You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1325 lines
33 KiB

;
;==================================================================================================
; MD DISK DRIVER (MEMORY DISK)
;==================================================================================================
;
; MD DEVICE CONFIGURATION
;
;
; DISK DEVICE TYPE ID MEDIA ID ATTRIBUTE
;--------------------------------------------------------------------------------------------------
; 0x00 MEMORY DISK 0x02 RAM DRIVE %00101000 HD STYLE, NON-REMOVABLE, TYPE-RAM
; 0x00 MEMORY DISK 0x01 ROM DRIVE %00100000 HD STYLE, NON-REMOVABLE, TYPE-ROM
; 0x00 MEMORY DISK 0x01 ROM DRIVE %00111000 HD STYLE, NON-REMOVABLE, TYPE-FLASH
;
MD_DEVCNT .EQU 2 ; NUMBER OF MD DEVICES SUPPORTED
MD_CFGSIZ .EQU 8 ; SIZE OF CFG TBL ENTRIES
;
MD_DEV .EQU 0 ; OFFSET OF DEVICE NUMBER (BYTE)
MD_STAT .EQU 1 ; OFFSET OF STATUS (BYTE)
MD_LBA .EQU 2 ; OFFSET OF LBA (DWORD)
MD_MID .EQU 6 ; OFFSET OF MEDIA ID (BYTE)
MD_ATTRIB .EQU 7 ; OFFSET OF ATTRIBUTE (BYTE)
;
MD_AROM .EQU %00100000 ; ROM ATTRIBUTE
MD_ARAM .EQU %00101000 ; RAM ATTRIBUTE
MD_AFSH .EQU %00111000 ; FLASH ATTRIBUTE
;
; DEVICE CONFIG TABLE (RAM DEVICE FIRST TO MAKE IT ALWAYS FIRST DRIVE)
;
MD_CFGTBL:
; DEVICE 1 (RAM)
.DB 1 ; DRIVER DEVICE NUMBER
.DB 0 ; DEVICE STATUS
.DW 0,0 ; CURRENT LBA
.DB MID_MDRAM ; DEVICE MEDIA ID
.DB MD_ARAM ; DEVICE ATTRIBUTE
; DEVICE 0 (ROM)
.DB 0 ; DEVICE NUMBER
.DB 0 ; DEVICE STATUS
.DW 0,0 ; CURRENT LBA
.DB MID_MDROM ; DEVICE MEDIA ID
.DB MD_AROM ; DEVICE ATTRIBUTE
;
#IF ($ - MD_CFGTBL) != (MD_DEVCNT * MD_CFGSIZ)
.ECHO "*** INVALID MD CONFIG TABLE ***\n"
#ENDIF
;
.DB $FF ; END MARKER
;
;
;
MD_INIT:
CALL FF_INIT ; PROBE FLASH CAPABILITY
CALL NEWLINE ; FORMATTING
PRTS("MD: UNITS=2 $")
PRTS("ROMDISK=$")
LD HL,ROMSIZE - 128
CALL PRTDEC
PRTS("KB RAMDISK=$")
LD HL,RAMSIZE - 256
CALL PRTDEC
PRTS("KB$")
;
; SETUP THE DIO TABLE ENTRIES
;
LD A,(FF_RW) ; IF FLASH
OR A ; FILESYSTEM
JR NZ,MD_IN1 ; CAPABLE,
LD A,MD_AFSH ; UPDATE ROM DIO
LD (MD_CFGTBL + MD_CFGSIZ + MD_ATTRIB),A
MD_IN1:
LD BC,MD_FNTBL
LD DE,MD_CFGTBL
PUSH BC
CALL DIO_ADDENT ; ADD FIRST ENTRY
POP BC
LD DE,MD_CFGTBL + MD_CFGSIZ
CALL DIO_ADDENT ; ADD SECOND ENTRY
XOR A ; INIT SUCCEEDED
RET ; RETURN
;
;
;
MD_FNTBL:
.DW MD_STATUS
.DW MD_RESET
.DW MD_SEEK
.DW MD_READ
.DW MD_WRITE
.DW MD_VERIFY
.DW MD_FORMAT
.DW MD_DEVICE
.DW MD_MEDIA
.DW MD_DEFMED
.DW MD_CAP
.DW MD_GEOM
#IF (($ - MD_FNTBL) != (DIO_FNCNT * 2))
.ECHO "*** INVALID MD FUNCTION TABLE ***\n"
#ENDIF
;
;
;
MD_VERIFY:
MD_FORMAT:
MD_DEFMED:
CALL SYSCHK ; INVALID SUB-FUNCTION
LD A,ERR_NOTIMPL
OR A
RET
;
;
;
MD_STATUS:
; XOR A ; ALWAYS OK
; RET
;
;
;
MD_RESET:
XOR A ; ALWAYS OK
RET
;
;
;
MD_CAP:
LD A,(IY+MD_DEV) ; GET DEVICE NUMBER
OR A ; SET FLAGS
JR Z,MD_CAP0 ; UNIT 0
DEC A ; TRY UNIT 1
JR Z,MD_CAP1 ; UNIT 1
CALL SYSCHK ; INVALID UNIT
LD A,ERR_NOUNIT
OR A
RET
MD_CAP0:
LD A,(HCB + HCB_ROMBANKS) ; POINT TO ROM BANK COUNT
LD B,4 ; SET # RESERVED ROM BANKS
JR MD_CAP2
MD_CAP1:
LD A,(HCB + HCB_RAMBANKS) ; POINT TO RAM BANK COUNT
LD B,8 ; SET # RESERVED RAM BANKS
MD_CAP2:
SUB B ; SUBTRACT OUT RESERVED BANKS
LD H,A ; H := # BANKS
LD E,64 ; # 512 BYTE BLOCKS / BANK
CALL MULT8 ; HL := TOTAL # 512 BYTE BLOCKS
LD DE,0 ; NEVER EXCEEDS 64K, ZERO HIGH WORD
LD BC,512 ; 512 BYTE SECTOR
XOR A
RET
;
;
;
MD_GEOM:
; RAM/ROM DISKS ALLOW CHS STYLE ACCESS BY EMULATING
; A DISK DEVICE WITH 1 HEAD AND 16 SECTORS / TRACK.
CALL MD_CAP ; HL := CAPACITY IN BLOCKS
PUSH BC ; SAVE SECTOR SIZE
LD D,1 | $80 ; HEADS / CYL := 1 BY DEFINITION, SET LBA CAPABILITY BIT
LD E,16 ; SECTORS / TRACK := 16 BY DEFINITION
LD B,4 ; PREPARE TO DIVIDE BY 16
MD_GEOM1:
SRL H ; SHIFT H
RR L ; SHIFT L
DJNZ MD_GEOM1 ; DO 4 BITS TO DIVIDE BY 16
POP BC ; RECOVER SECTOR SIZE
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
;
;
MD_DEVICE:
LD D,DIODEV_MD ; D := DEVICE TYPE
LD E,(IY+MD_DEV) ; GET DEVICE NUMBER
LD C,(IY+MD_ATTRIB) ; GET ATTRIBUTE
LD H,0 ; H := 0, DRIVER HAS NO MODES
LD L,0 ; L := 0, NO BASE I/O ADDRESS
XOR A ; SIGNAL SUCCESS
RET
;
;
;
MD_MEDIA:
LD E,(IY+MD_MID) ; GET MEDIA ID
LD D,0 ; D:0=0 MEANS NO MEDIA CHANGE
XOR A ; SIGNAL SUCCESS
RET
;
;
;
MD_SEEK:
BIT 7,D ; CHECK FOR LBA FLAG
CALL Z,HB_CHS2LBA ; CLEAR MEANS CHS, CONVERT TO LBA
RES 7,D ; CLEAR FLAG REGARDLESS (DOES NO HARM IF ALREADY LBA)
LD (IY+MD_LBA+0),L ; SAVE NEW LBA
LD (IY+MD_LBA+1),H ; ...
LD (IY+MD_LBA+2),E ; ...
LD (IY+MD_LBA+3),D ; ...
XOR A ; SIGNAL SUCCESS
RET ; AND RETURN
;
;
;
MD_READ:
CALL HB_DSKREAD ; HOOK HBIOS DISK READ SUPERVISOR
;
LD A,(IY+MD_ATTRIB) ; GET ADR OF SECTOR READ FUNC
LD BC,MD_RDSECF ;
CP MD_AFSH ; RAM / ROM = MD_RDSEC
JR Z,MD_RD1 ; FLASH = MD_RDSECF
LD BC,MD_RDSEC
MD_RD1:
LD (MD_RWFNADR),BC ; SAVE IT AS PENDING IO FUNC
JR MD_RW ; CONTINUE TO GENERIC R/W ROUTINE
;
;
;
MD_WRITE:
CALL HB_DSKWRITE ; HOOK HBIOS DISK WRITE SUPERVISOR
;
LD A,(IY+MD_ATTRIB) ; GET ADR OF SECTOR WRITE FUNC
LD BC,MD_WRSECF ;
CP MD_AFSH ; RAM / ROM = MD_WRSEC
JR Z,MD_WR1 ; FLASH = MD_WRSECF
LD BC,MD_WRSEC
MD_WR1:
LD (MD_RWFNADR),BC ; SAVE IT AS PENDING IO FUNC
LD A,(IY+MD_ATTRIB) ; IF THE DEVICES ATTRIBUTE
CP MD_AROM ; IS NOT ROM THEN WE CAN
JR NZ,MD_RW ; WRITE TO IT
LD E,0 ; UNIT IS READ ONLY, ZERO SECTORS WRITTEN
LD A,ERR_READONLY ; SIGNAL ERROR
OR A ; SET FLAGS
RET ; AND DONE
;
;
;
MD_RW:
LD (MD_DSKBUF),HL ; SAVE DISK BUFFER ADDRESS
LD A,E ; BLOCK COUNT TO A
OR A ; SET FLAGS
RET Z ; ZERO SECTOR I/O, RETURN W/ E=0 & A=0
LD B,A ; INIT SECTOR DOWNCOUNTER
LD C,0 ; INIT SECTOR READ/WRITE COUNT
MD_RW1:
PUSH BC ; SAVE COUNTERS
LD HL,(MD_RWFNADR) ; GET PENDING IO FUNCTION ADDRESS
CALL JPHL ; ... AND CALL IT
JR NZ,MD_RW2 ; IF ERROR, SKIP INCREMENT
; INCREMENT LBA
LD A,MD_LBA ; LBA OFFSET IN CFG ENTRY
CALL LDHLIYA ; HL := IY + A, REG A TRASHED
CALL INC32HL ; INCREMENT THE VALUE
; INCREMENT DMA
LD HL,MD_DSKBUF+1 ; POINT TO MSB OF BUFFER ADR
INC (HL) ; BUMP DMA BY
INC (HL) ; ... 512 BYTES
XOR A ; SIGNAL SUCCESS
MD_RW2:
POP BC ; RECOVER COUNTERS
JR NZ,MD_RW3 ; IF ERROR, BAIL OUT
INC C ; BUMP COUNT OF SECTORS READ
DJNZ MD_RW1 ; LOOP AS NEEDED
MD_RW3:
LD E,C ; SECTOR READ COUNT TO E
LD HL,(MD_DSKBUF) ; CURRENT DMA TO HL
OR A ; SET FLAGS BASED ON RETURN CODE
RET ; AND RETURN, A HAS RETURN CODE
;
; READ FLASH
;
MD_RDSECF:
CALL MD_IOSETUPF
CALL MD_RDSEC
PRTS("rf$");
RET
;
;
;
MD_IOSETUPF:
PUSH IY
LD L,(IY+MD_LBA+0) ; HL := LOW WORD OF LBA
LD H,(IY+MD_LBA+1)
INC H ; SKIP FIRST 128MB (256 SECTORS)
; LD DE,256
; ADD HL,DE
;
CALL PRTHEXWORDHL
;
LD A,L ; SAVE LBA 4K
AND %11111000 ; BLOCK WE ARE
LD C,A ; GOING TO
LD B,H ; ACCESS
;
LD D,0 ; CONVERT LBA
LD E,H ; TO ADDRESS
LD H,L ; MULTIPLY BY 512
LD L,D ; DE:HL = HLX512
SLA H
RL E
RL D
;
CALL PC_COLON
CALL PRTHEX32
CALL PC_SPACE
;
PUSH HL ; IS THE SECTOR
LD HL,MD_LBA4K ; WE WANT TO
LD A,C ; READ ALREADY
CP (HL) ; IN THE 4K
JR NZ,MD_SECR ; BLOCK WE HAVE
INC HL ; IN THE BUFFER
LD A,B
CP (HL)
JR Z,MD_SECM
;
MD_SECR:
POP HL ; DESIRED SECTOR
; IS NOT IN BUFFER
LD (MD_LBA4K),BC ; WE WILL READ IN
; A NEW 4K SECTOR.
; SAVE THE 4K LBA
; FOR FUTURE CHECKS
;
LD IX,FF_BUFFER ; SET DESTINATION ADDRESS
CALL FF_RINIT ; READ 4K SECTOR
;
LD DE,FF_BUFFER
CALL DUMP_BUFFER
PUSH HL
;
MD_SECM:POP HL
POP IY
RET
;
MD_LBA4K .DW $FFFF
;
;
; READ RAM / ROM
;
MD_RDSEC:
CALL MD_IOSETUP ; SETUP FOR MEMORY COPY
#IF (MDTRACE >= 2)
LD (MD_SRC),HL
LD (MD_DST),DE
LD (MD_LEN),BC
#ENDIF
PUSH BC
LD C,A ; SOURCE BANK
LD B,BID_BIOS ; DESTINATION BANK IS RAM BANK 1 (HBIOS)
#IF (MDTRACE >= 2)
LD (MD_SRCBNK),BC
CALL MD_PRT
#ENDIF
LD A,C ; GET SOURCE BANK
LD (HB_SRCBNK),A ; SET IT
LD A,B ; GET DESTINATION BANK
LD (HB_DSTBNK),A ; SET IT
POP BC
#IF (INTMODE == 1)
DI
#ENDIF
CALL HB_BNKCPY ; DO THE INTERBANK COPY
#IF (INTMODE == 1)
EI
#ENDIF
XOR A
RET
;
; WRITE FLASH
;
MD_WRSECF:
CALL MD_WRSEC
PRTS("wf$");
RET
;
; WRITE RAM
;
MD_WRSEC:
CALL MD_IOSETUP ; SETUP FOR MEMORY COPY
EX DE,HL ; SWAP SRC/DEST FOR WRITE
#IF (MDTRACE >= 2)
LD (MD_SRC),HL
LD (MD_DST),DE
LD (MD_LEN),BC
#ENDIF
PUSH BC
LD C,BID_BIOS ; SOURCE BANK IS RAM BANK 1 (HBIOS)
LD B,A ; DESTINATION BANK
#IF (MDTRACE >= 2)
LD (MD_SRCBNK),BC
CALL MD_PRT
#ENDIF
LD A,C ; GET SOURCE BANK
LD (HB_SRCBNK),A ; SET IT
LD A,B ; GET DESTINATION BANK
LD (HB_DSTBNK),A ; SET IT
POP BC
#IF (INTMODE == 1)
DI
#ENDIF
CALL HB_BNKCPY ; DO THE INTERBANK COPY
#IF (INTMODE == 1)
EI
#ENDIF
XOR A
RET
;
; SETUP FOR MEMORY COPY
; A=BANK SELECT
; BC=COPY SIZE
; DE=DESTINATION
; HL=SOURCE
;
; ASSUMES A "READ" OPERATION. HL AND DE CAN BE SWAPPED
; AFTERWARDS TO ACHIEVE A WRITE OPERATION
;
; ON INPUT, WE HAVE LBA ADDRESSING IN HSTLBAHI:HSTLBALO
; BUT WE NEVER HAVE MORE THAN $FFFF BLOCKS IN A RAM/ROM DISK,
; SO THE HIGH WORD (HSTLBAHI) IS IGNORED
;
; EACH RAM/ROM BANK IS 32K BY DEFINITION AND EACH SECTOR IS 512
; BYTES BY DEFINITION. SO, EACH RAM/ROM BANK CONTAINS 64 SECTORS
; (32,768 / 512 = 64). THEREFORE, YOU CAN THINK OF LBA AS
; 00000BBB:BBOOOOOO IS WHERE THE 'B' BITS REPRESENT THE BANK NUMBER
; AND THE 'O' BITS REPRESENT THE SECTOR NUMBER WITHIN THE BANK.
;
; TO EXTRACT THE BANK NUMBER, WE CAN LEFT SHIFT TWICE TO GIVE US:
; 000BBBBB:OOOOOOOO. FROM THIS WE CAN EXTRACT THE MSB
; TO USE AS THE BANK NUMBER. NOTE THAT THE "RAW" BANK NUMBER MUST THEN
; BE OFFSET TO THE START OF THE ROM/RAM BANKS.
; ALSO NOTE THAT THE HIGH BIT OF THE BANK NUMBER REPRESENTS "RAM" SO THIS
; BIT MUST ALSO BE SET ACCORDING TO THE UNIT BEING ADDRESSED.
;
; TO GET THE BYTE OFFSET, WE THEN RIGHT SHIFT THE LSB BY 1 TO GIVE US:
; 0OOOOOOO AND EXTRACT THE LSB TO REPRESENT THE MSB OF
; THE BYTE OFFSET. THE LSB OF THE BYTE OFFSET IS ALWAYS 0 SINCE WE ARE
; DEALING WITH 512 BYTE BOUNDARIES.
;
MD_IOSETUP:
LD L,(IY+MD_LBA+0) ; HL := LOW WORD OF LBA
LD H,(IY+MD_LBA+1) ; ...
; ALIGN BITS TO EXTRACT BANK NUMBER FROM H
SLA L ; LEFT SHIFT ONE BIT
RL H ; FULL WORD
SLA L ; LEFT SHIFT ONE BIT
RL H ; FULL WORD
LD C,H ; BANK NUMBER FROM H TO C
; GET BANK NUM TO A AND SET FLAG Z=ROM, NZ=RAM
LD A,(IY+MD_DEV) ; DEVICE TO A
AND $01 ; ISOLATE LOW BIT, SET ZF
LD A,C ; BANK VALUE INTO A
PUSH AF ; SAVE IT FOR NOW
; ADJUST L TO HAVE MSB OF OFFSET
SRL L ; ADJUST L TO BE MSB OF BYTE OFFSET
LD H,L ; MOVE MSB TO H WHERE IT BELONGS
LD L,0 ; AND ZERO L SO HL IS NOW BYTE OFFSET
; LOAD DESTINATION AND COUNT
LD DE,(MD_DSKBUF) ; DMA ADDRESS IS DESTINATION
LD BC,512 ; ALWAYS COPY ONE SECTOR
; FINISH UP
POP AF ; GET BANK AND FLAGS BACK
JR Z,MD_IOSETUP2 ; DO ROM DRIVE, ELSE FALL THRU FOR RAM DRIVE
;
MD_IOSETUP1: ; RAM
ADD A,BID_RAMD0
RET
;
MD_IOSETUP2: ; ROM
ADD A,BID_ROMD0
RET
;
;
;
#IF (MDTRACE >= 2)
MD_PRT:
PUSH AF
PUSH BC
PUSH DE
PUSH HL
CALL NEWLINE
LD DE,MDSTR_PREFIX
CALL WRITESTR
CALL PC_SPACE
LD DE,MDSTR_SRC
CALL WRITESTR
LD A,(MD_SRCBNK)
CALL PRTHEXBYTE
CALL PC_COLON
LD BC,(MD_SRC)
CALL PRTHEXWORD
CALL PC_SPACE
LD DE,MDSTR_DST
CALL WRITESTR
LD A,(MD_DSTBNK)
CALL PRTHEXBYTE
CALL PC_COLON
LD BC,(MD_DST)
CALL PRTHEXWORD
CALL PC_SPACE
LD DE,MDSTR_LEN
CALL WRITESTR
LD BC,(MD_LEN)
CALL PRTHEXWORD
POP HL
POP DE
POP BC
POP AF
RET
#ENDIF
;
;
;
;==================================================================================================
; FLASH DRIVER FOR FLASH & EEPROM PROGRAMMING
;
; 26 SEP 2020 - CHIP IDENTIFICATION IMPLEMENTED -- PHIL SUMMERS
; - CHIP ERASE IMPLEMENTED
; 23 OCT 2020 - SECTOR ERASE IMPLEMENTED
; 01 NOV 2020 - WRITE SECTOR IMPLEMENTED
; 04 DEC 2020 - READ SECTOR IMPLEMENTED
;==================================================================================================
;
; UPPER RAM BANK IS ALWAYS AVAILABLE REGARDLESS OF MEMORY BANK SELECTION.
; HBX_BNKSEL AND HB_CURBNK ARE ALWAYS AVAILABLE IN UPPER MEMORY.
;
; THE STACK IS IN UPPER MEMORY DURING BIOS INITIALIZATION BUT IS IN LOWER
; MEMORY DURING HBIOS CALLS.
;
; TO ACCESS THE FLASH CHIP FEATURES, CODE IS COPIED TO THE UPPER RAM BANK
; AND THE FLASH CHIP IS SWITCHED INTO THE LOWER BANK.
;
; INSPIRED BY WILL SOWERBUTTS FLASH4 UTILITY - https://github.com/willsowerbutts/flash4/
;
;==================================================================================================
;
FF_DBG: .EQU 0 ; DEBUG
;
FF_RW .DB 00h ; READ WRITE FLAG
FF_TGT .EQU 0BFB7H ; TARGET CHIP FOR R/W FILESYSTEM
;
;======================================================================
; BIOS FLASH INITIALIZATION
;
; IDENTIFY AND DISPLAY FLASH CHIPS IN SYSTEM.
; USES MEMORY SIZE DEFINED BY BUILD CONFIGURATION.
;======================================================================
;
;
FF_INIT:
CALL NEWLINE ; DISLAY NUMBER
PRTS("FF: UNITS=$") ; OF UNITS
LD A,+(ROMSIZE/512) ; CONFIGURED FOR.
CALL PRTDECB
;
LD B,A ; NUMBER OF DEVICES TO PROBE
LD C,$00 ; START ADDRESS IS 0000:0000 IN DE:HL
FF_PROBE:
LD D,$00 ; SET ADDRESS IN DE:HL
LD E,C ;
LD H,D ; WE INCREASE E BY $08
LD L,D ; ON EACH CYCLE THROUGH
;
PUSH BC
CALL PC_SPACE
LD A,+(ROMSIZE/512)+1
SUB B ; PRINT
CALL PRTDECB ; DEVICE
LD A,'=' ; NUMBER
CALL COUT
CALL FF_IINIT ; GET ID AT THIS ADDRESS
;
PUSH HL
PUSH DE
LD H,FF_TGT&$FF ; IF WE MATCH WITH
LD L,FF_TGT/$FF
CCF ; A NON 39SF040
SBC HL,DE ; CHIP SET THE
LD A,(FF_RW) ; R/W FLAG TO R/O
OR H
OR L
LD (FF_RW),A ; A NON ZERO VALUE
POP DE ; MEANS WE CAN'T
POP HL ; ENABLE FLASH WRITING
;
CALL FF_LAND ; LOOKUP AND DISPLAY
POP BC
;
LD A,C ; UPDATE ADDRESS
ADD A,$08 ; TO NEXT DEVICE
LD C,A
;
DJNZ FF_PROBE ; ALWAYS AT LEAST ONE DEVICE
;
LD A,(FF_RW)
OR A
JR NZ,FF_PR1
CALL PRTSTRD
.TEXT " FLASH FILESYSTEM ENABLED$"
FF_PR1:
;
#IF (FF_DBG==1)
CALL FF_TESTING
#ENDIF
;
XOR A ; INIT SUCCEEDED
RET
;
;======================================================================
; TEST CODE AREA
;======================================================================
;
FF_TESTING:
;
#IF (0)
LD DE,$0008 ; SET
LD HL,$0000 ; ADDRESS
CALL FF_EINIT ; CHIP ERASE
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
;
#IF (0)
LD DE,$000A ; SET
LD HL,$8000 ; ADDRESS
CALL FF_SINIT ; SECTOR ERASE
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
;
#IF (0)
LD DE,$000A ; SET DESTINATION
LD HL,$8000 ; ADDRESS
LD IX,FF_BUFFER ; SET SOURCE ADDRESS
CALL FF_WINIT ; WRITE SECTOR
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
;
#IF (1)
LD DE,$0000 ; SET SOURCE
LD HL,$7000 ; ADDRESS
LD IX,FF_BUFFER ; SET DESTINATION ADDRESS
CALL FF_RINIT ; READ SECTOR
CALL PRTHEXBYTE ; DISPLAY STATUS
LD DE,FF_BUFFER
CALL DUMP_BUFFER
#ENDIF
;
#IF (1)
LD HL,FF_BUFFER ; FILL BUFFER
LD (HL),'J'
LD DE,FF_BUFFER+1
LD BC,$1000-1
LDIR
#ENDIF
;
#IF (1)
LD DE,$0000 ; SET
LD HL,$7000 ; ADDRESS
CALL FF_SINIT ; SECTOR ERASE
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
#IF (1)
LD DE,$0000 ; SET DESTINATION
LD HL,$7000 ; ADDRESS
LD IX,FF_BUFFER ; SET SOURCE ADDRESS
CALL FF_WINIT ; WRITE SECTOR
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
;
#IF (1)
LD DE,$0000 ; SET SOURCE
LD HL,$7000 ; ADDRESS
LD IX,FF_BUFFER ; SET DESTINATION ADDRESS
CALL FF_RINIT ; READ SECTOR
CALL PRTHEXBYTE ; DISPLAY STATUS
LD DE,FF_BUFFER
CALL DUMP_BUFFER
#ENDIF
RET
;
;======================================================================
; LOOKUP AND DISPLAY CHIP
;
; ON ENTRY DE CONTAINS CHIP ID
; ON EXIT A CONTAINS STATUS 0=SUCCESS, NZ=NOT IDENTIFIED
;======================================================================
;
FF_LAND:
;
#IF (FF_DBG==1)
PRTS(" ID:$")
LD H,E
LD L,D
CALL PRTHEXWORDHL ; DISPLAY FLASH ID
CALL PC_SPACE
#ENDIF
;
LD HL,FF_TABLE ; SEARCH THROUGH THE FLASH
LD BC,FF_T_CNT ; TABLE TO FIND A MATCH
FF_NXT1:LD A,(HL)
CP D
JR NZ,FF_NXT0 ; FIRST BYTE DOES NOT MATCH
;
INC HL
LD A,(HL)
CP E
DEC HL
JR NZ,FF_NXT0 ; SECOND BYTE DOES NOT MATCH
;
INC HL
INC HL
JR FF_NXT2 ; MATCH SO EXIT
;
FF_NXT0:PUSH BC ; WE DIDN'T MATCH SO POINT
LD BC,FF_T_SZ ; TO THE NEXT TABLE ENTRY
ADD HL,BC
POP BC
;
LD A,B ; CHECK IF WE REACHED THE
OR C ; END OF THE TABLE
DEC BC
JR NZ,FF_NXT1 ; NOT AT END YET
;
LD HL,FF_UNKNOWN ; WE REACHED THE END WITHOUT A MATCH
;
FF_NXT2:CALL PRTSTR ; AFTER SEARCH DISPLAY THE RESULT
RET
;======================================================================
;COMMON FUNCTION CALL
;
;======================================================================
;
FF_FNCALL: ; USING HBX_BUF FOR CODE AREA
CALL FF_CALCA ; GET BANK AND SECTOR DATA IN IY
;
POP HL ; GET ROUTINE TO CALL
;
LD DE,HBX_BUF ; PUT EXECUTE / START ADDRESS IN DE
LD BC,HBX_BUFSIZ ; CODE SIZE REQUIRED
;
; PUSH DE ; SAVE THE EXECUTE ADDRESS
; COPY OUR RELOCATABLE
LDIR ; CODE TO THE BUFFER
; POP HL ; CALL OUR RELOCATABLE CODE
PUSH IY ; PUT BANK AND SECTOR
POP BC ; DATA IN BC
;
#IF (FF_DBG==1)
CALL PRTHEXWORD
#ENDIF
;
HB_DI
CALL HBX_BUF ; EXECUTE RELOCATED CODE
HB_EI
;
#IF (FF_DBG==1)
CALL PC_SPACE
CALL PRTHEXWORD
CALL PC_SPACE
EX DE,HL
CALL PRTHEXWORDHL
CALL PC_SPACE
EX DE,HL
#ENDIF
;
LD A,C ; RETURN WITH STATUS IN A
;
RET
;
;======================================================================
; IDENTIFY FLASH CHIP.
; CALCULATE BANK AND ADDRESS DATA FROM ENTRY ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH IDENTITY CODE
; RESTORE STACK
; RETURN WITH ID CODE.
;
; ON ENTRY DE:HL POINTS TO AN ADDRESS WITH THE ADDRESS RANGE OF THE
; CHIP TO BE IDENTIFIED.
; ON EXIT DE CONTAINS THE CHIP ID BYTES.
; NO STATUS IS RETURNED
;======================================================================
;
FF_IINIT:
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_IDENT ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; FLASH IDENTIFY
; SELECT THE APPROPRIATE BANK / ADDRESS
; ISSUE ID COMMAND
; READ IN ID WORD
; ISSUE ID EXIT COMMAND
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; A CONTAINS CURRENT BANK
; ON EXIT DE CONTAINS ID WORD
; NO STATUS IS RETURNED
;======================================================================
;
FF_IDENT: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD HL,$5555 ; LD A,$AA ; COMMAND
LD (HL),$AA ; LD ($5555),A ; SETUP
LD A,H ; LD A,$55
LD ($2AAA),A ; LD ($2AAA),A
LD (HL),$90 ; LD A,$90
; ; LD ($5555),A
LD DE,($0000) ; READ ID
;
LD A,$F0 ; ; EXIT
LD (HL),A ; LD ($5555),A ; COMMAND
;
POP AF ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
;
RET
;
FF_I_SZ .EQU $-FF_IDENT ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; FLASH CHIP ERASE.
; CALCULATE BANK AND ADDRESS DATA FROM ENTRY ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH ERASE CODE
; RESTORE STACK
; RETURN WITH STATUS CODE.
;
; ON ENTRY DE:HL POINTS TO AN ADDRESS IDENTIFYING THE CHIP
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_EINIT:
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_ERASE ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; ERASE FLASH CHIP.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; ISSUE ERASE COMMAND
; POLL TOGGLE BIT FOR COMPLETION STATUS.
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; A CONTAINS CURRENT BANK
; ON EXIT DE CONTAINS ID WORD
; C RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_ERASE: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD HL,$5555 ; LD A,$AA ; COMMAND
LD (HL),$AA ; LD ($5555),A ; SETUP
LD A,L ; LD A,$55
LD ($2AAA),A ; LD ($2AAA),A
LD (HL),$80 ; LD A,$80
LD (HL),$AA ; LD ($5555),A
LD A,L ; LD A,$AA
LD ($2AAA),A ; LD ($5555),A
LD (HL),$10 ; LD A,$55
; LD ($2AAA),A
; LD A,$10
; LD ($5555),A
;
LD A,(HL) ; DO TWO SUCCESSIVE READS FROM THE SAME FLASH ADDRESS.
FF_WT2: LD C,(HL) ; IF TOGGLE BIT (BIT 6)
XOR C ; IS THE SAME ON BOTH READS
BIT 6,A ; THEN ERASE IS COMPLETE SO EXIT.
JR Z,FF_WT1 ; Z TRUE IF BIT 6=0 I.E. "NO TOGGLE" WAS DETECTED.
;
LD A,C ; OPERATION IS NOT COMPLETE. CHECK TIMEOUT BIT (BIT 5).
BIT 5,C ; IF NO TIMEOUT YET THEN LOOP BACK AND KEEP CHECKING TOGGLE STATUS
JR Z,FF_WT2 ; IF BIT 5=0 THEN RETRY; NZ TRUE IF BIT 5=1
;
LD A,(HL) ; WE GOT A TIMEOUT. RECHECK TOGGLE BIT IN CASE WE DID COMPLETE
XOR (HL) ; THE OPERATION. DO TWO SUCCESSIVE READS. ARE THEY THE SAME?
BIT 6,A ; IF THEY ARE THEN OPERATION WAS COMPLETED
JR Z,FF_WT1 ; OTHERWISE ERASE OPERATION FAILED OR TIMED OUT.
;
LD (HL),$F0 ; WRITE DEVICE RESET
LD C,$FF ; SET FAIL STATUS
JR FF_WT3
;
FF_WT1: LD C,0 ; SET SUCCESS STATUS
FF_WT3: POP AF
; LD A,B ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
RET
;
FF_E_SZ .EQU $-FF_ERASE ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; CALCULATE BANK AND ADDRESS DATA FROM MEMORY ADDRESS
;
; ON ENTRY DE:HL CONTAINS 32 BIT MEMORY ADDRESS.
; ON EXIT I,B CONTAINS BANK SELECT BYTE
; Y,C CONTAINS HIGH BYTE OF SECTOR ADDRESS
; A CONTAINS CURRENT BANK HB_CURBNK
;
; DDDDDDDDEEEEEEEE HHHHHHHHLLLLLLLL
; 3322222222221111 1111110000000000
; 1098765432109876 5432109876543210
; XXXXXXXXXXXXSSSS SSSSXXXXXXXXXXXX < S = SECTOR
; XXXXXXXXXXXXBBBB BXXXXXXXXXXXXXXX < B = BANK
;======================================================================
;
FF_CALCA:
;
#IF (FF_DBG==1)
CALL PC_SPACE ; DISPLAY SECTOR
CALL PRTHEX32 ; SECTOR ADDRESS
CALL PC_SPACE ; IN DE:HL
#ENDIF
;
LD A,E ; BOTTOM PORTION OF SECTOR
AND $0F ; ADDRESS THAT GETS WRITTEN
RLC H ; WITH ERASE COMMAND BYTE
RLA ; A15 GETS DROPPED OFF AND
LD B,A ; ADDED TO BANK SELECT
;
LD A,H ; TOP SECTION OF SECTOR
RRA ; ADDRESS THAT GETS WRITTEN
AND $70 ; TO BANK SELECT PORT
LD C,A
;
PUSH BC
POP IY
;
#IF (FF_DBG==1)
CALL PRTHEXWORD ; DISPLAY BANK AND
CALL PC_SPACE ; SECTOR RESULT
#ENDIF
;
LD A,(HB_CURBNK) ; WE ARE STARTING IN HB_CURBNK
;
RET
;
;======================================================================
; ERASE FLASH SECTOR
;
; ON ENTRY DE:HL CONTAINS 32 BIT MEMORY ADDRESS.
; CALCULATE BANK AND ADDRESS DATA FROM ENTRY ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH ERASE CODE
; RESTORE STACK
; RETURN WITH STATUS CODE.
;
; ON ENTRY DE:HL POINTS TO AN ADDRESS IDENTIFYING THE CHIP
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_SINIT:
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_SERASE ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; ERASE FLASH SECTOR.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; ISSUE ERASE SECTOR COMMAND
; POLL TOGGLE BIT FOR COMPLETION STATUS.
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; A CONTAINS CURRENT BANK
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_SERASE: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD HL,$5555 ; LD A,$AA ; COMMAND
LD A,L ; LD ($5555),A ; SETUP
LD (HL),$AA ; LD A,$55
LD ($2AAA),A ; LD ($2AAA),A
LD (HL),$80 ; LD A,$80
LD (HL),$AA ; LD ($5555),A
LD ($2AAA),A ; LD A,$AA
; LD ($5555),A
; LD A,$55
; LD ($2AAA),A
LD H,C ; SECTOR
LD L,$00 ; ADDRESS
;
LD A,$30 ; SECTOR ERASE
LD (HL),A ; COMMAND
;
; LD DE,$0000 ; DEBUG COUNT
;
LD A,(HL) ; DO TWO SUCCESSIVE READS
FF_WT4: LD C,(HL) ; FROM THE SAME FLASH ADDRESS.
XOR C ; IF THE SAME ON BOTH READS
BIT 6,A ; THEN ERASE IS COMPLETE SO EXIT.
; INC DE ;
JR Z,FF_WT5 ; BIT 6 = 0 IF SAME ON SUCCESSIVE READS = COMPLETE
; BIT 6 = 1 IF DIFF ON SUCCESSIVE READS = INCOMPLETE
;
LD A,C ; OPERATION IS NOT COMPLETE. CHECK TIMEOUT BIT (BIT 5).
BIT 5,C ; IF NO TIMEOUT YET THEN LOOP BACK AND KEEP CHECKING TOGGLE STATUS
JR Z,FF_WT4 ; IF BIT 5=0 THEN RETRY; NZ TRUE IF BIT 5=1
;
LD A,(HL) ; WE GOT A TIMOUT. RECHECK TOGGLE BIT IN CASE WE DID COMPLETE
XOR (HL) ; THE OPERATION. DO TWO SUCCESSIVE READS. ARE THEY THE SAME?
BIT 6,A ; IF THEY ARE THEN OPERATION WAS COMPLETED
JR Z,FF_WT5 ; OTHERWISE ERASE OPERATION FAILED OR TIMED OUT.
;
LD (HL),$F0 ; WRITE DEVICE RESET
LD C,$FF ; SET FAIL STATUS
JR FF_WT6
;
FF_WT5: LD C,0 ; SET SUCCESS STATUS
FF_WT6: POP AF ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
;
RET
;
FF_S_SZ .EQU $-FF_SERASE ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; READ FLASH SECTOR OF 4096 BYTES
;
; SET ADDRESS TO START OF SECTOR
; CALCULATE BANK AND ADDRESS DATA FROM SECTOR START ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH READ SECTOR CODE
; RESTORE STACK
;
; ON ENTRY DE:HL POINTS TO A 32 BIT MEMORY ADDRESS.
; IX POINTS TO WHERE TO SAVE DATA
;======================================================================
;
FF_RINIT:
LD L,0 ; CHANGE ADDRESS
LD A,H ; TO SECTOR BOUNDARY
AND $F0 ; BY MASKING OFF
LD H,A ; LOWER 12 BITS
;
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_SREAD ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
RET
;======================================================================
; FLASH READ SECTOR.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; READ SECTOR OF 4096 BYTES, BYTE AT A TIME
; SELECT SOURCE BANK, READ DATA,
; SELECT DESTINATION BANK, WRITE DATA
; DESTINATION BANK IS ALWAYS CURRENT BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; IX POINTS TO DATA TO BE WRITTEN
; A CONTAINS CURRENT BANK
; ON EXIT NO STATUS RETURNED
;======================================================================
;
FF_SREAD: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
LD H,C ; SECTOR
LD L,$00 ; ADDRESS
LD D,L ; INITIALIZE
LD E,L ; BYTE COUNT
;
LD (FF_RST),SP ; SAVE STACK
LD SP,HBX_BUF + (FF_RD1-FF_SREAD) ; SETUP TEMP STACK
;
PUSH AF ; SAVE CURRENT BANK
;
FF_RD1:
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO READ
LD C,(HL) ; READ BYTE
;
POP AF
PUSH AF ; SELECT BANK
CALL HBX_BNKSEL ; TO WRITE
LD (IX+0),C ; WRITE BYTE
;
INC HL ; NEXT SOURCE LOCATION
INC IX ; NEXT DESTINATION LOCATION
;
INC DE ; CONTINUE READING UNTIL
BIT 4,D ; WE HAVE DONE ONE SECTOR
JR Z,FF_RD1
POP AF ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
; LD C,D ; RETURN STATUS
LD SP,(FF_RST) ; RESTORE STACK
;
RET
FF_RST .DW 0 ; SAVE STACK
;
FF_R_SZ .EQU $-FF_SREAD ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; WRITE FLASH SECTOR OF 4096 BYTES
;
; SET ADDRESS TO START OF SECTOR
; CALCULATE BANK AND ADDRESS DATA FROM SECTOR START ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH WRITE SECTOR CODE
; RESTORE STACK
;
; ON ENTRY DE:HL POINTS TO A 32 BIT MEMORY ADDRESS.
; IX POINTS TO DATA TO BE WRITTEN
;======================================================================
;
FF_WINIT:
LD L,0 ; CHANGE ADDRESS
LD A,H ; TO SECTOR BOUNDARY
AND $F0 ; BY MASKING OFF
LD H,A ; LOWER 12 BITS
;
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_SWRITE ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; FLASH WRITE SECTOR.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; WRITE 1 SECTOR OF 4096 BYTES, BYTE AT A TIME
; ISSUE WRITE BYTE COMMAND AND WRITE THE DATA BYTE
; POLL TOGGLE BIT FOR COMPLETION STATUS.
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; IX POINTS TO DATA TO BE WRITTEN
; A CONTAINS CURRENT BANK
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_SWRITE: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
;
LD H,C ; SECTOR
LD L,$00 ; ADDRESS
LD D,L ; INITIALIZE
LD E,L ; BYTE COUNT
;
FF_WR1:
POP AF ; SELECT BANK
PUSH AF ; TO READ
CALL HBX_BNKSEL
;
LD C,(IX+0) ; READ IN BYTE
;
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD A,$AA ; COMMAND
LD ($5555),A ; SETUP
LD A,$55
LD ($2AAA),A
;
LD A,$A0 ; WRITE
LD ($5555),A ; COMMAND
;
LD (HL),C ; WRITE OUT BYTE
;
; ; DO TWO SUCCESSIVE READS
LD A,(HL) ; FROM THE SAME FLASH ADDRESS.
FF_WT7: LD C,(HL) ; IF TOGGLE BIT (BIT 6)
XOR C ; IS THE SAME ON BOTH READS
BIT 6,A ; THEN ERASE IS COMPLETE SO EXIT.
JR NZ,FF_WT7 ; Z TRUE IF BIT 6=0 I.E. "NO TOGGLE" WAS DETECTED.
;
INC HL ; NEXT DESTINATION LOCATION
INC IX ; NEXT SOURCE LOCATION
;
INC DE ; CONTINUE WRITING UNTIL
BIT 4,D ; WE HAVE DONE ONE SECTOR
JR Z,FF_WR1
;
POP AF ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
;
RET
;
FF_W_SZ .EQU $-FF_SWRITE ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
;
; FLASH STYLE
;
;======================================================================
;
ST_NORMAL .EQU 0
ST_ERASE_CHIP .EQU 1 ; SECTOR BASED ERASE NOT SUPPORTED
ST_PROGRAM_SECT .EQU 2
;
;======================================================================
;
; FLASH CHIP MACRO
;
;======================================================================
;
#DEFINE FF_CHIP(FFROMID,FFROMNM,FFROMSS,FFROMSC,FFROMMD)\
#DEFCONT ; \
#DEFCONT .DW FFROMID \
#DEFCONT .DB FFROMNM \
#DEFCONT .DW FFROMSS \
#DEFCONT .DW FFROMSC \
#DEFCONT .DB FFROMMD \
#DEFCONT ;
;
;======================================================================
;
; FLASH CHIP LIST
;
;======================================================================
;
FF_TABLE:
FF_CHIP(00120H,"29F010$ ",128,8,ST_NORMAL)
FF_CHIP(001A4H,"29F040$ ",512,8,ST_NORMAL)
FF_CHIP(01F04H,"AT49F001NT$",1024,1,ST_ERASE_CHIP)
FF_CHIP(01F05H,"AT49F001N$ ",1024,1,ST_ERASE_CHIP)
FF_CHIP(01F07H,"AT49F002N$ ",2048,1,ST_ERASE_CHIP)
FF_CHIP(01F08H,"AT49F002NT$",2048,1,ST_ERASE_CHIP)
FF_CHIP(01F13H,"AT49F040$ ",4096,1,ST_ERASE_CHIP)
FF_CHIP(01F5DH,"AT29C512$ ",1,512,ST_PROGRAM_SECT)
FF_CHIP(01FA4H,"AT29C040$ ",2,2048,ST_PROGRAM_SECT)
FF_CHIP(01FD5H,"AT29C010$ ",1,1024,ST_PROGRAM_SECT)
FF_CHIP(01FDAH,"AT29C020$ ",2,1024,ST_PROGRAM_SECT)
FF_CHIP(02020H,"M29F010$ ",128,8,ST_PROGRAM_SECT)
FF_CHIP(020E2H,"M29F040$ ",512,8,ST_NORMAL)
FF_CHIP(0BFB5H,"39F010$ ",32,32,ST_NORMAL)
FF_CHIP(0BFB6H,"39F020$ ",32,64,ST_NORMAL)
FF_CHIP(0BFB7H,"39F040$ ",32,128,ST_NORMAL)
FF_CHIP(0C2A4H,"MX29F040$ ",512,8,ST_NORMAL)
;
FF_T_CNT .EQU 17
FF_T_SZ .EQU ($-FF_TABLE) / FF_T_CNT
FF_UNKNOWN .DB "UNKNOWN$"
FF_STACK: .DW 0
;
;======================================================================
;
; 4K FLASH BUFFER
;
;======================================================================
;
FF_BUFFER .FILL 4096,$FF
;======================================================================
;
; RELOCATABLE CODE SPACE REQUIREMENTS
;
;======================================================================
;
FF_CSIZE .EQU 0
;
#IF (FF_W_SZ>FF_CSIZE)
FF_CSIZE .SET FF_W_SZ
#ENDIF
#IF (FF_S_SZ>FF_CSIZE)
FF_CSIZE .SET FF_S_SZ
#ENDIF
#IF (FF_E_SZ>FF_CSIZE)
FF_CSIZE .SET FF_E_SZ
#ENDIF
#IF (FF_I_SZ>FF_CSIZE)
FF_CSIZE .SET FF_I_SZ
#ENDIF
#IF (FF_R_SZ>FF_CSIZE)
FF_CSIZE .SET FF_R_SZ
#ENDIF
;
.ECHO "FF requires "
.ECHO FF_CSIZE
.ECHO " bytes high memory space.\n"
MD_RWFNADR .DW 0
;
MD_DSKBUF .DW 0
;
MD_SRCBNK .DB 0
MD_DSTBNK .DB 0
MD_SRC .DW 0
MD_DST .DW 0
MD_LEN .DW 0
;
MDSTR_PREFIX .TEXT "MD:$"
MDSTR_SRC .TEXT "SRC=$"
MDSTR_DST .TEXT "DEST=$"
MDSTR_LEN .TEXT "LEN=$"