AF ; RESTORE RAW VALUE
AND %11000000 ; ISOLATE SHIFT/CTRL BITS
OR C ; COMBINE WITH INDEX VALUE
LD E,A ; PUT IN E FOR RETURN
XOR A ; SIGNAL SUCCESS
RET
;
; DISPLAY HEX VALUE FROM DE:HL
;
PKD_SHOWHEX:
LD BC,PKD_TMP32 ; POINT TO HEX BUFFER
CALL ST32 ; STORE 32-BIT BINARY THERE
LD HL,PKD_TMP32 ; FROM: BINARY VALUE (HL)
LD DE,PKD_BUF ; TO: SEGMENT BUFFER (DE)
CALL PKD_BIN2SEG ; CONVERT
LD HL,PKD_BUF ; POINT TO SEGMENT BUFFER
LD B,PKD_COLS ; LENGTH TO DISPLAY
LD C,0 ; STARTING POSITION
CALL PKD_PUTSTR ; DO IT
XOR A ; SUCCESS
RET ; AND RETURN
;
; DRAW DISPLAY USING DEBUG ALPHABET
; HL = SOURCE BUFFER
;
PKD_SHOWSEG:
; CONVERT FROM DBG ALPHABET TO SEG CODES
LD B,PKD_COLS ; DO FOR ALL CHARS
LD DE,PKD_BUF ; DESTINATION BUFFER
PKD_SHOWSEG1:
LD A,(HL) ; GET SOURCE VALUE
INC HL ; BUMP FOR NEXT TIME
PUSH AF ; SAVE IT
AND $80 ; ISOLATE HI BIT (DP)
LD C,A ; SAVE IN C
POP AF ; RECOVER ORIGINAL
AND $7F ; REMOVE HI BIT (DP)
PUSH HL ; SAVE IT
LD HL,PKD_SEGMAP ; POINT TO XLAT MAP
CALL ADDHLA ; OFFSET BY VALUE
LD A,(HL) ; GET NEW VALUE
OR C ; RECOMBINE WITH DP BIT
LD (DE),A ; SAVE IT
INC DE ; BUMP PTR
POP HL ; RESTORE SOURCE PTR
DJNZ PKD_SHOWSEG1 ; LOOP TILL DONE
;
; DISPLAY CONVERTED BUFFER
LD C,0 ; STARTING DISPLAY POSITION
LD B,PKD_COLS ; NUMBER OF CHARS
LD HL,PKD_BUF ; BUFFER
CALL PKD_PUTSTR ; DO IT
XOR A ; SIGNAL SUCCESS
RET
;
;
;
PKD_KEYLEDS:
CALL PKD_PUTLED ; DO IT
XOR A ; SIGNAL SUCCESS
RET
;
;
;
PKD_STATLED:
LD A,$0D ; PORT FOR FIRST LED
ADD A,D ; ADD LED NUM
LD C,A ; PUT IN C
LD A,E ; LED STATE INDICATOR
OR A ; SET FLAGS
JR NZ,PKD_STATLED1 ; HANDLE "ON"
;
; TURN LED OFF
PUSH BC ; SAVE LED NUM
CALL PKD_GETBYTE ; GET CUR VALUE
AND ~$20 ; BIT 5 OFF
JR PKD_STATLED2 ; FINISH UP
;
PKD_STATLED1:
; TURN LED ON
PUSH BC ; SAVE LED NUM
CALL PKD_GETBYTE ; GET CUR VALUE
OR $20 ; BIT 5 ON
;
PKD_STATLED2:
POP BC ; RECOVER LED NUM
CALL PKD_PUTBYTE ; PUT NEW VALUE
XOR A ; SIGNAL SUCCESS
RET
;
; BEEP THE SPEAKER ON THE PKD
;
PKD_BEEP:
PUSH BC
LD C,$0F
CALL PKD_GETBYTE
OR $20
LD C,$0F
CALL PKD_PUTBYTE
;
; TIMER
PUSH HL
LD HL,$8FFF
PKD_BEEP1:
DEC HL
LD A,H
CP 0
JR NZ,PKD_BEEP1
POP HL
LD C,$0F
CALL PKD_GETBYTE
AND $DF
LD C,$0F
CALL PKD_PUTBYTE
POP BC
XOR A ; SIGNAL SUCCESS
RET
;
; DEVICE INFORMATION
;
PKD_DEVICE:
LD D,DSKYDEV_PKD ; D := DEVICE TYPE
LD E,0 ; E := PHYSICAL DEVICE NUMBER
LD H,0 ; H := MODE
LD L,PKDPPIBASE ; L := BASE I/O ADDRESS
XOR A ; SIGNAL SUCCESS
RET
;
; MESSAGE HANDLER
;
PKD_MESSAGE:
LD A,C ; GET MESSAGE ID
ADD A,A ; WORD OFFSET
LD HL,PKD_MSGTBL ; START OF MESSAGE TABLE
CALL ADDHLA ; ADD OFFSET
LD A,(HL) ; SAVE LSB
INC HL ; BUMP TO MSB
LD H,(HL) ; GET MSB
LD L,A ; GET LSB
;
; HL HAS POINTER TO MESSAGE
LD C,0 ; STARTING DISPLAY POSITION
LD B,PKD_COLS ; NUMBER OF CHARS
CALL PKD_PUTSTR ; DISPLAY IT
XOR A ; SIGNAL SUCCESS
RET
;
; EVENT HANDLER
;
PKD_EVENT:
LD A,C ; EVENT ID
OR A ; 0=CPUSPD
JR Z,PKD_EVT_CPUSPD ; HANDLE CPU SPD CHANGE
DEC A ; 1=DSKACT
JR Z,PKD_EVT_DSKACT ; HANDLE DISK ACTIVITY
XOR A
RET
;
; CPU SPEED CHANGE
;
PKD_EVT_CPUSPD:
XOR A
RET
;
; DISK ACTIVITY
;
PKD_EVT_DSKACT:
;
; USE DISK UNIT NUMBER FOR MSB
LD A,(HB_DSKUNIT) ; GET DISK UNIT NUM
LD (HB_DSKADR+3),A ; REPLACE HIGH BYTE W/ DISK #
;
; CONVERT TO SEGMENT DISPLAY
LD HL,HB_DSKADR ; INPUT POINTER
LD DE,PKD_BUF ; BUF FOR OUTPUT
CALL PKD_BIN2SEG ; CONVERT TO SEG DISPLAY
;
; DECIMAL POINT FOR DISK UNIT SEPARATION
LD HL,PKD_BUF+1 ; SECOND CHAR OF DISP
SET 7,(HL) ; TURN ON DECIMAL PT
;
; DECIMAL POINT TO INDICATE WRITE ACTION
LD A,(HB_DSKFUNC) ; GET CURRENT I/O FUNCTION
CP BF_DIOWRITE ; IS IT A WRITE?
JR NZ,PKD_EVT_DSKACT2 ; IF NOT, SKIP
LD HL,PKD_BUF+7 ; POINT TO CHAR 7
SET 7,(HL) ; SET WRITE DOT
;
PKD_EVT_DSKACT2:
; UPDATE DISPLAY
LD HL,PKD_BUF ; SEG DISPLAY BUF TO HL
LD B,PKD_COLS
LD C,0
CALL PKD_PUTSTR
;
XOR A
RET
;
;__PKD_PPIDETECT___________________________________________________________________________________
;
; PROBE FOR PPI HARDWARE
;__________________________________________________________________________________________________
;
PKD_PPIDETECT:
;
; TEST FOR PPI EXISTENCE
; WE SETUP THE PPI TO WRITE, THEN WRITE A VALUE OF ZERO
; TO PORT A (DATALO), THEN READ IT BACK. IF THE PPI IS THERE
; THEN THE BUS HOLD CIRCUITRY WILL READ BACK THE ZERO. SINCE
; WE ARE IN WRITE MODE, AN IDE CONTROLLER WILL NOT BE ABLE TO
; INTERFERE WITH THE VALUE BEING READ.
CALL PKD_PPIWR
;
LD C,PKD_PPIA ; PPI PORT A
XOR A ; VALUE ZERO
OUT (C),A ; PUSH VALUE TO PORT
IN A,(C) ; GET PORT VALUE
OR A ; SET FLAGS
RET ; AND RETURN
;
;__KEYMAP_TABLE____________________________________________________________________________________
;
PKD_KEYMAP:
; POS $00 $01 $02 $03 $04 $05 $06 $07
; KEY [0] [1] [2] [3] [4] [5] [6] [7]
.DB $0D, $04, $0C, $14, $03, $0B, $13, $02
;
; POS $08 $09 $0A $0B $0C $0D $0E $0F
; KEY [8] [9] [A] [B] [C] [D] [E] [F]
.DB $0A, $12, $01, $09, $11, $00, $08, $10
;
; POS $10 $11 $12 $13 $14 $15 $16 $17
; KEY [FW] [BK] [CL] [EN] [DE] [EX] [GO] [BO]
.DB $05, $15, $1D, $1C, $1B, $1A, $19, $18
; POS $18 $19 $1A $1B
; KEY [F4] [F3] [F2] [F1]
.DB $23, $22, $21, $20
;
;==================================================================================================
; PKD OUTPUT ROUTINES
;==================================================================================================
;
; SEND DSKY COMMAND BYTE IN REGISTER A
; TRASHES BC
;
PKD_CMD:
LD B,$01
JR PKD_DOUT2
;
; SEND DSKY DATA BYTE IN REGISTER A
; TRASHES BC
;
PKD_DOUT:
LD B,$00
;
PKD_DOUT2:
;
; SAVE INCOMING DATA BYTE
PUSH AF
;
; SET PPI LINE CONFIG TO WRITE MODE
CALL PKD_PPIWR
;
; SETUP
LD C,PKD_PPIC
;
; SET ADDRESS FIRST
LD A,PKD_PPI_IDLE
OR B
OUT (C),A
;
; ASSERT 8279 /CS
SET 3,A
SET 4,A
OUT (C),A
;
; PPIC WORKING VALUE TO REG B NOW
LD B,A
;
; ASSERT DATA BYTE VALUE
POP AF
OUT (PKD_PPIA),A
;
; PULSE /WR
RES 1,B
OUT (C),B
NOP ; MAY NOT BE NEEDED
SET 1,B
OUT (C),B
;
; DEASSERT /CS
RES 3,B
RES 4,B
OUT (C),B
;
; CLEAR ADDRESS BIT
RES 0,B
OUT (C),B
;
; DONE
CALL PKD_PPIIDLE
RET
;
;==================================================================================================
; PKD INPUT ROUTINES
;==================================================================================================
;
; RETURN DSKY STATUS VALUE IN A
; TRASHES BC
;
PKD_ST:
LD B,$01
JR PKD_DIN2
;
; RETURN NEXT DATA VALUE IN A
; TRASHES BC
;
PKD_DIN:
LD B,$00
;
PKD_DIN2:
; SET PPI LINE CONFIG TO READ MODE
CALL PKD_PPIRD
;
; SETUP
LD C,PKD_PPIC
;
; SET ADDRESS FIRST
LD A,PKD_PPI_IDLE
OR B
OUT (C),A
;
; ASSERT 8279 /CS
SET 3,A
SET 4,A
OUT (C),A
;
; PPIC WORKING VALUE TO REG B NOW
LD B,A
;
; ASSERT /RD
RES 2,B
OUT (C),B
;
; GET VALUE
IN A,(PKD_PPIA)
;
; DEASSERT /RD
SET 2,B
OUT (C),B
;
; DEASSERT /CS
RES 3,B
RES 4,B
OUT (C),B
;
; CLEAR ADDRESS BIT
RES 0,B
OUT (C),B
;
; DONE
CALL PKD_PPIIDLE
RET
;
;==================================================================================================
; PKD UTILITY ROUTINES
;==================================================================================================
;
; BLANK PKD DISPLAY (WITHOUT USING CLEAR)
;
PKD_BLANK:
LD A,PKD_CMD_WDSP
CALL PKD_CMD
LD B,16
PKD_BLANK1:
PUSH BC
LD A,$FF
CALL PKD_DOUT
POP BC
DJNZ PKD_BLANK1
RET
;
; WRITE A RAW BYTE VALUE TO DSKY DISPLAY RAM
; AT LOCATION IN REGISTER C, VALUE IN A.
;
PKD_PUTBYTE:
PUSH BC
PUSH AF
LD A,C
ADD A,PKD_CMD_WDSP
CALL PKD_CMD
POP AF
XOR $FF
CALL PKD_DOUT
POP BC
RET
;
; READ A RAW BYTE VALUE FROM DSKY DISPLAY RAM
; AT LOCATION IN REGISTER C, VALUE RETURNED IN A
;
PKD_GETBYTE:
PUSH BC
LD A,C
ADD A,PKD_CMD_RDSP
CALL PKD_CMD
CALL PKD_DIN
XOR $FF
POP BC
RET
;
; WRITE A STRING OF RAW BYTE VALUES TO DSKY DISPLAY RAM
; AT LOCATION IN REGISTER C, LENGTH IN B, ADDRESS IN HL.
;
PKD_PUTSTR:
PUSH BC
LD A,C
ADD A,PKD_CMD_WDSP
CALL PKD_CMD
POP BC
;
PKD_PUTSTR1:
LD A,(HL)
XOR $FF
INC HL
PUSH BC
CALL PKD_DOUT
POP BC
DJNZ PKD_PUTSTR1
RET
;
; READ A STRING OF RAW BYTE VALUES FROM DSKY DISPLAY RAM
; AT LOCATION IN REGISTER C, LENGTH IN B, ADDRESS IN HL.
;
PKD_GETSTR:
PUSH BC
LD A,C
ADD A,PKD_CMD_RDSP
CALL PKD_CMD
POP BC
;
PKD_GETSTR1:
PUSH BC
CALL PKD_DIN
POP BC
XOR $FF
LD (HL),A
INC HL
DJNZ PKD_GETSTR1
RET
;
; UPDATE THE KEYPAD KEY LEDS. HL POINTS TO AN 8 BYTE BITMAP BUFFER
; THAT DEFINES ALL KEYPAD LED VALUES. THE ENTIRE MATRIX IS UPDATED.
;
PKD_PUTLED:
PUSH AF
PUSH BC
LD C,8
PKD_PUTLED_1:
LD A,(HL)
PUSH BC
CALL PKD_PUTBYTE
POP BC
INC C
INC HL
LD A,C
CP $10
JP NZ,PKD_PUTLED_1
POP BC
POP AF
RET
;
;==================================================================================================
; PKD LINE CONTROL ROUTINES
;==================================================================================================
;
; SETUP PPI FOR WRITING: PUT PPI PORT A IN OUTPUT MODE
; AVOID REWRTING PPIX IF ALREADY IN OUTPUT MODE
;
PKD_PPIWR:
PUSH AF
;
; CHECK FOR WRITE MODE
LD A,(PKD_PPIX_VAL)
CP PKD_PPIX_WR
JR Z,PKD_PPIWR1
;
; SET PPI TO WRITE MODE
LD A,PKD_PPIX_WR
OUT (PKD_PPIX),A
LD (PKD_PPIX_VAL),A
;
; RESTORE PORT C (MAY NOT BE NEEDED)
LD A,PKD_PPI_IDLE
OUT (PKD_PPIC),A
;
PKD_PPIWR1:
;
POP AF
RET
;
; SETUP PPI FOR READING: PUT PPI PORT A IN INPUT MODE
; AVOID REWRTING PPIX IF ALREADY IN INPUT MODE
;
PKD_PPIRD:
PUSH AF
;
; CHECK FOR READ MODE
LD A,(PKD_PPIX_VAL)
CP PKD_PPIX_RD
JR Z,PKD_PPIRD1
;
; SET PPI TO READ MODE
LD A,PKD_PPIX_RD
OUT (PKD_PPIX),A
LD (PKD_PPIX_VAL),A
;
PKD_PPIRD1:
POP AF
RET
;
; RELEASE USE OF PPI
;
PKD_PPIIDLE:
JR PKD_PPIRD ; SAME AS READ MODE
;
;==================================================================================================
; UTILTITY FUNCTIONS
;==================================================================================================
;
; CONVERT 32 BIT BINARY TO 8 BYTE HEX SEGMENT DISPLAY
;
; HL: ADR OF 32 BIT BINARY
; DE: ADR OF DEST LED SEGMENT DISPLAY BUFFER (8 BYTES)
;
PKD_BIN2SEG:
LD B,4 ; 4 BYTES OF INPUT
LD A,B ; PUT IN ACCUM
CALL ADDHLA ; PROCESS FROM END (LITTLE ENDIAN)
PKD_BIN2SEG1:
DEC HL ; DEC PTR (LITTLE ENDIAN)
LD A,(HL) ; HIGH NIBBLE
RRCA \ RRCA \ RRCA \ RRCA ; ROTATE BITS
CALL PKD_BIN2SEG_NIB ; CONVERT NIBBLE INTO OUTPUT BUF
LD A,(HL) ; LOW NIBBLE
CALL PKD_BIN2SEG_NIB ; CONVERT NIBBLE INTO OUTPUT BUF
DJNZ PKD_BIN2SEG1 ; LOOP FOR ALL INPUT BYTES
RET ; DONE
;
PKD_BIN2SEG_NIB:
PUSH HL ; SAVE HL
LD HL,PKD_SEGMAP ; POINT TO SEG MAP TABLE
AND $0F ; ISOLATE LOW NIBBLE
CALL ADDHLA ; OFFSET INTO TABLE
LD A,(HL) ; LOAD VALUE FROM TABLE
POP HL ; RESTORE HL
LD (DE),A ; SAVE VALUE TO OUTPUT BUF
INC DE ; BUMP TO NEXT OUTPUT BYTE
RET ; DONE
;
;==================================================================================================
; STORAGE
;==================================================================================================
;
PKD_PPIX_VAL .DB 0 ; PPIX SHADOW REG
PKD_PRESENT .DB 0 ; HARDWARE PRESENT FLAG
PKD_BUF .FILL PKD_COLS
PKD_TMP32 .FILL 4,0 ; TEMP DWORD
;
PKD_VERSTR .DB $76,$7F,$30,$3F,$6D,$00,$00,$00 ; "HBIOS "
;
PKD_SEGMAP:
;
; POS $00 $01 $02 $03 $04 $05 $06 $07
; GLYPH '0' '1' '2' '3' '4' '5' '6' '7'
.DB $3F, $06, $5B, $4F, $66, $6D, $7D, $07
;
; POS $08 $09 $0A $0B $0C $0D $0E $0F
; GLYPH '8' '9' 'A' 'B' 'C' 'D' 'E' 'F'
.DB $7F, $67, $77, $7C, $39, $5E, $79, $71
;
; POS $10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1A
; GLYPH ' ' '-' '.' 'P' 'o' 'r' 't' 'A' 'd' 'r' 'G'
.DB $00, $40, $00, $73, $5C, $50, $78, $77, $5E, $50, $3D
;
PKD_MSGTBL:
.DW PKD_MSG_LDR_SEL
.DW PKD_MSG_LDR_BOOT
.DW PKD_MSG_LDR_LOAD
.DW PKD_MSG_LDR_GO
.DW PKD_MSG_MON_RDY
.DW PKD_MSG_MON_BOOT
;
PKD_MSG_LDR_SEL .DB $7F,$5C,$5C,$78,$53,$00,$00,$00 ; "Boot? "
PKD_MSG_LDR_BOOT .DB $7F,$5C,$5C,$78,$80,$80,$80,$00 ; "Boot... "
PKD_MSG_LDR_LOAD .DB $38,$5C,$5F,$5E,$80,$80,$80,$00 ; "Load... "
PKD_MSG_LDR_GO .DB $3D,$5C,$80,$80,$80,$00,$00,$00 ; "Go... "
PKD_MSG_MON_RDY .DB $40,$39,$73,$3E,$00,$3E,$73,$40 ; "-CPU UP-"
PKD_MSG_MON_BOOT .DB $7F,$5C,$5C,$78,$82,$00,$00,$00 ; "Boot! "