* added hack to handle tunes * quiet clean * added chmod for execution * suppress warnings * Multi-boot fixes * the windows build somehow thinks that these filesystems are cpm3. * credit and primitive instructions * Update sd.asm Cosmetic fix. * make compile shut up about conditionals * Add bin2asm for linus and update build to process font files under linix * fixed quoted double quote bug, added tests * added tests * added bin2asm for font file source creation * Revert linux bin2asm font stuff * added rule for font source generation * build fonts * added directory mapping cache. if the same directory is being hit as last run, we don't need to rebuild the map. will likely break if you are running more than one at a time, in that the cache will be ineffective. also, if the directory contents change, this will also break. * removed strip. breaks osx * added directory tag so . isn't matched all over the place * added real cache validation * fixed build * this file is copied from optdsk.lib or optcmd.lib * install to ../HBIOS * prerequisite verbosity * diff soft failure and casefn speedup * added lzsa * added lzsa * removed strip. breaks on osx * added clobber * added code to handle multiple platform rom builds with rom size override * added align and 0x55 hex syntax * default to hd64180 * added N8 capability * added SBC_std.rom to default build * added support for binary diff * diff fixes * clean, identical build. font source generator emitted .align. this does not match the windows build * Upgrade NZCOM to latest * Misc. Cleanup * fixed expression parser bug : ~(1|2) returned 0xfe * added diff build option * Update Makefile Makefile enhancement to better handle ncurses library from Bob Dunlop. * Update sd.asm Back out hack for uz80as now that Curt fixed it. * Misc. Cleanup * UNA Catchup UNA support was lacking some of the more recent behavior changes. This corrects most of it. * Add github action for building RomWBW * Bump Pre-release Version * Update build.yml Added "make clean" which will remove temporary files without removing final binary outputs. * Update Makefile Build all ROM variants by default in Linux/Mac build. * Update Makefile * Update Makefile * Update Makefile * Update Makefile * Update Makefile * Update Makefile * Update Makefile * Update Makefile * Update Makefile * Update for GitHub Build Case issue in TASM includes showing up in GitHub build. This should correct that. * Added an gitignore files to exclude generated files * Removed Tunes/clean.cmd and Tunes/ReadMe.txt - as make clean removes them * Build.sh: marked as executable chmod +x Build.sh * Fix to HBIOS/build.sh When adding files to rom disk, if files were missing, it would error out. It appears the intent is to skip non-existing files. Updated to log out correctly for missing files - and continue operation. * Update Microsoft NASCOM BASIC.docx Nascom manual, text version by Jan S (full name unknown) * Fix issue with Apps/Tune not making If dest directory does not exist, fails to make Apps * Create ReadMe.txt * Update Makefile * Update Build.sh * Make .gitignores for Tools/unix more specific * cpmtools Update Updated cpmtools applications (Windows only). Removed hack in diskdefs that is no longer required. * HBIOS Proxy Temp Stack Enhancement Reuse the bounce buffer area as the temporary stack space required briefly in HBX_INVOKE when transitioning banks. Increases size of temporary stack space to 64 bytes. * Update ReadMe.txt * HBIOS - clean up TMPSTK * Update hbios.asm Minor cosmetic changes. * Build Process Updates Minor udpates to build process to improve consistency between Windows and Mac/Linux builds. * Update hbios.asm Add improved interrupt protection to HBIOS PEEK, POKE, and BNKCPY functions. * hbios - wrap hbx_bnkcpy * hbios - adjust hbx_peek hbx_poke guards * Update hbios.asm Adjusted used of DI/EI for PEEK and POKE to regain a bit of INTSTK space. Added code so that HB_INVBNK can be used as a flag indicating if HBIOS is active, $FF is inactive, anything else means active. * Add HBIOS MuTex * Initial Nascom basic ecb-vdu graphics set and reset for 80x25b screen with 256 character mod * Finalize Pre-release 34 Final support for FreeRTOS * Update nascom.asm Optimization, cleanup, tabs and white spaces * IDE & PPIDE Cleanup * Clean up Make version include files common. * Update Makefile * Update Makefile * Build Test * Build Test * Build Fixes * Update nascom.asm Cleanup * Update nascom.asm Optimization * hbios - temp stack tweak * Update hbios.asm Comments on HBX_BUF usage. * Update nascom.asm Optimization * Update nascom.asm Setup ECB-VDU build option, remove debug code * Update nascom.asm Set default build. update initialization * Update nascom.asm Make CLS clear vdu screen * Update nascom.asm Fixup top screen line not showing * Add SC131 Support Also cleaned up some ReadMe files. * HBIOS SCZ180 - remove mutex special files * HBIOS SCZ180 - adjust mutex comment * Misc. Cleanup Includes some minor improvements to contents in some disk images. * Delete FAT.COM Changing case of FAT.COM extension to lowercase. * Create FAT.com Completing change of case in extension of FAT.com. * Update Makefile Remove ROM variants that just have the HBIOS MUTEX enabled. Users can easily enable this in a custom build. * Cleanup Removed hack from Images Makefile. Fixed use of DEFSERCFG in various places. * GitHub CI Updates Adds automation of build and release assets upon release. * Prerelease 36 General cleanup * Build Script Cleanups * Config File Cleanups * Update RomWBW Architecture General refresh for v2.9.2 * Update vdu.asm Removed a hack in VDU driver that has existed for 8 years. :-) * Fix CONSOLE Constant Rename CIODEV_CONSOLE constant to CIO_CONSOLE because it is a unit code, not a device type code. Retabify TastyBasic. * Minor Bug Fixes - Disk assignment edge case - CP/M 3 accidental fall thru - Cosmetic updates * Update util.z80 * Documentation Cleanup * Documentation Update * Documentation Update * Documentation Updates * Documentation Updates * Create Common.inc * Documentation Updates * Documentation Updates * doc - a few random fixes * Documentation Cleanup * Fix IM 0 Build Error in ACIA * Documentation Updates * Documentation Cleanup * Remove OSLDR The OSLDR application was badly broken and almost impossible to fix with new expanded OS support. * Bug Fixes - Init RAM disk at boot under CP/M 3 - Fix ACR activation in TUNE * FD Motor Timeout - Made FDC motor timeout smaller and more consistent across different speed CPUs - Added "boot" messaging to RTC * Cleanup * Cleanup - Fix SuperZAP to work under NZCOM and ZPM3 - Finalize standard config files * Minor Changes - Slight change to ZAP configuration - Added ZSDOS.ZRL to NZCOM image * ZDE Upgrade - Upgraded ZDE 1.6 -> 1.6a * Config File Tuning * Pre-release for Testing * cfg - mutex consistent config language * Bump to Version 3.0 * Update SD Card How-To Thanks David! * update ReadMe.md Remove some odd `\`. * Update ReadMe.txt * Update ReadMe.md * Update Generated Doc Files * Improve XModem Startup - Extended startup timeout for XM.COM so that it doesn't timeout so quickly while host is selecing a file to send. - Updated SD Card How-To from David Reese. * XModem Timing Refinements * TMS Driver Z180 Improvements - TMS driver udpated to insert Z180 I/O waitstates internally so other code can run at full speed. - Updated How-To documents from David. - Fixed TUNE app to properly restore Z180 I/O waitstates after manipulating them. * CLRDIR and ZDE updates - CLRDIR has been updated by Max Scane for CP/M 3 compatibility. - A minor issue in the preconfigured ZDE VT100 terminal escape sequences was corrected. * Fix Auto CRT Console Switch on CP/M 3 * Handle lack of RTC better DSRTC driver now correctly returns an error if there is no RTC present. * Minor RTC Updates * Finalize v3.0.1 Cleanup release for v3.0 * New ROMLDR and INTRTC driver - Refactored romldr.asm - Added new periodic timer based RTC driver * CP/M 3 Date Hack - Hack to allow INTRTC to increment time without destroying the date * Update romldr.asm Work around minor Linux build inconsistency * Update Apps for New Version * Revert "Update Apps for New Version" This reverts commitad80432252. * Revert "Update romldr.asm" This reverts commit4a9825cd57. * Revert "CP/M 3 Date Hack" This reverts commit153b494e61. * Revert "New ROMLDR and INTRTC driver" This reverts commitd9bed4563e. * Start v3.1 Development * Update FDISK80.COM Updated FDISK80 to allow reserving up to 256 slices. * Update sd.asm For Z180 CSIO, ensure that xmit is finished, before asserting CS for next transaction. * Add RC2014 UART, Improve SD protocol fix - RC2014 and related platforms will autodetect a UART at 0xA0 and 0xA8 - Ensure that CS fully brackets all SD I/O * ROMLDR Improvements .com files can now be started from CP/M and size of .com files has been reduced so they always fit. * Update commit.yml Run commit build in all branches * Update commit.yml Run commit build for master and dev branches * Improved clock driver auto-detect/fallback * SIO driver now CTC aware The SIO driver can now use a CTC (if available) to provide much more flexible baud rate programming. * CTC driver fine tuning * Update xmdm125.asm Fixed a small issue in core XM125 code that caused a file write error message to not be displayed when it should be. * CF Card compatibility improvement Older CF Cards did not reset IDE registers to defaults values when reset. Implemented a work around. * Update ACIA detection ACIA should no longer be detected if there is also a UART module in the system. * Handle CTC anomaly Small update to accommodate CTC behavior that occurs when the CTC trigger is more than half the CTC clock. * Update acia.asm Updated ACIA detection to use primary ACIA port instead of phantom port. * Update acia.asm Fix bug in ACIA detection. Thanks Alan! * MacOS Build Improvement Build script updated to improve compatibility with MacOS. Credit to Fredrik Axtelius for this. * HBIOS Makefile - use env vars for target Allow build ROM targets to be restricted to just one platform thru use of ENV vars: ROM_PLATFORM - if defined to a known platform, only this platform is build - defaults to std config ROM_CONFIG - sets the desired platform config - defaults to std if the above ENVs are not defined, builds all ROMs * Added some more gitignores * Whitespace changes (crlf) * HBIOS: Force the assembly to fail for vdu drivers if function table count is not correct * Whitespace: trailing whitespaces * makefile: updated some make scripts to use when calling subdir makefiles * linux build: update to Build.sh fix for some platforms The initialization of the Rom dat file used the pipe (|) operator to build an initial empty file. But the pipe operator | may sometimes return a non-zero exit code for some linux platforms, if the the streams are closed before dd has fully processed the stream. This issue occured on a travis linux ubuntu image. Solution was to change to redirection. * Bump version * Enhance CTC periodic timer Add ability to use TIMER mode in CTC driver to generate priodic interrupts. * HBIOS: Added support for sound drivers New sound driver support with initial support for the SN76489 chip New build configuration entry: * SN76489ENABLE Ports are currently locked in with: * SN76489_PORT_LEFT .EQU $FC ; PORTS FOR ACCESSING THE SN76489 CHIP (LEFT) * SN76489_PORT_RIGHT .EQU $F8 ; PORTS FOR ACCESSING THE SN76489 CHIP (LEFT) * Miscellaneous Cleanup No functional changes. Co-authored-by: curt mayer <curt@zen-room.org> Co-authored-by: Wayne Warthen <wwarthen@gmail.com> Co-authored-by: ed <linux@maidavale.org> Co-authored-by: Dean Netherton <dnetherton@dius.com.au> Co-authored-by: ed <ed@maidavale.org> Co-authored-by: Phillip Stevens <phillip.stevens@gmail.com> Co-authored-by: Dean Netherton <dean.netherton@gmail.com>
6.1 KiB
Block data format (LZSA2)
Blocks encoded as LZSA2 are composed from consecutive commands. Each command follows this format:
- token: <XYZ|LL|MMM>
- optional extra literal length
- literal values
- match offset
- optional extra encoded match length
token
The token byte is broken down into three parts:
7 6 5 4 3 2 1 0
X Y Z L L M M M
- L: 2-bit literals length (0-2, or 3 if extended). If the number of literals for this command is 0 to 2, the length is encoded in the token and no extra bytes are required. Otherwise, a value of 3 is encoded and extra nibbles or bytes follow as 'optional extra literal length'
- M: 3-bit encoded match length (0-6, or 7 if extended). Likewise, if the encoded match length for this command is 0 to 6, it is directly stored, otherwise 7 is stored and extra nibbles or bytes follow as 'optional extra encoded match length'. Except for the last command in a block, a command always contains a match, so the encoded match length is the actual match length offset by the minimum, which is 2 bytes. For instance, an actual match length of 5 bytes to be copied, is encoded as 3.
- XYZ: 3-bit value that indicates how to decode the match offset
optional extra literal length
If the literals length is 3 or more, the 'L' bits in the token form the value 3, and an extra nibble is read:
- 0-14: the value is added to the 3 stored in the token, to compose the final literals length.
- 15: an extra byte follows
If an extra byte follows, it can have two possible types of value:
- 0-237: 18 is added to the value (3 from the token + 15 from the nibble), to compose the final literals length. For instance a length of 206 will be stored as 3 in the token + a nibble with the value of 15 + a single byte with the value of 188.
- 239: a second and third byte follow, forming a little-endian 16-bit value. The final literals value is that 16-bit value. For instance, a literals length of 1027 is stored as 3 in the token, a nibble with the value of 15, then byte values of 239, 3 and 4, as 3 + (4 * 256) = 1027.
literal values
Literal bytes, whose number is specified by the literals length, follow here. There can be zero literals in a command.
Important note: for blocks that are part of a stream, the last command in a block ends here, as it always contains literals only. For raw blocks, the last command does contain the match offset and match length, see the note below for EOD detection.
match offset
The match offset is decoded according to the XYZ bits in the token
XYZ
00Z 5-bit offset: read a nibble for offset bits 1-4 and use the inverted bit Z of the token as bit 0 of the offset. set bits 5-15 of the offset to 1.
01Z 9-bit offset: read a byte for offset bits 0-7 and use the inverted bit Z for bit 8 of the offset. set bits 9-15 of the offset to 1.
10Z 13-bit offset: read a nibble for offset bits 9-12 and use the inverted bit Z for bit 8 of the offset, then read a byte for offset bits 0-7. set bits 13-15 of the offset to 1.
110 16-bit offset: read a byte for offset bits 8-15, then another byte for offset bits 0-7.
111 repeat offset: reuse the offset value of the previous match command.
The bit ordering and inversion helps optimize the decoder for size and speed on 8-bit CPUs.
important note regarding match offsets: stored as negative values
Note that the match offset is negative: it is added to the current decompressed location and not substracted, in order to locate the back-reference to copy. For this reason, as already indicated, unexpressed offset bits are set to 1 instead of 0.
optional extra encoded match length
If the encoded match length is 7 or more, the 'M' bits in the token form the value 7, and an extra nibble is read:
- 0-14: the value is added to the 3 stored in the token, and then the minmatch of 2 is added, to compose the final match length.
- 15: an extra byte follows
If an extra byte follows here, it can have two possible types of value:
- 0-231: 24 is added to the value (7 from the token + 15 from the nibble + minmatch of 2), to compose the final match length. For instance a length of 150 will be stored as 7 in the token + a nibble with the value of 15 + a single byte with the value of 126.
- 233: a second and third byte follow, forming a little-endian 16-bit value. The final encoded match length is that 16-bit value.
End Of Data detection for raw blocks
When the LZSA2 block is part of a stream (see StreamFormat.md), as previously mentioned, the block ends after the literal values of the last command, without a match offset or match length.
However, in a raw LZSA2 block, the last command does include a 9-bit match offset (set to zero, to be ignored) and a EOD marker as the match length. The EOD match length marker is encoded as such: the 'M' bits in the token form the value 7, then a nibble with the value of 15 is present, then a single extra match length byte with the value of 232, indicating the end of the block. This allows the EOD test to exist in a rarely used code branch.
The EOD condition can be easily checked as part of the tri-state condition when handling long matches. When 24 is added to the match byte value:
- If the byte doesn't overflow, the final match length is ready
- If the byte overflows and equals zero, the EOD marker has been hit
- Otherwise, if the overflows and doesn't equal zero, a 16-bit match length must be read.
This tri-state test translates to only an addition and two branches on 8-bit CPUs.
The equivalent EOD condition in literal lengths (which would be byte 238, that would overflow to exactly 0 when adding 18) is never emitted, so for size-optimized decompressors, the same code can be used to read both types of lengths.
Reading nibbles
When the specification indicates that a nibble (4 bit value) must be read:
- If there are no nibbles ready, read a byte immediately. Return the high 4 bits (bits 4-7) as the nibble and store the low 4 bits for later. Flag that a nibble is ready for next time.
- If a nibble is ready, return the previously stored low 4 bits (bits 0-3) and flag that no nibble is ready for next time.