You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

386 lines
11 KiB

;___XIO________________________________________________________________________________________________________________
;
; DIRECT SERIAL I/O
;
; PROVIDES INTERFACE TO PLATFORM BASE SERIAL I/O DEVICE
; ALLOWS USER MESSAGING/INTERACTION PRIOR TO AND DURING HBIOS INIT
;______________________________________________________________________________________________________________________
;
;
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
;
UARTIOB .EQU $68
;
SIO_RBR .EQU UARTIOB + 0 ; DLAB=0: RCVR BUFFER REG (READ ONLY)
SIO_THR .EQU UARTIOB + 0 ; DLAB=0: XMIT HOLDING REG (WRITE ONLY)
SIO_IER .EQU UARTIOB + 1 ; DLAB=0: INT ENABLE REG
SIO_IIR .EQU UARTIOB + 2 ; INT IDENT REGISTER (READ ONLY)
SIO_FCR .EQU UARTIOB + 2 ; FIFO CONTROL REG (WRITE ONLY)
SIO_LCR .EQU UARTIOB + 3 ; LINE CONTROL REG
SIO_MCR .EQU UARTIOB + 4 ; MODEM CONTROL REG
SIO_LSR .EQU UARTIOB + 5 ; LINE STATUS REG
SIO_MSR .EQU UARTIOB + 6 ; MODEM STATUS REG
SIO_SCR .EQU UARTIOB + 7 ; SCRATCH REGISTER
SIO_DLL .EQU UARTIOB + 0 ; DLAB=1: DIVISOR LATCH (LS)
SIO_DLM .EQU UARTIOB + 1 ; DLAB=1: DIVISOR LATCH (MS)
;
;XIO_DIV .EQU (UARTOSC / (16 * CONBAUD))
;
#ENDIF
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
#ENDIF
XIO_INIT: ; MINIMAL UART INIT
#IF (PLATFORM == PLT_UNA)
; SHOULD UNA SERIAL I/O BE RESET HERE???
#ENDIF
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
; INIT ASCI0 WITH BASIC VALUES AND FAILSAFE DIVISOR
LD A,$66 ; IGNORE CTS/DCD, NO BREAK DETECT
OUT0 (Z180_ASEXT0),A ; -> ASEXT0
LD A,$64 ; ENABLE XMT/RCV, 8 DATA, NO PARITY, 1 STOP
OUT0 (Z180_CNTLA0),A ; -> CNTLA0
;LD A,$20 ; FAILSAFE VALUE, 38400 BAUD AT 18.432 MHZ
;LD A,$22 ; FAILSAFE VALUE, 9600 BAUD AT 18.432 MHZ
;OUT0 (Z180_CNTLB0),A ; -> CNTLB0
; TRY TO IMPLEMENT CONFIGURED BAUD RATE
LD HL,DEFSERCFG ; SERIAL CONFIG WORD
LD A,H ; BYTE W/ ENCODED BAUD RATE
AND $1F ; ISOLATE BITS
LD L,A ; MOVE TO L
LD H,0 ; CLEAR MSB
CALL XIO_CNTLB ; DERIVE CNTLB VALUE
JR Z,XIO_INIT1 ; SUCCESS, IMPLEMENT IT
LD C,$21 + Z180_CLKDIV ; FAILSAFE VALUE, 9600 BAUD IF OSC=18.432 MHZ
XIO_INIT1:
LD A,C ; MOVE VALUE TO ACCUM
OUT0 (Z180_CNTLB0),A ; AND SET THE VALUE
#ENDIF
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
LD DE,DEFSERCFG ; SERIAL CONFIG WORD
CALL XIO_COMPDIV ; COMPUTE DIVISOR TO BC
LD A,$80 ; LCR := DLAB ON
OUT (SIO_LCR),A ; SET LCR
;LD A,XIO_DIV % $100 ; BAUD RATE DIVISOR (LSB)
LD A,C ; LOW BYTE OF DIVISOR
OUT (SIO_DLL),A ; SET DIVISOR (LSB)
;LD A,XIO_DIV / $100 ; BAUD RATE DIVISOR (MSB)
LD A,B ; HIGH BYTE OF DIVISOR
OUT (SIO_DLM),A ; SET DIVISOR (MSB)
LD A,03H ; VALUE FOR LCR AND MCR
OUT (SIO_LCR),A ; LCR := 3, DLAB OFF, 8 DATA, 1 STOP, NO PARITY
OUT (SIO_MCR),A ; MCR := 3, DTR ON, RTS ON
LD A,6 ; DISABLE & RESET FIFO'S
OUT (SIO_FCR),A ; DO IT
#ENDIF
RET
;
XIO_SYNC: ; WAIT FOR FOR PENDING DATA IN FIFO TO CLEAR
;
#IF (PLATFORM == PLT_UNA)
; NOT SURE ANYTHING IS POSSIBLE HERE...
#ENDIF
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
; IMPLEMENT THIS... OR MAYBE NOT.
#ENDIF
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
LD DE,CPUMHZ * 25 ; FAILSAFE TIMEOUT COUNTER
XIO_SYNC1:
IN A,(SIO_LSR) ; GET LINE STATUS REGISTER
BIT 6,A ; TEST BIT 6 (TRANSMITTER EMPTY)
JR NZ,XIO_SYNC2 ; EMPTY, MOVE ON
DEC DE ; DECREMENT TIMEOUT COUNTER
LD A,D ; TEST TIMEOUT COUNTER
OR E ; ... FOR ZERO
JR NZ,XIO_SYNC1 ; LOOP UNTIL TIMEOUT
XIO_SYNC2:
#ENDIF
RET
;
XIO_CRLF2: ; OUTPUT 2 NEWLINES
CALL XIO_CRLF ; SEND CRLF, FALL THRU FOR ANOTHER
XIO_CRLF: ; OUTPUT A NEWLINE
LD A,13 ; A = CR
CALL XIO_OUTC ; WRITE IT
LD A,10 ; A = LF
JR XIO_OUTC ; WRITE IT AND RETURN
;
XIO_SPACE: ; OUTPUT A SPACE CHARACTER
LD A,' '
JR XIO_OUTC
;
XIO_DOT: ; OUTPUT A DOT (MARK PROGRESS)
LD A,'.'
;
XIO_OUTC: ; OUTPUT BYTE IN A
#IF (PLATFORM == PLT_UNA)
PUSH BC ; PRESERVE BC
PUSH DE ; PRESERVE DE
LD BC,$0012 ; UNA UNIT = 0, FUNC = WRITE CHAR
LD E,A ; CHAR TO E
CALL $FFFD ; DO IT (RST 08 NOT SETUP YET)
POP DE ; RESTORE DE
POP BC ; RESTORE BC
RET ; DONE
#ENDIF
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
PUSH AF ; SAVE INCOMING BYTE
XIO_OUTC1:
IN0 A,(Z180_STAT0) ; GET LINE STATUS
AND $02 ; ISOLATE TDRE
JR Z,XIO_OUTC1 ; LOOP TILL READY (EMPTY)
POP AF ; RECOVER INCOMING BYTE TO OUTPUT
OUT0 (Z180_TDR0),A ; WRITE THE CHAR TO ASCI
RET
#ENDIF
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
PUSH AF ; SAVE INCOMING BYTE
XIO_OUTC1:
IN A,(SIO_LSR) ; READ LINE STATUS REGISTER
AND $20 ; ISOLATE THRE
JR Z,XIO_OUTC1 ; LOOP TILL READY (EMPTY)
POP AF ; RECOVER BYTE TO WRITE
OUT (SIO_THR),A ; WRITE THE CHAR TO UART
RET
#ENDIF
;
XIO_INC: ; INPUT BYTE TO A
#IF (PLATFORM == PLT_UNA)
PUSH BC ; PRESERVE BC
PUSH DE ; PRESERVE DE
LD BC,$0011 ; UNA UNIT = 0, FUNC = READ CHAR
CALL $FFFD ; DO IT (RST 08 NOT SETUP YET)
LD A,E ; CHAR TO A
POP DE ; RESTORE DE
POP BC ; RESTORE BC
RET ; DONE
#ENDIF
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
XIO_INC1:
IN0 A,(Z180_STAT0) ; READ LINE STATUS
AND $80 ; ISOLATE RDRF
JR Z,XIO_INC1 ; LOOP TILL CHAR AVAILABLE
IN0 A,(Z180_RDR0) ; READ THE CHAR
RET
#ENDIF
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
XIO_INC1:
IN A,(SIO_LSR) ; READ LINE STATUS REGISTER
AND $01 ; ISOLATE RDR
JR Z,XIO_INC1 ; LOOP TILL CHAR AVAILABLE
IN A,(SIO_RBR) ; READ THE CHAR
RET
#ENDIF
;
XIO_IST: ; INPUT STATUS TO A (NUM CHARS WAITING)
#IF (PLATFORM == PLT_UNA)
PUSH BC ; PRESERVE BC
PUSH DE ; PRESERVE DE
LD BC,$0013 ; UNA UNIT = 0, FUNC = READ CHAR
CALL $FFFD ; DO IT (RST 08 NOT SETUP YET)
LD A,E ; CHAR TO A
OR A ; UPDATE ZF
POP DE ; RESTORE DE
POP BC ; RESTORE BC
RET ; DONE
#ENDIF
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
IN0 A,(Z180_STAT0) ; READ LINE STATUS
AND $80 ; ISOLATE RDRF
RET Z ; NO CHARS WAITING, A=0, Z SET
LD A,1 ; SIGNAL 1 CHAR WAITING
OR A ; UPDATE ZF
RET
#ENDIF
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
IN A,(SIO_LSR) ; READ LINE STATUS REGISTER
AND $01 ; ISOLATE RDR
RET Z ; NO CHARS WAITING, A=0, Z SET
LD A,1 ; SIGNAL 1 CHAR WAITING
OR A ; UPDATE ZF
RET
#ENDIF
;
XIO_OUTS: ; OUTPUT '$' TERMINATED STRING AT ADDRESS IN HL
LD A,(HL) ; GET NEXT BYTE
CP '$' ; END OF STRING?
RET Z ; YES, GET OUT
CALL XIO_OUTC ; OTHERWISE, WRITE IT
INC HL ; POINT TO NEXT BYTE
JR XIO_OUTS ; AND LOOP
#IF ((PLATFORM == PLT_SBC) | (PLATFORM == PLT_ZETA) | (PLATFORM == PLT_ZETA2))
;
; COMPUTE DIVISOR TO BC
;
XIO_COMPDIV:
; WE WANT TO DETERMINE A DIVISOR FOR THE UART CLOCK
; THAT RESULTS IN THE DESIRED BAUD RATE.
; BAUD RATE = UART CLK / DIVISOR, OR TO SOLVE FOR DIVISOR
; DIVISOR = UART CLK / BAUDRATE.
; THE UART CLOCK IS THE UART OSC PRESCALED BY 16. ALSO, WE CAN
; TAKE ADVANTAGE OF ENCODED BAUD RATES ALWAYS BEING A FACTOR OF 75.
; SO, WE CAN USE (UART OSC / 16 / 75) / (BAUDRATE / 75)
;
; FIRST WE DECODE THE BAUDRATE, BUT WE USE A CONSTANT OF 1 INSTEAD
; OF THE NORMAL 75. THIS PRODUCES (BAUDRATE / 75).
;
LD A,D ; GET CONFIG MSB
AND $1F ; ISOLATE ENCODED BAUD RATE
LD L,A ; PUT IN L
LD H,0 ; H IS ALWAYS ZERO
LD DE,1 ; USE 1 FOR ENCODING CONSTANT
CALL DECODE ; DE:HL := BAUD RATE, ERRORS IGNORED
EX DE,HL ; DE := (BAUDRATE / 75), DISCARD HL
LD HL,UARTOSC / 16 / 75 ; HL := (UART OSC / 16 / 75)
JP XIO_DIV16 ; BC := HL/DE == DIVISOR AND RETURN
;
#ENDIF
;
;
;
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4))
;
; DERIVE A CNTLB VALUE BASED ON AN ENCODED BAUD RATE AND CURRENT CPU SPEED
; ENTRY: HL = ENCODED BAUD RATE
; EXIT: C = CNTLB VALUE, A=0/Z IFF SUCCESS
;
; DESIRED DIVISOR == CPUHZ / BAUD
; DUE TO ENCODING BAUD IS ALWAYS DIVISIBLE BY 75
; Z180 DIVISOR IS ALWAYS A FACTOR OF 160
;
; X = (CPU_HZ / 160) / 75 ==> SIMPLIFIED ==> X = CPU_KHZ / 12
; X = X / (BAUD / 75)
; IF X % 3 == 0, THEN (PS=1, X := X / 3) ELSE PS=0
; IF X % 4 == 0, THEN (DR=1, X := X / 4) ELSE DR=0
; SS := LOG2(X)
;
XIO_CNTLB:
LD DE,1 ; USE DECODE CONSTANT OF 1 TO GET BAUD RATE ALREADY DIVIDED BY 75
CALL DECODE ; DECODE THE BAUDATE INTO DE:HL, DE IS DISCARDED
;CALL TSTPT
RET NZ ; ABORT ON ERROR
PUSH HL ; HL HAS (BAUD / 75), SAVE IT
;LD HL,(HCB + HCB_CPUKHZ) ; GET CPU CLK IN KHZ
LD HL,CPUKHZ ; CPU CLK IN KHZ
;LD HL,9216 ; *DEBUG*
; DUE TO THE LIMITED DIVISORS POSSIBLE WITH CNTLB, YOU PRETTY MUCH
; NEED TO USE A CPU SPEED THAT IS A MULTIPLE OF 128KHZ. BELOW, WE
; ATTEMPT TO ROUND THE CPU SPEED DETECTED TO A MULTIPLE OF 128KHZ
; WITH ROUNDING. THIS JUST MAXIMIZES OUR CHANCES OF SUCCESS COMPUTING
; THE DIVISOR.
LD DE,$0040 ; HALF OF 128 IS 64
ADD HL,DE ; ADD FOR ROUNDING
LD A,L ; MOVE TO ACCUM
AND $80 ; STRIP LOW ORDER 7 BITS
LD L,A ; ... AND PUT IT BACK
LD DE,12 ; PREPARE TO DIVIDE BY 12
CALL XIO_DIV16 ; BC := (CPU_KHZ / 12), REM IN HL, ZF
;CALL TSTPT
POP DE ; RESTORE (BAUD / 75)
RET NZ ; ABORT IF REMAINDER
PUSH BC ; MOVE WORKING VALUE
POP HL ; ... BACK TO HL
CALL XIO_DIV16 ; BC := X / (BAUD / 75)
;CALL TSTPT
RET NZ ; ABORT IF REMAINDER
;
; DETERMINE PS BIT BY ATTEMPTING DIVIDE BY 3
PUSH BC ; SAVE WORKING VALUE ON STACK
PUSH BC ; MOVE WORKING VALUE
POP HL ; ... TO HL
LD DE,3 ; SETUP TO DIVIDE BY 3
CALL XIO_DIV16 ; BC := X / 3, REM IN HL, ZF
;CALL TSTPT
POP HL ; HL := PRIOR WORKING VALUE
LD E,0 ; INIT E := 0 AS WORKING CNTLB VALUE
JR NZ,XIO_CNTLB1 ; DID NOT WORK, LEAVE PS==0, SKIP AHEAD
SET 5,E ; SET PS BIT
PUSH BC ; MOVE NEW WORKING
POP HL ; ... VALUE TO HL
;
XIO_CNTLB1:
;CALL TSTPT
; DETERMINE DR BIT BY ATTEMPTING DIVIDE BY 4
LD A,L ; LOAD LSB OF WORKING VALUE
AND $03 ; ISOLATE LOW ORDER BITS
JR NZ,XIO_CNTLB2 ; NOT DIVISIBLE BY 4, SKIP AHEAD
SET 3,E ; SET PS BIT
SRL H ; DIVIDE HL BY 4
RR L ; ...
SRL H ; ...
RR L ; ...
;
XIO_CNTLB2:
;CALL TSTPT
; DETERMINE SS BITS BY RIGHT SHIFTING AND INCREMENTING
LD B,7 ; LOOP COUNTER, MAX VALUE OF SS IS 7
LD C,E ; MOVE WORKING CNTLB VALUE TO C
XIO_CNTLB3:
BIT 0,L ; CAN WE SHIFT AGAIN?
JR NZ,XIO_CNTLB4 ; NOPE, DONE
SRL H ; IMPLEMENT THE
RR L ; ... SHIFT OPERATION
INC C ; INCREMENT SS BITS
DJNZ XIO_CNTLB3 ; LOOP IF MORE SHIFTING POSSIBLE
;
; AT THIS POINT HL MUST BE EQUAL TO 1 OR WE FAILED!
DEC HL ; IF HL == 1, SHOULD BECOME ZERO
LD A,H ; TEST HL
OR L ; ... FOR ZERO
RET NZ ; ABORT IF NOT ZERO
;
XIO_CNTLB4:
;CALL TSTPT
XOR A
RET
;
#ENDIF
;
; COMPUTE HL / DE = BC W/ REMAINDER IN HL & ZF
;
XIO_DIV16:
LD A,H ; HL -> AC
LD C,L ; ...
LD HL,0 ; INIT HL
LD B,16 ; INIT LOOP COUNT
XIO_DIV16A:
SCF
RL C
RLA
ADC HL,HL
SBC HL,DE
JR NC,XIO_DIV16B
ADD HL,DE
DEC C
XIO_DIV16B:
DJNZ XIO_DIV16A ; LOOP AS NEEDED
LD B,A ; AC -> BC
LD A,H ; SET ZF
OR L ; ... BASED ON REMAINDER
RET ; DONE