You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

670 lines
16 KiB

;
;==================================================================================================
; UART DRIVER (SERIAL PORT)
;==================================================================================================
;
UART_DEBUG .EQU FALSE
;
UART_NONE .EQU 0 ; UNKNOWN OR NOT PRESENT
UART_8250 .EQU 1
UART_16450 .EQU 2
UART_16550 .EQU 3
UART_16550A .EQU 4
UART_16550C .EQU 5
UART_16650 .EQU 6
UART_16750 .EQU 7
UART_16850 .EQU 8
;
UART_RBR .EQU 0 ; DLAB=0: RCVR BUFFER REG (READ)
UART_THR .EQU 0 ; DLAB=0: XMIT HOLDING REG (WRITE)
UART_IER .EQU 1 ; DLAB=0: INT ENABLE REG (READ)
UART_IIR .EQU 2 ; INT IDENT REGISTER (READ)
UART_FCR .EQU 2 ; FIFO CONTROL REG (WRITE)
UART_LCR .EQU 3 ; LINE CONTROL REG (READ/WRITE)
UART_MCR .EQU 4 ; MODEM CONTROL REG (READ/WRITE)
UART_LSR .EQU 5 ; LINE STATUS REG (READ)
UART_MSR .EQU 6 ; MODEM STATUS REG (READ)
UART_SCR .EQU 7 ; SCRATCH REGISTER (READ/WRITE)
UART_DLL .EQU 0 ; DLAB=1: DIVISOR LATCH (LS) (READ/WRITE)
UART_DLM .EQU 1 ; DLAB=1: DIVISOR LATCH (MS) (READ/WRITE)
UART_EFR .EQU 2 ; LCR=$BF: ENHANCED FEATURE REG (READ/WRITE)
;
UART_FIFO .EQU 0 ; FIFO ENABLE BIT
UART_AFC .EQU 1 ; AUTO FLOW CONTROL ENABLE BIT
;
#DEFINE UART_INP(RID) CALL UART_INP_IMP \ .DB RID
#DEFINE UART_OUTP(RID) CALL UART_OUTP_IMP \ .DB RID
;
; CHARACTER DEVICE DRIVER ENTRY
; A: RESULT (OUT), CF=ERR
; B: FUNCTION (IN)
; C: CHARACTER (IN/OUT)
; E: DEVICE/UNIT (IN)
;
UART_INIT:
;
; INIT UART4 BOARD CONFIG REGISTER (NO HARM IF IT IS NOT THERE)
;
LD A,$80 ; SELECT 7.3728MHZ OSC & LOCK CONFIG REGISTER
OUT ($CF),A ; DO IT
;
; SETUP THE DISPATCH TABLE ENTRIES
;
LD B,UARTCNT ; LOOP CONTROL
LD C,0 ; PHYSICAL UNIT INDEX
XOR A ; ZERO TO ACCUM
LD (UART_DEV),A ; CURRENT DEVICE NUMBER
UART_INIT0:
PUSH BC ; SAVE LOOP CONTROL
LD A,C ; PHYSICAL UNIT TO A
RLCA ; MULTIPLY BY CFG TABLE ENTRY SIZE (8 BYTES)
RLCA ; ...
RLCA ; ... TO GET OFFSET INTO CFG TABLE
LD HL,UART_CFG ; POINT TO START OF CFG TABLE
CALL ADDHLA ; HL := ENTRY ADDRESS
PUSH HL ; SAVE IT
CALL UART_INIT1 ; DO HARDWARE INIT FOR CURRENT UART
POP DE ; GET ENTRY ADDRESS BACK, BUT PUT IN DE
POP BC ; RESTORE LOOP CONTROL
LD A,(UART_TYPE) ; GET THE UART TYPE DETECTED
OR A ; SET FLAGS
JR Z,UART_INIT00 ; SKIP IT IF NOTHING FOUND
PUSH BC ; SAVE LOOP CONTROL
LD BC,UART_DISPATCH ; BC := DISPATCH ADDRESS
CALL NZ,CIO_ADDENT ; ADD ENTRY IF UART FOUND, BC:DE
POP BC ; RESTORE LOOP CONTROL
UART_INIT00:
INC C ; NEXT PHYSICAL UNIT
DJNZ UART_INIT0 ; LOOP UNTIL DONE
XOR A ; SIGNAL SUCCESS
RET ; AND RETURN
;
UART_INIT1:
PUSH HL ; COPY CFG DATA PTR
POP IY ; ... TO IY
;
JP UART_INITP ; HAND OFF TO GENERIC INIT CODE
;
;
;
UART_DISPATCH:
; DISPATCH TO FUNCTION HANDLER
PUSH HL ; SAVE HL FOR NOW
LD A,B ; GET FUNCTION
AND $0F ; ISOLATE LOW NIBBLE
RLCA ; X 2 FOR WORD OFFSET INTO FUNCTION TABLE
LD HL,UART_FTBL ; START OF FUNC TABLE
CALL ADDHLA ; HL := ADDRESS OF ADDRESS OF FUNCTION
LD A,(HL) ; DEREF HL
INC HL ; ...
LD H,(HL) ; ...
LD L,A ; ... TO GET ADDRESS OF FUNCTION
EX (SP),HL ; RESTORE HL & PUT FUNC ADDRESS -> (SP)
RET ; EFFECTIVELY A JP TO TGT ADDRESS
UART_FTBL:
.DW UART_IN
.DW UART_OUT
.DW UART_IST
.DW UART_OST
.DW UART_INITDEV
.DW UART_QUERY
.DW UART_DEVICE
;
;
;
UART_IN:
CALL UART_IST ; RECEIVED CHAR READY?
JR Z,UART_IN ; LOOP IF NOT
LD C,(IY + 1) ; C := BASE UART PORT (WHICH IS ALSO RBR REG)
IN E,(C) ; CHAR READ TO E
XOR A ; SIGNAL SUCCESS
RET ; AND DONE
;
;
;
UART_OUT:
CALL UART_OST ; READY FOR CHAR?
JR Z,UART_OUT ; LOOP IF NOT
LD C,(IY + 1) ; C := BASE UART PORT (WHICH IS ALSO THR REG)
OUT (C),E ; SEND CHAR FROM E
XOR A ; SIGNAL SUCCESS
RET
;
;
;
UART_IST:
LD C,(IY + 2) ; C := LINE STATUS REG (LSR)
IN A,(C) ; GET STATUS
AND $01 ; ISOLATE BIT 0 (RECEIVE DATA READY)
JP Z,CIO_IDLE ; NOT READY, RETURN VIA IDLE PROCESSING
XOR A ; ZERO ACCUM
INC A ; ACCUM := 1 TO SIGNAL 1 CHAR WAITING
RET ; DONE
;
;
;
UART_OST:
LD C,(IY + 2) ; C := LINE STATUS REG (LSR)
IN A,(C) ; GET STATUS
AND $20 ; ISOLATE BIT 5 ()
JP Z,CIO_IDLE ; NOT READY, RETURN VIA IDLE PROCESSING
XOR A ; ZERO ACCUM
INC A ; ACCUM := 1 TO SIGNAL 1 BUFFER POSITION
RET ; DONE
;
;
;
UART_INITDEV:
XOR A ; NOT IMPLEMENTED!!!
RET
;
;
;
UART_QUERY:
PUSH IY ; COPY CFG ENTRY POINTER (IY)
POP HL ; ... TO HL
LD A,4 ; OFFSET OF BAUD RATE IS 4
CALL ADDHLA ; BUMP HL TO START OF BAUD RATE DWORD
CALL LD32 ; LOAD IT
XOR A ; SIGNAL SUCCESS
RET ; DONE
;
;
;
UART_DEVICE:
LD D,CIODEV_UART ; D := DEVICE TYPE
LD E,C ; E := PHYSICAL UNIT
XOR A ; SIGNAL SUCCESS
RET
;
; UART INITIALIZATION ROUTINE
;
UART_INITP:
; WAIT FOR ANY IN-FLIGHT DATA TO BE SENT
LD B,0 ; LOOP TIMEOUT COUNTER
UART_INITP00:
UART_INP(UART_LSR) ; GET LINE STATUS REGISTER
BIT 6,A ; TEST BIT 6 (TRANSMITTER EMPTY)
JR NZ,UART_INITP0 ; EMPTY, CONTINUE
LD DE,100 ; DELAY 100 * 16US
CALL VDELAY ; NORMALIZE TIMEOUT TO CPU SPEED
DJNZ UART_INITP00 ; KEEP CHECKING UNTIL TIMEOUT
UART_INITP0:
; DETECT THE UART TYPE
CALL UART_DETECT ; DETERMINE UART TYPE
LD (UART_TYPE),A ; SAVE TYPE
OR A ; SET FLAGS
RET Z ; ABORT IF NOTHING THERE
; UPDATE WORKING UART DEVICE NUM
LD HL,UART_DEV ; POINT TO CURRENT UART DEVICE NUM
LD A,(HL) ; PUT IN ACCUM
INC (HL) ; INCREMENT IT (FOR NEXT LOOP)
LD (IY),A ; UDPATE UNIT NUM
; SETUP FOR GENERIC INIT ROUTINE
LD A,(IY + 3) ; GET FEATURES BYTE
LD (UART_FUNC),A ; SAVE IT
; RESET FEATURE BITS
LD HL,UART_FEAT ; HL POINTS TO FEATURE FLAGS BYTE
XOR A ; RESET ALL FEATURES
LD (HL),A ; SAVE IT
; START OF UART INITIALIZATION, SET BAUD RATE
LD A,80H
UART_OUTP(UART_LCR) ; DLAB ON
CALL UART_COMPDIV ; COMPUTE DIVISOR TO BC
LD A,B
UART_OUTP(UART_DLM) ; SET DIVISOR (MS)
LD A,C
UART_OUTP(UART_DLL) ; SET DIVISOR (LS)
; SET LCR TO DEFAULT
LD A,$03 ; DLAB OFF, 8 DATA, 1 STOP, NO PARITY
UART_OUTP(UART_LCR) ; SAVE IT
; SET MCR TO DEFAULT
LD A,$03 ; DTR + RTS
UART_OUTP(UART_MCR) ; SAVE IT
LD A,(UART_TYPE) ; GET UART TYPE
CP UART_16550A ; 16550A OR BETTER?
JP C,UART_INITP1 ; NOPE, SKIP FIFO & AFC FEATURES
LD B,0 ; START BY ASSUMING NO FIFOS, FCR=0
LD A,(UART_FUNC) ; LOAD FIFO ENABLE REQUEST VALUE
BIT UART_FIFO,A ; TEST FOR FIFO REQUESTED
JR Z,UART_FIFO1 ; NOPE
LD B,$07 ; VALUE TO ENABLE AND RESET FIFOS
LD HL,UART_FEAT ; HL POINTS TO FEATURE FLAGS BYTE
SET UART_FIFO,(HL) ; RECORD FEATURE ENABLED
UART_FIFO1:
LD A,B ; MOVE VALUE TO A
UART_OUTP(UART_FCR) ; DO IT
LD A,(UART_TYPE) ; GET UART TYPE
CP UART_16550C ; 16550C OR BETTER?
JR C,UART_INITP1 ; NOPE, SKIP AFC FEATURES
; BRANCH BASED ON TYPE AFC CONFIGURATION (EFR OR MCR)
LD A,(UART_TYPE) ; GET UART TYPE
CP UART_16650 ; 16650?
JR Z,UART_AFC2 ; USE EFR REGISTER
CP UART_16850 ; 16750?
JR Z,UART_AFC2 ; USE EFR REGISTER
; SET AFC VIA MCR
LD B,$03 ; START WITH DEFAULT MCR
LD A,(UART_FUNC) ; LOAD AFC ENABLE REQUEST VALUE
BIT UART_AFC,A ; TEST FOR AFC REQUESTED
JR Z,UART_AFC1 ; NOPE
SET 5,B ; SET MCR BIT TO ENABLE AFC
LD HL,UART_FEAT ; HL POINTS TO FEATURE FLAGS BYTE
SET UART_AFC,(HL) ; RECORD FEATURE ENABLED
UART_AFC1:
LD A,B ; MOVE VALUE TO Ar
UART_OUTP(UART_MCR) ; SET AFC VALUE VIA MCR
JR UART_INITP1 ; AND CONTINUE
UART_AFC2: ; SET AFC VIA EFR
LD A,$BF ; VALUE TO ACCESS EFR
UART_OUTP(UART_LCR) ; SET VALUE IN LCR
LD B,0 ; ASSUME AFC OFF, EFR=0
LD A,(UART_FUNC) ; LOAD AFC ENABLE REQUEST VALUE
BIT UART_AFC,A ; TEST FOR AFC REQUESTED
JR Z,UART_AFC3 ; NOPE
LD B,$C0 ; ENABLE CTS/RTS FLOW CONTROL
LD HL,UART_FEAT ; HL POINTS TO FEATURE FLAGS BYTE
SET UART_AFC,(HL) ; RECORD FEATURE ENABLED
UART_AFC3:
LD A,B ; MOVE VALUE TO A
UART_OUTP(UART_EFR) ; SAVE IT
LD A,$03 ; NORMAL LCR VALUE
UART_OUTP(UART_LCR) ; SAVE IT
UART_INITP1:
#IF (UART_DEBUG)
PRTS(" [$")
; DEBUG: DUMP UART TYPE
LD A,(UART_TYPE)
CALL PRTHEXBYTE
; DEBUG: DUMP IIR
UART_INP(UART_IIR)
CALL PC_SPACE
CALL PRTHEXBYTE
; DEBUG: DUMP LCR
UART_INP(UART_LCR)
CALL PC_SPACE
CALL PRTHEXBYTE
; DEBUG: DUMP MCR
UART_INP(UART_MCR)
CALL PC_SPACE
CALL PRTHEXBYTE
; DEBUG: DUMP EFR
LD A,$BF
UART_OUTP(UART_LCR)
UART_INP(UART_EFR)
PUSH AF
LD A,$03
UART_OUTP(UART_LCR)
POP AF
CALL PC_SPACE
CALL PRTHEXBYTE
PRTC(']')
#ENDIF
; ANNOUNCE PORT
CALL NEWLINE ; FORMATTING
PRTS("UART$") ; FORMATTING
LD A,(IY) ; DEVICE NUM
CALL PRTDECB ; PRINT DEVICE NUM
PRTS(": IO=0x$") ; FORMATTING
LD A,(IY + 1) ; GET BASE PORT
CALL PRTHEXBYTE ; PRINT BASE PORT
; PRINT THE UART TYPE
LD A,(UART_TYPE)
RLCA
LD HL,UART_TYPE_MAP
LD D,0
LD E,A
ADD HL,DE ; HL NOW POINTS TO MAP ENTRY
LD A,(HL)
INC HL
LD D,(HL)
LD E,A ; HL NOW POINTS TO STRING
CALL PC_SPACE
CALL WRITESTR ; PRINT THE STRING
;
; ALL DONE IF NO UART WAS DETECTED
LD A,(UART_TYPE)
OR A
JR Z,UART_INITP3
;
; PRINT BAUD RATE
PRTS(" BAUD=$")
; CALL PRTDEC
; BAUD RATE -> DE:HL
PUSH IY ; DATA PTR
POP HL ; ... TO HL
INC HL
INC HL
INC HL
INC HL
CALL LD32 ; BAUD RATE -> DE:HL
LD BC,UART_INITBUF
CALL BIN2BCD
CALL PRTBCD
;
; PRINT FEATURES ENABLED
LD A,(UART_FEAT)
BIT UART_FIFO,A
JR Z,UART_INITP2
PRTS(" FIFO$")
UART_INITP2:
BIT UART_AFC,A
JR Z,UART_INITP3
PRTS(" AFC$")
UART_INITP3:
;
RET
;
UART_INITBUF .FILL 5,0 ; WORKING BUFFER FOR BCD NUMBER
;
; UART DETECTION ROUTINE
;
UART_DETECT:
;
; SEE IF UART IS THERE BY CHECKING DLAB FUNCTIONALITY
XOR A ; ZERO ACCUM
UART_OUTP(UART_IER) ; IER := 0
LD A,$80 ; DLAB BIT ON
UART_OUTP(UART_LCR) ; OUTPUT TO LCR (DLAB REGS NOW ACTIVE)
LD A,$5A ; LOAD TEST VALUE
UART_OUTP(UART_DLM) ; OUTPUT TO DLM
UART_INP(UART_DLM) ; READ IT BACK
CP $5A ; CHECK FOR TEST VALUE
JP NZ,UART_DETECT_NONE ; NOPE, UNKNOWN UART OR NOT PRESENT
XOR A ; DLAB BIT OFF
UART_OUTP(UART_LCR) ; OUTPUT TO LCR (DLAB REGS NOW INACTIVE)
UART_INP(UART_IER) ; READ IER
CP $5A ; CHECK FOR TEST VALUE
JP Z,UART_DETECT_NONE ; IF STILL $5A, UNKNOWN OR NOT PRESENT
;
; TEST FOR FUNCTIONAL SCRATCH REG, IF NOT, WE HAVE AN 8250
LD A,$5A ; LOAD TEST VALUE
UART_OUTP(UART_SCR) ; PUT IT IN SCRATCH REGISTER
UART_INP(UART_SCR) ; READ IT BACK
CP $5A ; CHECK IT
JR NZ,UART_DETECT_8250 ; STUPID 8250
;
; TEST FOR EFR REGISTER WHICH IMPLIES 16650/850
LD A,$BF ; VALUE TO ENABLE EFR
UART_OUTP(UART_LCR) ; WRITE IT TO LCR
UART_INP(UART_SCR) ; READ SCRATCH REGISTER
CP $5A ; SPR STILL THERE?
JR NZ,UART_DETECT1 ; NOPE, HIDDEN, MUST BE 16650/850
;
; RESET LCR TO DEFAULT
LD A,$80 ; DLAB BIT ON
UART_OUTP(UART_LCR) ; RESET LCR
;
; TEST FCR TO ISOLATE 16450/550/550A
LD A,$E7 ; TEST VALUE
UART_OUTP(UART_FCR) ; PUT IT IN FCR
UART_INP(UART_IIR) ; READ BACK FROM IIR
BIT 6,A ; BIT 6 IS FIFO ENABLE, LO BIT
JR Z,UART_DETECT_16450 ; IF NOT SET, MUST BE 16450
BIT 7,A ; BIT 7 IS FIFO ENABLE, HI BIT
JR Z,UART_DETECT_16550 ; IF NOT SET, MUST BE 16550
BIT 5,A ; BIT 5 IS 64 BYTE FIFO
JR Z,UART_DETECT2 ; IF NOT SET, MUST BE 16550A/C
JR UART_DETECT_16750 ; ONLY THING LEFT IS 16750
;
UART_DETECT1: ; PICK BETWEEN 16650/850
; NOT SURE HOW TO DIFFERENTIATE 16650 FROM 16850 YET
JR UART_DETECT_16650 ; ASSUME 16650
RET
;
UART_DETECT2: ; PICK BETWEEN 16550A/C
; SET AFC BIT IN FCR
LD A,$20 ; SET AFC BIT, MCR:5
UART_OUTP(UART_MCR) ; WRITE NEW FCR VALUE
;
; READ IT BACK, IF SET, WE HAVE 16550C
UART_INP(UART_MCR) ; READ BACK MCR
BIT 5,A ; CHECK AFC BIT
JR Z,UART_DETECT_16550A ; NOT SET, SO 16550A
JR UART_DETECT_16550C ; IS SET, SO 16550C
;
UART_DETECT_NONE:
LD A,(IY + 1)
CP $68
JR Z,UART_DETECT_8250 ; SPECIAL CASE FOR PRIMARY UART!
LD A,UART_NONE
RET
;
UART_DETECT_8250:
LD A,UART_8250
RET
;
UART_DETECT_16450:
LD A,UART_16450
RET
;
UART_DETECT_16550:
LD A,UART_16550
RET
;
UART_DETECT_16550A:
LD A,UART_16550A
RET
;
UART_DETECT_16550C:
LD A,UART_16550C
RET
;
UART_DETECT_16650:
LD A,UART_16650
RET
;
UART_DETECT_16750:
LD A,UART_16750
RET
;
UART_DETECT_16850:
LD A,UART_16850
RET
;
; COMPUTE DIVISOR TO BC
;
UART_COMPDIV:
; SETUP DE:HL WITH OSC FREQUENCY
;LD DE,(UART_OSCHI)
;LD HL,(UART_OSCLO)
LD DE,UARTOSC >> 16 ; GET HI WORD OF UART OSC FREQ
LD HL,UARTOSC & $FFFF ; GET LO WORD OF UART OSC FREQ
; DIVIDE OSC FREQ BY PRESCALE FACTOR OF 16
LD B,4 ; 4 ITERATIONS
UART_COMPDIV1:
SRL D
RR E
RR H
RR L
DJNZ UART_COMPDIV1
; CONVERT FROM DE:HL -> A:HL (THROW AWAY HIGH BYTE)
LD A,E
PUSH AF
PUSH HL
; SETUP C:DE WITH TARGET BAUD RATE
;LD BC,(UART_BAUDHI)
;LD DE,(UART_BAUDLO)
PUSH IY
POP HL
INC HL
INC HL
INC HL
INC HL
CALL LD32
PUSH DE
POP BC
EX DE,HL
; RECOVER OSC FREQ IN A:HL
POP HL
POP AF
; DIVIDE OSC FREQ AND BAUD BY 2 UNTIL FREQ FITS IN 16 BITS
UART_COMPDIV2:
SRL A
RR H
RR L
SRL C
RR D
RR E
OR A
JR NZ,UART_COMPDIV2
; DIVIDE ADJUSTED VALUES (OSC FREQ / BAUD RATE)
CALL DIV16
RET
;
; ROUTINES TO READ/WRITE PORTS INDIRECTLY
;
; READ VALUE OF UART PORT ON TOS INTO REGISTER A
;
UART_INP_IMP:
EX (SP),HL ; SWAP HL AND TOS
PUSH BC ; PRESERVE BC
LD A,(IY + 1) ; GET UART IO BASE PORT
OR (HL) ; OR IN REGISTER ID BITS
LD C,A ; C := PORT
IN A,(C) ; READ PORT INTO A
POP BC ; RESTORE BC
INC HL ; BUMP HL PAST REG ID PARM
EX (SP),HL ; SWAP BACK HL AND TOS
RET
;
; WRITE VALUE IN REGISTER A TO UART PORT ON TOS
;
UART_OUTP_IMP:
EX (SP),HL ; SWAP HL AND TOS
PUSH BC ; PRESERVE BC
LD B,A ; PUT VALUE TO WRITE IN B
LD A,(IY + 1) ; GET UART IO BASE PORT
OR (HL) ; OR IN REGISTER ID BITS
LD C,A ; C := PORT
OUT (C),B ; WRITE VALUE TO PORT
POP BC ; RESTORE BC
INC HL ; BUMP HL PAST REG ID PARM
EX (SP),HL ; SWAP BACK HL AND TOS
RET
;
;
;
UART_TYPE_MAP:
.DW UART_STR_NONE
.DW UART_STR_8250
.DW UART_STR_16450
.DW UART_STR_16550
.DW UART_STR_16550A
.DW UART_STR_16550C
.DW UART_STR_16650
.DW UART_STR_16750
.DW UART_STR_16850
UART_STR_NONE .DB "<NOT PRESENT>$"
UART_STR_8250 .DB "8250$"
UART_STR_16450 .DB "16450$"
UART_STR_16550 .DB "16550$"
UART_STR_16550A .DB "16550A$"
UART_STR_16550C .DB "16550C$"
UART_STR_16650 .DB "16650$"
UART_STR_16750 .DB "16750$"
UART_STR_16850 .DB "16850$"
;
; WORKING VARIABLES
;
UART_TYPE .DB 0 ; UART TYPE DISCOVERED
UART_FUNC .DB 0 ; UART FUNCTIONS REQUESTED
UART_FEAT .DB 0 ; UART FEATURES DISCOVERED
UART_DEV .DB 0 ; DEVICE NUM USED DURING INIT
;
; UART PORT TABLE
;
UART_CFG:
#IF (UARTCNT >= 1)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART0IOB ; IO PORT BASE (RBR, THR)
.DB UART0IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART0FEAT
.DW UART0BAUD & $FFFF
.DW UART0BAUD >> 16
#ENDIF
#IF (UARTCNT >= 2)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART1IOB ; IO PORT BASE
.DB UART1IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART1FEAT
.DW UART1BAUD & $FFFF
.DW UART1BAUD >> 16
#ENDIF
#IF (UARTCNT >= 3)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART2IOB ; IO PORT BASE
.DB UART2IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART2FEAT
.DW UART2BAUD & $FFFF
.DW UART2BAUD >> 16
#ENDIF
#IF (UARTCNT >= 4)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART3IOB ; IO PORT BASE
.DB UART3IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART3FEAT
.DW UART3BAUD & $FFFF
.DW UART3BAUD >> 16
#ENDIF
#IF (UARTCNT >= 5)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART4IOB ; IO PORT BASE
.DB UART4IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART4FEAT
.DW UART4BAUD & $FFFF
.DW UART4BAUD >> 16
#ENDIF
#IF (UARTCNT >= 6)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART5IOB ; IO PORT BASE
.DB UART5IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART5FEAT
.DW UART5BAUD & $FFFF
.DW UART5BAUD >> 16
#ENDIF
#IF (UARTCNT >= 7)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART6IOB ; IO PORT BASE
.DB UART6IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART6FEAT
.DW UART6BAUD & $FFFF
.DW UART6BAUD >> 16
#ENDIF
#IF (UARTCNT >= 8)
.DB 0 ; DEVICE NUMBER (UPDATED DURING INIT)
.DB UART7IOB ; IO PORT BASE
.DB UART7IOB + UART_LSR ; LINE STATUS PORT (LSR)
.DB UART7FEAT
.DW UART7BAUD & $FFFF
.DW UART7BAUD >> 16
#ENDIF