Files
RomWBW/Source/HBIOS/asci.asm
b1ackmai1er 78f65522b7 Dev (#108)
* added hack to handle tunes

* quiet clean

* added chmod for execution

* suppress warnings

* Multi-boot fixes

* the windows build somehow thinks that these filesystems are cpm3.

* credit and primitive instructions

* Update sd.asm

Cosmetic fix.

* make compile shut up about conditionals

* Add bin2asm for linus and update build to process font files under linix

* fixed quoted double quote bug, added tests

* added tests

* added bin2asm for font file source creation

* Revert linux bin2asm font stuff

* added rule for font source generation

* build fonts

* added directory mapping cache.  if the same directory is being hit
as last run, we don't need to rebuild the map.  will likely break if
you are running more than one at a time, in that the cache will be
ineffective.  also, if the directory contents change, this will also break.

* removed strip.  breaks osx

* added directory tag so . isn't matched all over the place

* added real cache validation

* fixed build

* this file is copied from optdsk.lib or optcmd.lib

* install to ../HBIOS

* prerequisite verbosity

* diff soft failure and casefn speedup

* added lzsa

* added lzsa

* removed strip. breaks on osx

* added clobber

* added code to handle multiple platform rom builds with rom size override

* added align and 0x55 hex syntax

* default to hd64180

* added N8 capability

* added SBC_std.rom to default build

* added support for binary diff

* diff fixes

* clean, identical build.  font source generator emitted .align.  this does not match the windows build

* Upgrade NZCOM to latest

* Misc. Cleanup

* fixed expression parser bug : ~(1|2) returned 0xfe

* added diff build option

* Update Makefile

Makefile enhancement to better handle ncurses library from Bob Dunlop.

* Update sd.asm

Back out hack for uz80as now that Curt fixed it.

* Misc. Cleanup

* UNA Catchup

UNA support was lacking some of the more recent behavior changes.  This corrects most of it.

* Add github action for building RomWBW

* Bump Pre-release Version

* Update build.yml

Added "make clean" which will remove temporary files without removing final binary outputs.

* Update Makefile

Build all ROM variants by default in Linux/Mac build.

* Update Makefile

* Update Makefile

* Update Makefile

* Update Makefile

* Update Makefile

* Update Makefile

* Update Makefile

* Update Makefile

* Update Makefile

* Update for GitHub Build

Case issue in TASM includes showing up in GitHub build.  This should correct that.

* Added an gitignore files to exclude generated files

* Removed Tunes/clean.cmd and Tunes/ReadMe.txt - as make clean removes them

* Build.sh: marked as executable

chmod +x Build.sh

* Fix to HBIOS/build.sh

When adding files to rom disk, if files were missing, it would error out.

It appears the intent is to skip non-existing files.

Updated to log out correctly for missing files - and continue operation.

* Update Microsoft NASCOM BASIC.docx

Nascom manual, text version by Jan S (full name unknown)

* Fix issue with Apps/Tune not making

If dest directory does not exist, fails to make Apps

* Create ReadMe.txt

* Update Makefile

* Update Build.sh

* Make .gitignores for Tools/unix more specific

* cpmtools Update

Updated cpmtools applications (Windows only).  Removed hack in diskdefs that is no longer required.

* HBIOS Proxy Temp Stack Enhancement

Reuse the bounce buffer area as the temporary stack space required briefly in HBX_INVOKE when transitioning banks.  Increases size of temporary stack space to 64 bytes.

* Update ReadMe.txt

* HBIOS - clean up TMPSTK

* Update hbios.asm

Minor cosmetic changes.

* Build Process Updates

Minor udpates to build process to improve consistency between Windows and Mac/Linux builds.

* Update hbios.asm

Add improved interrupt protection to HBIOS PEEK, POKE, and BNKCPY functions.

* hbios - wrap hbx_bnkcpy

* hbios - adjust hbx_peek hbx_poke guards

* Update hbios.asm

Adjusted used of DI/EI for PEEK and POKE to regain a bit of INTSTK space.  Added code so that HB_INVBNK can be used as a flag indicating if HBIOS is active, $FF is inactive, anything else means active.

* Add HBIOS MuTex

* Initial Nascom basic ecb-vdu graphics

set and reset for 80x25b screen with 256 character mod

* Finalize Pre-release 34

Final support for FreeRTOS

* Update nascom.asm

Optimization, cleanup, tabs and white spaces

* IDE & PPIDE Cleanup

* Clean up

Make version include files common.

* Update Makefile

* Update Makefile

* Build Test

* Build Test

* Build Fixes

* Update nascom.asm

Cleanup

* Update nascom.asm

Optimization

* hbios - temp stack tweak

* Update hbios.asm

Comments on HBX_BUF usage.

* Update nascom.asm

Optimization

* Update nascom.asm

Setup ECB-VDU build option, remove debug code

* Update nascom.asm

Set default build. update initialization

* Update nascom.asm

Make CLS clear vdu screen

* Update nascom.asm

Fixup top screen line not showing

* Add SC131 Support

Also cleaned up some ReadMe files.

* HBIOS SCZ180 - remove mutex special files

* HBIOS SCZ180 - adjust mutex comment

* Misc. Cleanup

Includes some minor improvements to contents in some disk images.

* Delete FAT.COM

Changing case of FAT.COM extension to lowercase.

* Create FAT.com

Completing change of case in extension of FAT.com.

* Update Makefile

Remove ROM variants that just have the HBIOS MUTEX enabled.  Users can easily enable this in a custom build.

* Cleanup

Removed hack from Images Makefile.  Fixed use of DEFSERCFG in various places.

* GitHub CI Updates

Adds automation of build and release assets upon release.

* Prerelease 36

General cleanup

* Build Script Cleanups

* Config File Cleanups

* Update RomWBW Architecture

General refresh for v2.9.2

* Update vdu.asm

Removed a hack in VDU driver that has existed for 8 years.  :-)

* Fix CONSOLE Constant

Rename CIODEV_CONSOLE constant to CIO_CONSOLE because it is a unit code, not a device type code.

Retabify TastyBasic.

* Minor Bug Fixes

- Disk assignment edge case
- CP/M 3 accidental fall thru
- Cosmetic updates

* Update util.z80

* Documentation Cleanup

* Documentation Update

* Documentation Update

* Documentation Updates

* Documentation Updates

* Create Common.inc

* Documentation Updates

* Documentation Updates

* doc - a few random fixes

* Documentation Cleanup

* Fix IM 0 Build Error in ACIA

* Documentation Updates

* Documentation Cleanup

* Remove OSLDR

The OSLDR application was badly broken and almost impossible to fix with new expanded OS support.

* Bug Fixes

- Init RAM disk at boot under CP/M 3
- Fix ACR activation in TUNE

* FD Motor Timeout

- Made FDC motor timeout smaller and more consistent across different speed CPUs
- Added "boot" messaging to RTC

* Cleanup

* Cleanup

- Fix SuperZAP to work under NZCOM and ZPM3
- Finalize standard config files

* Minor Changes

- Slight change to ZAP configuration
- Added ZSDOS.ZRL to NZCOM image

* ZDE Upgrade

- Upgraded ZDE 1.6 -> 1.6a

* Config File Tuning

* Pre-release for Testing

* cfg - mutex consistent config language

* Bump to Version 3.0

* Update SD Card How-To

Thanks David!

* update ReadMe.md

Remove some odd `\`.

* Update ReadMe.txt

* Update ReadMe.md

* Update Generated Doc Files

* Improve XModem Startup

- Extended startup timeout for XM.COM so that it doesn't timeout so quickly while host is selecing a file to send.
- Updated SD Card How-To from David Reese.

* XModem Timing Refinements

* TMS Driver Z180 Improvements

- TMS driver udpated to insert Z180 I/O waitstates internally so other code can run at full speed.
- Updated How-To documents from David.
- Fixed TUNE app to properly restore Z180 I/O waitstates after manipulating them.

* CLRDIR and ZDE updates

- CLRDIR has been updated by Max Scane for CP/M 3 compatibility.
- A minor issue in the preconfigured ZDE VT100 terminal escape sequences was corrected.

* Fix Auto CRT Console Switch on CP/M 3

* Handle lack of RTC better

DSRTC driver now correctly returns an error if there is no RTC present.

* Minor RTC Updates

* Finalize v3.0.1

Cleanup release for v3.0

* New ROMLDR and INTRTC driver

- Refactored romldr.asm
- Added new periodic timer based RTC driver

* CP/M 3 Date Hack

- Hack to allow INTRTC to increment time without destroying the date

* Update romldr.asm

Work around minor Linux build inconsistency

* Update Apps for New Version

* Revert "Update Apps for New Version"

This reverts commit ad80432252.

* Revert "Update romldr.asm"

This reverts commit 4a9825cd57.

* Revert "CP/M 3 Date Hack"

This reverts commit 153b494e61.

* Revert "New ROMLDR and INTRTC driver"

This reverts commit d9bed4563e.

* Start v3.1 Development

* Update FDISK80.COM

Updated FDISK80 to allow reserving up to 256 slices.

* Update sd.asm

For Z180 CSIO, ensure that xmit is finished, before asserting CS for next transaction.

* Add RC2014 UART, Improve SD protocol fix

- RC2014 and related platforms will autodetect a UART at 0xA0 and 0xA8
- Ensure that CS fully brackets all SD I/O

* ROMLDR Improvements

.com files can now be started from CP/M and size of .com files has been reduced so they always fit.

* Update commit.yml

Run commit build in all branches

* Update commit.yml

Run commit build for master and dev branches

* Improved clock driver auto-detect/fallback

* SIO driver now CTC aware

The SIO driver can now use a CTC (if available) to provide much more flexible baud rate programming.

* CTC driver fine tuning

* Update xmdm125.asm

Fixed a small issue in core XM125 code that caused a file write error message to not be displayed when it should be.

* CF Card compatibility improvement

Older CF Cards did not reset IDE registers to defaults values when reset.  Implemented a work around.

* Update ACIA detection

ACIA should no longer be detected if there is also a UART module in the system.

* Handle CTC anomaly

Small update to accommodate CTC behavior that occurs when the CTC trigger is more than half the CTC clock.

* Update acia.asm

Updated ACIA detection to use primary ACIA port instead of phantom port.

* Update acia.asm

Fix bug in ACIA detection.

Thanks Alan!

* MacOS Build Improvement

Build script updated to improve compatibility with MacOS.

Credit to Fredrik Axtelius for this.

* HBIOS Makefile - use env vars for target

Allow build ROM targets to be restricted to just one platform thru use of ENV vars:

ROM_PLATFORM - if defined to a known platform, only this platform is build - defaults to std config
ROM_CONFIG - sets the desired platform config - defaults to std

if the above ENVs are not defined, builds all ROMs

* Added some more gitignores

* Whitespace changes (crlf)

* HBIOS: Force the assembly to fail for vdu drivers if function table count is not correct

* Whitespace: trailing whitespaces

* makefile: updated some make scripts to use  when calling subdir makefiles

* linux build: update to Build.sh fix for some platforms

The initialization of the Rom dat file used the pipe (|) operator to build an initial empty file.

But the pipe operator | may sometimes return a non-zero exit code for some linux platforms, if the
the streams are closed before dd has fully processed the stream.

This issue occured on a travis linux ubuntu image.

Solution was to change to redirection.

* Bump version

* Enhance CTC periodic timer

Add ability to use TIMER mode in CTC driver to generate priodic interrupts.

* HBIOS: Added support for sound drivers

New sound driver support with initial support for the SN76489 chip

New build configuration entry:
* SN76489ENABLE

Ports are currently locked in with:
* SN76489_PORT_LEFT       .EQU    $FC     ; PORTS FOR ACCESSING THE SN76489 CHIP (LEFT)
* SN76489_PORT_RIGHT      .EQU    $F8     ; PORTS FOR ACCESSING THE SN76489 CHIP (LEFT)

* Miscellaneous Cleanup

No functional changes.

Co-authored-by: curt mayer <curt@zen-room.org>
Co-authored-by: Wayne Warthen <wwarthen@gmail.com>
Co-authored-by: ed <linux@maidavale.org>
Co-authored-by: Dean Netherton <dnetherton@dius.com.au>
Co-authored-by: ed <ed@maidavale.org>
Co-authored-by: Phillip Stevens <phillip.stevens@gmail.com>
Co-authored-by: Dean Netherton <dean.netherton@gmail.com>
2020-04-24 06:17:22 +08:00

818 lines
23 KiB
NASM

;
;==================================================================================================
; ASCI DRIVER (Z180 SERIAL PORTS)
;==================================================================================================
;
; SETUP PARAMETER WORD:
; +-------+---+-------------------+ +---+---+-----------+---+-------+
; | |RTS| ENCODED BAUD RATE | |DTR|XON| PARITY |STP| 8/7/6 |
; +-------+---+---+---------------+ ----+---+-----------+---+-------+
; F E D C B A 9 8 7 6 5 4 3 2 1 0
; -- MSB (D REGISTER) -- -- LSB (E REGISTER) --
;
; STAT:
; 7 6 5 4 3 2 1 0
; R O P F R C T T
; 0 0 0 0 0 0 0 0 DEFAULT VALUES
; | | | | | | | |
; | | | | | | | +-- TIE: TRANSMIT INTERRUPT ENABLE
; | | | | | | +---- TDRE: TRANSMIT DATA REGISTER EMPTY
; | | | | | +------ DCD0/CTS1E: CH0 CARRIER DETECT, CH1 CTS ENABLE
; | | | | +-------- RIE: RECEIVE INTERRUPT ENABLE
; | | | +---------- FE: FRAMING ERROR
; | | +------------ PE: PARITY ERROR
; | +-------------- OVRN: OVERRUN ERROR
; +---------------- RDRF: RECEIVE DATA REGISTER FULL
;
; CNTLA:
; 7 6 5 4 3 2 1 0
; M R T R E M M M
; 0 1 1 0 0 1 0 0 DEFAULT VALUES
; | | | | | | | |
; | | | | | | | +-- MOD0: STOP BITS: 0=1 BIT, 1=2 BITS
; | | | | | | +---- MOD1: PARITY: 0=NONE, 1=ENABLED
; | | | | | +------ MOD2: DATA BITS: 0=7 BITS, 1=8 BITS
; | | | | +-------- MPBR/EFR: MULTIPROCESSOR BIT RECEIVE / ERROR FLAG RESET
; | | | +---------- RTS0/CKA1D: CH0 ~RTS, CH1 CLOCK DISABLE
; | | +------------ TE: TRANSMITTER ENABLE
; | +-------------- RE: RECEIVER ENABLE
; +---------------- MPE: MULTI-PROCESSOR MODE ENABLE
;
; CNTLB:
; 7 6 5 4 3 2 1 0
; T M P R D S S S
; 0 0 X 0 X X X X DEFAULT VALUES
; | | | | | | | |
; | | | | | + + +-- SS: SOURCE/SPEED SELECT (R/W)
; | | | | +-------- DR: DIVIDE RATIO (R/W)
; | | | +---------- PEO: PARITY EVEN ODD (R/W)
; | | +------------ PS: ~CTS/PS: CLEAR TO SEND(R) / PRESCALE(W)
; | +-------------- MP: MULTIPROCESSOR MODE (R/W)
; +---------------- MPBT: MULTIPROCESSOR BIT TRANSMIT (R/W)
;
; ASEXT:
; 7 6 5 4 3 2 1 0
; R D C X B F D S
; 0 1 1 0 0 1 1 0 DEFAULT VALUES
; | | | | | | | |
; | | | | | | | +-- SEND BREAK
; | | | | | | +---- BREAK DETECT (RO)
; | | | | | +------ BREAK FEATURE ENABLE
; | | | | +-------- BRG MODE
; | | | +---------- X1 BIT CLK ASCI
; | | +------------ CTS0 DISABLE
; | +-------------- DCD0 DISABLE
; +---------------- RDRF INT INHIBIT
;
ASCI_BUFSZ .EQU 32 ; RECEIVE RING BUFFER SIZE
;
ASCI_NONE .EQU 0 ; NOT PRESENT
ASCI_ASCI .EQU 1 ; ORIGINAL ASCI (Z8S180 REV. K)
ASCI_ASCIB .EQU 2 ; REVISED ASCI W/ BRG & FIFO (Z8S180 REV. N)
;
ASCI0_BASE .EQU Z180_BASE ; RELATIVE TO Z180 INTERNAL IO PORTS
ASCI1_BASE .EQU Z180_BASE + 1 ; RELATIVE TO Z180 INTERNAL IO PORTS
;
ASCI_RTS .EQU %00010000 ; ~RTS BIT OF CNTLA REG
;
#IF (INTMODE == 2)
;
ASCI0_IVT .EQU IVT(INT_SER0)
ASCI1_IVT .EQU IVT(INT_SER1)
;
#ENDIF
;
;
;
ASCI_PREINIT:
;
; SETUP THE DISPATCH TABLE ENTRIES
; NOTE: INTS WILL BE DISABLED WHEN PREINIT IS CALLED AND THEY MUST REMIAIN
; DISABLED.
;
LD B,ASCI_CFGCNT ; LOOP CONTROL
XOR A ; ZERO TO ACCUM
LD (ASCI_DEV),A ; CURRENT DEVICE NUMBER
LD IY,ASCI_CFG ; POINT TO START OF CFG TABLE
ASCI_PREINIT0:
PUSH BC ; SAVE LOOP CONTROL
CALL ASCI_INITUNIT ; HAND OFF TO GENERIC INIT CODE
POP BC ; RESTORE LOOP CONTROL
;
LD A,(IY+1) ; GET THE ASCI TYPE DETECTED
OR A ; SET FLAGS
JR Z,ASCI_PREINIT2 ; SKIP IT IF NOTHING FOUND
;
PUSH BC ; SAVE LOOP CONTROL
PUSH IY ; CFG ENTRY ADDRESS
POP DE ; ... TO DE
LD BC,ASCI_FNTBL ; BC := FUNCTION TABLE ADDRESS
CALL NZ,CIO_ADDENT ; ADD ENTRY IF ASCI FOUND, BC:DE
POP BC ; RESTORE LOOP CONTROL
;
ASCI_PREINIT2:
LD DE,ASCI_CFGSIZ ; SIZE OF CFG ENTRY
ADD IY,DE ; BUMP IY TO NEXT ENTRY
DJNZ ASCI_PREINIT0 ; LOOP UNTIL DONE
;
#IF (INTMODE >= 1)
; SETUP INT VECTORS AS APPROPRIATE
LD A,(ASCI_DEV) ; GET DEVICE COUNT
OR A ; SET FLAGS
JR Z,ASCI_PREINIT3 ; IF ZERO, NO ASCI DEVICES, ABORT
;
#IF (INTMODE == 1)
; ADD IM1 INT CALL LIST ENTRY
LD HL,ASCI_INT ; GET INT VECTOR
CALL HB_ADDIM1 ; ADD TO IM1 CALL LIST
#ENDIF
;
#IF (INTMODE == 2)
; SETUP IM2 VECTORS
LD HL,ASCI_INT0
LD (ASCI0_IVT),HL ; IVT INDEX
LD HL,ASCI_INT1
LD (ASCI1_IVT),HL ; IVT INDEX
#ENDIF
;
#ENDIF
;
ASCI_PREINIT3:
XOR A ; SIGNAL SUCCESS
RET ; AND RETURN
;
; ASCI INITIALIZATION ROUTINE
;
ASCI_INITUNIT:
CALL ASCI_DETECT ; DETERMINE ASCI TYPE
LD (IY+1),A ; SAVE IN CONFIG TABLE
OR A ; SET FLAGS
RET Z ; ABORT IF NOTHING THERE
; UPDATE WORKING ASCI DEVICE NUM
LD HL,ASCI_DEV ; POINT TO CURRENT UART DEVICE NUM
LD A,(HL) ; PUT IN ACCUM
INC (HL) ; INCREMENT IT (FOR NEXT LOOP)
LD (IY),A ; UPDATE UNIT NUM
;
; IT IS EASY TO SPECIFY A SERIAL CONFIG THAT CANNOT BE IMPLEMENTED
; DUE TO THE CONSTRAINTS OF THE ASCI. HERE WE FORCE A GENERIC
; FAILSAFE CONFIG ONTO THE CHANNEL. IF THE SUBSEQUENT "REAL"
; CONFIG FAILS, AT LEAST THE CHIP WILL BE ABLE TO SPIT DATA OUT
; AT A RATIONAL BAUD/DATA/PARITY/STOP CONFIG.
CALL ASCI_INITSAFE
;
; SET DEFAULT CONFIG
LD DE,-1 ; LEAVE CONFIG ALONE
; CALL INITDEV TO IMPLEMENT CONFIG, BUT NOTE THAT WE CALL
; THE INITDEVX ENTRY POINT THAT DOES NOT ENABLE/DISABLE INTS!
JP ASCI_INITDEVX ; IMPLEMENT IT AND RETURN
;
;
;
ASCI_INIT:
LD B,ASCI_CFGCNT ; COUNT OF POSSIBLE ASCI UNITS
LD IY,ASCI_CFG ; POINT TO START OF CFG TABLE
ASCI_INIT1:
PUSH BC ; SAVE LOOP CONTROL
LD A,(IY+1) ; GET ASCI TYPE
OR A ; SET FLAGS
CALL NZ,ASCI_PRTCFG ; PRINT IF NOT ZERO
POP BC ; RESTORE LOOP CONTROL
LD DE,ASCI_CFGSIZ ; SIZE OF CFG ENTRY
ADD IY,DE ; BUMP IY TO NEXT ENTRY
DJNZ ASCI_INIT1 ; LOOP TILL DONE
;
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
; RECEIVE INTERRUPT HANDLER
;
#IF (INTMODE > 0)
;
; IM1 ENTRY POINT
;
ASCI_INT:
; CHECK/HANDLE FIRST PORT
LD A,(ASCI0_CFG + 1) ; GET ASCI TYPE FOR FIRST ASCI
OR A ; SET FLAGS
CALL NZ,ASCI_INT0 ; CALL IF EXISTS
RET NZ ; DONE IF INT HANDLED
;
; CHECK/HANDLE SECOND PORT
LD A,(ASCI1_CFG + 1) ; GET ASCI TYPE FOR SECOND ASCI
OR A ; SET FLAGS
CALL NZ,ASCI_INT1 ; CALL IF EXISTS
;
RET ; DONE
;
; IM2 ENTRY POINTS
;
ASCI_INT0:
; INTERRUPT HANDLER FOR FIRST ASCI (ASCI0)
LD IY,ASCI0_CFG ; POINT TO ASCI0 CFG
JR ASCI_INTRCV
;
ASCI_INT1:
; INTERRUPT HANDLER FOR SECOND ASCI (ASCI1)
LD IY,ASCI1_CFG ; POINT TO ASCI1 CFG
JR ASCI_INTRCV
;
; HANDLE INT FOR A SPECIFIC CHANNEL
; BASED ON UNIT CFG POINTED TO BY IY
;
ASCI_INTRCV:
; CHECK TO SEE IF SOMETHING IS ACTUALLY THERE
CALL ASCI_ICHK ; CHECK FOR CHAR PENDING
RET Z ; RETURN IF NOTHING AVAILABLE
;
ASCI_INTRCV1:
; RECEIVE CHARACTER INTO BUFFER
LD A,(IY+3) ; BASE PORT TO A
ADD A,8 ; BUMP TO RDR PORT
LD C,A ; PUT IN C, B IS STILL ZERO
IN A,(C) ; READ PORT
LD B,A ; SAVE BYTE READ
LD L,(IY+6) ; SET HL TO
LD H,(IY+7) ; ... START OF BUFFER STRUCT
LD A,(HL) ; GET COUNT
CP ASCI_BUFSZ ; COMPARE TO BUFFER SIZE
JR Z,ASCI_INTRCV4 ; BAIL OUT IF BUFFER FULL, RCV BYTE DISCARDED
INC A ; INCREMENT THE COUNT
LD (HL),A ; AND SAVE IT
CP ASCI_BUFSZ / 2 ; BUFFER GETTING FULL?
JR NZ,ASCI_INTRCV2 ; IF NOT, BYPASS CLEARING RTS
; CLEAR RTS
; THE SECONDARY ASCI PORT ON Z180 ACTUALLY HAS NO RTS LINE
; AND THE CNTLA BIT FOR THIS PORT CONTROLS THE FUNCTION OF THE
; MULTIPLEXED CKA1/~TEND0 LINE. BELOW, WE TEST REG C TO SEE IF
; IT IS AN ODD NUMBERED PORT. IF SO, WE MUST BE ON THE SECONDARY
; SERIAL PORT, SO WE NEED TO BYPASS MANIPULATING THE RTS BIT.
BIT 0,C ; IS C ADDRESSING AN ODD NUMBERED PORT?
JR NZ,ASCI_INTRCV2 ; IF SO, THIS IS SEC SERIAL, NO RTS!
PUSH BC ; PRESERVE READ CHAR
LD C,(IY+3) ; CNTLA PORT ADR
LD B,0 ; MSB FOR 16 BIT I/O
IN A,(C) ; GET CUR CNTLA VAL
OR ASCI_RTS ; DEASSERT ~RTS
OUT (C),A ; DO IT
POP BC ; RESTORE READ CHAR
ASCI_INTRCV2:
INC HL ; HL NOW HAS ADR OF HEAD PTR
PUSH HL ; SAVE ADR OF HEAD PTR
LD A,(HL) ; DEREFERENCE HL
INC HL
LD H,(HL)
LD L,A ; HL IS NOW ACTUAL HEAD PTR
LD (HL),B ; SAVE CHARACTER RECEIVED IN BUFFER AT HEAD
INC HL ; BUMP HEAD POINTER
POP DE ; RECOVER ADR OF HEAD PTR
LD A,L ; GET LOW BYTE OF HEAD PTR
SUB ASCI_BUFSZ+4 ; SUBTRACT SIZE OF BUFFER AND POINTER
CP E ; IF EQUAL TO START, HEAD PTR IS PAST BUF END
JR NZ,ASCI_INTRCV3 ; IF NOT, BYPASS
LD H,D ; SET HL TO
LD L,E ; ... HEAD PTR ADR
INC HL ; BUMP PAST HEAD PTR
INC HL
INC HL
INC HL ; ... SO HL NOW HAS ADR OF ACTUAL BUFFER START
ASCI_INTRCV3:
EX DE,HL ; DE := HEAD PTR VAL, HL := ADR OF HEAD PTR
LD (HL),E ; SAVE UPDATED HEAD PTR
INC HL
LD (HL),D
; CHECK FOR MORE PENDING...
CALL ASCI_ICHK ; CHECK FOR CHAR PENDING
JR NZ,ASCI_INTRCV1 ; IF SO, LOOP TO HANDLE
ASCI_INTRCV4:
OR $FF ; NZ SET TO INDICATE INT HANDLED
RET ; AND RETURN
;
#ENDIF
;
; DRIVER FUNCTION TABLE
;
ASCI_FNTBL:
.DW ASCI_IN
.DW ASCI_OUT
.DW ASCI_IST
.DW ASCI_OST
.DW ASCI_INITDEV
.DW ASCI_QUERY
.DW ASCI_DEVICE
#IF (($ - ASCI_FNTBL) != (CIO_FNCNT * 2))
.ECHO "*** INVALID ASCI FUNCTION TABLE ***\n"
#ENDIF
;
#IF (INTMODE == 0)
;
ASCI_IN:
CALL ASCI_IST ; CHECK FOR CHAR READY
JR Z,ASCI_IN ; IF NOT, LOOP
LD A,(IY+3) ; BASE REG
ADD A,8 ; Z180 RDR REG OFFSET
LD C,A ; PUT IN C FOR I/O
LD B,0 ; MSB FOR 16 BIT I/O
IN E,(C) ; GET CHAR
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
#ELSE
;
ASCI_IN:
CALL ASCI_IST ; SEE IF CHAR AVAILABLE
JR Z,ASCI_IN ; LOOP UNTIL SO
HB_DI ; AVOID COLLISION WITH INT HANDLER
LD L,(IY+6) ; SET HL TO
LD H,(IY+7) ; ... START OF BUFFER STRUCT
LD A,(HL) ; GET COUNT
DEC A ; DECREMENT COUNT
LD (HL),A ; SAVE UPDATED COUNT
CP ASCI_BUFSZ / 4 ; BUFFER LOW THRESHOLD
JR NZ,ASCI_IN1 ; IF NOT, BYPASS SETTING RTS
; SET RTS
; THE SECONDARY ASCI PORT ON Z180 ACTUALLY HAS NO RTS LINE
; AND THE CNTLA BIT FOR THIS PORT CONTROLS THE FUNCTION OF THE
; MULTIPLEXED CKA1/~TEND0 LINE. BELOW, WE TEST REG C TO SEE IF
; IT IS AN ODD NUMBERED PORT. IF SO, WE MUST BE ON THE SECONDARY
; SERIAL PORT, SO WE NEED TO BYPASS MANIPULATING THE RTS BIT.
LD C,(IY+3) ; CNTLA PORT ADR
BIT 0,C ; IS C ADDRESSING AN ODD NUMBERED PORT?
JR NZ,ASCI_IN1 ; IF SO, THIS IS SEC SERIAL, NO RTS!
LD B,0 ; MSB FOR 16 BIT I/O
IN A,(C) ; GET CUR CNTLA VAL
AND ~ASCI_RTS ; ASSERT ~RTS
OUT (C),A ; DO IT
ASCI_IN1:
INC HL ; HL := ADR OF TAIL PTR
INC HL ; "
INC HL ; "
PUSH HL ; SAVE ADR OF TAIL PTR
LD A,(HL) ; DEREFERENCE HL
INC HL
LD H,(HL)
LD L,A ; HL IS NOW ACTUAL TAIL PTR
LD C,(HL) ; C := CHAR TO BE RETURNED
INC HL ; BUMP TAIL PTR
POP DE ; RECOVER ADR OF TAIL PTR
LD A,L ; GET LOW BYTE OF TAIL PTR
SUB ASCI_BUFSZ+2 ; SUBTRACT SIZE OF BUFFER AND POINTER
CP E ; IF EQUAL TO START, TAIL PTR IS PAST BUF END
JR NZ,ASCI_IN2 ; IF NOT, BYPASS
LD H,D ; SET HL TO
LD L,E ; ... TAIL PTR ADR
INC HL ; BUMP PAST TAIL PTR
INC HL ; ... SO HL NOW HAS ADR OF ACTUAL BUFFER START
ASCI_IN2:
EX DE,HL ; DE := TAIL PTR VAL, HL := ADR OF TAIL PTR
LD (HL),E ; SAVE UPDATED TAIL PTR
INC HL ; "
LD (HL),D ; "
LD E,C ; MOVE CHAR TO RETURN TO E
HB_EI ; INTERRUPTS OK AGAIN
XOR A ; SIGNAL SUCCESS
RET ; AND DONE
;
#ENDIF
;
;
;
ASCI_OUT:
CALL ASCI_OST ; CHECK IF OUTPUT REGISTER READY
JR Z,ASCI_OUT ; LOOP UNTIL SO
LD A,(IY+3) ; GET ASCI BASE REG
ADD A,6 ; Z180 TDR REG OFFSET
LD C,A ; PUT IN C FOR I/O
LD B,0 ; MSB FOR 16 BIT I/O
OUT (C),E ; WRITE CHAR
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
;
;
#IF (INTMODE == 0)
;
ASCI_IST:
CALL ASCI_ICHK ; ASCI INPUT CHECK
JP Z,CIO_IDLE ; IF NOT READY, RETURN VIA IDLE PROCESSING
RET ; NORMAL RETURN
;
#ELSE
;
ASCI_IST:
LD L,(IY+6) ; GET ADDRESS
LD H,(IY+7) ; ... OF RECEIVE BUFFER
LD A,(HL) ; BUFFER UTILIZATION COUNT
OR A ; SET FLAGS
JP Z,CIO_IDLE ; NOT READY, RETURN VIA IDLE PROCESSING
RET ; DONE
;
#ENDIF
;
;
;
ASCI_OST:
LD A,(IY+3) ; GET ASCI BASE REG
ADD A,4 ; Z180 STAT REG OFFSET
LD C,A ; PUT IN C FOR I/O
LD B,0 ; MSB FOR 16 BIT I/O
IN A,(C) ; READ STATUS
AND $02 ; CHECK BIT FOR OUTPUT READY
JP Z,CIO_IDLE ; IF NOT, DO IDLE PROCESSING AND RETURN
XOR A ; OTHERWISE SIGNAL
INC A ; ... BUFFER EMPTY, A = 1
RET ; DONE
;
; AT INITIALIZATION THE SETUP PARAMETER WORD IS TRANSLATED TO THE FORMAT
; REQUIRED BY THE ASCI AND STORED IN A PORT/REGISTER INITIALIZATION TABLE,
; WHICH IS THEN LOADED INTO THE ASCI.
;
; NOTE THAT THERE ARE TWO ENTRY POINTS. INITDEV WILL DISABLE/ENABLE INTS
; AND INITDEVX WILL NOT. THIS IS DONE SO THAT THE PREINIT ROUTINE ABOVE
; CAN AVOID ENABLING/DISABLING INTS.
;
ASCI_INITDEV:
HB_DI ; DISABLE INTS
CALL ASCI_INITDEVX ; DO THE WORK
HB_EI ; INTS BACK ON
RET ; DONE
;
ASCI_INITDEVX:
;
; THIS ENTRY POINT BYPASSES DISABLING/ENABLING INTS WHICH IS REQUIRED BY
; PREINIT ABOVE. PREINIT IS NOT ALLOWED TO ENABLE INTS!
;
; TEST FOR -1 WHICH MEANS USE CURRENT CONFIG (JUST REINIT)
LD A,D ; TEST DE FOR
AND E ; ... VALUE OF -1
INC A ; ... SO Z SET IF -1
JR NZ,ASCI_INITDEV1 ; IF DE == -1, REINIT CURRENT CONFIG
;
; LOAD EXISTING CONFIG TO REINIT
LD E,(IY+4) ; LOW BYTE
LD D,(IY+5) ; HIGH BYTE
;
ASCI_INITDEV1:
;
LD A,E ; GET CONFIG LSB
AND $E0 ; CHECK FOR DTR, XON, PARITY=MARK/SPACE
JR NZ,ASCI_INITFAIL ; IF ANY BIT SET, FAIL, NOT SUPPORTED
;
; DETERMINE APPROPRIATE CNTLB VALUE (BASED ON BAUDRATE & CPU SPEED)
LD A,D ; BYTE W/ ENCODED BAUD RATE
AND $1F ; ISOLATE BITS
LD L,A ; MOVE TO L
LD H,0 ; CLEAR MSB
PUSH DE ; SAVE CONFIG
CALL ASCI_CNTLB ; DERIVE CNTLB VALUE TO C
POP DE ; RESTORE CONFIG
JR NZ,ASCI_INITFAIL ; ABORT ON ERROR
;
; BUILD CNTLA VALUE IN REGISTER B
LD B,$64 ; START WITH DEFAULT CNTLA VALUE
;
; DATA BITS
LD A,E ; LOAD CONFIG BYTE
AND $03 ; ISOLATE DATA BITS
CP $03 ; 8 DATA BITS?
JR Z,ASCI_INITDEV2 ; IF SO, NO CHG, CONTINUE
RES 2,B ; RESET CNTLA BIT 2 FOR 7 DATA BITS
;
ASCI_INITDEV2:
; STOP BITS
BIT 2,E ; TEST STOP BITS CONFIG BIT
JR Z,ASCI_INITDEV3 ; IF CLEAR, NO CHG, CONTINUE
SET 0,B ; SET CNTLA BIT 0 FOR 2 STOP BITS
;
ASCI_INITDEV3:
; PARITY ENABLE
BIT 3,E ; TEST PARITY ENABLE CONFIG BIT
JR Z,ASCI_INITDEV4 ; NO PARITY, SKIP ALL PARITY CHGS
SET 1,B ; SET CNTLA BIT 1 FOR PARITY ENABLE
; PARITY EVEN/ODD
BIT 4,E ; TEST EVEN PARITY CONFIG BIT
JR NZ,ASCI_INITDEV4 ; EVEN PARITY, NO CHG, CONTINUE
SET 4,C ; SET CNTLB BIT 4 FOR ODD PARITY
;
ASCI_INITDEV4:
; SAVE CONFIG PERMANENTLY NOW
LD (IY+4),E ; SAVE LOW WORD
LD (IY+5),D ; SAVE HI WORD
JR ASCI_INITGO
;
ASCI_INITSAFE:
LD B,$64 ; CNTLA FAILSAFE VALUE
LD C,$20 ; CNTLB FAILSAFE VALUE
;
ASCI_INITGO:
; IMPLEMENT CONFIGURATION
LD H,B ; H := CNTLA VAL
LD L,C ; L := CNTLB VAL
LD B,0 ; MSB OF PORT MUST BE ZERO!
LD C,(IY+3) ; GET ASCI BASE REG (CNTLA)
OUT (C),H ; WRITE CNTLA VALUE
INC C ; BUMP TO
INC C ; ... CNTLB REG, B IS STILL 0
OUT (C),L ; WRITE CNTLB VALUE
INC C ; BUMP TO
INC C ; ... STAT REG, B IS STILL 0
#IF (INTMODE > 0)
LD A,$08 ; SET RIE BIT ON
#ELSE
XOR A ; CLEAR RIE/TIE
#ENDIF
OUT (C),A ; WRITE STAT REG
LD A,$0E ; BUMP TO
ADD A,C ; ... ASEXT REG
LD C,A ; PUT IN C FOR I/O, B IS STILL 0
LD A,$66 ; STATIC VALUE FOR ASEXT
OUT (C),A ; WRITE ASEXT REG
;
#IF (INTMODE > 0)
;
; RESET THE RECEIVE BUFFER
LD E,(IY+6)
LD D,(IY+7) ; DE := _CNT
XOR A ; A := 0
LD (DE),A ; _CNT = 0
INC DE ; DE := ADR OF _HD
PUSH DE ; SAVE IT
INC DE
INC DE
INC DE
INC DE ; DE := ADR OF _BUF
POP HL ; HL := ADR OF _HD
LD (HL),E
INC HL
LD (HL),D ; _HD := _BUF
INC HL
LD (HL),E
INC HL
LD (HL),D ; _TL := _BUF
;
#ENDIF
;
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
ASCI_INITFAIL:
OR $FF ; SIGNAL FAILURE
RET ; RETURN
;
;
;
ASCI_QUERY:
LD E,(IY+4) ; FIRST CONFIG BYTE TO E
LD D,(IY+5) ; SECOND CONFIG BYTE TO D
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
;
;
ASCI_DEVICE:
LD D,CIODEV_ASCI ; D := DEVICE TYPE
LD E,(IY) ; E := PHYSICAL UNIT
LD C,$00 ; C := DEVICE TYPE, 0x00 IS RS-232
XOR A ; SIGNAL SUCCESS
RET
;
; ASCI DETECTION ROUTINE
; ALWAYS PRESENT, JUST SAY SO.
;
ASCI_DETECT:
LD A,(IY+3) ; BASE PORT ADR
ADD A,$1A ; BUMP TO ASCI CONSTANT LOW
LD C,A ; PUT IN C
LD B,0 ; MSB FOR 16 BIT I/O
XOR A ; ZERO TO ACCUM
OUT (C),A ; WRITE TO REG
IN A,(C) ; READ IT BACK
INC A ; FF -> 0
LD A,ASCI_ASCI ; ASSUME ORIG ASCI, NO BRG
RET Z ; IF SO, RETURN
LD A,ASCI_ASCIB ; MUST BE NEWER ASCI W/ BRG
RET ; DONE
;
; DERIVE CNTLB VALUE BASED ON AN ENCODED BAUD RATE AND CURRENT CPU SPEED
; ENTRY: HL = ENCODED BAUD RATE
; EXIT: C = CNTLB VALUE, A=0/Z IFF SUCCESS
;
; DESIRED DIVISOR == CPUHZ / BAUD
; DUE TO ENCODING BAUD IS ALWAYS DIVISIBLE BY 75
; Z180 DIVISOR IS ALWAYS A FACTOR OF 160
;
; X := CPU_HZ / 160 / 75 ==> SIMPLIFIED ==> X := CPU_KHZ / 12
; X := X / (BAUD / 75)
; IF X % 3 == 0, THEN (PS := 1, X := X / 3) ELSE PS=0
; IF X % 4 == 0, THEN (DR := 1, X := X / 4) ELSE DR=0
; SS := LOG2(X)
;
ASCI_CNTLB:
LD DE,1 ; USE DECODE CONSTANT OF 1 TO GET BAUD RATE ALREADY DIVIDED BY 75
CALL DECODE ; DECODE THE BAUDATE INTO DE:HL, DE IS DISCARDED
RET NZ ; ABORT ON ERROR
PUSH HL ; HL HAS (BAUD / 75), SAVE IT
LD HL,(CB_CPUKHZ) ; GET CPU CLK IN KHZ
;
; DUE TO THE LIMITED DIVISORS POSSIBLE WITH CNTLB, YOU PRETTY MUCH
; NEED TO USE A CPU SPEED THAT IS A MULTIPLE OF 128KHZ. BELOW, WE
; ATTEMPT TO ROUND THE CPU SPEED DETECTED TO A MULTIPLE OF 128KHZ
; WITH ROUNDING. THIS JUST MAXIMIZES POSSIBILITY OF SUCCESS COMPUTING
; THE DIVISOR.
LD DE,$0040 ; HALF OF 128 IS 64
ADD HL,DE ; ADD FOR ROUNDING
LD A,L ; MOVE TO ACCUM
AND $80 ; STRIP LOW ORDER 7 BITS
LD L,A ; ... AND PUT IT BACK
;
LD DE,12 ; PREPARE TO DIVIDE BY 12
CALL DIV16 ; BC := (CPU_KHZ / 12), REM IN HL, ZF
POP DE ; RESTORE (BAUD / 75)
RET NZ ; ABORT IF REMAINDER
PUSH BC ; MOVE WORKING VALUE
POP HL ; ... BACK TO HL
CALL DIV16 ; BC := X / (BAUD / 75)
RET NZ ; ABORT IF REMAINDER
;
; DETERMINE PS BIT BY ATTEMPTING DIVIDE BY 3
PUSH BC ; SAVE WORKING VALUE ON STACK
PUSH BC ; MOVE WORKING VALUE
POP HL ; ... TO HL
LD DE,3 ; SETUP TO DIVIDE BY 3
CALL DIV16 ; BC := X / 3, REM IN HL, ZF
POP HL ; HL := PRIOR WORKING VALUE
LD E,0 ; INIT E := 0 AS WORKING CNTLB VALUE
JR NZ,ASCI_CNTLB1 ; DID NOT WORK, LEAVE PS==0, SKIP AHEAD
SET 5,E ; SET PS BIT
PUSH BC ; MOVE NEW WORKING
POP HL ; ... VALUE TO HL
;
ASCI_CNTLB1:
; DETERMINE DR BIT BY ATTEMPTING DIVIDE BY 4
LD A,L ; LOAD LSB OF WORKING VALUE
AND $03 ; ISOLATE LOW ORDER BITS
JR NZ,ASCI_CNTLB2 ; NOT DIVISIBLE BY 4, SKIP AHEAD
SET 3,E ; SET PS BIT
SRL H ; DIVIDE HL BY 4
RR L ; ...
SRL H ; ...
RR L ; ...
;
ASCI_CNTLB2:
; DETERMINE SS BITS BY RIGHT SHIFTING AND INCREMENTING
LD B,7 ; LOOP COUNTER, MAX VALUE OF SS IS 7
LD C,E ; MOVE WORKING CNTLB VALUE TO C
ASCI_CNTLB3:
BIT 0,L ; CAN WE SHIFT AGAIN?
JR NZ,ASCI_CNTLB4 ; NOPE, DONE
SRL H ; IMPLEMENT THE
RR L ; ... SHIFT OPERATION
INC C ; INCREMENT SS BITS
DJNZ ASCI_CNTLB3 ; LOOP IF MORE SHIFTING POSSIBLE
;
; AT THIS POINT HL MUST BE EQUAL TO 1 OR WE FAILED!
DEC HL ; IF HL == 1, SHOULD BECOME ZERO
LD A,H ; TEST HL
OR L ; ... FOR ZERO
RET NZ ; ABORT IF NOT ZERO
;
ASCI_CNTLB4:
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
; SPECIAL INPUT STATUS CHECK ROUTINE FOR ASCI. IF THE ASCI PORT DETECTS A LINE
; ERROR (PARITY, OVERRUN, ETC.) IT WILL STALL UNTIL THE ERROR IS EXPLICITY
; ACKNOWLEDGED. THIS ROUTINE HANDLES ALL OF THAT AND RETURNS WITH A=1 IF CHAR
; READY, ELSE A=0. ZF SET OR CLEARED.
;
ASCI_ICHK:
LD A,(IY+3) ; GET ASCI BASE REG
ADD A,4 ; Z180 STAT REG OFFSET
LD C,A ; PUT IN C FOR I/O
LD B,0 ; MSB FOR 16 BIT I/O
IN A,(C) ; READ STAT REG
PUSH AF ; SAVE STATUS
AND $70 ; PARITY, FRAMING, OR OVERRUN ERROR?
JR Z,ASCI_ICHK1 ; JUMP AHEAD IF NO ERRORS
;
; CLEAR ERROR(S) OR NOTHING FURTHER CAN BE RECEIVED!!!
LD C,(IY+3) ; GET ASCI BASE REG (CNTLA)
LD B,0 ; MSB FOR 16 BIT I/O
IN A,(C) ; READ CNTLA
RES 3,A ; CLEAR EFR (ERROR FLAG RESET)
OUT (C),A ; WRITE UPDATED CNTLA
;
ASCI_ICHK1:
POP AF ; RESTORE STATUS VALUE
AND $80 ; DATA READY?
JP Z,CIO_IDLE ; IF NOT, DO IDLE PROCESSING AND RETURN
XOR A ; SIGNAL CHAR WAITING
INC A ; ... BY SETTING A TO 1
RET ; DONE
;
;
;
ASCI_PRTCFG:
; ANNOUNCE PORT
CALL NEWLINE ; FORMATTING
PRTS("ASCI$") ; FORMATTING
LD A,(IY) ; DEVICE NUM
CALL PRTDECB ; PRINT DEVICE NUM
PRTS(": IO=0x$") ; FORMATTING
LD A,(IY+3) ; GET BASE PORT
CALL PRTHEXBYTE ; PRINT BASE PORT
; PRINT THE ASCI TYPE
CALL PC_SPACE ; FORMATTING
LD A,(IY+1) ; GET ASCI TYPE BYTE
RLCA ; MAKE IT A WORD OFFSET
LD HL,ASCI_TYPE_MAP ; POINT HL TO TYPE MAP TABLE
CALL ADDHLA ; HL := ENTRY
LD E,(HL) ; DEREFERENCE
INC HL ; ...
LD D,(HL) ; ... TO GET STRING POINTER
CALL WRITESTR ; PRINT IT
;
; ALL DONE IF NO ASCI WAS DETECTED
LD A,(IY+1) ; GET ASCI TYPE BYTE
OR A ; SET FLAGS
RET Z ; IF ZERO, NOT PRESENT
;
PRTS(" MODE=$") ; FORMATTING
LD E,(IY+4) ; LOAD CONFIG
LD D,(IY+5) ; ... WORD TO DE
CALL PS_PRTSC0 ; PRINT CONFIG
;
XOR A
RET
;
;
;
ASCI_TYPE_MAP:
.DW ASCI_STR_NONE
.DW ASCI_STR_ASCI
.DW ASCI_STR_ASCIB
ASCI_STR_NONE .DB "<NOT PRESENT>$"
ASCI_STR_ASCI .DB "ASCI$"
ASCI_STR_ASCIB .DB "ASCI W/BRG$"
;
; WORKING VARIABLES
;
ASCI_DEV .DB 0 ; DEVICE NUM USED DURING INIT
;
#IF (INTMODE == 0)
;
ASCI0_RCVBUF .EQU 0
ASCI1_RCVBUF .EQU 0
;
#ELSE
;
; RECEIVE BUFFERS
;
ASCI0_RCVBUF:
ASCI0_BUFCNT .DB 0 ; CHARACTERS IN RING BUFFER
ASCI0_HD .DW ASCI0_BUF ; BUFFER HEAD POINTER
ASCI0_TL .DW ASCI0_BUF ; BUFFER TAIL POINTER
ASCI0_BUF .FILL 32,0 ; RECEIVE RING BUFFER
ASCI0_BUFEND .EQU $ ; END OF BUFFER
ASCI0_BUFSZ .EQU $ - ASCI0_BUF ; SIZE OF RING BUFFER
;
ASCI1_RCVBUF:
ASCI1_BUFCNT .DB 0 ; CHARACTERS IN RING BUFFER
ASCI1_HD .DW ASCI1_BUF ; BUFFER HEAD POINTER
ASCI1_TL .DW ASCI1_BUF ; BUFFER TAIL POINTER
ASCI1_BUF .FILL 32,0 ; RECEIVE RING BUFFER
ASCI1_BUFEND .EQU $ ; END OF BUFFER
ASCI1_BUFSZ .EQU $ - ASCI1_BUF ; SIZE OF RING BUFFER
;
#ENDIF
;
; ASCI PORT TABLE
;
ASCI_CFG:
;
ASCI0_CFG:
; ASCI MODULE A CONFIG
.DB 0 ; DEVICE NUMBER (SET DURING INIT)
.DB 0 ; ASCI TYPE (SET DURING INIT)
.DB 0 ; MODULE ID
.DB ASCI0_BASE ; BASE PORT
.DW ASCI0CFG ; LINE CONFIGURATION
.DW ASCI0_RCVBUF ; POINTER TO RCV BUFFER STRUCT
;
ASCI_CFGSIZ .EQU $ - ASCI_CFG ; SIZE OF ONE CFG TABLE ENTRY
;
ASCI1_CFG:
; ASCI MODULE B CONFIG
.DB 0 ; DEVICE NUMBER (SET DURING INIT)
.DB 0 ; ASCI TYPE (SET DURING INIT)
.DB 1 ; MODULE ID
.DB ASCI1_BASE ; BASE PORT
.DW ASCI1CFG ; LINE CONFIGURATION
.DW ASCI1_RCVBUF ; POINTER TO RCV BUFFER STRUCT
;
ASCI_CFGCNT .EQU ($ - ASCI_CFG) / ASCI_CFGSIZ