You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

777 lines
21 KiB

;
;==================================================================================================
; FLASH DRIVER FOR FLASH & EEPROM PROGRAMMING
;
; 26 SEP 2020 - CHIP IDENTIFICATION IMPLEMENTED -- PHIL SUMMERS
; - CHIP ERASE IMPLEMENTED
; 23 OCT 2020 - SECTOR ERASE IMPLEMENTED
; 01 NOV 2020 - WRITE SECTOR IMPLEMENTED
; 04 DEC 2020 - READ SECTOR IMPLEMENTED
;==================================================================================================
;
; UPPER RAM BANK IS ALWAYS AVAILABLE REGARDLESS OF MEMORY BANK SELECTION.
; HBX_BNKSEL AND HB_CURBNK ARE ALWAYS AVAILABLE IN UPPER MEMORY.
;
; THE STACK IS IN UPPER MEMORY DURING BIOS INITIALIZATION BUT IS IN LOWER
; MEMORY DURING HBIOS CALLS.
;
; TO ACCESS THE FLASH CHIP FEATURES, CODE IS COPIED TO THE UPPER RAM BANK
; AND THE FLASH CHIP IS SWITCHED INTO THE LOWER BANK.
;
; INSPIRED BY WILL SOWERBUTTS FLASH4 UTILITY - https://github.com/willsowerbutts/flash4/
;
;==================================================================================================
;
FF_DBG: .EQU 1 ; DEBUG
FF_HBX: .EQU 1 ; =0 USE STACK, =1 USE HBX_BUF
;
;======================================================================
; BIOS FLASH INITIALIZATION
;
; IDENTIFY AND DISPLAY FLASH CHIPS IN SYSTEM.
; USES MEMORY SIZE DEFINED BY BUILD CONFIGURATION.
;======================================================================
;
;
FF_INIT:
CALL NEWLINE ; DISLAY NUMBER
PRTS("FF: UNITS=$") ; OF UNITS
LD A,+(ROMSIZE/512) ; CONFIGURED FOR.
CALL PRTDECB
;
LD B,A ; NUMBER OF DEVICES TO PROBE
LD C,$00 ; START ADDRESS IS 0000:0000 IN DE:HL
FF_PROBE:
LD D,$00 ; SET ADDRESS IN DE:HL
LD E,C ;
LD H,D ; WE INCREASE E BY $08
LD L,D ; ON EACH CYCLE THROUGH
;
PUSH BC
CALL PC_SPACE
LD A,+(ROMSIZE/512)+1
SUB B ; PRINT
CALL PRTDECB ; DEVICE
LD A,'=' ; NUMBER
CALL COUT
CALL FF_IINIT ; GET ID AT THIS ADDRESS
CALL FF_LAND ; LOOKUP AND DISPLAY
POP BC
;
LD A,C ; UPDATE ADDRESS
ADD A,$08 ; TO NEXT DEVICE
LD C,A
;
DJNZ FF_PROBE ; ALWAYS AT LEAST ONE DEVICE
;
#IF (FF_DBG==1)
CALL FF_TESTING
#ENDIF
;
XOR A ; INIT SUCCEEDED
RET
;
;======================================================================
; TEST CODE AREA
;======================================================================
;
FF_TESTING:
;
#IF (0)
LD DE,$0008 ; SET
LD HL,$0000 ; ADDRESS
CALL FF_EINIT ; CHIP ERASE
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
;
#IF (0)
LD DE,$000A ; SET
LD HL,$8000 ; ADDRESS
CALL FF_SINIT ; SECTOR ERASE
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
;
#IF (0)
LD DE,$000A ; SET DESTINATION
LD HL,$8000 ; ADDRESS
LD IX,FF_BUFFER ; SET SOURCE ADDRESS
CALL FF_WINIT ; WRITE SECTOR
CALL PRTHEXBYTE ; DISPLAY STATUS
#ENDIF
;
#IF (1)
LD DE,$0007 ; SET SOURCE
LD HL,$F000 ; ADDRESS
LD IX,FF_BUFFER ; SET DESTINATION ADDRESS
CALL FF_RINIT ; READ SECTOR
CALL PRTHEXBYTE ; DISPLAY STATUS
LD DE,FF_BUFFER
CALL DUMP_BUFFER
#ENDIF
;
RET
;
;======================================================================
; LOOKUP AND DISPLAY CHIP
;
; ON ENTRY DE CONTAINS CHIP ID
; ON EXIT A CONTAINS STATUS 0=SUCCESS, NZ=NOT IDENTIFIED
;======================================================================
;
FF_LAND:
;
#IF (FF_DBG==1)
PRTS(" ID:$")
LD H,E
LD L,D
CALL PRTHEXWORDHL ; DISPLAY FLASH ID
CALL PC_SPACE
#ENDIF
;
LD HL,FF_TABLE ; SEARCH THROUGH THE FLASH
LD BC,FF_T_CNT ; TABLE TO FIND A MATCH
FF_NXT1:LD A,(HL)
CP D
JR NZ,FF_NXT0 ; FIRST BYTE DOES NOT MATCH
;
INC HL
LD A,(HL)
CP E
DEC HL
JR NZ,FF_NXT0 ; SECOND BYTE DOES NOT MATCH
;
INC HL
INC HL
JR FF_NXT2 ; MATCH SO EXIT
;
FF_NXT0:PUSH BC ; WE DIDN'T MATCH SO POINT
LD BC,FF_T_SZ ; TO THE NEXT TABLE ENTRY
ADD HL,BC
POP BC
;
LD A,B ; CHECK IF WE REACHED THE
OR C ; END OF THE TABLE
DEC BC
JR NZ,FF_NXT1 ; NOT AT END YET
;
LD HL,FF_UNKNOWN ; WE REACHED THE END WITHOUT A MATCH
;
FF_NXT2:CALL PRTSTR ; AFTER SEARCH DISPLAY THE RESULT
RET
;======================================================================
;COMMON FUNCTION CALL
;
;======================================================================
;
#IF (FF_HBX==0)
FF_FNCALL: ; USING STACK FOR CODE AREA
CALL FF_CALCA ; GET BANK AND SECTOR DATA IN IY
;
POP DE ; GET ROUTINE TO CALL
;
LD (FF_STACK),SP ; SAVE STACK
LD HL,(FF_STACK)
;
LD BC,64
; LD BC,FF_I_SZ ; CODE SIZE REQUIRED
CCF ; CREATE A RELOCATABLE
SBC HL,BC ; CODE BUFFER IN THE
LD SP,HL ; STACK AREA
;
PUSH HL ; SAVE THE EXECUTE ADDRESS
EX DE,HL ; PUT EXECUTE / START ADDRESS IN DE
; LD HL,FF_IDENT ; COPY OUR RELOCATABLE
LDIR ; CODE TO THE BUFFER
POP HL ; CALL OUR RELOCATABLE CODE
PUSH IY ; PUT BANK AND SECTOR
POP BC ; DATA IN BC
;
#IF (FF_DBG==1)
CALL PRTHEXWORD
#ENDIF
;
HB_DI
CALL JPHL ; EXECUTE RELOCATED CODE
HB_EI
;
LD HL,(FF_STACK) ; RESTORE ORIGINAL
LD SP,HL ; STACK POSITION
;
#IF (FF_DBG==1)
CALL PC_SPACE
CALL PRTHEXWORD
CALL PC_SPACE
EX DE,HL
CALL PRTHEXWORDHL
CALL PC_SPACE
EX DE,HL
#ENDIF
;
LD A,C ; RETURN WITH STATUS IN A
;
RET
#ELSE
FF_FNCALL: ; USING HBX_BUF FOR CODE AREA
CALL FF_CALCA ; GET BANK AND SECTOR DATA IN IY
;
POP HL ; GET ROUTINE TO CALL
;
LD DE,HBX_BUF ; PUT EXECUTE / START ADDRESS IN DE
LD BC,HBX_BUFSIZ ; CODE SIZE REQUIRED
;
PUSH DE ; SAVE THE EXECUTE ADDRESS
; COPY OUR RELOCATABLE
LDIR ; CODE TO THE BUFFER
POP HL ; CALL OUR RELOCATABLE CODE
PUSH IY ; PUT BANK AND SECTOR
POP BC ; DATA IN BC
;
#IF (FF_DBG==1)
CALL PRTHEXWORD
#ENDIF
;
HB_DI
CALL JPHL ; EXECUTE RELOCATED CODE
HB_EI
;
#IF (FF_DBG==1)
CALL PC_SPACE
CALL PRTHEXWORD
CALL PC_SPACE
EX DE,HL
CALL PRTHEXWORDHL
CALL PC_SPACE
EX DE,HL
#ENDIF
;
LD A,C ; RETURN WITH STATUS IN A
;
RET
#ENDIF
;
;======================================================================
; IDENTIFY FLASH CHIP.
; CALCULATE BANK AND ADDRESS DATA FROM ENTRY ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH IDENTITY CODE
; RESTORE STACK
; RETURN WITH ID CODE.
;
; ON ENTRY DE:HL POINTS TO AN ADDRESS WITH THE ADDRESS RANGE OF THE
; CHIP TO BE IDENTIFIED.
; ON EXIT DE CONTAINS THE CHIP ID BYTES.
; NO STATUS IS RETURNED
;======================================================================
;
FF_IINIT:
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_IDENT ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; FLASH IDENTIFY
; SELECT THE APPROPRIATE BANK / ADDRESS
; ISSUE ID COMMAND
; READ IN ID WORD
; ISSUE ID EXIT COMMAND
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; A CONTAINS CURRENT BANK
; ON EXIT DE CONTAINS ID WORD
; NO STATUS IS RETURNED
;======================================================================
;
FF_IDENT: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD HL,$5555 ; LD A,$AA ; COMMAND
LD (HL),$AA ; LD ($5555),A ; SETUP
LD A,H ; LD A,$55
LD ($2AAA),A ; LD ($2AAA),A
LD (HL),$90 ; LD A,$90
; ; LD ($5555),A
LD DE,($0000) ; READ ID
;
LD A,$F0 ; ; EXIT
LD (HL),A ; LD ($5555),A ; COMMAND
;
POP AF ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
;
RET
;
FF_I_SZ .EQU $-FF_IDENT ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; FLASH CHIP ERASE.
; CALCULATE BANK AND ADDRESS DATA FROM ENTRY ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH ERASE CODE
; RESTORE STACK
; RETURN WITH STATUS CODE.
;
; ON ENTRY DE:HL POINTS TO AN ADDRESS IDENTIFYING THE CHIP
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_EINIT:
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_ERASE ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; ERASE FLASH CHIP.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; ISSUE ERASE COMMAND
; POLL TOGGLE BIT FOR COMPLETION STATUS.
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; A CONTAINS CURRENT BANK
; ON EXIT DE CONTAINS ID WORD
; A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_ERASE: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD HL,$5555 ; LD A,$AA ; COMMAND
LD (HL),$AA ; LD ($5555),A ; SETUP
LD A,L ; LD A,$55
LD ($2AAA),A ; LD ($2AAA),A
LD (HL),$80 ; LD A,$80
LD (HL),$AA ; LD ($5555),A
LD A,L ; LD A,$AA
LD ($2AAA),A ; LD ($5555),A
LD (HL),$10 ; LD A,$55
; LD ($2AAA),A
; LD A,$10
; LD ($5555),A
;
LD A,(HL) ; DO TWO SUCCESSIVE READS FROM THE SAME FLASH ADDRESS.
FF_WT2: LD C,(HL) ; IF TOGGLE BIT (BIT 6)
XOR C ; IS THE SAME ON BOTH READS
BIT 6,A ; THEN ERASE IS COMPLETE SO EXIT.
JR Z,FF_WT1 ; Z TRUE IF BIT 6=0 I.E. "NO TOGGLE" WAS DETECTED.
;
LD A,C ; OPERATION IS NOT COMPLETE. CHECK TIMEOUT BIT (BIT 5).
BIT 5,C ; IF NO TIMEOUT YET THEN LOOP BACK AND KEEP CHECKING TOGGLE STATUS
JR Z,FF_WT2 ; IF BIT 5=0 THEN RETRY; NZ TRUE IF BIT 5=1
;
LD A,(HL) ; WE GOT A TIMEOUT. RECHECK TOGGLE BIT IN CASE WE DID COMPLETE
XOR (HL) ; THE OPERATION. DO TWO SUCCESSIVE READS. ARE THEY THE SAME?
BIT 6,A ; IF THEY ARE THEN OPERATION WAS COMPLETED
JR Z,FF_WT1 ; OTHERWISE ERASE OPERATION FAILED OR TIMED OUT.
;
LD (HL),$F0 ; WRITE DEVICE RESET
LD C,$FF ; SET FAIL STATUS
JR FF_WT3
;
FF_WT1: LD C,0 ; SET SUCCESS STATUS
FF_WT3: POP AF
; LD A,B ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
RET
;
FF_E_SZ .EQU $-FF_ERASE ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; CALCULATE BANK AND ADDRESS DATA FROM MEMORY ADDRESS
;
; ON ENTRY DE:HL CONTAINS 32 BIT MEMORY ADDRESS.
; ON EXIT I,B CONTAINS BANK SELECT BYTE
; Y,C CONTAINS HIGH BYTE OF SECTOR ADDRESS
; A CONTAINS CURRENT BANK HB_CURBNK
;
; DDDDDDDDEEEEEEEE HHHHHHHHLLLLLLLL
; 3322222222221111 1111110000000000
; 1098765432109876 5432109876543210
; XXXXXXXXXXXXSSSS SSSSXXXXXXXXXXXX < S = SECTOR
; XXXXXXXXXXXXBBBB BXXXXXXXXXXXXXXX < B = BANK
;======================================================================
;
FF_CALCA:
;
#IF (FF_DBG==1)
CALL PC_SPACE ; DISPLAY SECTOR
CALL PRTHEX32 ; SECTOR ADDRESS
CALL PC_SPACE ; IN DE:HL
#ENDIF
;
LD A,E ; BOTTOM PORTION OF SECTOR
AND $0F ; ADDRESS THAT GETS WRITTEN
RLC H ; WITH ERASE COMMAND BYTE
RLA ; A15 GETS DROPPED OFF AND
LD B,A ; ADDED TO BANK SELECT
;
LD A,H ; TOP SECTION OF SECTOR
RRA ; ADDRESS THAT GETS WRITTEN
AND $70 ; TO BANK SELECT PORT
LD C,A
;
PUSH BC
POP IY
;
#IF (FF_DBG==1)
CALL PRTHEXWORD ; DISPLAY BANK AND
CALL PC_SPACE ; SECTOR RESULT
#ENDIF
;
LD A,(HB_CURBNK) ; WE ARE STARTING IN HB_CURBNK
;
RET
;
;======================================================================
; ERASE FLASH SECTOR
;
; ON ENTRY DE:HL CONTAINS 32 BIT MEMORY ADDRESS.
; CALCULATE BANK AND ADDRESS DATA FROM ENTRY ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH ERASE CODE
; RESTORE STACK
; RETURN WITH STATUS CODE.
;
; ON ENTRY DE:HL POINTS TO AN ADDRESS IDENTIFYING THE CHIP
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_SINIT:
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_SERASE ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; ERASE FLASH SECTOR.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; ISSUE ERASE SECTOR COMMAND
; POLL TOGGLE BIT FOR COMPLETION STATUS.
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; A CONTAINS CURRENT BANK
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_SERASE: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD HL,$5555 ; LD A,$AA ; COMMAND
LD A,L ; LD ($5555),A ; SETUP
LD (HL),$AA ; LD A,$55
LD ($2AAA),A ; LD ($2AAA),A
LD (HL),$80 ; LD A,$80
LD (HL),$AA ; LD ($5555),A
LD ($2AAA),A ; LD A,$AA
; LD ($5555),A
; LD A,$55
; LD ($2AAA),A
LD H,C ; SECTOR
LD L,$00 ; ADDRESS
;
LD A,$30 ; SECTOR ERASE
LD (HL),A ; COMMAND
;
; LD DE,$0000 ; DEBUG COUNT
;
LD A,(HL) ; DO TWO SUCCESSIVE READS
FF_WT4: LD C,(HL) ; FROM THE SAME FLASH ADDRESS.
XOR C ; IF THE SAME ON BOTH READS
BIT 6,A ; THEN ERASE IS COMPLETE SO EXIT.
; INC DE ;
JR Z,FF_WT5 ; BIT 6 = 0 IF SAME ON SUCCESSIVE READS = COMPLETE
; BIT 6 = 1 IF DIFF ON SUCCESSIVE READS = INCOMPLETE
;
LD A,C ; OPERATION IS NOT COMPLETE. CHECK TIMEOUT BIT (BIT 5).
BIT 5,C ; IF NO TIMEOUT YET THEN LOOP BACK AND KEEP CHECKING TOGGLE STATUS
JR Z,FF_WT4 ; IF BIT 5=0 THEN RETRY; NZ TRUE IF BIT 5=1
;
LD A,(HL) ; WE GOT A TIMOUT. RECHECK TOGGLE BIT IN CASE WE DID COMPLETE
XOR (HL) ; THE OPERATION. DO TWO SUCCESSIVE READS. ARE THEY THE SAME?
BIT 6,A ; IF THEY ARE THEN OPERATION WAS COMPLETED
JR Z,FF_WT5 ; OTHERWISE ERASE OPERATION FAILED OR TIMED OUT.
;
LD (HL),$F0 ; WRITE DEVICE RESET
LD C,$FF ; SET FAIL STATUS
JR FF_WT6
;
FF_WT5: LD C,0 ; SET SUCCESS STATUS
FF_WT6: POP AF ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
;
RET
;
FF_S_SZ .EQU $-FF_SERASE ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; READ FLASH SECTOR OF 4096 BYTES
;
; SET ADDRESS TO START OF SECTOR
; CALCULATE BANK AND ADDRESS DATA FROM SECTOR START ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH READ SECTOR CODE
; RESTORE STACK
;
; ON ENTRY DE:HL POINTS TO A 32 BIT MEMORY ADDRESS.
; IX POINTS TO WHERE TO SAVE DATA
;======================================================================
;
FF_RINIT:
LD L,0 ; CHANGE ADDRESS
LD A,H ; TO SECTOR BOUNDARY
AND $F0 ; BY MASKING OFF
LD H,A ; LOWER 12 BITS
;
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_SREAD ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
RET
;======================================================================
; FLASH READ SECTOR.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; READ SECTOR OF 4096 BYTES, BYTE AT A TIME
; SELECT SOURCE BANK, READ DATA,
; SELECT DESTINATION BANK, WRITE DATA
; DESTINATION BANK IS ALWAYS CURRENT BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; IX POINTS TO DATA TO BE WRITTEN
; A CONTAINS CURRENT BANK
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_SREAD: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
;
LD H,C ; SECTOR
LD L,$00 ; ADDRESS
LD D,L ; INITIALIZE
LD E,L ; BYTE COUNT
;
FF_RD1:
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO READ
LD C,(HL) ; READ BYTE
;
POP AF
PUSH AF ; SELECT BANK
CALL HBX_BNKSEL ; TO WRITE
LD (IX+0),C ; WRITE BYTE
INC HL ; NEXT SOURCE LOCATION
INC IX ; NEXT DESTINATION LOCATION
;
INC DE ; CONTINUE READING UNTIL
BIT 4,D ; WE HAVE DONE ONE SECTOR
JR Z,FF_RD1
POP AF ; RETURN TO ORIGINAL BANK
; CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
XOR A
;
RET
;
FF_R_SZ .EQU $-FF_SREAD ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
; WRITE FLASH SECTOR OF 4096 BYTES
;
; *** SOURCE DATA MUST BE IN UPPER MEMORY
;
; SET ADDRESS TO START OF SECTOR
; CALCULATE BANK AND ADDRESS DATA FROM SECTOR START ADDRESS
; CREATE A CODE BUFFER IN HIGH MEMORY AREA
; COPY FLASH CODE TO CODE BUFFER
; CALL RELOCATED FLASH WRITE SECTOR CODE
; RESTORE STACK
;
; ON ENTRY DE:HL POINTS TO A 32 BIT MEMORY ADDRESS.
; IX POINTS TO DATA TO BE WRITTEN
;======================================================================
;
FF_WINIT:
LD L,0 ; CHANGE ADDRESS
LD A,H ; TO SECTOR BOUNDARY
AND $F0 ; BY MASKING OFF
LD H,A ; LOWER 12 BITS
;
PUSH HL ; SAVE ADDRESS INFO
LD HL,FF_SWRITE ; PUT ROUTINE TO CALL
EX (SP),HL ; ON THE STACK
JP FF_FNCALL ; EXECUTE
;
;======================================================================
; FLASH WRITE SECTOR.
;
; SELECT THE APPROPRIATE BANK / ADDRESS
; WRITE 1 SECTOR OF 4096 BYTES, BYTE AT A TIME
; ISSUE WRITE BYTE COMMAND AND WRITE THE DATA BYTE
; POLL TOGGLE BIT FOR COMPLETION STATUS.
; SELECT ORIGINAL BANK
;
; ON ENTRY BC CONTAINS BANK AND SECTOR DATA
; IX POINTS TO DATA TO BE WRITTEN
; A CONTAINS CURRENT BANK
; ON EXIT A RETURNS STATUS FLASH 0=SUCCESS FF=FAIL
;======================================================================
;
FF_SWRITE: ; THIS CODE GETS RELOCATED TO HIGH MEMORY
;
PUSH AF ; SAVE CURRENT BANK
LD A,B ; SELECT BANK
CALL HBX_BNKSEL ; TO PROGRAM
;
LD H,C ; SECTOR
LD L,$00 ; ADDRESS
LD D,L ; INITIALIZE
LD E,L ; BYTE COUNT
;
FF_WR1:
LD C,(IX+0) ; READ IN BYTE
;
LD A,$AA ; COMMAND
LD ($5555),A ; SETUP
LD A,$55
LD ($2AAA),A
;
LD A,$A0 ; WRITE
LD ($5555),A ; COMMAND
;
LD (HL),C ; WRITE OUT BYTE
;
; ; DO TWO SUCCESSIVE READS
LD A,(HL) ; FROM THE SAME FLASH ADDRESS.
FF_WT7: LD C,(HL) ; IF TOGGLE BIT (BIT 6)
XOR C ; IS THE SAME ON BOTH READS
BIT 6,A ; THEN ERASE IS COMPLETE SO EXIT.
JR NZ,FF_WT7 ; Z TRUE IF BIT 6=0 I.E. "NO TOGGLE" WAS DETECTED.
;
INC HL ; NEXT DESTINATION LOCATION
INC IX ; NEXT SOURCE LOCATION
;
INC DE ; CONTINUE WRITING UNTIL
BIT 4,D ; WE HAVE DONE ONE SECTOR
JR Z,FF_WR1
;
POP AF ; RETURN TO ORIGINAL BANK
CALL HBX_BNKSEL ; WHICH IS OUR RAM BIOS COPY
;
RET
;
FF_W_SZ .EQU $-FF_SWRITE ; SIZE OF RELOCATABLE CODE BUFFER REQUIRED
;
;======================================================================
;
; FLASH STYLE
;
;======================================================================
;
ST_NORMAL .EQU 0
ST_ERASE_CHIP .EQU 1 ; SECTOR BASED ERASE NOT SUPPORTED
ST_PROGRAM_SECT .EQU 2
;
;======================================================================
;
; FLASH CHIP MACRO
;
;======================================================================
;
#DEFINE FF_CHIP(FFROMID,FFROMNM,FFROMSS,FFROMSC,FFROMMD)\
#DEFCONT ; \
#DEFCONT .DW FFROMID \
#DEFCONT .DB FFROMNM \
#DEFCONT .DW FFROMSS \
#DEFCONT .DW FFROMSC \
#DEFCONT .DB FFROMMD \
#DEFCONT ;
;
;======================================================================
;
; FLASH CHIP LIST
;
;======================================================================
;
FF_TABLE:
FF_CHIP(00120H,"29F010$ ",128,8,ST_NORMAL)
FF_CHIP(001A4H,"29F040$ ",512,8,ST_NORMAL)
FF_CHIP(01F04H,"AT49F001NT$",1024,1,ST_ERASE_CHIP)
FF_CHIP(01F05H,"AT49F001N$ ",1024,1,ST_ERASE_CHIP)
FF_CHIP(01F07H,"AT49F002N$ ",2048,1,ST_ERASE_CHIP)
FF_CHIP(01F08H,"AT49F002NT$",2048,1,ST_ERASE_CHIP)
FF_CHIP(01F13H,"AT49F040$ ",4096,1,ST_ERASE_CHIP)
FF_CHIP(01F5DH,"AT29C512$ ",1,512,ST_PROGRAM_SECT)
FF_CHIP(01FA4H,"AT29C040$ ",2,2048,ST_PROGRAM_SECT)
FF_CHIP(01FD5H,"AT29C010$ ",1,1024,ST_PROGRAM_SECT)
FF_CHIP(01FDAH,"AT29C020$ ",2,1024,ST_PROGRAM_SECT)
FF_CHIP(02020H,"M29F010$ ",128,8,ST_PROGRAM_SECT)
FF_CHIP(020E2H,"M29F040$ ",512,8,ST_NORMAL)
FF_CHIP(0BFB5H,"39F010$ ",32,32,ST_NORMAL)
FF_CHIP(0BFB6H,"39F020$ ",32,64,ST_NORMAL)
FF_CHIP(0BFB7H,"39F040$ ",32,128,ST_NORMAL)
FF_CHIP(0C2A4H,"MX29F040$ ",512,8,ST_NORMAL)
;
FF_T_CNT .EQU 17
FF_T_SZ .EQU ($-FF_TABLE) / FF_T_CNT
FF_UNKNOWN .DB "UNKNOWN$"
FF_STACK: .DW 0
;
;======================================================================
;
; 4K FLASH BUFFER
;
;======================================================================
;
FF_BUFFER .FILL 4096,$FF
;======================================================================
;
; RELOCATABLE CODE SPACE REQUIREMENTS
;
;======================================================================
;
FF_CSIZE .EQU 0
;
#IF (FF_W_SZ>FF_CSIZE)
FF_CSIZE .SET FF_W_SZ
#ENDIF
#IF (FF_S_SZ>FF_CSIZE)
FF_CSIZE .SET FF_S_SZ
#ENDIF
#IF (FF_E_SZ>FF_CSIZE)
FF_CSIZE .SET FF_E_SZ
#ENDIF
#IF (FF_I_SZ>FF_CSIZE)
FF_CSIZE .SET FF_I_SZ
#ENDIF
#IF (FF_R_SZ>FF_CSIZE)
FF_CSIZE .SET FF_R_SZ
#ENDIF
;
.ECHO "FF requires "
.ECHO FF_CSIZE
.ECHO " bytes stack space.\n"