You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2050 lines
49 KiB

;
;==================================================================================================
; HBIOS
;==================================================================================================
;
; INCLUDE GENERIC STUFF
;
#INCLUDE "std.asm"
;
.ORG 0
;
;==================================================================================================
; NORMAL PAGE ZERO SETUP, RET/RETI/RETN AS APPROPRIATE
;==================================================================================================
;
.FILL (000H - $),0FFH ; RST 0
JP HB_START
.DW ROM_SIG
.FILL (008H - $),0FFH ; RST 8
JP HB_DISPATCH
.FILL (010H - $),0FFH ; RST 10
RET
.FILL (018H - $),0FFH ; RST 18
RET
.FILL (020H - $),0FFH ; RST 20
RET
.FILL (028H - $),0FFH ; RST 28
RET
.FILL (030H - $),0FFH ; RST 30
RET
.FILL (038H - $),0FFH ; INT
RETI
.FILL (066H - $),0FFH ; NMI
RETN
;
.FILL (070H - $),0FFH ; SIG STARTS AT $80
;
ROM_SIG:
.DB $76, $B5 ; 2 SIGNATURE BYTES
.DB 1 ; STRUCTURE VERSION NUMBER
.DB 7 ; ROM SIZE (IN MULTIPLES OF 4KB, MINUS ONE)
.DW NAME ; POINTER TO HUMAN-READABLE ROM NAME
.DW AUTH ; POINTER TO AUTHOR INITIALS
.DW DESC ; POINTER TO LONGER DESCRIPTION OF ROM
.DB 0, 0, 0, 0, 0, 0 ; RESERVED FOR FUTURE USE; MUST BE ZERO
;
NAME .DB "ROMWBW v", BIOSVER, ", ", TIMESTAMP, 0
AUTH .DB "WBW",0
DESC .DB "ROMWBW v", BIOSVER, ", Copyright 2015, Wayne Warthen, GNU GPL v3", 0
;
.FILL ($100 - $),$FF ; PAD REMAINDER OF PAGE ZERO
;
HCB .FILL $100,$FF ; RESERVED FOR HBIOS CONTROL BLOCK
;
;==================================================================================================
; HBIOS UPPER MEMORY PROXY (RELOCATED TO RUN IN TOP 2 PAGES OF CPU RAM)
;==================================================================================================
;
; THE FOLLOWING CODE IS RELOCATED TO THE TOP OF MEMORY TO HANDLE INVOCATION DISPATCHING
;
.FILL (HBX_IMG - $) ; FILL TO START OF PROXY IMAGE START
.ORG HBX_LOC ; ADJUST FOR RELOCATION
;
; MEMORY LAYOUT:
; HBIOS PROXY CODE $FE00 (256 BYTES)
; INTERRUPT VECTORS $FF00 (32 BYTES, 16 ENTRIES)
; HBIOS PROXY COPY BUFFER $FF20 (128 BYTES)
; HBIOS PROXY PRIVATE STACK $FFA0 (64 BYTES, 32 ENTRIES)
; HBIOS PROXY MGMT BLOCK $FFE0 (32 BYTES)
;
; DEFINITIONS
;
HBX_CODSIZ .EQU $100 ; 256 BYTE CODE SPACE
HBX_IVTSIZ .EQU $20 ; INT VECTOR TABLE SIZE (16 ENTRIES)
HBX_BUFSIZ .EQU $80 ; INTERBANK COPY BUFFER
HBX_STKSIZ .EQU $40 ; PRIVATE STACK SIZE
;
; HBIOS IDENTIFICATION DATA BLOCK
;
HBX_IDENT:
.DB 'W',~'W' ; MARKER
.DB RMJ << 4 | RMN ; FIRST BYTE OF VERSION INFO
.DB RUP << 4 | RTP ; SECOND BYTE OF VERSION INFO
;
;==================================================================================================
; HBIOS ENTRY FOR RST 08 PROCESSING
;==================================================================================================
;
HBX_INVOKE:
LD (HBX_STKSAV),SP ; SAVE ORIGINAL STACK FRAME
LD SP,HBX_STACK ; SETUP NEW STACK FRAME
LD A,(HB_CURBNK) ; GET CURRENT BANK
LD (HBX_INVBNK),A ; SETUP TO RESTORE AT EXIT
LD A,BID_BIOS ; HBIOS BANK
CALL HBX_BNKSEL ; SELECT IT
CALL HB_DISPATCH ; CALL HBIOS FUNCTION DISPATCHER
PUSH AF ; SAVE AF (FUNCTION RETURN)
LD A,$FF ; LOAD ORIGINAL BANK ($FF IS REPLACED AT ENTRY)
HBX_INVBNK .EQU $ - 1
CALL HBX_BNKSEL ; SELECT IT
POP AF ; RESTORE AF
LD SP,0 ; RESTORE ORIGINAL STACK FRAME
HBX_STKSAV .EQU $ - 2
RET ; RETURN TO CALLER
;
;;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
;; SETBNK - Switch Memory Bank to Bank in A.
;; Preserve all Registers including Flags.
;; Does NOT update current bank.
;;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
;
HBX_BNKSEL:
LD (HB_CURBNK),A ; RECORD NEW CURRENT BANK
;
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA))
OUT (MPCL_ROM),A ; SET ROM PAGE SELECTOR
OUT (MPCL_RAM),A ; SET RAM PAGE SELECTOR
RET ; DONE
#ENDIF
#IF (PLATFORM == PLT_ZETA2)
BIT 7,A ; BIT 7 SET REQUESTS RAM PAGE
JR Z,HBX_ROM ; NOT SET, SELECT ROM PAGE
RES 7,A ; RAM PAGE REQUESTED: CLEAR ROM BIT
ADD A,16 ; ADD 16 x 32K - RAM STARTS FROM 512K
;
HBX_ROM:
RLCA ; TIMES 2 - GET 16K PAGE INSTEAD OF 32K
OUT (MPGSEL_0),A ; BANK_0: 0K - 16K
INC A ;
OUT (MPGSEL_1),A ; BANK_1: 16K - 32K
RET ; DONE
#ENDIF
#IF (PLATFORM == PLT_N8)
BIT 7,A ; TEST BIT 7 FOR RAM VS. ROM
JR Z,HBX_ROM ; IF NOT SET, SELECT ROM PAGE
;
HBX_RAM:
RES 7,A ; CLEAR BIT 7 FROM ABOVE
RLCA ; SCALE SELECTOR TO
RLCA ; ... GO FROM Z180 4K PAGE SIZE
RLCA ; ... TO DESIRED 32K PAGE SIZE
OUT0 (Z180_BBR),A ; WRITE TO BANK BASE
LD A,N8_DEFACR | 80H ; SELECT RAM BY SETTING BIT 7
OUT0 (N8_ACR),A ; ... IN N8 ACR REGISTER
RET ; DONE
;
HBX_ROM:
OUT0 (N8_RMAP),A ; BANK INDEX TO N8 RMAP REGISTER
XOR A ; ZERO ACCUM
OUT0 (Z180_BBR),A ; ZERO BANK BASE
LD A,N8_DEFACR ; SELECT ROM BY CLEARING BIT 7
OUT0 (N8_ACR),A ; ... IN N8 ACR REGISTER
RET ; DONE
;
#ENDIF
#IF (PLATFORM == PLT_MK4)
RLCA ; RAM FLAG TO CARRY FLAG AND BIT 0
JR NC,HBX_BNKSEL1 ; IF NC, WANT ROM PAGE, SKIP AHEAD
XOR %00100001 ; SET BIT FOR HI 512K, CLR BIT 0
HBX_BNKSEL1:
RLCA ; CONTINUE SHIFTING TO SCALE SELECTOR
RLCA ; FOR Z180 4K PAGE -> DESIRED 32K PAGE
OUT0 (Z180_BBR),A ; WRITE TO BANK BASE
RET ; DONE
#ENDIF
;
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
; Copy Data - Possibly between banks. This resembles CP/M 3, but
; usage of the HL and DE registers is reversed.
; Caller MUST ensure stack is already in high memory.
; Enter:
; HL = Source Address
; DE = Destination Address
; BC = Number of bytes to copy
; Exit : None
; Uses : AF,BC,DE,HL
;
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
;
HBX_BNKCPY:
; Save current bank to restore at end
LD A,(HB_CURBNK)
LD (HBX_CPYBNK),A
; Setup for copy loop
LD (HB_SRCADR),HL ; Init working source adr
LD (HB_DSTADR),DE ; Init working dest adr
LD H,B ; Move bytes to copy from BC
LD L,C ; ... to HL to use as byte counter
;
HBX_BNKCPY2:
; Copy loop
LD A,L ; Low byte of count to A
AND $7F ; Isolate bits relevant to 128 byte buf
LD BC,$80 ; Assume full buf copy
JR Z,HBX_BNKCPY3 ; If full buf copy, go do it
LD C,A ; Otherwise, BC := bytes to copy
;
HBX_BNKCPY3:
PUSH HL ; Save bytes left to copy
CALL HBX_BNKCPY4 ; Do it
POP HL ; Recover bytes left to copy
XOR A ; Clear CF
SBC HL,BC ; Reflect bytes copied in HL
JR NZ,HBX_BNKCPY2 ; If any left, then loop
LD A,$FF ; Load original bank ($FF is replaced at entry)
HBX_CPYBNK .EQU $ - 1
JR HBX_BNKSEL ; Select and return
;
HBX_BNKCPY4: ; Switch to source bank
LD A,(HB_SRCBNK) ; Get source bank
CALL HBX_BNKSEL ; Set source bank
;
; Copy BC bytes from HL -> BUF, allow HL to increment
PUSH BC ; Save copy length
LD HL,(HB_SRCADR) ; Point to source adr
LD DE,HBX_BUF ; Setup buffer as interim destination
LDIR ; Copy BC bytes: src -> buffer
LD (HB_SRCADR),HL ; Update source adr
POP BC ; Recover copy length
;
; Switch to dest bank
LD A,(HB_DSTBNK) ; Get destination bank
CALL HBX_BNKSEL ; Set destination bank
;
; Copy BC bytes from BUF -> HL, allow DE to increment
PUSH BC ; Save copy length
LD HL,HBX_BUF ; Use the buffer as source now
LD DE,(HB_DSTADR) ; Setup final destination for copy
LDIR ; Copy BC bytes: buffer -> dest
LD (HB_DSTADR),DE ; Update dest adr
POP BC ; Recover copy length
;
RET ; Done
;
; Call a routine in another bank saving and restoring the original bank.
; Caller MUST ensure stack is already in high memory.
; On input A=target bank, HL=target address
;
HBX_BNKCALL:
LD (HBX_TGTBNK),A ; stuff target bank to call into code below
LD (HBX_TGTADR),HL ; stuff address to call into code below
LD A,(HB_CURBNK) ; get current bank
PUSH AF ; save for return
HBX_TGTBNK .EQU $ + 1
LD A,$FF ; load bank to call ($FF overlaid at entry)
CALL HBX_BNKSEL ; activate the new bank
HBX_TGTADR .EQU $ + 1
CALL $FFFF ; call routine ($FFFF is overlaid above)
EX (SP),HL ; save hl and get bank to restore in hl
PUSH AF ; save af
LD A,H ; bank to restore to a
CALL HBX_BNKSEL ; restore it
POP AF ; recover af
POP HL ; recover hl
RET
;
; INTERRUPT HANDLER DISPATCHING
;
INT_TIMER: ; TIMER INTERRUPT HANDLER
PUSH HL ; SAVE HL
LD HL,HB_TIMINT ; HL := INT ADR IN BIOS
JR HBX_INT ; GO TO ROUTING CODE
;
INT_BAD: ; BAD INTERRUPT HANDLER
PUSH HL ; SAVE HL
LD HL,HB_BADINT
JR HBX_INT
;
; COMMON INTERRUPT DISPATCHING CODE
; SETUP AND CALL HANDLER IN BIOS BANK
;
HBX_INT: ; COMMON INTERRUPT ROUTING CODE
;
; SAVE STATE (ASSUMES HL SAVED PREVIOUSLY)
PUSH AF ; SAVE AF
PUSH BC ; SAVE BC
PUSH DE ; SAVE DE
; ACTIVATE BIOS BANK
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA))
LD A,BID_BIOS ; BIOS PAGE INDEX TO ACCUM
OUT (MPCL_ROM),A ; SET ROM PAGE SELECTOR
OUT (MPCL_RAM),A ; SET RAM PAGE SELECTOR
#ENDIF
#IF (PLATFORM == PLT_ZETA2)
LD A,(BID_BIOS - $80 + $10) * 2 ; BIOS BID -> PAGE INDEX -> A
OUT (MPGSEL_0),A ; BANK_0: 0K - 16K
INC A ;
OUT (MPGSEL_1),A ; BANK_1: 16K - 32K
#ENDIF
#IF (PLATFORM == PLT_N8)
LD A,(BID_BIOS << 3) & $FF ; BIOS BID -> BBR VAL -> A
OUT0 (Z180_BBR),A ; WRITE TO Z180 BANK BASE REG
LD A,N8_DEFACR | $80 ; BIT 7 SET FOR RAM
OUT0 (N8_ACR),A ; WRITE TO N8 ACR
#ENDIF
#IF (PLATFORM == PLT_MK4)
LD A,(BID_BIOS << 3) & $FF | $80 ; BIOS BID -> PAGE INDEX -> A
OUT0 (Z180_BBR),A ; WRITE TO Z180 BANK BASE REG
#ENDIF
; SETUP INTERRUPT PROCESSING STACK IN HBIOS
LD (HB_INTSTKSAV),SP ; SAVE STACK POINTER
LD SP,HB_INTSTK ; SWITCH TO INTERRUPT STACK
; DO THE REAL WORK
CALL JPHL ; CALL INTERRUPT ROUTINE
; RESTORE STACK
LD SP,(HB_INTSTKSAV) ; RESTORE STACK
; RESTORE BANK
LD A,(HB_CURBNK) ; GET PRE-INT BANK
;
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA))
OUT (MPCL_ROM),A ; SET ROM PAGE SELECTOR
OUT (MPCL_RAM),A ; SET RAM PAGE SELECTOR
#ENDIF
#IF (PLATFORM == PLT_ZETA2)
BIT 7,A ; BIT 7 SET REQUESTS RAM PAGE
JR Z,HBX_INT1 ; NOT SET, SELECT ROM PAGE
RES 7,A ; RAM PAGE REQUESTED: CLEAR ROM BIT
ADD A,16 ; ADD 16 x 32K - RAM STARTS FROM 512K
;
HBX_INT1:
RLCA ; TIMES 2 - GET 16K PAGE INSTEAD OF 32K
OUT (MPGSEL_0),A ; BANK_0: 0K - 16K
INC A ;
OUT (MPGSEL_1),A ; BANK_1: 16K - 32K
#ENDIF
#IF (PLATFORM == PLT_N8)
BIT 7,A ; TEST BIT 7 FOR RAM VS. ROM
JR Z,HBX_INT1 ; IF NOT SET, SELECT ROM PAGE
;
RES 7,A ; CLEAR BIT 7 FOR RAM VS. ROM
RLCA ; SCALE SELECTOR TO
RLCA ; ... GO FROM Z180 4K PAGE SIZE
RLCA ; ... TO DESIRED 32K PAGE SIZE
OUT0 (Z180_BBR),A ; WRITE TO BANK BASE
JR HBX_INT2 ; CONTINUE
;
HBX_INT1: ; SELECT ROM PAGE
XOR A ; ZERO ACCUM
OUT0 (Z180_BBR),A ; ZERO BANK BASE
LD A,N8_DEFACR ; SELECT ROM BY CLEARING BIT 7
OUT0 (N8_ACR),A ; ... IN N8 ACR REGISTER
;
HBX_INT2:
#ENDIF
#IF (PLATFORM == PLT_MK4)
RLCA ; RAM FLAG TO CARRY AND BIT 0
JR NC,HBX_INT1 ; IF NC, ROM, SKIP AHEAD
XOR %00100001 ; SET BIT FOR HI 512K, CLR BIT 0
HBX_INT1:
RLCA ; ROTATE
RLCA ; ... AGAIN
OUT0 (Z180_BBR),A ; WRITE TO BANK REGISTER
#ENDIF
;
; RESTORE STATE
POP DE ; RESTORE DE
POP BC ; RESTORE BC
POP AF ; RESTORE AF
POP HL ; RESTORE HL
; DONE
RETI ; IMPLICITLY REENABLES INTERRUPTS!
;
; FILLER FOR UNUSED HBIOS PROXY CODE SPACE
; PAD TO START OF INTERRUPT VECTOR TABLE
;
HBX_SLACK .EQU (HBX_LOC + HBX_CODSIZ - $)
.ECHO "HBIOS PROXY space remaining: "
.ECHO HBX_SLACK
.ECHO " bytes.\n"
.FILL HBX_SLACK,$FF
;
; HBIOS INTERRUPT VECTOR TABLE (16 ENTRIES)
;
HBX_IVT:
.DW INT_TIMER
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
.DW INT_BAD
;
; INTERBANK COPY BUFFER (128 BYTES)
;
HBX_BUF .FILL HBX_BUFSIZ,0
;
; PRIVATE STACK (64 BYTES, 32 ENTRIES)
;
.FILL HBX_STKSIZ,$FF
HBX_STACK .EQU $
;
; HBIOS PROXY MGMT BLOCK (TOP 32 BYTES)
;
.DB BID_BOOT ; CURRENTLY ACTIVE LOW MEMORY BANK ID
.DB $FF ; DEPRECATED!!!
.DW 0 ; BNKCPY SOURCE ADDRESS
.DB BID_USR ; BNKCPY SOURCE BANK ID
.DW 0 ; BNKCPY DESTINATION ADDRESS
.DB BID_USR ; BNKCPY DESTINATION BANK ID
.FILL 8,0 ; FILLER, RESERVED FOR FUTURE HBIOS USE
JP HBX_INVOKE ; FIXED ADR ENTRY FOR HBX_INVOKE (ALT FOR RST 08)
JP HBX_BNKSEL ; FIXED ADR ENTRY FOR HBX_BNKSEL
JP HBX_BNKCPY ; FIXED ADR ENTRY FOR HBX_BNKCPY
JP HBX_BNKCALL ; FIXED ADR ENTRY FOR HBX_BNKCALL
.DW HBX_IDENT ; ADDRESS OF HBIOS PROXY START
.DW HBX_IDENT ; ADDRESS OF HBIOS IDENT INFO DATA BLOCK
;
.FILL $MEMTOP - $ ; FILL TO END OF MEMORY (AS NEEDED)
.ORG HBX_IMG + HBX_SIZ ; RESET ORG
;
;==================================================================================================
; HBIOS CORE
;==================================================================================================
;
;
;==================================================================================================
; ENTRY VECTORS (JUMP TABLE)
;==================================================================================================
;
JP HB_START ; HBIOS INITIALIZATION
JP HB_DISPATCH ; VECTOR TO DISPATCHER
;
;==================================================================================================
; SYSTEM INITIALIZATION
;==================================================================================================
;
HB_START:
;
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
; SET BASE FOR CPU IO REGISTERS
LD A,Z180_BASE
OUT0 (Z180_ICR),A
; DISABLE REFRESH
XOR A
OUT0 (Z180_RCR),A
; SET DEFAULT WAIT STATES TO ACCURATELY MEASURE CPU SPEED
LD A,$F0
OUT0 (Z180_DCNTL),A
#IF (Z180_CLKDIV >= 1)
; SET CLOCK DIVIDE TO 1 RESULTING IN FULL XTAL SPEED
LD A,$80
OUT0 (Z180_CCR),A
#ENDIF
#IF (Z180_CLKDIV >= 2)
; SET CPU MULTIPLIER TO 1 RESULTING IN XTAL * 2 SPEED
LD A,$80
OUT0 (Z180_CMR),A
#ENDIF
#ENDIF
;
CALL HB_CPUSPD ; CPU SPEED DETECTION
;
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
;
; SET DESIRED WAIT STATES
LD A,0 + (Z180_MEMWAIT << 6) | (Z180_IOWAIT << 4)
OUT0 (Z180_DCNTL),A
;
#ENDIF
;
CALL DELAY_INIT ; INITIALIZE SPEED COMPENSATED DELAY FUNCTIONS
;
; ANNOUNCE HBIOS
;
;
; DISPLAY THE PRE-INITIALIZATION BANNER
;
CALL NEWLINE
CALL NEWLINE
PRTX(STR_BANNER)
CALL NEWLINE
CALL NEWLINE
PRTX(STR_PLATFORM)
PRTS(" @ $")
LD HL,(HCB + HCB_CPUKHZ)
CALL PRTD3M ; PRINT AS DECIMAL WITH 3 DIGIT MANTISSA
PRTS("MHz ROM=$")
LD HL,ROMSIZE
CALL PRTDEC
PRTS("KB RAM=$")
LD HL,RAMSIZE
CALL PRTDEC
PRTS("KB$")
;
; INITIALIZE HEAP STORAGE VARIABLES
;
LD DE,HB_END ; GET ADDRESS OF START OF HEAP
;
; HEAP STARTS AT END OF HBIOS
LD HL,HCB + HCB_HEAP ; POINT TO HEAP START ADDRESS VARIABLE
LD (HL),E ; SAVE LSB
INC HL ; BUMP
LD (HL),D ; SAVE MSB
;
; INIT HEAP TOP TO HEAP START
LD HL,HCB + HCB_HEAPTOP ; POINT TO HEAP TOP ADDRESS VARIABLE
LD (HL),E ; SAVE LSB
INC HL ; BUMP
LD (HL),D ; SAVE MSB
;
; CLEAR HEAP
LD HL,HB_END ; START OF HEAP
LD BC,BNKTOP - HB_END ; MAX SIZE OF HEAP
LD A,$FF ; FILL WITH $FF
CALL FILL ; DO IT
;
; PERFORM DEVICE INITIALIZATION
;
LD B,HB_INITTBLLEN
LD DE,HB_INITTBL
INITSYS1:
CALL NEWLINE
LD A,(DE)
LD L,A
INC DE
LD A,(DE)
LD H,A
INC DE
PUSH DE
PUSH BC
CALL JPHL
POP BC
POP DE
DJNZ INITSYS1
;
; PRIOR TO THIS POINT, CONSOLE I/O WAS DIRECTED TO HARDWARE (XIO.ASM).
; NOW THAT HBIOS IS READY, SET THE CONSOLE UNIT TO ACTIVATE CONSOLE I/O
; VIA HBIOS.
;
XOR A ; CONSOLE DEVICE IS UNIT #0 BY FIAT
LD (HCB + HCB_CONDEV),A ; SAVE IT, ACTIVATES CONSOLE ON HBIOS
;
; NOW SWITCH TO CRT CONSOLE IF CONFIGURED
;
#IF CRTACT
;
; IF PLATFORM HAS A CONFIG JUMPER, CHECK TO SEE IF IT IS JUMPERED.
; IF SO, BYPASS SWITCH TO CRT CONSOLE (FAILSAFE MODE)
;
#IF ((PLATFORM != PLT_N8) & (PLATFORM != PLT_MK4))
IN A,(RTC) ; RTC PORT, BIT 6 HAS STATE OF CONFIG JUMPER
BIT 6,A ; BIT 6 HAS CONFIG JUMPER STATE
JR Z,INITSYS2 ; Z=SHORTED, BYPASS CONSOLE SWITCH
#ENDIF
;
; NOTIFY USER OF CONSOLE SWITCH ON BOOT CONSOLE
CALL NEWLINE
CALL NEWLINE
PRTX(STR_SWITCH)
CALL NEWLINE
;
; SWITCH TO CRT CONSOLE
LD A,(HCB + HCB_CRTDEV) ; GET CRT DISPLAY DEVICE
LD (HCB + HCB_CONDEV),A ; SAVE IT AS ACTIVE CONSOLE DEVICE
;
; DISPLAY HBIOS BANNER ON NEW CONSOLE
CALL NEWLINE
CALL NEWLINE
PRTX(STR_BANNER)
CALL NEWLINE
#ENDIF
;
INITSYS2:
RET
;
;==================================================================================================
; TABLE OF INITIALIZATION ENTRY POINTS
;==================================================================================================
;
HB_INITTBL:
#IF (UARTENABLE)
.DW UART_INIT
#ENDIF
#IF (ASCIENABLE)
.DW ASCI_INIT
#ENDIF
#IF (SIMRTCENABLE)
.DW SIMRTC_INIT
#ENDIF
#IF (DSRTCENABLE)
.DW DSRTC_INIT
#ENDIF
#IF (VDUENABLE)
.DW VDU_INIT
#ENDIF
#IF (CVDUENABLE)
.DW CVDU_INIT
#ENDIF
#IF (UPD7220ENABLE)
.DW UPD7220_INIT
#ENDIF
#IF (N8VENABLE)
.DW N8V_INIT
#ENDIF
#IF (DSKYENABLE)
.DW DSKY_INIT
#ENDIF
#IF (MDENABLE)
.DW MD_INIT
#ENDIF
#IF (FDENABLE)
.DW FD_INIT
#ENDIF
#IF (RFENABLE)
.DW RF_INIT
#ENDIF
#IF (IDEENABLE)
.DW IDE_INIT
#ENDIF
#IF (PPIDEENABLE)
.DW PPIDE_INIT
#ENDIF
#IF (SDENABLE)
.DW SD_INIT
#ENDIF
#IF (HDSKENABLE)
.DW HDSK_INIT
#ENDIF
#IF (PRPENABLE)
.DW PRP_INIT
#ENDIF
#IF (PPPENABLE)
.DW PPP_INIT
#ENDIF
#IF (PPKENABLE)
.DW PPK_INIT
#ENDIF
#IF (KBDENABLE)
.DW KBD_INIT
#ENDIF
;
HB_INITTBLLEN .EQU (($ - HB_INITTBL) / 2)
;
;==================================================================================================
; IDLE
;==================================================================================================
;
;__________________________________________________________________________________________________
;
IDLE:
PUSH AF
PUSH BC
PUSH DE
PUSH HL
#IF (FDENABLE)
CALL FD_IDLE
#ENDIF
POP HL
POP DE
POP BC
POP AF
RET
;
;==================================================================================================
; BIOS FUNCTION DISPATCHER
;==================================================================================================
;
; MAIN BIOS FUNCTION
; B: FUNCTION
;__________________________________________________________________________________________________
;
HB_DISPATCH:
;
#IF 1 ; *DEBUG* START
;
CALL HB_DISPCALL ; DO THE WORK
;
; CHECK STACK INTEGRITY
PUSH AF
LD A,(HBX_STACK - HBX_STKSIZ + $08)
CP $FF
CALL NZ,PANIC
POP AF
RET
HB_DISPCALL:
;
#ENDIF ; *DEBUG* END
;
LD A,B ; REQUESTED FUNCTION IS IN B
CP BF_CIO + $10 ; $00-$0F: CHARACTER I/O
JP C,CIO_DISPATCH
CP BF_DIO + $10 ; $10-$1F: DISK I/O
JP C,DIO_DISPATCH
CP BF_RTC + $10 ; $20-$2F: REAL TIME CLOCK (RTC)
JP C,RTC_DISPATCH
CP BF_EMU + $10 ; $30-$3F: EMULATION
CALL C,PANIC ; OBSOLETE!
CP BF_VDA + $10 ; $40-$4F: VIDEO DISPLAY ADAPTER
JP C,VDA_DISPATCH
CP BF_SYS ; SKIP TO BF_SYS VALUE AT $F0
CALL C,PANIC ; PANIC IF LESS THAN BF_SYS
JP SYS_DISPATCH ; OTHERWISE SYS CALL
CALL PANIC ; THIS SHOULD NEVER BE REACHED
;
;==================================================================================================
; CHARACTER I/O DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO SPECIFIED CHARACTER I/O DRIVER
; B: FUNCTION
; C: UNIT NUMBER
;
CIO_DISPATCH:
;
; ON ENTRY C IS HBIOS UNIT # (INDEX INTO CIO_TBL OF CHARACTER DEVICES)
; USE UNIT # IN C TO LOOKUP CIO_TBL ENTRY, THEN
; CONVERT C TO THE DEVICE/DRIVER SPECIFIC UNIT ID
; AND GET THE DEVICE TYPE TO A FOR DRIVER DISPATCHING
;
LD A,C ; INCOMING UNIT INDEX TO A
PUSH HL ; SAVE INCOMING HL
LD HL,CIO_CNT ; HL := ADDRESS OF TABLE ENTRY COUNT PREFIX
CP (HL) ; COMPARE TO INCOMING ENTRY INDEX
JR C,CIO_DISPATCH1 ; UNIT OK, PROCEED
CP CIODEV_CONSOLE ; CHECK FOR SPECIAL VALUE - CONSOLE OUTPUT
JR Z,CIO_DISPATCH_CON ; DO IT
;CP CIODEV_VDA ; CHECK FOR SPECIAL VALUE - VDA OUTPUT
;JR Z,CIO_DISPATCH_VDA ; DO IT
;
; NOT GOOD, INCOMING UNIT IS OUT OF RANGE
POP HL ; RESTORE HL/STACK
CALL PANIC ; PANIC
OR $FF ; SIGNAL ERROR
RET ; AND RETURN
;
CIO_DISPATCH_CON:
LD A,(HCB + HCB_CONDEV) ; PUT CONSOLE UNIT NUMBER IN A
JR CIO_DISPATCH1 ; AND CONTINUE
;;
;CIO_DISPATCH_VDA:
; LD A,B ; FUNCTION NUMBER TO A
; ADD A,BF_EMU - BF_CIO ; TRANSLATE FUNCTION CIOXXX -> EMUXXX
; LD B,A ; PUT NEW FUNCTION NUMBER IN B
; POP HL ; RESTORE HL/STACK
; JP EMU_DISPATCH ; CHAIN TO EMULATOR DISPATCH
;
CIO_DISPATCH1:
;
INC HL ; BUMP PAST COUNT PREFIX TO START OF TABLE
RLCA ; MULTIPLY UNIT # BY 4 TO
RLCA ; ... TO CALC ENTRY OFFSET
CALL ADDHLA ; HL := ENTRY ADDRESS
LD A,(HL) ; GET DEVICE TYPE BYTE
INC HL ; BUMP TO DEVICE UNIT INDEX BYTE
LD C,(HL) ; DEVICE UNIT INDEX TO C
POP HL ; RECOVER INCOMING HL VALUE
;
; DISPATCH TO DRIVER BASED ON DEVICE TYPE IN A
;
#IF (UARTENABLE)
CP CIODEV_UART
JP Z,UART_DISPATCH
#ENDIF
#IF (ASCIENABLE)
CP CIODEV_ASCI
JP Z,ASCI_DISPATCH
#ENDIF
#IF (PRPENABLE & PRPCONENABLE)
CP CIODEV_PRPCON
JP Z,PRPCON_DISPATCH
#ENDIF
#IF (PPPENABLE & PPPCONENABLE)
CP CIODEV_PPPCON
JP Z,PPPCON_DISPATCH
#ENDIF
#IF (VDUENABLE)
CP CIODEV_VDU
JP Z,VDU_DISPCIO
#ENDIF
#IF (CVDUENABLE)
CP CIODEV_CVDU
JP Z,CVDU_DISPCIO
#ENDIF
#IF (UPD7220ENABLE)
CP CIODEV_UPD7220
JP Z,UPD7220_DISPCIO
#ENDIF
#IF (N8VENABLE)
CP CIODEV_N8V
JP Z,N8V_DISPCIO
#ENDIF
CALL PANIC
RET
;
; HBIOS CHARACTER DEVICE UNIT TABLE
;
; TABLE IS BUILT DYNAMICALLY BY EACH DRIVER DURING INITIALIZATION.
; THE TABLE IS PREFIXED BY TWO BYTES. TABLE - 1 CONTAINS THE CURRENT
; NUMBER OF ENTRIES. TABLE - 2 CONTAINS THE MAXIMUM NUMBER OF ENTRIES.
; EACH ENTRY IS DEFINED AS:
;
; BYTE DEVICE TYPE ID
; BYTE DEVICE/DRIVER UNIT NUMBER
; WORD UNIT DATA ADDRESS
;
CIO_MAX .EQU 16 ; UP TO 16 UNITS
CIO_SIZ .EQU CIO_MAX * 4 ; EACH ENTRY IS 4 BYTES
;
.DB CIO_MAX ; MAX ENTRY COUNT TABLE PREFIX
CIO_CNT .DB 0 ; ENTRY COUNT PREFIX
CIO_TBL .FILL CIO_SIZ,0 ; SPACE FOR ENTRIES
;
; ADD AN ENTRY TO THE CIO UNIT TABLE (SEE HB_ADDENT FOR DETAILS)
;
CIO_ADDENT:
LD HL,CIO_TBL ; POINT TO CIO TABLE
JP HB_ADDENT ; ... AND GO TO COMMON CODE
;
;==================================================================================================
; DISK I/O DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO SPECIFIED DISK I/O DRIVER
; B: FUNCTION
; C: UNIT NUMBER
;
;NDIO_NEWDISP:
; ; START OF THE ACTUAL DRIVER DISPATCHING LOGIC
; PUSH IY ; SAVE ORIGINAL IY
; PUSH HL ; SAVE HL
; LD HL,NDIO_RET ; GET RETURN VECTOR
; EX (SP),HL ; RECOVER HL & PUT RETURN VECTOR ON TOS
; PUSH HL ; SAVE HL
; LD HL,DIO_TBL ; POINT TO DISPATCH TABLE
; LD A,C ; GET REQUESTED UNIT FROM C
; RLCA ; MULTIPLY UNIT BY 4
; RLCA ; ... TO GET BYTE OFFSET OF ENTRY
; CALL ADDHLA ; HL -> ENTRY ADDRESS
; LD A,(HL) ; DRIVER ID TO A
; PUSH AF ; SAVE IT FOR NOW
; INC HL ; POINT TO UNIT
; LD C,(HL) ; PUT IT IN C FOR DRIVER
; INC HL ; POINT TO LSB OF UNIT DATA ADDRESS
; LD A,(HL) ; HL := UNIT DATA ADDRESS
; INC HL ; ...
; LD H,(HL) ; ...
; LD L,A ; ...
; POP AF ; RECOVER DRIVER ID
; EX (SP),HL ; RECOVER ORIG HL & PUT UNIT DATA ADDRESS TO TOS
; POP IY ; IY := UNIT DATA ADDRESS
; JP NDIO_DISPATCH2 ; USE LEGACY DISPATCHER
;;
;NDIO_RET:
; POP IY ; RECOVER IY
; OR A ; MAKE SURE FLAGS ARE SET
; RET ; AND RETURN
DIO_DISPATCH:
;
#IF 0 ; *DEBUG* START
;
; DUMP INCOMING CALL
CALL NEWLINE
PRTS("DIO>$")
CALL REGDMP ; DUMP REGS, NONE DESTROYED
;
; DO THE ACTUAL DISPATCH PROCESSING
CALL DIO_DISPCALL
;
; DUMP CALL RESULTS AND RETURN
CALL NEWLINE
PRTS("DIO<$")
CALL REGDMP ; DUMP REGS, NONE DESTROYED
RET
DIO_DISPCALL:
;
#ENDIF ; *DEBUG* END
;
; ON ENTRY C IS HBIOS UNIT # (INDEX INTO DIO_TBL OF DISK DEVICES)
; USE UNIT # IN C TO LOOKUP DIO_TBL ENTRY, THEN
; CONVERT C TO THE DEVICE/DRIVER SPECIFIC UNIT ID
; AND GET THE DEVICE TYPE TO A FOR DRIVER DISPATCHING
;
LD A,C ; INCOMING UNIT INDEX TO A
PUSH HL ; SAVE INCOMING HL
LD HL,DIO_CNT ; HL := ADDRESS OF TABLE ENTRY COUNT
CP (HL) ; COMPARE TO INCOMING ENTRY INDEX
JR C,DIO_DISPATCH1 ; UNIT OK, PROCEED
;
; NOT GOOD, INCOMING UNIT IS OUT OF RANGE
POP HL ; RESTORE HL/STACK
CALL PANIC ; PANIC
OR $FF ; SIGNAL ERROR
RET ; AND RETURN
;
DIO_DISPATCH1:
INC HL ; BUMP PAST COUNT PREFIX TO START OF TABLE
RLCA ; MULTIPLY BY 4 TO
RLCA ; ... TO CALC ENTRY OFFSET
CALL ADDHLA ; HL := ENTRY OFFSET
LD A,(HL) ; GET DEVICE TYPE BYTE
INC HL ; BUMP TO DEVICE UNIT INDEX BYTE
LD C,(HL) ; DEVICE UNIT INDEX TO C
POP HL ; RECOVER INCOMING HL VALUE
;
; DISPATCH TO DRIVER BASED ON DEVICE TYPE IN A
;
#IF (MDENABLE)
CP DIODEV_MD
JP Z,MD_DISPATCH
#ENDIF
#IF (FDENABLE)
CP DIODEV_FD
JP Z,FD_DISPATCH
#ENDIF
#IF (RFENABLE)
CP DIODEV_RF
JP Z,RF_DISPATCH
#ENDIF
#IF (IDEENABLE)
CP DIODEV_IDE
JP Z,IDE_DISPATCH
#ENDIF
#IF (PPIDEENABLE)
CP DIODEV_PPIDE
JP Z,PPIDE_DISPATCH
#ENDIF
#IF (SDENABLE)
CP DIODEV_SD
JP Z,SD_DISPATCH
#ENDIF
#IF (PRPENABLE & PRPSDENABLE)
CP DIODEV_PRPSD
JP Z,PRPSD_DISPATCH
#ENDIF
#IF (PPPENABLE & PPPSDENABLE)
CP DIODEV_PPPSD
JP Z,PPPSD_DISPATCH
#ENDIF
#IF (HDSKENABLE)
CP DIODEV_HDSK
JP Z,HDSK_DISPATCH
#ENDIF
CALL PANIC
RET
;
; CONVERT AN HBIOS STANDARD HARD DISK CHS ADDRESS TO
; AN LBA ADDRESS. A STANDARD HBIOS HARD DISK IS ASSUMED
; TO HAVE 16 SECTORS PER TRACK AND 16 HEADS PER CYLINDER.
;
; INPUT: HL=TRACK, D=HEAD, E=SECTOR
; OUTPUT: DE:HL=32 BIT LBA ADDRESS (D:7 IS NOT SET IN THE RESULT)
;
HB_CHS2LBA:
;
;; DEBUG: DUMP INCOMING TRACK:HEAD/SEC
;CALL NEWLINE
;PUSH BC
;PUSH HL
;POP BC
;CALL PRTHEXWORD
;CALL PC_COLON
;PUSH DE
;POP BC
;CALL PRTHEXWORD
;POP BC
;
; WE HAVE INCOMING HARDDISK CHS, CONVERT TO LBA
; HL=TRACK (0..N), D=HEAD (0..15), E=SECTOR (0..15)
; XLAT HL:DE (TT:HS) --> 32 BIT LBA (LBAHI:LBALO)
;
; D/E -> A (COMBINE HEAD/SEC AND SAVE IN A)
; 0 -> D
; H -> E
; L -> H
; A -> L
;
LD A,D ; HEAD TO A
RLCA ; LEFT SHIFT TO HIGH NIBBLE
RLCA ; ... DEPENDS ON HIGH
RLCA ; ... NIBBLE BEING 0 SINCE
RLCA ; ... IT ROTATES INTO LOW NIBBLE
OR E ; COMBINE WITH SECTOR (HIGH NIBBLE MUST BE ZERO)
LD D,0
LD E,H
LD H,L
LD L,A
;
;; DEBUG: DUMP RESULTING LBA (32 BIT)
;PRTS("-->$")
;PUSH BC
;PUSH DE
;POP BC
;CALL PRTHEXWORD
;PUSH HL
;POP BC
;CALL PRTHEXWORD
;POP BC
;
XOR A
RET
;
; HBIOS DISK DEVICE UNIT TABLE
;
; TABLE IS BUILT DYNAMICALLY BY EACH DRIVER DURING INITIALIZATION.
; THE TABLE IS PREFIXED BY TWO BYTES. TABLE - 1 CONTAINS THE CURRENT
; NUMBER OF ENTRIES. TABLE - 2 CONTAINS THE MAXIMUM NUMBER OF ENTRIES.
; EACH ENTRY IS DEFINED AS:
;
; BYTE DEVICE TYPE ID
; BYTE DEVICE/DRIVER UNIT NUMBER
; WORD UNIT DATA ADDRESS
;
DIO_MAX .EQU 16 ; UP TO 16 UNITS
DIO_SIZ .EQU DIO_MAX * 4 ; EACH ENTRY IS 4 BYTES
;
.DB DIO_MAX ; MAX ENTRY COUNT TABLE PREFIX
DIO_CNT .DB 0 ; ENTRY COUNT PREFIX
DIO_TBL .FILL DIO_SIZ,0 ; SPACE FOR ENTRIES
;
; ADD AN ENTRY TO THE DIO UNIT TABLE
;
DIO_ADDENT:
LD HL,DIO_TBL ; POINT TO DIO TABLE
JP HB_ADDENT ; ... AND GO TO COMMON CODE
;
;==================================================================================================
; REAL TIME CLOCK DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO REAL TIME CLOCK DRIVER
; B: FUNCTION
;
RTC_DISPATCH:
#IF (SIMRTCENABLE)
JP SIMRTC_DISPATCH
#ENDIF
#IF (DSRTCENABLE)
JP DSRTC_DISPATCH
#ENDIF
CALL PANIC
;
;==================================================================================================
; EMULATION INITIALIZATION DISPATCHER
;==================================================================================================
;
; EMULATOR MODULES ARE INITIALIZED BY THE VDA DRIVER THAT USES THEM.
; THE VDA DRIVER CALLS EMU_INIT TO DISPATCH THE INITIALIZATION REQUEST
; TO THE CORRRECT EMULATION MODULE.
;
; C: EMULATION TYPE
;
EMU_INIT:
LD A,C ; GET REQUESTED EMULATION
;
DEC A ; 1 = TTY
#IF (TTYENABLE)
LD HL,TTY_INIT
JR Z,EMU_INIT1
#ENDIF
DEC A ; 2 = ANSI
#IF (ANSIENABLE)
LD HL,ANSI_INIT
JR Z,EMU_INIT1
#ENDIF
CALL PANIC ; INVALID
RET
;
EMU_INIT1:
CALL TSTPT ; *DEBUG*
JP (HL) ; DO THE EMULATOR INIT, DE := CIO DISPATCH ADR
;
;==================================================================================================
; VDA DISPATCHING FOR EMULATION HANDLERS
;==================================================================================================
;
; BELOW IS THE DYNAMICALLY MANAGED EMULATION VDA DISPATCH.
; EMULATION HANDLERS CAN CALL EMU_VDADISP TO INVOKE A VDA
; FUNCTION. EMU_VDADISPADR IS USED TO MARK THE LOCATION
; OF THE VDA DISPATCH ADDRESS. THIS ALLOWS US TO MODIFY
; THE CODE DYNAMICALLY WHEN EMULATION IS INITIALIZED AND
; A NEW VDA TARGET IS SPECIFIED.
;
EMU_VDADISP:
JP PANIC ; JP TGT IS UPDATED DYNAMICALLY
;
EMU_VDADISPADR .EQU $ - 2 ; ADDRESS PORTION OF JP INSTRUCTION ABOVE
;
;==================================================================================================
; VIDEO DISPLAY ADAPTER DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO SPECIFIED VDA DEVICE DRIVER
; B: FUNCTION
; C: UNIT NUMBER
;
VDA_DISPATCH:
LD A,C ; REQUESTED DEVICE/UNIT IS IN C
AND $F0 ; ISOLATE THE DEVICE PORTION
#IF (VDUENABLE)
CP VDADEV_VDU
JP Z,VDU_DISPATCH
#ENDIF
#IF (CVDUENABLE)
CP VDADEV_CVDU
JP Z,CVDU_DISPATCH
#ENDIF
#IF (UPD7220ENABLE)
CP VDADEV_7220
JP Z,UPD7220_DISPATCH
#ENDIF
#IF (N8VENABLE)
CP VDADEV_N8V
JP Z,N8V_DISPATCH
#ENDIF
CALL PANIC
;
;==================================================================================================
; SYSTEM FUNCTION DISPATCHER
;==================================================================================================
;
; B: FUNCTION
;
SYS_DISPATCH:
LD A,B ; GET REQUESTED FUNCTION
AND $0F ; ISOLATE SUB-FUNCTION
JR Z,SYS_SETBNK ; $F0
DEC A
JR Z,SYS_GETBNK ; $F1
DEC A
JP Z,SYS_COPY ; $F2
DEC A
JP Z,SYS_XCOPY ; $F3
DEC A
JR Z,SYS_ALLOC ; $F4
DEC A
JR Z,SYS_GET ; $F5
DEC A
JR Z,SYS_SET ; $F6
DEC A
;JR Z,SYS_??? ; $F7
DEC A
JR Z,SYS_HCBGETB ; $F8
DEC A
JR Z,SYS_HCBPUTB ; $F9
DEC A
JR Z,SYS_HCBGETW ; $FA
DEC A
JR Z,SYS_HCBPUTW ; $FB
CALL PANIC ; INVALID
;
; SET ACTIVE MEMORY BANK AND RETURN PREVIOUSLY ACTIVE MEMORY BANK
; NOTE THAT IT GOES INTO EFFECT AS HBIOS IS EXITED
; HERE, WE JUST SET THE CURRENT BANK
; CALLER MUST EXTABLISH UPPER MEMORY STACK BEFORE INVOKING THIS FUNCTION!
;
SYS_SETBNK:
LD A,(HBX_INVBNK) ; GET THE PREVIOUS ACTIVE MEMORY BANK
PUSH AF ; SAVE IT
LD A,C ; LOAD THE NEW BANK REQUESTED
LD (HBX_INVBNK),A ; SET IT FOR ACTIVATION UPON HBIOS RETURN
POP AF ; GET PREVIOUS BANK INTO A
OR A
RET
;
; GET ACTIVE MEMORY BANK
;
SYS_GETBNK:
LD A,(HBX_INVBNK) ; GET THE ACTIVE MEMORY BANK
OR A
RET
;
; PERFORM MEMORY COPY POTENTIALLY ACROSS BANKS
;
SYS_COPY:
PUSH IX
POP BC
;; *DEBUG* START
;PUSH AF
;PUSH BC
;PUSH DE
;PUSH HL
;
;CALL NEWLINE
;
;LD A,(HB_SRCBNK)
;CALL PRTHEXBYTE
;CALL PC_COLON
;PUSH BC
;PUSH HL
;POP BC
;CALL PRTHEXWORD
;POP BC
;CALL PC_SPACE
;LD A,(HB_DSTBNK)
;CALL PRTHEXBYTE
;CALL PC_COLON
;PUSH BC
;PUSH DE
;POP BC
;CALL PRTHEXWORD
;POP BC
;CALL PC_SPACE
;CALL PRTHEXWORD
;POP HL
;POP DE
;POP BC
;POP AF
; *DEBUG* END
CALL BNKCPY
XOR A
RET
;
; SET BANKS FOR EXTENDED (INTERBANK) MEMORY COPY
;
SYS_XCOPY:
LD A,E
LD (HB_SRCBNK),A
LD A,D
LD (HB_DSTBNK),A
XOR A
RET
;
; ALLOCATE HL BYTES OF MEMORY FROM HBIOS HEAP
; RETURNS POINTER TO ALLOCATED MEMORY IN HL
; ON SUCCESS RETURN A == 0, AND Z SET
; ON FAILURE A <> 0 AND NZ SET AND HL TRASHED
; ALL OTHER REGISTERS PRESERVED
;
SYS_ALLOC:
JP HB_ALLOC
;
; GET SYSTEM INFORMATION
; ITEM TO RETURN INDICATED IN C
;
SYS_GET:
LD A,C ; GET REQUESTED SUB-FUNCTION
CP BF_SYSGET_VER
JR Z,SYS_GETVER
CP BF_SYSGET_CIOCNT
JR Z,SYS_GETCIOCNT
CP BF_SYSGET_DIOCNT
JR Z,SYS_GETDIOCNT
OR $FF ; SIGNAL ERROR
RET
;
; GET THE CURRENT HBIOS VERSION
; RETURNS VERSION IN DE AS BCD
; D: MAJOR VERION IN TOP 4 BITS, MINOR VERSION IN LOW 4 BITS
; E: UPDATE VERION IN TOP 4 BITS, PATCH VERSION IN LOW 4 BITS
; L: PLATFORM ID
;
SYS_GETVER:
LD DE,0 | (RMJ << 12) | (RMN << 8) | (RUP << 4) | RTP
LD L,PLATFORM
XOR A
RET
;
; GET SERIAL UNIT COUNT
;
SYS_GETCIOCNT:
LD A,(CIO_CNT) ; GET DEVICE COUNT (FIRST BYTE OF LIST)
LD E,A ; PUT IT IN E
XOR A ; SIGNALS SUCCESS
RET
;
; GET DISK UNIT COUNT
;
SYS_GETDIOCNT:
LD A,(DIO_CNT) ; GET DEVICE COUNT (FIRST BYTE OF LIST)
LD E,A ; PUT IT IN E
XOR A ; SIGNALS SUCCESS
RET
;
; SET SYSTEM PARAMETERS
; PARAMETER(S) TO SET INDICATED IN C
;
SYS_SET:
OR $FF ; SIGNAL ERROR
RET
;
; GET HCB VALUE BYTE
; C: HCB INDEX (OFFSET INTO HCB)
; RETURN BYTE VALUE IN E
;
SYS_HCBGETB:
CALL SYS_HCBPTR ; LOAD HL WITH PTR
LD E,(HL) ; GET BYTE VALUE
RET ; DONE
;
; PUT HCB VALUE BYTE
; C: HCB INDEX (OFFSET INTO HCB)
; E: VALUE TO WRITE
;
SYS_HCBPUTB:
CALL SYS_HCBPTR ; LOAD HL WITH PTR
LD (HL),E ; PUT BYTE VALUE
RET
;
; GET HCB VALUE WORD
; C: HCB INDEX (OFFSET INTO HCB)
; RETURN WORD VALUE IN DE
;
SYS_HCBGETW:
CALL SYS_HCBPTR ; LOAD HL WITH PTR
LD E,(HL) ; GET BYTE VALUE
INC HL
LD D,(HL) ; GET BYTE VALUE
RET ; DONE
;
; PUT HCB VALUE WORD
; C: HCB INDEX (OFFSET INTO HCB)
; DE: VALUE TO WRITE
;
SYS_HCBPUTW:
CALL SYS_HCBPTR ; LOAD HL WITH PTR
LD (HL),E ; PUT BYTE VALUE
INC HL
LD (HL),D ; PUT BYTE VALUE
RET
;
; CALCULATE REAL ADDRESS OF HCB VALUE FROM HCB OFFSET
;
SYS_HCBPTR:
LD A,C ; LOAD INDEX (HCB OFFSET)
LD HL,HCB ; GET HCB ADDRESS
JP ADDHLA ; CALC REAL ADDRESS AND RET
;
;==================================================================================================
; GLOBAL HBIOS FUNCTIONS
;==================================================================================================
;
; COMMON ROUTINE THAT IS CALLED BY CHARACTER IO DRIVERS WHEN
; AN IDLE CONDITION IS DETECTED (WAIT FOR INPUT/OUTPUT)
;
CIO_IDLE:
PUSH AF ; PRESERVE AF
LD A,(IDLECOUNT) ; GET CURRENT IDLE COUNT
DEC A ; DECREMENT
LD (IDLECOUNT),A ; SAVE UPDATED VALUE
CALL Z,IDLE ; IF ZERO, DO IDLE PROCESSING
POP AF ; RECOVER AF
RET
;
; TIMER INTERRUPT
;
HB_TIMINT:
RET
;
; BAD INTERRUPT HANDLER
;
HB_BADINT:
RET
;
; WRAPPER FOR CALL TO HB_BNKCPY FOR USE BY INTERNAL HBIOS FUNCTIONS
;
BNKCPY .EQU HB_BNKCPY
;
; ADD AN ENTRY TO THE UNIT TABLE AT ADDRESS IN HL
; C: DEVICE TYPE ID
; B: UNIT INDEX
; DE: ADDRESS OF UNIT DATA
; RETURN
; A: UNIT NUMBER ASSIGNED
;
HB_ADDENT:
DEC HL ; POINT TO ENTRY COUNT
LD A,(HL) ; GET ENTRY COUNT
PUSH AF ; SAVE VALUE TO RETURN AS ENTRY NUM AT END
INC A ; INCREMENT TO ACCOUNT FOR NEW ENTRY
DEC HL ; POINT TO ENTRY MAX
CP (HL) ; COMPARE MAX TO CURRENT COUNT (COUNT - MAX)
CALL NC,PANIC ; OVERFLOW
INC HL ; POINT TO COUNT
LD (HL),A ; SAVE NEW COUNT
INC HL ; POINT TO START OF TABLE
DEC A ; CONVERT A FROM ENTRY COUNT TO ENTRY INDEX
RLCA ; MULTIPLY BY 4
RLCA ; ... TO GET BYTE OFFSET OF ENTRY
CALL ADDHLA ; MAKE HL POINT TO ACTUAL ENTRY ADDRESS
PUSH BC ; GET TABLE ENTRY ADDRESS TO BC
EX (SP),HL ; ... AND DISPATCH ADDRESS TO HL
POP BC ; ... SO THAT DE:HL HAS 32 BIT ENTRY
CALL ST32 ; LD (BC),DE:HL STORES THE ENTRY
POP AF ; RETURN ENTRY INDEX
RET
;
; ALLOCATE HL BYTES OF MEMORY ON THE HEAP
; RETURNS POINTER TO ALLOCATED SPACE IN HL
; ON SUCCESS RETURN A == 0, AND Z SET
; ON FAILURE A <> 0 AND NZ SET AND HL TRASHED
; ALL OTHER REGISTERS PRESERVED
;
; A 4 BYTE HEADER IS PLACED IN FRONT OF THE ALLOCATED MEMORY
; - DWORD: SIZE OF MEMROY ALLOCATED (DOES NOT INCLUDE 4 BYTE HEADER)
; - DWORD: ADDRESS WHERE ALLOC WAS CALLED (VALUE ON TOP OF STACK AT CALL)
;
HB_ALLOC:
; SAVE ALLOC SIZE AND REFERENCE ADR FOR SUBSEQUENT HEADER CONSTRUCTION
LD (HB_TMPSZ),HL ; SAVE INCOMING SIZE REQUESTED
; USE EX (SP),HL INSTEAD????
POP HL ; GET RETURN ADDRESS
LD (HB_TMPREF),HL ; SAVE AS REFERENCE
; USE EX (SP),HL INSTEAD????
PUSH HL ; PUT IT BACK ON STACK
LD HL,(HB_TMPSZ) ; RECOVER INCOMING MEM SIZE PARM
;
; CALC NEW HEAP TOP AND HANDLE OUT-OF-SPACE ERROR
PUSH DE ; SAVE INCOMING DE
LD DE,4 ; SIZE OF HEADER
ADD HL,DE ; ADD IT IN
JR C,HB_ALLOC1 ; ERROR ON OVERFLOW
LD DE,(HCB + HCB_HEAPTOP) ; CURRENT HEAP TOP
ADD HL,DE ; ADD IT IN, HL := NEW HEAP TOP
JR C,HB_ALLOC1 ; ERROR ON OVERFLOW
BIT 7,H ; TEST PAST END OF BANK (>= 32K)
JR NZ,HB_ALLOC1 ; ERROR IF PAST END
;
; SAVE NEW HEAP TOP
LD DE,(HCB + HCB_HEAPTOP) ; GET ORIGINAL HEAP TOP
LD (HCB + HCB_HEAPTOP),HL ; SAVE NEW HEAP TOP
;
; SET HEADER VALUES
EX DE,HL ; HEADER ADR TO HL
LD DE,(HB_TMPSZ) ; GET THE ORIG SIZE REQUESTED
LD (HL),E ; SAVE SIZE (LSB)
INC HL ; BUMP HEADER POINTER
LD (HL),D ; SAVE SIZE (MSB)
INC HL ; BUMP HEADER POINTER
LD DE,(HB_TMPREF) ; GET THE REFERENCE ADR
LD (HL),E ; SAVE REF ADR (LSB)
INC HL ; BUMP HEADER POINTER
LD (HL),D ; SAVE REF ADR (MSB)
INC HL ; BUMP HEADER POINTER
;
; RETURN SUCCESS, HL POINTS TO START OF ALLOCATED MEMORY (PAST HEADER)
POP DE ; RESTORE INCOMING DE
XOR A ; SIGNAL SUCCESS
RET ; AND RETURN
;
HB_ALLOC1:
; ERROR RETURN
POP DE ; RESTORE INCOMING DE
OR $FF ; SIGNAL ERROR
RET ; AND RETURN
;
HB_TMPSZ .DW 0
HB_TMPREF .DW 0
;
;==================================================================================================
; DEVICE DRIVERS
;==================================================================================================
;
#IF (SIMRTCENABLE)
ORG_SIMRTC .EQU $
#INCLUDE "simrtc.asm"
SIZ_SIMRTC .EQU $ - ORG_SIMRTC
.ECHO "SIMRTC occupies "
.ECHO SIZ_SIMRTC
.ECHO " bytes.\n"
#ENDIF
;
#IF (DSRTCENABLE)
ORG_DSRTC .EQU $
#INCLUDE "dsrtc.asm"
SIZ_DSRTC .EQU $ - ORG_DSRTC
.ECHO "DSRTC occupies "
.ECHO SIZ_DSRTC
.ECHO " bytes.\n"
#ENDIF
;
#IF (UARTENABLE)
ORG_UART .EQU $
#INCLUDE "uart.asm"
SIZ_UART .EQU $ - ORG_UART
.ECHO "UART occupies "
.ECHO SIZ_UART
.ECHO " bytes.\n"
#ENDIF
;
#IF (ASCIENABLE)
ORG_ASCI .EQU $
#INCLUDE "asci.asm"
SIZ_ASCI .EQU $ - ORG_ASCI
.ECHO "ASCI occupies "
.ECHO SIZ_ASCI
.ECHO " bytes.\n"
#ENDIF
;
#IF (VDUENABLE)
ORG_VDU .EQU $
#INCLUDE "vdu.asm"
SIZ_VDU .EQU $ - ORG_VDU
.ECHO "VDU occupies "
.ECHO SIZ_VDU
.ECHO " bytes.\n"
#ENDIF
;
#IF (CVDUENABLE)
ORG_CVDU .EQU $
#INCLUDE "cvdu.asm"
SIZ_CVDU .EQU $ - ORG_CVDU
.ECHO "CVDU occupies "
.ECHO SIZ_CVDU
.ECHO " bytes.\n"
#ENDIF
;
#IF (UPD7220ENABLE)
ORG_UPD7220 .EQU $
#INCLUDE "upd7220.asm"
SIZ_UPD7220 .EQU $ - ORG_UPD7220
.ECHO "UPD7220 occupies "
.ECHO SIZ_UPD7220
.ECHO " bytes.\n"
#ENDIF
;
#IF (N8VENABLE)
ORG_N8V .EQU $
#INCLUDE "n8v.asm"
SIZ_N8V .EQU $ - ORG_N8V
.ECHO "N8V occupies "
.ECHO SIZ_N8V
.ECHO " bytes.\n"
#ENDIF
;
#IF (PRPENABLE)
ORG_PRP .EQU $
#INCLUDE "prp.asm"
SIZ_PRP .EQU $ - ORG_PRP
.ECHO "PRP occupies "
.ECHO SIZ_PRP
.ECHO " bytes.\n"
#ENDIF
;
#IF (PPPENABLE)
ORG_PPP .EQU $
#INCLUDE "ppp.asm"
SIZ_PPP .EQU $ - ORG_PPP
.ECHO "PPP occupies "
.ECHO SIZ_PPP
.ECHO " bytes.\n"
#ENDIF
;
#IF (MDENABLE)
ORG_MD .EQU $
#INCLUDE "md.asm"
SIZ_MD .EQU $ - ORG_MD
.ECHO "MD occupies "
.ECHO SIZ_MD
.ECHO " bytes.\n"
#ENDIF
#IF (FDENABLE)
ORG_FD .EQU $
#INCLUDE "fd.asm"
SIZ_FD .EQU $ - ORG_FD
.ECHO "FD occupies "
.ECHO SIZ_FD
.ECHO " bytes.\n"
#ENDIF
#IF (RFENABLE)
ORG_RF .EQU $
#INCLUDE "rf.asm"
SIZ_RF .EQU $ - ORG_RF
.ECHO "RF occupies "
.ECHO SIZ_RF
.ECHO " bytes.\n"
#ENDIF
#IF (IDEENABLE)
ORG_IDE .EQU $
#INCLUDE "ide.asm"
SIZ_IDE .EQU $ - ORG_IDE
.ECHO "IDE occupies "
.ECHO SIZ_IDE
.ECHO " bytes.\n"
#ENDIF
#IF (PPIDEENABLE)
ORG_PPIDE .EQU $
#INCLUDE "ppide.asm"
SIZ_PPIDE .EQU $ - ORG_PPIDE
.ECHO "PPIDE occupies "
.ECHO SIZ_PPIDE
.ECHO " bytes.\n"
#ENDIF
#IF (SDENABLE)
ORG_SD .EQU $
#INCLUDE "sd.asm"
SIZ_SD .EQU $ - ORG_SD
.ECHO "SD occupies "
.ECHO SIZ_SD
.ECHO " bytes.\n"
#ENDIF
#IF (HDSKENABLE)
ORG_HDSK .EQU $
#INCLUDE "hdsk.asm"
SIZ_HDSK .EQU $ - ORG_HDSK
.ECHO "HDSK occupies "
.ECHO SIZ_HDSK
.ECHO " bytes.\n"
#ENDIF
#IF (PPKENABLE)
ORG_PPK .EQU $
#INCLUDE "ppk.asm"
SIZ_PPK .EQU $ - ORG_PPK
.ECHO "PPK occupies "
.ECHO SIZ_PPK
.ECHO " bytes.\n"
#ENDIF
#IF (KBDENABLE)
ORG_KBD .EQU $
#INCLUDE "kbd.asm"
SIZ_KBD .EQU $ - ORG_KBD
.ECHO "KBD occupies "
.ECHO SIZ_KBD
.ECHO " bytes.\n"
#ENDIF
#IF (TTYENABLE)
ORG_TTY .EQU $
#INCLUDE "tty.asm"
SIZ_TTY .EQU $ - ORG_TTY
.ECHO "TTY occupies "
.ECHO SIZ_TTY
.ECHO " bytes.\n"
#ENDIF
#IF (ANSIENABLE)
ORG_ANSI .EQU $
#INCLUDE "ansi.asm"
SIZ_ANSI .EQU $ - ORG_ANSI
.ECHO "ANSI occupies "
.ECHO SIZ_ANSI
.ECHO " bytes.\n"
#ENDIF
;
#DEFINE USEDELAY
#INCLUDE "util.asm"
#INCLUDE "time.asm"
#INCLUDE "bcd.asm"
#INCLUDE "xio.asm"
;
#IF (DSKYENABLE)
#DEFINE DSKY_KBD
#INCLUDE "dsky.asm"
#ENDIF
;
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
;
; DETECT Z80 CPU SPEED USING DS-1302 RTC
;
HB_CPUSPD:
;
#IF (DSRTCENABLE)
;
CALL DSRTC_TSTCLK ; IS CLOCK RUNNING?
JR Z,HB_CPUSPD1 ; YES, CONTINUE
; MAKE SURE CLOCK IS RUNNING
LD HL,DSRTC_TIMDEF
CALL DSRTC_TIM2CLK
LD HL,DSRTC_BUF
CALL DSRTC_WRCLK
CALL DSRTC_TSTCLK ; NOW IS CLOCK RUNNING?
RET NZ
;
HB_CPUSPD1:
; WATT FOR AN INITIAL TICK TO ALIGN, THEN WAIT
; FOR SECOND TICK AND TO GET A FULL ONE SECOND LOOP COUNT
CALL HB_WAITSECS ; WAIT FOR INITIAL SECS TICK
CALL HB_WAITSECS ; WAIT FOR SECS TICK AGAIN, COUNT INDE
;
LD A,H
OR L
RET Z ; FAILURE, USE DEFAULT CPU SPEED
;
; TIMES 4 (W/ ROUNDING) FOR CPU SPEED IN KHZ
INC HL
SRL H
RR L
SLA L
RL H
SLA L
RL H
SLA L
RL H
;
LD (HCB + HCB_CPUKHZ),HL
LD DE,1000
CALL DIV16
LD A,C
LD (HCB + HCB_CPUMHZ),A
;
RET
;
HB_WAITSECS:
; WAIT FOR SECONDS TICK
; RETURN SECS VALUE IN A, LOOP COUNT IN DE
; LOOP TARGET IS 250 T-STATES, SO CPU FREQ IN KHZ = LOOP COUNT * 4
LD HL,0 ; INIT LOOP COUNTER
CALL HB_RDSEC ; GET SECONDS
LD E,A ; SAVE IT
HB_WAITSECS1:
CALL DLY32
CALL DLY8
CALL DLY4
JP $ + 3 ; 10 TSTATES
; LD A,R ; 9 TSTATES
; INC BC ; 6 TSTATES
NOP ; 4 TSTATES
NOP ; 4 TSTATES
NOP ; 4 TSTATES
NOP ; 4 TSTATES
NOP ; 4 TSTATES
;
CALL HB_RDSEC ; GET SECONDS
INC HL ; BUMP COUNTER
CP E ; EQUAL?
RET NZ ; DONE IF TICK OCCURRED
LD A,H ; CHECK HL
OR L ; ... FOR OVERFLOW
RET Z ; TIMEOUT, SOMETHING IS WRONG
JR HB_WAITSECS1 ; LOOP
;
HB_RDSEC:
; READ SECONDS BYTE INTO A
LD C,$81 ; SECONDS REGISTER HAS CLOCK HALT FLAG
CALL DSRTC_CMD ; SEND THE COMMAND
CALL DSRTC_GET ; READ THE REGISTER
CALL DSRTC_END ; FINISH IT
RET
;
#ELSE
;
RET ; NO RTC, ABORT
;
#ENDIF
;
#ENDIF
;
;
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
;
; DETECT Z180 CPU SPEED USING DS-1302 RTC
;
HB_CPUSPD:
;
#IF (DSRTCENABLE)
;
CALL DSRTC_TSTCLK ; IS CLOCK RUNNING?
JR Z,HB_CPUSPD1 ; YES, CONTINUE
; MAKE SURE CLOCK IS RUNNING
LD HL,DSRTC_TIMDEF
CALL DSRTC_TIM2CLK
LD HL,DSRTC_BUF
CALL DSRTC_WRCLK
CALL DSRTC_TSTCLK ; NOW IS CLOCK RUNNING?
RET NZ
;
HB_CPUSPD1:
; WATT FOR AN INITIAL TICK TO ALIGN, THEN WAIT
; FOR SECOND TICK AND TO GET A FULL ONE SECOND LOOP COUNT
CALL HB_WAITSECS ; WAIT FOR INITIAL SECS TICK
CALL HB_WAITSECS ; WAIT FOR SECS TICK AGAIN, COUNT INDE
;
LD A,H
OR L
RET Z ; FAILURE, USE DEFAULT CPU SPEED
;
; TIMES 8 FOR CPU SPEED IN KHZ
SLA L
RL H
SLA L
RL H
SLA L
RL H
;
LD (HCB + HCB_CPUKHZ),HL
LD DE,1000
CALL DIV16
LD A,C
LD (HCB + HCB_CPUMHZ),A
;
RET
;
HB_WAITSECS:
; WAIT FOR SECONDS TICK
; RETURN SECS VALUE IN A, LOOP COUNT IN DE
; LOOP TARGET IS 250 T-STATES, SO CPU FREQ IN KHZ = LOOP COUNT * 4
LD HL,0 ; INIT LOOP COUNTER
CALL HB_RDSEC ; GET SECONDS
LD E,A ; SAVE IT
HB_WAITSECS1:
CALL DLY64
OR A ; 7 TSTATES
;OR A ; 7 TSTATES
;OR A ; 7 TSTATES
;OR A ; 7 TSTATES
NOP ; 6 TSTATES
NOP ; 6 TSTATES
NOP ; 6 TSTATES
NOP ; 6 TSTATES
;NOP ; 6 TSTATES
;
CALL HB_RDSEC ; GET SECONDS
INC HL ; BUMP COUNTER
CP E ; EQUAL?
RET NZ ; DONE IF TICK OCCURRED
LD A,H ; CHECK HL
OR L ; ... FOR OVERFLOW
RET Z ; TIMEOUT, SOMETHING IS WRONG
JR HB_WAITSECS1 ; LOOP
;
HB_RDSEC:
; READ SECONDS BYTE INTO A
LD C,$81 ; SECONDS REGISTER HAS CLOCK HALT FLAG
CALL DSRTC_CMD ; SEND THE COMMAND
CALL DSRTC_GET ; READ THE REGISTER
CALL DSRTC_END ; FINISH IT
RET
;
#ELSE
;
RET ; NO RTC, ABORT
;
#ENDIF
;
#ENDIF
;
; PRINT VALUE OF HL AS THOUSANDTHS, IE. 0.000
;
PRTD3M:
PUSH BC
PUSH DE
PUSH HL
LD E,'0'
LD BC,-10000
CALL PRTD3M1
LD E,0
LD BC,-1000
CALL PRTD3M1
CALL PC_PERIOD
LD BC,-100
CALL PRTD3M1
LD C,-10
CALL PRTD3M1
LD C,-1
CALL PRTD3M1
POP HL
POP DE
POP BC
RET
PRTD3M1:
LD A,'0' - 1
PRTD3M2:
INC A
ADD HL,BC
JR C,PRTD3M2
SBC HL,BC
CP E
JR Z,PRTD3M3
LD E,0
CALL COUT
PRTD3M3:
RET
;
;==================================================================================================
; CONSOLE CHARACTER I/O HELPER ROUTINES (REGISTERS PRESERVED)
;==================================================================================================
;
; OUTPUT CHARACTER FROM A
;
COUT:
; SAVE ALL INCOMING REGISTERS
PUSH AF
PUSH BC
PUSH DE
PUSH HL
;
; GET CURRENT CONSOLE UNIT
LD E,A ; OUTPUT CHAR TO E
LD A,(HCB + HCB_CONDEV) ; GET CONSOLE UNIT BYTE
CP $FF ; TEST FOR $FF (HBIOS NOT READY)
JR Z,COUT1 ; IF NOT READY, USE XIO
;
; USE HBIOS
LD C,A ; CONSOLE UNIT TO C
LD B,BF_CIOOUT ; HBIOS FUNC: OUTPUT CHAR
CALL CIO_DISPATCH ; CALL CIO DISPATCHER DIRECTLY
JR COUT2 ; CONTINUE
;
COUT1:
; USE XIO
LD A,E ; GET OUTPUT CHAR BACK TO ACCUM
CALL XIO_OUTC ; OUTPUT VIA XIO
;
COUT2:
; RESTORE ALL REGISTERS
POP HL
POP DE
POP BC
POP AF
RET
;
; INPUT CHARACTER TO A
;
CIN:
; SAVE INCOMING REGISTERS (AF IS OUTPUT)
PUSH BC
PUSH DE
PUSH HL
;
LD A,(HCB + HCB_CONDEV) ; GET CONSOLE UNIT BYTE
CP $FF ; TEST FOR $FF (HBIOS NOT READY)
JR Z,CIN1 ; IF NOT READY, USE XIO
;
; USE HBIOS
LD C,A ; CONSOLE UNIT TO C
LD B,BF_CIOIN ; HBIOS FUNC: INPUT CHAR
CALL CIO_DISPATCH ; CALL CIO DISPATCHER DIRECTLY
LD A,E ; RESULTANT CHAR TO A
JR CIN2 ; CONTINUE
;
CIN1:
; USE XIO
CALL PANIC ; NOT YET SUPPORTED
;
CIN2:
;
; RESTORE REGISTERS (AF IS OUTPUT)
POP HL
POP DE
POP BC
RET
;
; RETURN INPUT STATUS IN A (0 = NO CHAR, !=0 CHAR WAITING)
;
CST:
; SAVE INCOMING REGISTERS (AF IS OUTPUT)
PUSH BC
PUSH DE
PUSH HL
;
LD A,(HCB + HCB_CONDEV) ; GET CONSOLE UNIT BYTE
CP $FF ; TEST FOR $FF (HBIOS NOT READY)
JR Z,CST1 ; IF NOT READY, USE XIO
;
; USE HBIOS
LD C,A ; CONSOLE UNIT TO C
LD B,BF_CIOIST ; HBIOS FUNC: INPUT STATUS
CALL CIO_DISPATCH ; CALL CIO DISPATCHER DIRECTLY
JR CST2 ; CONTINUE
;
CST1:
; USE XIO
CALL PANIC ; NOT YET SUPPORTED
;
CST2:
; RESTORE REGISTERS (AF IS OUTPUT)
POP HL
POP DE
POP BC
RET
;
;==================================================================================================
; HBIOS GLOBAL DATA
;==================================================================================================
;
IDLECOUNT .DB 0
;
; THE HOST (HST) VALUES BELOW INDICATE THE DISK AND BLOCK CURRENTLY
; ADDRESSED FOR READ/WRITE OPERATIONS.
; THE 32-BIT BLOCK ADDRESS CAN BE TREADED AS EITHER CHS OR LBA, HIGH ORDER BIT ON SIGNIFIES LBA
; CHS:
; .DW 0 ; TRACK (0-65535)
; .DB 0 ; SECTOR (0-255)
; .DB 0 ; HEAD (0-127)
;
; LBA:
; .DW 0 ; LBA LOW WORD
; .DW 0 ; LBA HIGH WORD
;
; DISK DEVICE/UNIT ID
;HSTDSK .DB 0 ; DISK DEVICE/UNIT ID
; FULL 32 BIT LBA
HSTLBA .EQU $ ; REFERS TO START OF 32-BIT LBA
; LBA LOW WORD -OR- TRACK
HSTLBALO .EQU $ ; BLOCK ADDRESS LBA LOW WORD
HSTTRK .DW 0 ; CYLINDER (0-65535)
; LBA HIGH WORD -OR- HEAD/SECTOR
HSTLBAHI .EQU $ ; BLOCK ADDRESS LBA HIGH WORD
HSTSEC .DB 0 ; SECTOR (0-255)
HSTHEAD .DB 0 ; HEAD (0-255)
;
DIOBUF .DW 0 ; PTR TO CURRENT DISK XFR BUFFER
;DIOBUFDEF .DW 0 ; PTR TO DEFAULT PREALLOCATED DISK XFR BUFFER
;
HB_INTSTKSAV .DW 0 ; SAVED STACK POINTER DURING INT PROCESSING
.FILL $40,$FF ; 32 ENTRY STACK FOR INTERRUPT PROCESSING
HB_INTSTK .EQU $ ; TOP OF INTERRUPT PROCESSING STACK
;
STR_BANNER .DB "SBC HBIOS v", BIOSVER, ", ", TIMESTAMP, "$"
STR_PLATFORM .DB PLATFORM_NAME, "$"
STR_SWITCH .DB "*** Activating CRT Console ***$"
;
HB_TMPBUF .FILL 512,0 ; INTERNAL DISK BUFFER
;
HB_END .EXPORT HB_END ; EXPORT ENDING ADDRESS
;
SLACK .EQU BNKTOP - $
.ECHO "HBIOS space remaining: "
.ECHO SLACK
.ECHO " bytes.\n"
;
.END