Files
RomWBW/Source/HBIOS/sio.asm
Wayne Warthen 162348ea66 Implement SIOINTS Setting in SIO Driver
- SIOINTS allows disabling use of interrupts in the SIO driver when interrupts are enabled globally.  It will not allow you to enable SIO interrupts if interrupts are globally disabled (INTMODE 0).
2024-09-09 17:19:51 +10:00

1322 lines
34 KiB
NASM

;
;==================================================================================================
; SIO DRIVER (SERIAL PORT)
;==================================================================================================
;
; SETUP PARAMETER WORD:
; +-------+---+-------------------+ +---+---+-----------+---+-------+
; | |RTS| ENCODED BAUD RATE | |DTR|XON| PARITY |STP| 8/7/6 |
; +-------+---+---+---------------+ ----+---+-----------+---+-------+
; F E D C B A 9 8 7 6 5 4 3 2 1 0
; -- MSB (D REGISTER) -- -- LSB (E REGISTER) --
;
; FOR THE ECB-ZILOG-PERIPHERALS BOARD, INFORMATION ON JUMPER SETTINGS
; AND BAUD RATES CAN BE FOUND HERE:
; https://www.retrobrewcomputers.org/doku.php?id=boards:ecb:zilog-peripherals:clock-divider
;
; SIO PORT A (COM1:) and SIO PORT B (COM2:) ARE MAPPED TO DEVICE UC1: AND UL1: IN CP/M.
;
SIO_BUFSZ .EQU 32 ; RECEIVE RING BUFFER SIZE
;
SIO_NONE .EQU 0
SIO_SIO .EQU 1
;
SIO_RTSON .EQU $EA
SIO_RTSOFF .EQU $E8
;
#IF ((SIOINTS) & (INTMODE > 0))
SIO_WR1VAL .EQU $18 ; WR1 VALUE FOR INT ON RECEIVED CHARS
#ELSE
SIO_WR1VAL .EQU $00 ; WR1 VALUE FOR NO INTS
#ENDIF
;
#IF ((SIOINTS) & (INTMODE >= 2))
;
SIO0_IVT .EQU IVT(INT_SIO0)
SIO1_IVT .EQU IVT(INT_SIO1)
SIO0_VEC .EQU VEC(INT_SIO0)
SIO1_VEC .EQU VEC(INT_SIO1)
;
#ENDIF
;
#IF (SIO0MODE == SIOMODE_STD)
SIO0A_CMD .EQU SIO0BASE + $01
SIO0A_DAT .EQU SIO0BASE + $00
SIO0B_CMD .EQU SIO0BASE + $03
SIO0B_DAT .EQU SIO0BASE + $02
#ENDIF
;
#IF (SIO0MODE == SIOMODE_RC)
SIO0A_CMD .EQU SIO0BASE + $00
SIO0A_DAT .EQU SIO0BASE + $01
SIO0B_CMD .EQU SIO0BASE + $02
SIO0B_DAT .EQU SIO0BASE + $03
#ENDIF
;
#IF (SIO0MODE == SIOMODE_SMB)
SIO0A_CMD .EQU SIO0BASE + $02
SIO0A_DAT .EQU SIO0BASE + $00
SIO0B_CMD .EQU SIO0BASE + $03
SIO0B_DAT .EQU SIO0BASE + $01
#ENDIF
;
#IF (SIO0MODE == SIOMODE_ZP)
SIO0A_CMD .EQU SIO0BASE + $06
SIO0A_DAT .EQU SIO0BASE + $04
SIO0B_CMD .EQU SIO0BASE + $07
SIO0B_DAT .EQU SIO0BASE + $05
#ENDIF
;
#IF (SIO0MODE == SIOMODE_Z80R)
SIO0A_CMD .EQU SIO0BASE + $03
SIO0A_DAT .EQU SIO0BASE + $01
SIO0B_CMD .EQU SIO0BASE + $02
SIO0B_DAT .EQU SIO0BASE + $00
#ENDIF
;
#IF (SIOCNT >= 2)
;
#IF (SIO1MODE == SIOMODE_STD)
SIO1A_CMD .EQU SIO1BASE + $01
SIO1A_DAT .EQU SIO1BASE + $00
SIO1B_CMD .EQU SIO1BASE + $03
SIO1B_DAT .EQU SIO1BASE + $02
#ENDIF
;
#IF (SIO1MODE == SIOMODE_RC)
SIO1A_CMD .EQU SIO1BASE + $00
SIO1A_DAT .EQU SIO1BASE + $01
SIO1B_CMD .EQU SIO1BASE + $02
SIO1B_DAT .EQU SIO1BASE + $03
#ENDIF
;
#IF (SIO1MODE == SIOMODE_SMB)
SIO1A_CMD .EQU SIO1BASE + $02
SIO1A_DAT .EQU SIO1BASE + $00
SIO1B_CMD .EQU SIO1BASE + $03
SIO1B_DAT .EQU SIO1BASE + $01
#ENDIF
;
#IF (SIO1MODE == SIOMODE_ZP)
SIO1A_CMD .EQU SIO1BASE + $06
SIO1A_DAT .EQU SIO1BASE + $04
SIO1B_CMD .EQU SIO1BASE + $07
SIO1B_DAT .EQU SIO1BASE + $05
#ENDIF
;
#IF (SIO1MODE == SIOMODE_Z80R)
SIO1A_CMD .EQU SIO1BASE + $03
SIO1A_DAT .EQU SIO1BASE + $01
SIO1B_CMD .EQU SIO1BASE + $02
SIO1B_DAT .EQU SIO1BASE + $00
#ENDIF
;
#ENDIF
;
SIO_PREINIT:
;
; SETUP THE DISPATCH TABLE ENTRIES
; NOTE: INTS WILL BE DISABLED WHEN PREINIT IS CALLED AND THEY MUST REMIAIN
; DISABLED.
;
CALL SIO_PROBE ; PROBE FOR CHIPS
;
LD B,SIO_CFGCNT ; LOOP CONTROL
XOR A ; ZERO TO ACCUM
LD (SIO_DEV),A ; CURRENT DEVICE NUMBER
LD IY,SIO_CFG ; POINT TO START OF CFG TABLE
SIO_PREINIT0:
PUSH BC ; SAVE LOOP CONTROL
CALL SIO_INITUNIT ; HAND OFF TO GENERIC INIT CODE
POP BC ; RESTORE LOOP CONTROL
;
LD A,(IY+1) ; GET THE SIO TYPE DETECTED
OR A ; SET FLAGS
JR Z,SIO_PREINIT2 ; SKIP IT IF NOTHING FOUND
;
PUSH BC ; SAVE LOOP CONTROL
PUSH IY ; CFG ENTRY ADDRESS
POP DE ; ... TO DE
LD BC,SIO_FNTBL ; BC := FUNCTION TABLE ADDRESS
CALL NZ,CIO_ADDENT ; ADD ENTRY IF SIO FOUND, BC:DE
POP BC ; RESTORE LOOP CONTROL
;
SIO_PREINIT2:
LD DE,SIO_CFGSIZ ; SIZE OF CFG ENTRY
ADD IY,DE ; BUMP IY TO NEXT ENTRY
DJNZ SIO_PREINIT0 ; LOOP UNTIL DONE
;
#IF ((SIOINTS) & (INTMODE > 0))
; SETUP INT VECTORS AS APPROPRIATE
LD A,(SIO_DEV) ; GET DEVICE COUNT
OR A ; SET FLAGS
JR Z,SIO_PREINIT3 ; IF ZERO, NO SIO DEVICES, ABORT
;
#IF (INTMODE == 1)
; ADD IM1 INT CALL LIST ENTRY
LD HL,SIO_INT ; GET INT VECTOR
CALL HB_ADDIM1 ; ADD TO IM1 CALL LIST
#ENDIF
;
#IF ((INTMODE == 2) | (INTMODE == 3))
; SETUP IM2/3 VECTORS
LD HL,SIO_INT0
LD (SIO0_IVT),HL ; IVT INDEX
;
#IF (SIOCNT >= 2)
LD HL,SIO_INT1
LD (SIO1_IVT),HL ; IVT INDEX
#ENDIF
;
#ENDIF
;
#ENDIF
;
SIO_PREINIT3:
XOR A ; SIGNAL SUCCESS
RET ; AND RETURN
;
; SIO INITIALIZATION ROUTINE
;
SIO_INITUNIT:
CALL SIO_DETECT ; DETERMINE SIO TYPE
LD (IY+1),A ; SAVE IN CONFIG TABLE
OR A ; SET FLAGS
RET Z ; ABORT IF NOTHING THERE
; UPDATE WORKING SIO DEVICE NUM
LD HL,SIO_DEV ; POINT TO CURRENT UART DEVICE NUM
LD A,(HL) ; PUT IN ACCUM
INC (HL) ; INCREMENT IT (FOR NEXT LOOP)
LD (IY),A ; UPDATE UNIT NUM
; IT IS EASY TO SPECIFY A SERIAL CONFIG THAT CANNOT BE IMPLEMENTED
; DUE TO THE CONSTRAINTS OF THE SIO. HERE WE FORCE A GENERIC
; FAILSAFE CONFIG ONTO THE CHANNEL. IF THE SUBSEQUENT "REAL"
; CONFIG FAILS, AT LEAST THE CHIP WILL BE ABLE TO SPIT DATA OUT
; AT A RATIONAL BAUD/DATA/PARITY/STOP CONFIG.
CALL SIO_INITSAFE
;
; SET DEFAULT CONFIG
LD DE,-1 ; LEAVE CONFIG ALONE
; CALL INITDEVX TO IMPLEMENT CONFIG, BUT NOTE THAT WE CALL
; THE INITDEVX ENTRY POINT THAT DOES NOT ENABLE/DISABLE INTS!
JP SIO_INITDEVX ; IMPLEMENT IT AND RETURN
;
;
;
SIO_INIT:
LD B,SIO_CFGCNT ; COUNT OF POSSIBLE SIO UNITS
LD IY,SIO_CFG ; POINT TO START OF CFG TABLE
SIO_INIT1:
PUSH BC ; SAVE LOOP CONTROL
LD A,(IY+1) ; GET SIO TYPE
OR A ; SET FLAGS
CALL NZ,SIO_PRTCFG ; PRINT IF NOT ZERO
POP BC ; RESTORE LOOP CONTROL
LD DE,SIO_CFGSIZ ; SIZE OF CFG ENTRY
ADD IY,DE ; BUMP IY TO NEXT ENTRY
DJNZ SIO_INIT1 ; LOOP TILL DONE
;
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
; RECEIVE INTERRUPT HANDLER
;
#IF ((SIOINTS) & (INTMODE > 0))
;
; IM1 ENTRY POINT
;
SIO_INT:
; CHECK/HANDLE FIRST CARD (SIO0) IF IT EXISTS
LD A,(SIO0A_CFG + 1) ; GET SIO TYPE FOR FIRST CHANNEL OF FIRST SIO
OR A ; SET FLAGS
CALL NZ,SIO_INT0 ; CALL IF CARD EXISTS
RET NZ ; DONE IF INT HANDLED
;
#IF (SIOCNT >= 2)
; CHECK/HANDLE SECOND CARD (SIO1) IF IT EXISTS
LD A,(SIO1A_CFG + 1) ; GET SIO TYPE FOR FIRST CHANNEL OF SECOND SIO
OR A ; SET FLAGS
CALL NZ,SIO_INT1 ; CALL IF CARD EXISTS
#ENDIF
;
RET ; DONE
;
; IM2 ENTRY POINTS
;
SIO_INT0:
; INTERRUPT HANDLER FOR FIRST SIO (SIO0)
LD IY,SIO0A_CFG ; POINT TO SIO0A CFG
CALL SIO_INTRCV ; TRY TO RECEIVE FROM IT
RET NZ ; DONE IF INT HANDLED
LD IY,SIO0B_CFG ; POINT TO SIO0B CFG
JR SIO_INTRCV ; TRY TO RECEIVE FROM IT AND RETURN
;
#IF (SIOCNT >= 2)
;
SIO_INT1:
; INTERRUPT HANDLER FOR SECOND SIO (SIO1)
LD IY,SIO1A_CFG ; POINT TO SIO1A CFG
CALL SIO_INTRCV ; TRY TO RECEIVE FROM IT
RET NZ ; DONE IF INT HANDLED
LD IY,SIO1B_CFG ; POINT TO SIO1B CFG
JR SIO_INTRCV ; TRY TO RECEIVE FROM IT AND RETURN
;
#ENDIF
;
; HANDLE INT FOR A SPECIFIC CHANNEL
; BASED ON UNIT CFG POINTED TO BY IY
;
SIO_INTRCV:
; CHECK TO SEE IF SOMETHING IS ACTUALLY THERE
LD C,(IY+3) ; CMD/STAT PORT TO C
XOR A ; A := 0
OUT (C),A ; ADDRESS RD0
IN A,(C) ; GET RD0
AND $01 ; ISOLATE RECEIVE READY BIT
RET Z ; NOTHING AVAILABLE ON CURRENT CHANNEL
;
SIO_INTRCV1:
; RECEIVE CHARACTER INTO BUFFER
LD C,(IY+4) ; DATA PORT TO C
IN A,(C) ; READ PORT
#IF (SIOBOOT != 0)
CP SIOBOOT ; REBOOT REQUEST?
JP Z,SYS_RESCOLD ; IF SO, DO IT, NO RETURN
#ENDIF
LD B,A ; SAVE BYTE READ
LD L,(IY+7) ; SET HL TO
LD H,(IY+8) ; ... START OF BUFFER STRUCT
LD A,(HL) ; GET COUNT
CP SIO_BUFSZ ; COMPARE TO BUFFER SIZE
JR Z,SIO_INTRCV4 ; BAIL OUT IF BUFFER FULL, RCV BYTE DISCARDED
INC A ; INCREMENT THE COUNT
LD (HL),A ; AND SAVE IT
CP SIO_BUFSZ / 2 ; BUFFER GETTING FULL?
JR NZ,SIO_INTRCV2 ; IF NOT, BYPASS CLEARING RTS
LD C,(IY+3) ; CMD/STAT PORT TO C
LD A,5 ; RTS IS IN WR5
OUT (C),A ; ADDRESS WR5
LD A,SIO_RTSOFF ; VALUE TO CLEAR RTS
OUT (C),A ; DO IT
SIO_INTRCV2:
INC HL ; HL NOW HAS ADR OF HEAD PTR
PUSH HL ; SAVE ADR OF HEAD PTR
LD A,(HL) ; DEREFERENCE HL
INC HL
LD H,(HL)
LD L,A ; HL IS NOW ACTUAL HEAD PTR
LD (HL),B ; SAVE CHARACTER RECEIVED IN BUFFER AT HEAD
INC HL ; BUMP HEAD POINTER
POP DE ; RECOVER ADR OF HEAD PTR
LD A,L ; GET LOW BYTE OF HEAD PTR
SUB SIO_BUFSZ+4 ; SUBTRACT SIZE OF BUFFER AND POINTER
CP E ; IF EQUAL TO START, HEAD PTR IS PAST BUF END
JR NZ,SIO_INTRCV3 ; IF NOT, BYPASS
LD H,D ; SET HL TO
LD L,E ; ... HEAD PTR ADR
INC HL ; BUMP PAST HEAD PTR
INC HL
INC HL
INC HL ; ... SO HL NOW HAS ADR OF ACTUAL BUFFER START
SIO_INTRCV3:
EX DE,HL ; DE := HEAD PTR VAL, HL := ADR OF HEAD PTR
LD (HL),E ; SAVE UPDATED HEAD PTR
INC HL
LD (HL),D
; CHECK FOR MORE PENDING...
LD C,(IY+3) ; CMD/STAT PORT TO C
XOR A ; A := 0
OUT (C),A ; ADDRESS RD0
IN A,(C) ; GET RD0
RRA ; READY BIT TO CF
JR C,SIO_INTRCV1 ; IF SET, DO SOME MORE
SIO_INTRCV4:
OR $FF ; NZ SET TO INDICATE INT HANDLED
RET ; AND RETURN
;
#ENDIF
;
; DRIVER FUNCTION TABLE
;
SIO_FNTBL:
.DW SIO_IN
.DW SIO_OUT
.DW SIO_IST
.DW SIO_OST
.DW SIO_INITDEV
.DW SIO_QUERY
.DW SIO_DEVICE
#IF (($ - SIO_FNTBL) != (CIO_FNCNT * 2))
.ECHO "*** INVALID SIO FUNCTION TABLE ***\n"
#ENDIF
;
;
;
#IF ((SIOINTS) & (INTMODE > 0))
;
SIO_IN:
CALL SIO_IST ; SEE IF CHAR AVAILABLE
JR Z,SIO_IN ; LOOP UNTIL SO
HB_DI ; AVOID COLLISION WITH INT HANDLER
LD L,(IY+7) ; SET HL TO
LD H,(IY+8) ; ... START OF BUFFER STRUCT
LD A,(HL) ; GET COUNT
DEC A ; DECREMENT COUNT
LD (HL),A ; SAVE UPDATED COUNT
CP SIO_BUFSZ / 4 ; BUFFER LOW THRESHOLD
JR NZ,SIO_IN1 ; IF NOT, BYPASS SETTING RTS
LD C,(IY+3) ; C IS CMD/STATUS PORT ADR
LD A,5 ; RTS IS IN WR5
OUT (C),A ; ADDRESS WR5
LD A,SIO_RTSON ; VALUE TO SET RTS
OUT (C),A ; DO IT
SIO_IN1:
INC HL
INC HL
INC HL ; HL NOW HAS ADR OF TAIL PTR
PUSH HL ; SAVE ADR OF TAIL PTR
LD A,(HL) ; DEREFERENCE HL
INC HL
LD H,(HL)
LD L,A ; HL IS NOW ACTUAL TAIL PTR
LD C,(HL) ; C := CHAR TO BE RETURNED
INC HL ; BUMP TAIL PTR
POP DE ; RECOVER ADR OF TAIL PTR
LD A,L ; GET LOW BYTE OF TAIL PTR
SUB SIO_BUFSZ+2 ; SUBTRACT SIZE OF BUFFER AND POINTER
CP E ; IF EQUAL TO START, TAIL PTR IS PAST BUF END
JR NZ,SIO_IN2 ; IF NOT, BYPASS
LD H,D ; SET HL TO
LD L,E ; ... TAIL PTR ADR
INC HL ; BUMP PAST TAIL PTR
INC HL ; ... SO HL NOW HAS ADR OF ACTUAL BUFFER START
SIO_IN2:
EX DE,HL ; DE := TAIL PTR VAL, HL := ADR OF TAIL PTR
LD (HL),E ; SAVE UPDATED TAIL PTR
INC HL
LD (HL),D
LD E,C ; MOVE CHAR TO RETURN TO E
HB_EI ; INTERRUPTS OK AGAIN
XOR A ; SIGNAL SUCCESS
RET ; AND DONE
;
#ELSE
;
SIO_IN:
CALL SIO_IST ; CHAR WAITING?
JR Z,SIO_IN ; LOOP IF NOT
LD C,(IY+4) ; DATA PORT
IN E,(C) ; GET CHAR
XOR A ; SIGNAL SUCCESS
RET
;
#ENDIF
;
;
;
SIO_OUT:
CALL SIO_OST ; READY FOR CHAR?
JR Z,SIO_OUT ; LOOP IF NOT
LD C,(IY+4) ; DATA PORT
OUT (C),E ; SEND CHAR FROM E
XOR A ; SIGNAL SUCCESS
RET
;
;
;
#IF ((SIOINTS) & (INTMODE > 0))
;
SIO_IST:
LD L,(IY+7) ; GET ADDRESS
LD H,(IY+8) ; ... OF RECEIVE BUFFER
LD A,(HL) ; BUFFER UTILIZATION COUNT
OR A ; SET FLAGS
JP Z,CIO_IDLE ; NOT READY, RETURN VIA IDLE PROCESSING
RET
;
#ELSE
;
SIO_IST:
LD C,(IY+3) ; CMD PORT
XOR A ; WR0
OUT (C),A ; DO IT
IN A,(C) ; GET STATUS
AND $01 ; ISOLATE BIT 0 (RX READY)
JP Z,CIO_IDLE ; NOT READY, RETURN VIA IDLE PROCESSING
XOR A ; ZERO ACCUM
INC A ; ASCCUM := 1 TO SIGNAL 1 CHAR WAITING
RET ; DONE
;
#ENDIF
;
;
;
SIO_OST:
LD C,(IY+3) ; CMD PORT
XOR A ; WR0
OUT (C),A ; DO IT
IN A,(C) ; GET STATUS
AND $04 ; ISOLATE BIT 2 (TX EMPTY)
JP Z,CIO_IDLE ; NOT READY, RETURN VIA IDLE PROCESSING
XOR A ; ZERO ACCUM
INC A ; ACCUM := 1 TO SIGNAL 1 BUFFER POSITION
RET ; DONE
;
; AT INITIALIZATION THE SETUP PARAMETER WORD IS TRANSLATED TO THE FORMAT
; REQUIRED BY THE SIO AND STORED IN A PORT/REGISTER INITIALIZATION TABLE,
; WHICH IS THEN LOADED INTO THE SIO.
;
; RTS, DTR AND XON SETTING IS NOT CURRENTLY SUPPORTED.
; MARK & SPACE PARITY AND 1.5 STOP BITS IS NOT SUPPORTED BY THE SIO.
; INITIALIZATION WILL NOT BE COMPLETED IF AN INVALID SETTING IS DETECTED.
;
; NOTE THAT THERE ARE TWO ENTRY POINTS. INITDEV WILL DISABLE/ENABLE INTS
; AND INITDEVX WILL NOT. THIS IS DONE SO THAT THE PREINIT ROUTINE ABOVE
; CAN AVOID ENABLING/DISABLING INTS.
;
SIO_INITDEV:
HB_DI ; DISABLE INTS
CALL SIO_INITDEVX ; DO THE WORK
HB_EI ; INTS BACK ON
RET ; DONE
;
SIO_INITDEVX:
;
; THIS ENTRY POINT BYPASSES DISABLING/ENABLING INTS WHICH IS REQUIRED BY
; PREINIT ABOVE. PREINIT IS NOT ALLOWED TO ENABLE INTS!
;
#IF (SIODEBUG)
CALL NEWLINE
PRTS("SIO$")
LD A,(IY+2)
SRL A
CALL PRTDECB
LD A,(IY+2)
AND $01
ADD A,'A'
CALL COUT
CALL PC_COLON
#ENDIF
;
; TEST FOR -1 WHICH MEANS USE CURRENT CONFIG (JUST REINIT)
LD A,D ; TEST DE FOR
AND E ; ... VALUE OF -1
INC A ; ... SO Z SET IF -1
JR NZ,SIO_INITDEV1 ; IF DE == -1, REINIT CURRENT CONFIG
;
; LOAD EXISTING CONFIG TO REINIT
LD E,(IY+5) ; LOW BYTE
LD D,(IY+6) ; HIGH BYTE
;
SIO_INITDEV1:
;
#IF (SIODEBUG)
PUSH DE
POP BC
PRTS(" CFG=$")
CALL PRTHEXWORD
#ENDIF
;
PUSH DE ; SAVE TARGET CONFIG
;
; WE WANT TO DETERMINE A DIVISOR FOR THE SIO CLOCK
; THAT RESULTS IN THE DESIRED BAUD RATE.
; BAUD RATE = SIO CLK / DIVISOR, OR TO SOLVE FOR DIVISOR
; DIVISOR = SIO CLK / BAUDRATE.
; TAKE ADVANTAGE OF ENCODED BAUD RATES ALWAYS BEING A FACTOR OF 75.
; SO, WE CAN USE (SIO OSC / 75) / (BAUDRATE / 75)
;
; GET SERIAL CLOCK VALUE AND DIVIDE IT BY 75
PUSH IY ; GET CONFIG TABLE ENTRY PTR
POP HL ; MOVE TO HL
LD A,9 ; OFFSET TO CLK VALUE
CALL ADDHLA ; HL IS NOW PTR TO 32 BIT CLK
CALL LD32 ; LOAD DE:HL W/ RAW CLK VAL
LD C,75 ; DIVIDE BY 75 LIKE BAUD RATE
CALL DIV32X8 ; HL NOW HAS (CLK / 75)
;
#IF (SIODEBUG)
PRTS(" CLK75=$")
CALL PRTHEX32
#ENDIF
;
; SCALE DOWN THE 32 BIT VALUE TO FIT IN 16 BITS KEEPING
; TRACK OF THE NUMBER OF BITS SHIFTED OUT IN B
LD B,0 ; SHIFT COUNTER
SIO_INITDEV1A:
LD A,D ; TEST MSB
OR E ; ... FOR ZERO
JR Z,SIO_INITDEV1B ; IF SO, DONE
SRL D ; 32 BIT RIGHT SHIFT
RR E ; ...
RR H ; ...
RR L ; ...
INC B ; INCREMENT SHIFT COUNTER
JR SIO_INITDEV1A ; AND LOOP
SIO_INITDEV1B:
;
#IF (SIODEBUG)
PRTS(" CLK=$")
CALL PRTHEX32
#ENDIF
;
POP DE ; RECOVER INCOMING TARGET CFG
PUSH DE ; RESAVE IT
PUSH HL ; SAVE CLK VALUE
PUSH BC ; SAVE BITS SHIFTED
; NOW DECODE THE BAUDRATE, BUT WE USE A CONSTANT OF 1 INSTEAD
; OF THE NORMAL 75. THIS PRODUCES (BAUDRATE / 75).
LD A,D ; GET CONFIG MSB
AND $1F ; ISOLATE ENCODED BAUD RATE
LD L,A ; PUT IN L
LD H,0 ; H IS ALWAYS ZERO
LD DE,1 ; USE 1 FOR ENCODING CONSTANT
CALL DECODE ; DE:HL := BAUD RATE, ERRORS IGNORED
;
#IF (SIODEBUG)
PRTS(" BAUD75=$")
CALL PRTHEX32
#ENDIF
;
; SCALE DOWN CLK BY SAME AMOUNT AS BAUD RATE
POP BC ; RESTORE BITS TO SHIFT
LD A,B ; PUT IN ACCUM
OR A ; TEST FOR ZERO
JR Z,SIO_INITDEV1D ; IF ZERO, NO SHIFT, SKIP
SIO_INITDEV1C:
SRL D ; 32 BIT RIGHT SHIFT
RR E ; ...
RR H ; ...
RR L ; ...
DJNZ SIO_INITDEV1C ; LOOP UNTIL DONE SHIFTING
SIO_INITDEV1D:
;
#IF (SIODEBUG)
PRTS(" BAUD=$")
CALL PRTHEX32
#ENDIF
;
POP DE ; RECOVER CLOCK
EX DE,HL ; SWAP CLOCK & BAUD FOR DIV
; *** HANDLE DIVIDE BY ZERO??? ***
CALL DIV16 ; BC := HL/DE == TARGET DIVISOR
;
#IF (SIODEBUG)
PRTS(" DIV=$")
CALL PRTHEXWORD
#ENDIF
;
#IF (CTCENABLE)
;
LD A,(IY+13) ; GET CTC CHANNEL
INC A ; $FF -> 0
JR Z,SIO_ADJDONE ; NO CTC CHANNEL, BYPASS
;
; HERE WE NEED TO ACCOUNT FOR A SPECIAL CASE OF THE CTC.
; IF THE CTC TRIGGER RATE IS MORE THAN HALF OF THE CTC CLOCK,
; THEN THE CTC WILL ONLY COUNT EVERY OTHER TRIGGER PULSE.
; IN THIS SITUATION, WE NEED TO CUT THE DIVISOR IN HALF
; TO ACCOUNT FOR THIS.
; FOR NOW, I JUST TEST TO SEE IF THE CTC TRIGGER AND THE CTC
; CLOCK ARE THE SAME. I DOUBT THERE IS ANY REALISTIC
; SCENARIO WHERE THE TRIGGER IS GREATER THAN HALF THE
; CLOCK BUT ALSO NOT EQUAL TO THE CLOCK.
; I DON'T DEFINITELY KNOW THE CTC CLOCK FREQ, BUT ASSUME IT
; IS THE SAME AS THE CPU CLOCK, WHICH IT SHOULD BE.
; FINALLY, NOTE THAT I AM COMPARING AGAINST THE CPU SPEED
; DECLARED IN THE BUILD CONFIG, NOT THE DYNAMICALLY MEASURED
; CPU SPEED. THIS IS CORRECT BECAUSE WE ARE REALLY TRYING TO
; TEST IF THE CPU CLOCK AND THE TRIGGER FREQ ARE THE *SAME*.
; ONLY COMPARING THE HIGH WORD VALUES, THAT SHOULD BE ENOUGH.
;
LD A,$FF & (CPUOSC >> 24) ; HIGH BYTE OF CPU FREQ
CP (IY+12) ; CP TO HIGH BYTE OF TRG
JR NZ,SIO_ADJDONE ; IF NE, SKIP ADJUSTMENT
LD A,$FF & (CPUOSC >> 16) ; HIGH BYTE OF CPU FREQ
CP (IY+11) ; CP TO HIGH BYTE OF TRG
JR NZ,SIO_ADJDONE ; IF NE, SKIP ADJUSTMENT
;
SRL B ; RIGHT SHIFT HL
RR C ; ... TO DIVIDE BY 2
JR NC,SIO_ADJDONE ; DONE IF NO CARRY
;
; IF CARRY, RESULTANT DIVISOR IS UNWORKABLE
POP DE ; POP STACK
JR SIO_INITFAIL ; AND FAIL
; *** CHECK FOR CARRY??? ***
;
#IF (SIODEBUG)
PRTS(" DIV=$")
CALL PRTHEXWORD
#ENDIF
;
SIO_ADJDONE:
;
#ENDIF
;
; NOW THAT WE HAVE THE TARGET BAUD RATE DIVISOR, WE WILL
; ATTEMPT TO IMPLEMENT IT. THE SIO ITSELF CAN APPLY
; A DIVISOR OF 1, 16, 32, OR 64. IF A CTC CHANNEL IS
; CONFIGURED FOR THIS SERIAL PORT, THEN WE CAN ADDITIONALLY
; APPLY A SCALER OF 1-256.
;
; WE START BY DETERMINING THE MAXIMUM POSSIBLE SIO
; SCALING.
;
; WARNING: IF THE INCOMING SIO CLOCK IS THE SAME AS THE
; CPU CLOCK AND WE USE THE 1:1 DIVISOR, THE SIO WILL NOT
; WORK WELL.
;
PUSH BC ; MOVE WORKING DIVISOR VALUE
POP HL ; ... TO HL
LD A,L ; LOAD LSB OF DIVISOR
LD BC,$0004 ; SHIFT 0 BITS / SIO WR4 DIV 1
LD A,L ; LOAD LSB OF DIVISOR
AND %00001111 ; DIV 16 POSSIBLE?
JR NZ,SIO_INITDEV2 ; NOPE, DONE TRYING
LD BC,$0444 ; SHIFT 4 BITS / SIO WR4 DIV 16
LD A,L ; LOAD LSB OF DIVISOR
AND %00011111 ; DIV 32 POSSIBLE?
JR NZ,SIO_INITDEV2 ; NOPE, DONE TRYING
LD BC,$0584 ; SHIFT 5 BITS / SIO WR4 DIV 32
LD A,L ; LOAD LSB OF DIVISOR
AND %00111111 ; DIV 32 POSSIBLE?
JR NZ,SIO_INITDEV2 ; NOPE, DONE TRYING
LD BC,$06C4 ; SHIFT 6 BITS / SIO WR4 DIV 64
;
; NOW APPLY THE SIO DIVISOR TO THE WORKING DIVISOR
; AND SAVE THE RESULTANT SIO REGISTER VALUE TO APPLY LATER.
SIO_INITDEV2:
; SHIFT BITS
XOR A ; ZERO ACCUM
OR B ; ZERO BITS TO SHIFT?
JR Z,SIO_INITDEV4 ; BYPASS SHIFTING IF SO
SIO_INITDEV3:
SRL H ; SHIFT HL RIGHT BY
RR L ; ONE BIT
DJNZ SIO_INITDEV3 ; UNTIL ALL BITS DONE
SIO_INITDEV4:
LD B,C ; MOVE SIO WR4 VALUE TO B
;
POP DE ; RESTORE DE = SERIAL CONFIG
;
#IF (SIODEBUG)
PUSH BC
PUSH HL
POP BC
PRTS(" CTCDIV=$")
CALL PRTHEXWORD
POP BC
#ENDIF
;
#IF (CTCENABLE)
;
LD A,(IY+13) ; GET CTC CHANNEL
INC A ; $FF -> 0
JR Z,SIO_NOCTC ; NO CTC CHANNEL, BYPASS
;
; HL HAS THE DIVISOR THAT WE WANT TO PROGRAM INTO THE
; DESIGNATED CTC CHANNEL. HOWEVER, THE CTC REGISTER IS ONE
; BYTE. A VALUE OF 0 MEANS 256. SO WE NEED TO VALIDATE
; THAT HL IS BETWEEN 1 AND 256.
DEC HL ; 1-256 -> 0-255
LD A,H ; MSB NOW MUST BE ZERO
OR A ; SET FLAGS
JR NZ,SIO_INITFAIL ; IF ANY BIT SET, FAIL
INC HL ; RESTORE HL
;
; ALL GOOD. PROGRAM THE CTC CHANNEL
LD A,(IY+13) ; GET CTC CHANNEL
ADD A,CTCBASE ; ADD TO CTC BASE PORT ADR
#IF (SIODEBUG)
PRTS(" CTC=$")
CALL PRTHEXBYTE
#ENDIF
LD C,A ; AND PUT IN C FOR I/O
LD A,%01010111 ; CTCC CONTROL WORD VALUE
; |||||||+-- 1=CONTROL WORD FLAG
; ||||||+--- 1=SOFTWARE RESET
; |||||+---- 1=TIME CONSTANT FOLLOWS
; ||||+----- 0=AUTO TRIGGER WHEN TIME CONST LOADED
; |||+------ 1=RISING EDGE TRIGGER
; ||+------- 0=PRESCALER OF 16 (NOT USED)
; |+-------- 1=COUNTER MODE
; +--------- 0=NO INTERRUPTS
OUT (C),A ; PREP CTC CHANNEL
OUT (C),L ; SET CTC TIMER CONSTANT
JR SIO_INITBROK ; AND REJOIN MAIN SETUP
;
#ENDIF
;
SIO_NOCTC:
; IF THERE IS NO CTC, THEN THE REMAINING DIVISOR
; NEEDS TO BE EXACTLY 1 OR WE HAVE A PROBLEM.
LD A,L ; GET REMAINING DIVISOR
DEC A ; 1 -> 0
JR Z,SIO_INITBROK ; FAIL IF NOT 1
;
SIO_INITFAIL:
;
#IF (SIODEBUG)
PRTS(" BAD CFG$")
#ENDIF
;
OR $FF
RET ; NZ status here indicating fail / invalid baud rate.
;
SIO_INITBROK:
LD A,E ; set stop bit (d3) and add divider
AND $04
RLA
OR B ; carry gets reset here
LD L,A ; save in L
LD A,E ; get the parity bits
SRL A ; move them to bottom two bits
SRL A ; we know top bits are zero from previous test
SRL A ; add stop bits
OR L ; carry = 0
;
; SET DIVIDER, STOP AND PARITY WR4
;
LD (SIO_WR4),A
;
LD A,E ; 112233445566d1d0 CC
RRA ; CC112233445566d1 d0
RRA ; d0CC112233445566 d1
RRA ; d1d0CC1122334455 66
LD L,A
RRA ; 66d1d0CC11223344 55
AND $60 ; 0011110000000000 00
OR $8A
;
; SET TRANSMIT DATA BITS WR5
;
LD (SIO_WR5),A
;
; SET RECEIVE DATA BITS WR3
;
LD A,D ; HI WORD OF CONFIG
AND %00100000 ; BIT 5 IS AUTO-CTS
LD H,A ; SAVE IN H
LD A,L ; DATA BITS
AND $C0 ; CLEAR OTHER BITS
OR $01 ; RX ENABLE
OR H ; COMBINE WITH AUTO-CTS
;
LD (SIO_WR3),A
;
; SAVE CONFIG PERMANENTLY NOW
;
LD (IY+5),E ; SAVE LOW WORD
LD (IY+6),D ; SAVE HI WORD
;
JR SIO_INITGO ; GO TO SEND INIT
;
; ENTER HERE TO PERFORM A "SAFE" INITIALIZTION. I.E., INIT THE
; CHANNEL USING THE DEFAULT, GENERIC REGISTER VALUES. THIS CAN BE
; USED TO ENSURE INITIALIZATION IF THE FULL CONFIGURATION ABOVE
; FAILS.
;
SIO_INITSAFE:
;
#IF (CTCENABLE)
;
; CHECK IF A CTC CHANNEL IS CONFIGURED
LD A,(IY+13) ; GET CTC CHANNEL
INC A ; $FF -> 0
JR Z,SIO_INITSAFE2 ; NO CTC CHANNEL, BYPASS
;
; IF A CTC CHANNEL IS CONFIGURED, PROGRAM IT FOR
; SIMPLE 1:1 SCALING.
LD A,(IY+13) ; GET CTC CHANNEL
ADD A,CTCBASE ; ADD TO CTC BASE PORT ADR
LD C,A ; AND PUT IN C FOR I/O
LD A,%01010111 ; CTCC CONTROL WORD VALUE
OUT (C),A ; PREP CTC CHANNEL
LD A,1 ; TIMER CONSTANT IS 1
OUT (C),A ; SET CTC TIMER CONSTANT
;
#ENDIF
;
SIO_INITSAFE2:
; SETUP DEFAULT VALUES FOR SIO REGISTERS
LD HL,SIO_INITDEFS
LD DE,SIO_INITVALS
LD BC,SIO_INITLEN
LDIR
;
SIO_INITGO:
;
; SET INTERRUPT VECTOR OFFSET WR2
;
#IF ((SIOINTS) & (INTMODE >= 2))
LD A,(IY+2) ; CHIP / CHANNEL
SRL A ; SHIFT AWAY CHANNEL BIT
LD L,SIO0_VEC ; ASSUME CHIP 0
JR Z,SIO_INITIVT ; IF SO, DO IT
LD L,SIO1_VEC ; ASSUME CHIP 1
DEC A ; CHIP 1?
JR Z,SIO_INITIVT ; IF SO, DO IT
SYSCHKERR(ERR_NOUNIT) ; IMPOSSIBLE SITUATION
RET
SIO_INITIVT:
LD A,L ; VALUE TO A
LD (SIO_WR2),A ; SAVE IT
;
#ENDIF
;
#IF (SIODEBUG)
LD HL,SIO_INITVALS
LD B,SIO_INITLEN/2
SIO_INITPRT:
PRTS(" WR$")
LD A,(HL)
CALL PRTHEXBYTE
INC HL
LD A,'='
CALL COUT
LD A,(HL)
CALL PRTHEXBYTE
INC HL
DJNZ SIO_INITPRT
LD DE,65
CALL VDELAY ; WAIT FOR FINAL CHAR TO SEND
#ENDIF
;
; PROGRAM THE SIO CHIP CHANNEL
LD C,(IY+3) ; COMMAND PORT
LD HL,SIO_INITVALS ; POINT TO INIT VALUES
LD B,SIO_INITLEN ; COUNT OF BYTES TO WRITE
OTIR ; WRITE ALL VALUES
;
#IF ((SIOINTS) & (INTMODE > 0))
;
; RESET THE RECEIVE BUFFER
LD E,(IY+7)
LD D,(IY+8) ; DE := _CNT
XOR A ; A := 0
LD (DE),A ; _CNT = 0
INC DE ; DE := ADR OF _HD
PUSH DE ; SAVE IT
INC DE
INC DE
INC DE
INC DE ; DE := ADR OF _BUF
POP HL ; HL := ADR OF _HD
LD (HL),E
INC HL
LD (HL),D ; _HD := _BUF
INC HL
LD (HL),E
INC HL
LD (HL),D ; _TL := _BUF
;
#ENDIF
;
XOR A ; SIGNAL SUCCESS
RET ; RETURN
;
; THE SIO IS A LITTLE PRICKLY ABOUT THE ORDER IN WHICH REGSITERS ARE
; WRITTEN DURING CONFIGURATION. THE TABLE BELOW IS USED TO SETUP
; THE REGISTER VALUES AND THEN THE ENTIRE TABLE CAN BE SPIT OUT.
;
SIO_INITVALS:
.DB $00, $18 ; WR0: CHANNEL RESET CMD
SIO_WR4 .EQU $+1
.DB $04, $C4 ; WR4: CLK BAUD PARITY STOP BIT
SIO_WR1 .EQU $+1
.DB $01, SIO_WR1VAL ; WR1: INTERRUPT STYLE
SIO_WR2 .EQU $+1
.DB $02, $00 ; WR2: IM2 VEC OFFSET, SET DYNAMICALLY
SIO_WR3 .EQU $+1
.DB $03, $E1 ; WR3: 8 BIT RCV, CTS/DCD AUTO, RX ENABLE
SIO_WR5 .EQU $+1
.DB $05, SIO_RTSON ; WR5: DTR, 8 BITS SEND, TX ENABLE, RTS 1 11 0 1 0 1 0 (1=DTR,11=8bits,0=sendbreak,1=TxEnable,0=sdlc,1=RTS,0=txcrc)
;
SIO_INITLEN .EQU $ - SIO_INITVALS
;
; THE FOLLOWING TABLE IS A GENERIC, STATIC SET OF CONFIG VALUES THAT CAN
; BE USED TO INITIALIZE THE WORKING TABLE ABOVE.
;
SIO_INITDEFS:
.DB $00, $18 ; WR0: CHANNEL RESET CMD
.DB $04, $C4 ; WR4: CLK BAUD PARITY STOP BIT
.DB $01, SIO_WR1VAL ; WR1: INTERRUPT STYLE
.DB $02, $00 ; WR2: IM2 VEC OFFSET
.DB $03, $E1 ; WR3: 8 BIT RCV, CTS/DCD AUTO, RX ENABLE
.DB $05, SIO_RTSON ; WR5: DTR, 8 BITS SEND, TX ENABLE, RTS 1 11 0 1 0 1 0 (1=DTR,11=8bits,0=sendbreak,1=TxEnable,0=sdlc,1=RTS,0=txcrc)
;
#IF (($ - SIO_INITDEFS) != SIO_INITLEN)
.ECHO "*** ERROR: SIO_INITDEFS TABLE IS NOT THE SAME SIZE AS SIO_INITVALS TABLE!!!\n"
!!! ; FORCE AN ASSEMBLY ERROR
#ENDIF
;
;
;
SIO_QUERY:
LD E,(IY+5) ; FIRST CONFIG BYTE TO E
LD D,(IY+6) ; SECOND CONFIG BYTE TO D
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
;
;
SIO_DEVICE:
LD D,CIODEV_SIO ; D := DEVICE TYPE
LD E,(IY) ; E := PHYSICAL UNIT
LD C,$00 ; C := DEVICE TYPE, 0x00 IS RS-232
LD H,(IY+14) ; H := MODE
LD L,(IY+3) ; L := BASE I/O ADDRESS
XOR A ; SIGNAL SUCCESS
RET
;
; SIO CHIP PROBE
; CHECK FOR PRESENCE OF SIO CHIPS AND POPULATE THE
; SIO_MAP BITMAP (ONE BIT PER CHIP). THIS DETECTS
; CHIPS, NOT CHANNELS. EACH CHIP HAS 2 CHANNELS.
; MAX OF TWO CHIPS CURRENTLY. INT VEC VALUE IS TRASHED!
;
SIO_PROBE:
; CLEAR THE PRESENCE BITMAP
LD HL,SIO_MAP ; HL POINTS TO BITMAP
XOR A ; ZERO
LD (SIO_MAP),A ; CLEAR CHIP PRESENT BITMAP
; INIT THE INT VEC REGISTER OF ALL POSSIBLE CHIPS
; TO ZERO. A IS STILL ZERO.
LD B,2 ; WR2 REGISTER (INT VEC)
LD C,SIO0B_CMD ; FIRST CHIP
CALL SIO_WR ; WRITE ZERO TO CHIP REG
#IF (SIOCNT >= 2)
LD C,SIO1B_CMD ; SECOND CHIP
CALL SIO_WR ; WRITE ZERO TO CHIP REG
#ENDIF
; FIRST POSSIBLE CHIP
LD C,SIO0B_CMD ; FIRST CHIP CMD/STAT PORT
CALL SIO_PROBECHIP ; PROBE IT
JR NZ,SIO_PROBE1 ; IF NOT ZERO, NOT FOUND
SET 0,(HL) ; SET BIT FOR FIRST CARD
SIO_PROBE1:
;
#IF (SIOCNT >= 2)
LD C,SIO1B_CMD ; SECOND CHIP CMD/STAT PORT
CALL SIO_PROBECHIP ; PROBE IT
JR NZ,SIO_PROBE2 ; IF NOT ZERO, NOT FOUND
SET 1,(HL) ; SET BIT FOR SECOND CARD
SIO_PROBE2:
#ENDIF
;
RET
;
SIO_PROBECHIP:
; READ WR2 TO ENSURE IT IS ZERO (AVOID PHANTOM PORTS)
CALL SIO_RD ; GET VALUE
AND $F0 ; ONLY TOP NIBBLE
RET NZ ; ABORT IF NOT ZERO
; WRITE INT VEC VALUE TO WR2
LD A,$FF ; TEST VALUE
CALL SIO_WR ; WRITE IT
; READ WR2 TO CONFIRM VALUE WRITTEN
CALL SIO_RD ; REREAD VALUE
AND $F0 ; ONLY TOP NIBBLE
CP $F0 ; COMPARE
RET ; DONE, Z IF FOUND, NZ IF MISCOMPARE
;
; READ/WRITE CHIP REGISTER. ENTER CHIP CMD/STAT PORT ADR IN C
; AND CHIP REGISTER NUMBER IN B. VALUE TO WRITE IN A OR VALUE
; RETURNED IN A.
;
SIO_WR:
OUT (C),B ; SELECT CHIP REGISTER
OUT (C),A ; WRITE VALUE
RET
;
SIO_RD:
OUT (C),B ; SELECT CHIP REGISTER
IN A,(C) ; GET VALUE
RET
;
; SIO DETECTION ROUTINE
; THERE IS ONLY ONE VARIATION OF SIO CHIP, SO HERE WE JUST CHECK THE
; CHIP PRESENCE BITMAP TO SET THE CHIP TYPE OF EITHER NONE OR SIO.
;
SIO_DETECT:
LD B,(IY+2) ; GET CHIP/CHANNEL
SRL B ; SHIFT AWAY THE CHANNEL BIT
INC B ; NUMBER OF TIMES TO ROTATE BITS
LD A,(SIO_MAP) ; BIT MAP IN A
SIO_DETECT1:
; ROTATE DESIRED CHIP BIT INTO CF
RRA ; ROTATE NEXT BIT INTO CF
DJNZ SIO_DETECT1 ; DO THIS UNTIL WE HAVE DESIRED BIT
; RETURN CHIP TYPE
LD A,SIO_NONE ; ASSUME NOTHING HERE
RET NC ; IF CF NOT SET, RETURN
LD A,SIO_SIO ; CHIP TYPE IS SIO
RET ; DONE
;
;
;
SIO_PRTCFG:
; ANNOUNCE PORT
CALL NEWLINE ; FORMATTING
PRTS("SIO$") ; FORMATTING
LD A,(IY) ; DEVICE NUM
CALL PRTDECB ; PRINT DEVICE NUM
PRTS(": IO=0x$") ; FORMATTING
LD A,(IY+3) ; GET BASE PORT
CALL PRTHEXBYTE ; PRINT BASE PORT
; PRINT THE SIO TYPE
CALL PC_SPACE ; FORMATTING
LD A,(IY+1) ; GET SIO TYPE BYTE
RLCA ; MAKE IT A WORD OFFSET
LD HL,SIO_TYPE_MAP ; POINT HL TO TYPE MAP TABLE
CALL ADDHLA ; HL := ENTRY
LD E,(HL) ; DEREFERENCE
INC HL ; ...
LD D,(HL) ; ... TO GET STRING POINTER
CALL WRITESTR ; PRINT IT
;
; ALL DONE IF NO SIO WAS DETECTED
LD A,(IY+1) ; GET SIO TYPE BYTE
OR A ; SET FLAGS
RET Z ; IF ZERO, NOT PRESENT
;
PRTS(" MODE=$") ; FORMATTING
LD E,(IY+5) ; LOAD CONFIG
LD D,(IY+6) ; ... WORD TO DE
CALL PS_PRTSC0 ; PRINT CONFIG
;
XOR A
RET
;
;
;
SIO_TYPE_MAP:
.DW SIO_STR_NONE
.DW SIO_STR_SIO
SIO_STR_NONE .DB "<NOT PRESENT>$"
SIO_STR_SIO .DB "SIO$"
;
; WORKING VARIABLES
;
SIO_DEV .DB 0 ; DEVICE NUM USED DURING INIT
SIO_MAP .DB 0 ; CHIP PRESENCE BITMAP
;
#IF ((SIOINTS) & (INTMODE > 0))
;
; SIO0 CHANNEL A RECEIVE BUFFER
SIO0A_RCVBUF:
SIO0A_CNT .DB 0 ; CHARACTERS IN RING BUFFER
SIO0A_HD .DW SIO0A_BUF ; BUFFER HEAD POINTER
SIO0A_TL .DW SIO0A_BUF ; BUFFER TAIL POINTER
SIO0A_BUF .FILL SIO_BUFSZ,0 ; RECEIVE RING BUFFER
;
; SIO0 CHANNEL B RECEIVE BUFFER
SIO0B_RCVBUF:
SIO0B_CNT .DB 0 ; CHARACTERS IN RING BUFFER
SIO0B_HD .DW SIO0B_BUF ; BUFFER HEAD POINTER
SIO0B_TL .DW SIO0B_BUF ; BUFFER TAIL POINTER
SIO0B_BUF .FILL SIO_BUFSZ,0 ; RECEIVE RING BUFFER
;
#IF (SIOCNT >= 2)
;
; SIO1 CHANNEL A RECEIVE BUFFER
SIO1A_RCVBUF:
SIO1A_CNT .DB 0 ; CHARACTERS IN RING BUFFER
SIO1A_HD .DW SIO1A_BUF ; BUFFER HEAD POINTER
SIO1A_TL .DW SIO1A_BUF ; BUFFER TAIL POINTER
SIO1A_BUF .FILL SIO_BUFSZ,0 ; RECEIVE RING BUFFER
;
; SIO1 CHANNEL B RECEIVE BUFFER
SIO1B_RCVBUF:
SIO1B_CNT .DB 0 ; CHARACTERS IN RING BUFFER
SIO1B_HD .DW SIO1B_BUF ; BUFFER HEAD POINTER
SIO1B_TL .DW SIO1B_BUF ; BUFFER TAIL POINTER
SIO1B_BUF .FILL SIO_BUFSZ,0 ; RECEIVE RING BUFFER
;
#ENDIF
;
#ELSE
;
SIO0A_RCVBUF .EQU 0
SIO0B_RCVBUF .EQU 0
;
#IF (SIOCNT >= 2)
SIO1A_RCVBUF .EQU 0
SIO1B_RCVBUF .EQU 0
#ENDIF
;
#ENDIF
;
; SIO PORT TABLE
;
SIO_CFG:
; SIO0 CHANNEL A
SIO0A_CFG:
.DB 0 ; DEVICE NUMBER (SET DURING INIT)
.DB 0 ; SIO TYPE (SET DURING INIT)
.DB $00 ; CHIP 0 / CHANNEL A (LOW BIT IS CHANNEL)
.DB SIO0A_CMD ; CMD/STATUS PORT
.DB SIO0A_DAT ; DATA PORT
.DW SIO0ACFG ; LINE CONFIGURATION
.DW SIO0A_RCVBUF ; POINTER TO RCV BUFFER STRUCT
.DW SIO0ACLK & $FFFF ; CLOCK FREQ AS
.DW SIO0ACLK >> 16 ; ... DWORD VALUE
.DB SIO0ACTCC ; CTC CHANNEL
.DB SIO0MODE ; MODE
;
DEVECHO "SIO MODE="
#IF (SIO0MODE == SIOMODE_STD)
DEVECHO "STD"
#ENDIF
#IF (SIO0MODE == SIOMODE_RC)
DEVECHO "RC"
#ENDIF
#IF (SIO0MODE == SIOMODE_SMB)
DEVECHO "SMB"
#ENDIF
#IF (SIO0MODE == SIOMODE_ZP)
DEVECHO "ZP"
#ENDIF
#IF (SIO0MODE == SIOMODE_Z80R)
DEVECHO "Z80R"
#ENDIF
DEVECHO ", IO="
DEVECHO SIO0BASE
DEVECHO ", CHANNEL A"
#IF ((SIOINTS) & (INTMODE > 0))
DEVECHO ", INTERRUPTS ENABLED"
#ENDIF
DEVECHO "\n"
;
SIO_CFGSIZ .EQU $ - SIO_CFG ; SIZE OF ONE CFG TABLE ENTRY
;
; SIO0 CHANNEL B
SIO0B_CFG:
.DB 0 ; DEVICE NUMBER (SET DURING INIT)
.DB 0 ; SIO TYPE (SET DURING INIT)
.DB $01 ; CHIP 0 / CHANNEL B (LOW BIT IS CHANNEL)
.DB SIO0B_CMD ; CMD/STATUS PORT
.DB SIO0B_DAT ; DATA PORT
.DW SIO0BCFG ; LINE CONFIGURATION
.DW SIO0B_RCVBUF ; POINTER TO RCV BUFFER STRUCT
.DW SIO0BCLK & $FFFF ; CLOCK FREQ AS
.DW SIO0BCLK >> 16 ; ... DWORD VALUE
.DB SIO0BCTCC ; CTC CHANNEL
.DB SIO0MODE ; MODE
;
DEVECHO "SIO MODE="
#IF (SIO0MODE == SIOMODE_STD)
DEVECHO "STD"
#ENDIF
#IF (SIO0MODE == SIOMODE_RC)
DEVECHO "RC"
#ENDIF
#IF (SIO0MODE == SIOMODE_SMB)
DEVECHO "SMB"
#ENDIF
#IF (SIO0MODE == SIOMODE_ZP)
DEVECHO "ZP"
#ENDIF
#IF (SIO0MODE == SIOMODE_Z80R)
DEVECHO "Z80R"
#ENDIF
DEVECHO ", IO="
DEVECHO SIO0BASE
DEVECHO ", CHANNEL B"
#IF ((SIOINTS) & (INTMODE > 0))
DEVECHO ", INTERRUPTS ENABLED"
#ENDIF
DEVECHO "\n"
;
#IF (SIOCNT >= 2)
;
; SIO1 CHANNEL A
SIO1A_CFG:
.DB 0 ; DEVICE NUMBER (SET DURING INIT)
.DB 0 ; SIO TYPE (SET DURING INIT)
.DB $02 ; CHIP 1 / CHANNEL A (LOW BIT IS CHANNEL)
.DB SIO1A_CMD ; CMD/STATUS PORT
.DB SIO1A_DAT ; DATA PORT
.DW SIO1ACFG ; LINE CONFIGURATION
.DW SIO1A_RCVBUF ; POINTER TO RCV BUFFER STRUCT
.DW SIO1ACLK & $FFFF ; CLOCK FREQ AS
.DW SIO1ACLK >> 16 ; ... DWORD VALUE
.DB SIO1ACTCC ; CTC CHANNEL
.DB SIO1MODE ; MODE
;
DEVECHO "SIO MODE="
#IF (SIO1MODE == SIOMODE_STD)
DEVECHO "STD"
#ENDIF
#IF (SIO1MODE == SIOMODE_RC)
DEVECHO "RC"
#ENDIF
;
#IF (SIO1MODE == SIOMODE_SMB)
DEVECHO "SMB"
#ENDIF
#IF (SIO1MODE == SIOMODE_ZP)
DEVECHO "ZP"
#ENDIF
#IF (SIO1MODE == SIOMODE_Z80R)
DEVECHO "Z80R"
#ENDIF
DEVECHO ", IO="
DEVECHO SIO1BASE
DEVECHO ", CHANNEL A"
#IF ((SIOINTS) & (INTMODE > 0))
DEVECHO ", INTERRUPTS ENABLED"
#ENDIF
DEVECHO "\n"
;
; SIO1 CHANNEL B
SIO1B_CFG:
.DB 0 ; DEVICE NUMBER (SET DURING INIT)
.DB 0 ; SIO TYPE (SET DURING INIT)
.DB $03 ; CHIP 1 / CHANNEL B (LOW BIT IS CHANNEL)
.DB SIO1B_CMD ; CMD/STATUS PORT
.DB SIO1B_DAT ; DATA PORT
.DW SIO1BCFG ; LINE CONFIGURATION
.DW SIO1B_RCVBUF ; POINTER TO RCV BUFFER STRUCT
.DW SIO1BCLK & $FFFF ; CLOCK FREQ AS
.DW SIO1BCLK >> 16 ; ... DWORD VALUE
.DB SIO1BCTCC ; CTC CHANNEL
.DB SIO1MODE ; MODE
;
DEVECHO "SIO MODE="
#IF (SIO1MODE == SIOMODE_STD)
DEVECHO "STD"
#ENDIF
#IF (SIO1MODE == SIOMODE_RC)
DEVECHO "RC"
#ENDIF
#IF (SIO1MODE == SIOMODE_SMB)
DEVECHO "SMB"
#ENDIF
#IF (SIO1MODE == SIOMODE_ZP)
DEVECHO "ZP"
#ENDIF
#IF (SIO1MODE == SIOMODE_Z80R)
DEVECHO "Z80R"
#ENDIF
DEVECHO ", IO="
DEVECHO SIO1BASE
DEVECHO ", CHANNEL B"
#IF ((SIOINTS) & (INTMODE > 0))
DEVECHO ", INTERRUPTS ENABLED"
#ENDIF
DEVECHO "\n"
;
#ENDIF
;
SIO_CFGCNT .EQU ($ - SIO_CFG) / SIO_CFGSIZ