You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1264 lines
31 KiB

;
;==================================================================================================
; HBIOS
;==================================================================================================
;
.ORG $1000
;
; INCLUDE GENERIC STUFF
;
#INCLUDE "std.asm"
;
;==================================================================================================
; ENTRY VECTORS (JUMP TABLE)
;==================================================================================================
;
JP HB_START
JP HB_DISPATCH
;
;==================================================================================================
; HBIOS INTERNAL PROXY JUMP TABLE
;==================================================================================================
;
; THE FOLLOWING VECTOR TABLE IS USED BY HBIOS TO CALLBACK TO THE
; HBIOS PROXY INTERNALLY. IT SHOULD NEVER BE CALLED OUTSIDE OF HBIOS.
; IT IS PROVIDED SO THAT THE LOCATION OF THE HBIOS PROXY CAN BE LOCATED
; AT ARBITRARY ADDRESSES AND THE TABLE BELOW ADJUSTED AS NEEDED.
;
HBXX:
HBXX_SETBNK JP HBXI_SETBNK
HBXX_GETBNK JP HBXI_GETBNK
HBXX_COPY JP HBXI_COPY
HBXX_XCOPY JP HBXI_XCOPY
;
;==================================================================================================
; SYSTEM INITIALIZATION
;==================================================================================================
;
HB_START:
;
; ANNOUNCE HBIOS
;
CALL NEWLINE
CALL NEWLINE
PRTX(STR_PLATFORM)
PRTS(" @ $")
LD HL,CPUFREQ
CALL PRTDEC
PRTS("MHz ROM=$")
LD HL,ROMSIZE
CALL PRTDEC
PRTS("KB RAM=$")
LD HL,RAMSIZE
CALL PRTDEC
PRTS("KB$")
;
; INSTALL HBIOS PROXY IN UPPER MEMORY
;
LD HL,HBX_IMG ; HL := SOURCE OF HBIOS PROXY IMAGE
LD DE,HBX_LOC ; DE := DESTINATION TO INSTALL IT
LD BC,HBX_SIZ ; SIZE
LDIR ; DO THE COPY
;
; UDPATE THE PROXY CALLBACK VECTOR TABLE
;
LD HL,HBXI_SETBNK
LD (HBXX_SETBNK + 1),HL
LD HL,HBXI_GETBNK
LD (HBXX_GETBNK + 1),HL
LD HL,HBXI_COPY
LD (HBXX_COPY + 1),HL
LD HL,HBXI_XCOPY
LD (HBXX_XCOPY + 1),HL
;
; DURING INITIALIZATION, CONSOLE IS ALWAYS PRIMARY SERIAL PORT
; POST-INITIALIZATION, WILL BE SWITCHED TO USER CONFIGURED CONSOLE
;
LD A,BOOTCON
LD (CONDEV),A
;
; PERFORM DEVICE INITIALIZATION
;
LD B,HB_INITTBLLEN
LD DE,HB_INITTBL
INITSYS2:
CALL NEWLINE
LD A,(DE)
LD L,A
INC DE
LD A,(DE)
LD H,A
INC DE
PUSH DE
PUSH BC
CALL JPHL
POP BC
POP DE
DJNZ INITSYS2
;
; SET UP THE DEFAULT DISK BUFFER ADDRESS
;
LD HL,HBX_IMG ; DEFAULT DISK XFR BUF ADDRESS
LD (DIOBUF),HL ; SAVE IT
;
; NOW SWITCH TO USER CONFIGURED CONSOLE
;
#IF ((PLATFORM == PLT_N8) | (PLATFORM == PLT_MK4) | (PLATFORM == PLT_S100))
LD A,DEFCON
#ELSE
IN A,(RTC) ; RTC PORT, BIT 6 HAS STATE OF CONFIG JUMPER
BIT 6,A ; BIT 6 HAS CONFIG JUMPER STATE
LD A,DEFCON ; ASSUME WE WANT DEFAULT CONSOLE
JR NZ,INITSYS1 ; IF NZ, JUMPER OPEN, DEF CON IS CORRECT
LD A,ALTCON ; JUMPER SHORTED, USE ALTERNATE CONSOLE
INITSYS1:
#ENDIF
LD (CONDEV),A ; SET THE ACTIVE CONSOLE DEVICE
;
; DISPLAY THE POST-INITIALIZATION BANNER
;
CALL NEWLINE
CALL NEWLINE
PRTX(STR_BANNER)
CALL NEWLINE
;
RET
;
;==================================================================================================
; TABLE OF INITIALIZATION ENTRY POINTS
;==================================================================================================
;
HB_INITTBL:
#IF (UARTENABLE)
.DW UART_INIT
#ENDIF
#IF (ASCIENABLE)
.DW ASCI_INIT
#ENDIF
#IF (SIMRTCENABLE)
.DW SIMRTC_INIT
#ENDIF
#IF (DSRTCENABLE)
.DW DSRTC_INIT
#ENDIF
#IF (VDUENABLE)
.DW VDU_INIT
#ENDIF
#IF (CVDUENABLE)
.DW CVDU_INIT
#ENDIF
#IF (UPD7220ENABLE)
.DW UPD7220_INIT
#ENDIF
#IF (N8VENABLE)
.DW N8V_INIT
#ENDIF
#IF (PRPENABLE)
.DW PRP_INIT
#ENDIF
#IF (PPPENABLE)
.DW PPP_INIT
#ENDIF
#IF (DSKYENABLE)
.DW DSKY_INIT
#ENDIF
#IF (MDENABLE)
.DW MD_INIT
#ENDIF
#IF (FDENABLE)
.DW FD_INIT
#ENDIF
#IF (RFENABLE)
.DW RF_INIT
#ENDIF
#IF (IDEENABLE)
.DW IDE_INIT
#ENDIF
#IF (PPIDEENABLE)
.DW PPIDE_INIT
#ENDIF
#IF (SDENABLE)
.DW SD_INIT
#ENDIF
#IF (HDSKENABLE)
.DW HDSK_INIT
#ENDIF
#IF (PPKENABLE)
.DW PPK_INIT
#ENDIF
#IF (KBDENABLE)
.DW KBD_INIT
#ENDIF
#IF (TTYENABLE)
.DW TTY_INIT
#ENDIF
#IF (ANSIENABLE)
.DW ANSI_INIT
#ENDIF
;
HB_INITTBLLEN .EQU (($ - HB_INITTBL) / 2)
;
;==================================================================================================
; IDLE
;==================================================================================================
;
;__________________________________________________________________________________________________
;
IDLE:
PUSH AF
PUSH BC
PUSH DE
PUSH HL
#IF (FDENABLE)
CALL FD_IDLE
#ENDIF
POP HL
POP DE
POP BC
POP AF
RET
;
;==================================================================================================
; BIOS FUNCTION DISPATCHER
;==================================================================================================
;
; MAIN BIOS FUNCTION
; B: FUNCTION
;__________________________________________________________________________________________________
;
HB_DISPATCH:
LD A,B ; REQUESTED FUNCTION IS IN B
CP BF_CIO + $10 ; $00-$0F: CHARACTER I/O
JP C,CIO_DISPATCH
CP BF_DIO + $10 ; $10-$1F: DISK I/O
JP C,DIO_DISPATCH
CP BF_RTC + $10 ; $20-$2F: REAL TIME CLOCK (RTC)
JP C,RTC_DISPATCH
CP BF_EMU + $10 ; $30-$3F: EMULATION
JP C,EMU_DISPATCH
CP BF_VDA + $10 ; $40-$4F: VIDEO DISPLAY ADAPTER
JP C,VDA_DISPATCH
CP BF_SYS ; SKIP TO BF_SYS VALUE AT $F0
CALL C,PANIC ; PANIC IF LESS THAN BF_SYS
JP SYS_DISPATCH ; OTHERWISE SYS CALL
CALL PANIC ; THIS SHOULD NEVER BE REACHED
;
;==================================================================================================
; CHARACTER I/O DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO SPECIFIED CHARACTER I/O DRIVER
; B: FUNCTION
; C: DEVICE/UNIT
;
CIO_DISPATCH:
LD A,C ; REQUESTED DEVICE/UNIT IS IN C
AND $F0 ; ISOLATE THE DEVICE PORTION
#IF (UARTENABLE)
CP CIODEV_UART
JP Z,UART_DISPATCH
#ENDIF
#IF (ASCIENABLE)
CP CIODEV_ASCI
JP Z,ASCI_DISPATCH
#ENDIF
#IF (PRPENABLE & PRPCONENABLE)
CP CIODEV_PRPCON
JP Z,PRPCON_DISPATCH
#ENDIF
#IF (PPPENABLE & PPPCONENABLE)
CP CIODEV_PPPCON
JP Z,PPPCON_DISPATCH
#ENDIF
#IF (VDUENABLE)
CP CIODEV_VDU
JP Z,VDU_DISPCIO
#ENDIF
#IF (CVDUENABLE)
CP CIODEV_CVDU
JP Z,CVDU_DISPCIO
#ENDIF
#IF (UPD7220ENABLE)
CP CIODEV_UPD7220
JP Z,UPD7220_DISPCIO
#ENDIF
#IF (N8VENABLE)
CP CIODEV_N8V
JP Z,N8V_DISPCIO
#ENDIF
CP CIODEV_CRT
JR Z,CIOEMU
CP CIODEV_CONSOLE
JR Z,CIOCON
CALL PANIC
;
CIOEMU:
LD A,B
ADD A,BF_EMU - BF_CIO ; TRANSLATE FUNCTION CIOXXX -> EMUXXX
LD B,A
JP EMU_DISPATCH
;
CIOCON:
LD A,(CONDEV)
LD C,A
JR CIO_DISPATCH
;
;==================================================================================================
; DISK I/O DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO SPECIFIED DISK I/O DRIVER
; B: FUNCTION
; C: DEVICE/UNIT
;
DIO_DISPATCH:
; GET THE REQUESTED FUNCTION TO SEE IF SPECIAL HANDLING
; IS NEEDED
LD A,B
;
; DIO FUNCTIONS STARTING AT DIOGETBUF ARE COMMON FUNCTIONS
; AND DO NOT DISPATCH TO DRIVERS (HANDLED GLOBALLY)
CP BF_DIOGETBUF ; TEST FOR FIRST OF THE COMMON FUNCTIONS
JR NC,DIO_COMMON ; IF >= DIOGETBUF HANDLE AS COMMON DIO FUNCTION
;
; HACK TO FILL IN HSTTRK AND HSTSEC
; BUT ONLY FOR READ/WRITE FUNCTION CALLS
; ULTIMATELY, HSTTRK AND HSTSEC ARE TO BE REMOVED
CP BF_DIOST ; BEYOND READ/WRITE FUNCTIONS ?
JR NC,DIO_DISPATCH1 ; YES, BYPASS
LD (HSTTRK),HL ; RECORD TRACK
LD (HSTSEC),DE ; RECORD SECTOR
;
DIO_DISPATCH1:
; START OF THE ACTUAL DRIVER DISPATCHING LOGIC
LD A,C ; GET REQUESTED DEVICE/UNIT FROM C
LD (HSTDSK),A ; TEMP HACK TO FILL IN HSTDSK
AND $F0 ; ISOLATE THE DEVICE PORTION
;
#IF (MDENABLE)
CP DIODEV_MD
JP Z,MD_DISPATCH
#ENDIF
#IF (FDENABLE)
CP DIODEV_FD
JP Z,FD_DISPATCH
#ENDIF
#IF (RFENABLE)
CP DIODEV_RF
JP Z,RF_DISPATCH
#ENDIF
#IF (IDEENABLE)
CP DIODEV_IDE
JP Z,IDE_DISPATCH
#ENDIF
#IF (PPIDEENABLE)
CP DIODEV_PPIDE
JP Z,PPIDE_DISPATCH
#ENDIF
#IF (SDENABLE)
CP DIODEV_SD
JP Z,SD_DISPATCH
#ENDIF
#IF (PRPENABLE & PRPSDENABLE)
CP DIODEV_PRPSD
JP Z,PRPSD_DISPATCH
#ENDIF
#IF (PPPENABLE & PPPSDENABLE)
CP DIODEV_PPPSD
JP Z,PPPSD_DISPATCH
#ENDIF
#IF (HDSKENABLE)
CP DIODEV_HDSK
JP Z,HDSK_DISPATCH
#ENDIF
CALL PANIC
;
; HANDLE COMMON DISK FUNCTIONS (NOT DEVICE DRIVER SPECIFIC)
;
DIO_COMMON:
SUB BF_DIOGETBUF ; FUNCTION = DIOGETBUF?
JR Z,DIO_GETBUF ; YES, HANDLE IT
DEC A ; FUNCTION = DIOSETBUF?
JR Z,DIO_SETBUF ; YES, HANDLE IT
CALL PANIC ; INVALID FUNCTION SPECFIED
;
; DISK: GET BUFFER ADDRESS
;
DIO_GETBUF:
LD HL,(DIOBUF) ; HL = DISK BUFFER ADDRESS
XOR A ; SIGNALS SUCCESS
RET
;
; DISK: SET BUFFER ADDRESS
;
DIO_SETBUF:
; BIT 7,H ; IS HIGH ORDER BIT SET?
; CALL Z,PANIC ; IF NOT, ADR IS IN LOWER 32K, NOT ALLOWED!!!
LD (DIOBUF),HL ; RECORD NEW DISK BUFFER ADDRESS
XOR A ; SIGNALS SUCCESS
RET
;
;==================================================================================================
; REAL TIME CLOCK DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO REAL TIME CLOCK DRIVER (NOT YET IMPLEMENTED)
; B: FUNCTION
;
RTC_DISPATCH:
#IF (SIMRTCENABLE)
JP SIMRTC_DISPATCH
#ENDIF
#IF (DSRTCENABLE)
JP DSRTC_DISPATCH
#ENDIF
CALL PANIC
;
;==================================================================================================
; EMULATION HANDLER DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO EMULATION HANDLER CURRENTLY ACTIVE
; B: FUNCTION
;
EMU_DISPATCH:
; EMU FUNCTIONS STARTING AT EMUINI ARE COMMON
; AND DO NOT DISPATCH TO DRIVERS
LD A,B ; GET REQUESTED FUNCTION
CP BF_EMUINI
JR NC,EMU_COMMON
;
LD A,(CUREMU) ; GET ACTIVE EMULATION
;
#IF (TTYENABLE)
DEC A ; 1 = TTY
JP Z,TTY_DISPATCH
#ENDIF
#IF (ANSIENABLE)
DEC A ; 2 = ANSI
JP Z,ANSI_DISPATCH
#ENDIF
CALL PANIC ; INVALID
;
; HANDLE COMMON EMULATION FUNCTIONS (NOT HANDLER SPECIFIC)
;
EMU_COMMON:
; REG A CONTAINS FUNCTION ON ENTRY
CP BF_EMUINI
JR Z,EMU_INI
CP BF_EMUQRY
JR Z,EMU_QRY
CALL PANIC
;
; INITIALIZE EMULATION
; C: VDA DEVICE/UNIT TO USE GOING FORWARD
; E: EMULATION TYPE TO USE GOING FORWARD
;
EMU_INI:
LD A,E ; LOAD REQUESTED EMULATION TYPE
LD (CUREMU),A ; SAVE IT
LD A,C ; LOAD REQUESTED VDA DEVICE/UNIT
LD (CURVDA),A ; SAVE IT
;
; UPDATE EMULATION VDA DISPATCHING ADDRESS
#IF (VDUENABLE)
LD HL,VDU_DISPVDA
CP VDADEV_VDU
JR Z,EMU_INI1
#ENDIF
#IF (CVDUENABLE)
LD HL,CVDU_DISPVDA
CP VDADEV_CVDU
JR Z,EMU_INI1
#ENDIF
#IF (UPD7220ENABLE)
LD HL,UPD7220_DISPVDA
CP VDADEV_UPD7220
JR Z,EMU_INI1
#ENDIF
#IF (N8VENABLE)
LD HL,N8V_DISPVDA
CP VDADEV_N8V
JR Z,EMU_INI1
#ENDIF
CALL PANIC
;
EMU_INI1:
LD (EMU_VDADISPADR),HL ; RECORD NEW VDA DISPATCH ADDRESS
JP EMU_VDADISP ; NOW LET EMULATOR INITIALIZE
;
; QUERY CURRENT EMULATION CONFIGURATION
; RETURN CURRENT EMULATION TARGET VDA DEVICE/UNIT IN C
; RETURN CURRENT EMULATION TYPE IN E
;
EMU_QRY:
LD A,(CURVDA)
LD C,A
LD A,(CUREMU)
LD E,A
JP EMU_VDADISP ; NOW LET EMULATOR COMPLETE THE FUNCTION
;
;==================================================================================================
; VDA DISPATCHING FOR EMULATION HANDLERS
;==================================================================================================
;
; SINCE THE EMULATION HANDLERS WILL ONLY HAVE A SINGLE ACTIVE
; VDA TARGET AT ANY TIME, THE FOLLOWING IMPLEMENTS A FAST DISPATCHING
; MECHANISM THAT THE EMULATION HANDLERS CAN USE TO BYPASS SOME OF THE
; VDA DISPATCHING LOGIC. EMU_VDADISP CAN BE CALLED TO DISPATCH DIRECTLY
; TO THE CURRENT VDA EMULATION TARGET. IT IS A JUMP INSTRUCTION THAT
; IS DYNAMICALLY MODIFIED TO POINT TO THE VDA DISPATCHER FOR THE
; CURRENT EMULATION VDA TARGET.
;
; VDA_DISPERR IS FAILSAFE EMULATION DISPATCH ADDRESS WHICH JUST
; CHAINS TO SYSTEM PANIC
;
VDA_DISPERR:
JP PANIC
;
; BELOW IS USED TO INITIALIZE THE EMULATION VDA DISPATCH TARGET
; BASED ON THE DEFAULT VDA.
;
VDA_DISPADR .EQU VDA_DISPERR
#IF (VDUENABLE & (DEFVDA == VDADEV_VDU))
VDA_DISPADR .SET VDU_DISPVDA
#ENDIF
#IF (CVDUENABLE & (DEFVDA == VDADEV_CVDU))
VDA_DISPADR .SET CVDU_DISPVDA
#ENDIF
#IF (VDUENABLE & (DEFVDA == VDADEV_UPD7220))
VDA_DISPADR .SET UPD7220_DISPVDA
#ENDIF
#IF (N8VENABLE & (DEFVDA == VDADEV_N8V))
VDA_DISPADR .SET N8V_DISPVDA
#ENDIF
;
; BELOW IS THE DYNAMICALLY MANAGED EMULATION VDA DISPATCH.
; EMULATION HANDLERS CAN CALL EMU_VDADISP TO INVOKE A VDA
; FUNCTION. EMU_VDADISPADR IS USED TO MARK THE LOCATION
; OF THE VDA DISPATCH ADDRESS. THIS ALLOWS US TO MODIFY
; THE CODE DYNAMICALLY WHEN EMULATION IS INITIALIZED AND
; A NEW VDA TARGET IS SPECIFIED.
;
EMU_VDADISP:
JP VDA_DISPADR
;
EMU_VDADISPADR .EQU $ - 2 ; ADDRESS PORTION OF JP INSTRUCTION ABOVE
;
;==================================================================================================
; VIDEO DISPLAY ADAPTER DEVICE DISPATCHER
;==================================================================================================
;
; ROUTE CALL TO SPECIFIED VDA DEVICE DRIVER
; B: FUNCTION
; C: DEVICE/UNIT
;
VDA_DISPATCH:
LD A,C ; REQUESTED DEVICE/UNIT IS IN C
AND $F0 ; ISOLATE THE DEVICE PORTION
#IF (VDUENABLE)
CP VDADEV_VDU
JP Z,VDU_DISPVDA
#ENDIF
#IF (CVDUENABLE)
CP VDADEV_CVDU
JP Z,CVDU_DISPVDA
#ENDIF
#IF (UPD7220ENABLE)
CP VDADEV_7220
JP Z,UPD7220_DISPVDA
#ENDIF
#IF (N8VENABLE)
CP VDADEV_N8V
JP Z,N8V_DISPVDA
#ENDIF
CALL PANIC
;
;==================================================================================================
; SYSTEM FUNCTION DISPATCHER
;==================================================================================================
;
; B: FUNCTION
;
SYS_DISPATCH:
LD A,B ; GET REQUESTED FUNCTION
AND $0F ; ISOLATE SUB-FUNCTION
JR Z,SYS_SETBNK ; $F0
DEC A
JR Z,SYS_GETBNK ; $F1
DEC A
JP Z,HBXI_COPY ; $F2
DEC A
JP Z,HBX_XCOPY ; $F2
DEC A
JR Z,SYS_GETCFG ; $F3
DEC A
JR Z,SYS_SETCFG ; $F4
DEC A
JR Z,SYS_GETVER ; $F5
CALL PANIC ; INVALID
;
; SET ACTIVE MEMORY BANK AND RETURN PREVIOUSLY ACTIVE MEMORY BANK
; NOTE THAT IT GOES INTO EFFECT AS HBIOS IS EXITED
; HERE, WE JUST SET THE CURRENT BANK
; CALLER MUST EXTABLISH UPPER MEMORY STACK BEFORE INVOKING THIS FUNCTION!
;
SYS_SETBNK:
LD A,(HBX_CURBNK) ; GET THE PREVIOUS ACTIVE MEMORY BANK
PUSH AF ; SAVE IT
LD A,C ; LOAD THE NEW BANK REQUESTED
LD (HBX_CURBNK),A ; SET IT FOR ACTIVATION UPON HBIOS RETURN
POP AF ; GET PREVIOUS BANK INTO A
OR A
RET
;
; GET ACTIVE MEMORY BANK
;
SYS_GETBNK:
LD A,(HBX_CURBNK) ; GET THE PREVIOUS ACTIVE MEMORY BANK
OR A
RET
;
; GET ACTIVE MEMORY BANK
;
SYS_COPY:
PUSH IX
POP BC
CALL HBXI_COPY
XOR A
RET
;
; SET BANKS FOR EXTENDED (INTERBANK) MEMORY COPY
;
SYS_XCOPY:
PUSH DE
POP BC
CALL HBX_XCOPY
XOR A
RET
;
; GET ACTIVE CONFIGURATION
; DE: DESTINATION TO RECEIVE CONFIGURATION DATA BLOCK
; MUST BE IN UPPER 32K
;
SYS_GETCFG:
LD HL,$0200 ; SETUP SOURCE OF CONFIG DATA
LD BC,$0100 ; SIZE OF CONFIG DATA
LDIR ; COPY IT
RET
;
; SET ACTIVE CONFIGURATION
; DE: SOURCE OF NEW CONFIGURATION DATA BLOCK
; MUST BE IN UPPER 32K
;
; HBIOS IS NOT REALLY SET UP TO DYNAMICALLY RECONFIGURE ITSELF!!!
; THIS FUNCTION IS NOT USEFUL YET.
;
SYS_SETCFG:
LD HL,$0200 ; SETUP SOURCE OF CONFIG DATA
LD BC,$0100
EX DE,HL
LDIR
RET
;
; GET THE CURRENT HBIOS VERSION
; RETURNS VERSION IN DE AS BCD
; D: MAJOR VERION IN TOP 4 BITS, MINOR VERSION IN LOW 4 BITS
; E: UPDATE VERION IN TOP 4 BITS, PATCH VERSION IN LOW 4 BITS
;
SYS_GETVER:
LD DE,0 | (RMJ << 12) | (RMN << 8) | (RUP << 4) | RTP
XOR A
RET
;
;==================================================================================================
; GLOBAL HBIOS FUNCTIONS
;==================================================================================================
;
; COMMON ROUTINE THAT IS CALLED BY CHARACTER IO DRIVERS WHEN
; AN IDLE CONDITION IS DETECTED (WAIT FOR INPUT/OUTPUT)
;
CIO_IDLE:
PUSH AF ; PRESERVE AF
LD A,(IDLECOUNT) ; GET CURRENT IDLE COUNT
DEC A ; DECREMENT
LD (IDLECOUNT),A ; SAVE UPDATED VALUE
CALL Z,IDLE ; IF ZERO, DO IDLE PROCESSING
POP AF ; RECOVER AF
RET
;
;==================================================================================================
; DEVICE DRIVERS
;==================================================================================================
;
#IF (SIMRTCENABLE)
ORG_SIMRTC .EQU $
#INCLUDE "simrtc.asm"
SIZ_SIMRTC .EQU $ - ORG_SIMRTC
.ECHO "SIMRTC occupies "
.ECHO SIZ_SIMRTC
.ECHO " bytes.\n"
#ENDIF
;
#IF (DSRTCENABLE)
ORG_DSRTC .EQU $
#INCLUDE "dsrtc.asm"
SIZ_DSRTC .EQU $ - ORG_DSRTC
.ECHO "DSRTC occupies "
.ECHO SIZ_DSRTC
.ECHO " bytes.\n"
#ENDIF
;
#IF (UARTENABLE)
ORG_UART .EQU $
#INCLUDE "uart.asm"
SIZ_UART .EQU $ - ORG_UART
.ECHO "UART occupies "
.ECHO SIZ_UART
.ECHO " bytes.\n"
#ENDIF
;
#IF (ASCIENABLE)
ORG_ASCI .EQU $
#INCLUDE "asci.asm"
SIZ_ASCI .EQU $ - ORG_ASCI
.ECHO "ASCI occupies "
.ECHO SIZ_ASCI
.ECHO " bytes.\n"
#ENDIF
;
#IF (VDUENABLE)
ORG_VDU .EQU $
#INCLUDE "vdu.asm"
SIZ_VDU .EQU $ - ORG_VDU
.ECHO "VDU occupies "
.ECHO SIZ_VDU
.ECHO " bytes.\n"
#ENDIF
;
#IF (CVDUENABLE)
ORG_CVDU .EQU $
#INCLUDE "cvdu.asm"
SIZ_CVDU .EQU $ - ORG_CVDU
.ECHO "CVDU occupies "
.ECHO SIZ_CVDU
.ECHO " bytes.\n"
#ENDIF
;
#IF (UPD7220ENABLE)
ORG_UPD7220 .EQU $
#INCLUDE "upd7220.asm"
SIZ_UPD7220 .EQU $ - ORG_UPD7220
.ECHO "UPD7220 occupies "
.ECHO SIZ_UPD7220
.ECHO " bytes.\n"
#ENDIF
;
#IF (N8VENABLE)
ORG_N8V .EQU $
#INCLUDE "n8v.asm"
SIZ_N8V .EQU $ - ORG_N8V
.ECHO "N8V occupies "
.ECHO SIZ_N8V
.ECHO " bytes.\n"
#ENDIF
;
#IF (PRPENABLE)
ORG_PRP .EQU $
#INCLUDE "prp.asm"
SIZ_PRP .EQU $ - ORG_PRP
.ECHO "PRP occupies "
.ECHO SIZ_PRP
.ECHO " bytes.\n"
#ENDIF
;
#IF (PPPENABLE)
ORG_PPP .EQU $
#INCLUDE "ppp.asm"
SIZ_PPP .EQU $ - ORG_PPP
.ECHO "PPP occupies "
.ECHO SIZ_PPP
.ECHO " bytes.\n"
#ENDIF
;
#IF (MDENABLE)
ORG_MD .EQU $
#INCLUDE "md.asm"
SIZ_MD .EQU $ - ORG_MD
.ECHO "MD occupies "
.ECHO SIZ_MD
.ECHO " bytes.\n"
#ENDIF
#IF (FDENABLE)
ORG_FD .EQU $
#INCLUDE "fd.asm"
SIZ_FD .EQU $ - ORG_FD
.ECHO "FD occupies "
.ECHO SIZ_FD
.ECHO " bytes.\n"
#ENDIF
#IF (RFENABLE)
ORG_RF .EQU $
#INCLUDE "rf.asm"
SIZ_RF .EQU $ - ORG_RF
.ECHO "RF occupies "
.ECHO SIZ_RF
.ECHO " bytes.\n"
#ENDIF
#IF (IDEENABLE)
ORG_IDE .EQU $
#INCLUDE "ide.asm"
SIZ_IDE .EQU $ - ORG_IDE
.ECHO "IDE occupies "
.ECHO SIZ_IDE
.ECHO " bytes.\n"
#ENDIF
#IF (PPIDEENABLE)
ORG_PPIDE .EQU $
#INCLUDE "ppide.asm"
SIZ_PPIDE .EQU $ - ORG_PPIDE
.ECHO "PPIDE occupies "
.ECHO SIZ_PPIDE
.ECHO " bytes.\n"
#ENDIF
#IF (SDENABLE)
ORG_SD .EQU $
#INCLUDE "sd.asm"
SIZ_SD .EQU $ - ORG_SD
.ECHO "SD occupies "
.ECHO SIZ_SD
.ECHO " bytes.\n"
#ENDIF
#IF (HDSKENABLE)
ORG_HDSK .EQU $
#INCLUDE "hdsk.asm"
SIZ_HDSK .EQU $ - ORG_HDSK
.ECHO "HDSK occupies "
.ECHO SIZ_HDSK
.ECHO " bytes.\n"
#ENDIF
#IF (PPKENABLE)
ORG_PPK .EQU $
#INCLUDE "ppk.asm"
SIZ_PPK .EQU $ - ORG_PPK
.ECHO "PPK occupies "
.ECHO SIZ_PPK
.ECHO " bytes.\n"
#ENDIF
#IF (KBDENABLE)
ORG_KBD .EQU $
#INCLUDE "kbd.asm"
SIZ_KBD .EQU $ - ORG_KBD
.ECHO "KBD occupies "
.ECHO SIZ_KBD
.ECHO " bytes.\n"
#ENDIF
#IF (TTYENABLE)
ORG_TTY .EQU $
#INCLUDE "tty.asm"
SIZ_TTY .EQU $ - ORG_TTY
.ECHO "TTY occupies "
.ECHO SIZ_TTY
.ECHO " bytes.\n"
#ENDIF
#IF (ANSIENABLE)
ORG_ANSI .EQU $
#INCLUDE "ansi.asm"
SIZ_ANSI .EQU $ - ORG_ANSI
.ECHO "ANSI occupies "
.ECHO SIZ_ANSI
.ECHO " bytes.\n"
#ENDIF
;
#DEFINE CIOMODE_CONSOLE
#DEFINE DSKY_KBD
#INCLUDE "util.asm"
#INCLUDE "time.asm"
;
;==================================================================================================
; HBIOS GLOBAL DATA
;==================================================================================================
;
CONDEV .DB BOOTCON
;
IDLECOUNT .DB 0
;
HSTDSK .DB 0 ; DISK IN BUFFER
HSTTRK .DW 0 ; TRACK IN BUFFER
HSTSEC .DW 0 ; SECTOR IN BUFFER
;
CUREMU .DB DEFEMU ; CURRENT EMULATION
CURVDA .DB DEFVDA ; CURRENT VDA TARGET FOR EMULATION
;
DIOBUF .DW HBX_IMG ; PTR TO 1024 BYTE DISK XFR BUFFER
;
STR_BANNER .DB "N8VEM HBIOS v", BIOSVER, ", ", BIOSBLD, ", ", TIMESTAMP, "$"
STR_PLATFORM .DB PLATFORM_NAME, "$"
;
;==================================================================================================
; FILL REMAINDER OF HBIOS
;==================================================================================================
;
SLACK .EQU (HBX_LOC - $8000 - $)
.FILL SLACK,0FFH
;
.ECHO "HBIOS space remaining: "
.ECHO SLACK
.ECHO " bytes.\n"
;
;==================================================================================================
; HBIOS UPPER MEMORY STUB
;==================================================================================================
;
; THE FOLLOWING CODE IS RELOCATED TO THE TOP OF MEMORY TO HANDLE INVOCATION DISPATCHING
;
HBX_IMG .EQU $
.ORG HBX_LOC
;
;==================================================================================================
; HBIOS JUMP TABLE
;==================================================================================================
;
JP HBX_INIT
JP HBX_INVOKE
JP HBX_SETBNK
JP HBX_GETBNK
JP HBX_COPY
JP HBX_XCOPY
JP HBX_FRGETB
JP HBX_FRGETW
JP HBX_FRPUTB
JP HBX_FRPUTW
;
;==================================================================================================
; HBIOS INITIALIZATION
;==================================================================================================
;
; SETUP RST 08 VECTOR TO HANDLE MAIN BIOS FUNCTIONS
;
HBX_INIT:
LD A,$C3 ; $C3 = JP
LD ($08),A
LD HL,HBX_INVOKE
LD ($09),HL
RET
;
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
; SETBNK - Switch Memory Bank to Bank in A and show as current.
; Must preserve all Registers including Flags.
; All Bank Switching MUST be done by this routine
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
;
HBX_SETBNK:
LD (HBX_CURBNK),A
;
; Enter at HBXI_SETBNK to set bank temporarily and avoid
; updating the "current" bank.
;
HBXI_SETBNK:
#IF ((PLATFORM == PLT_N8VEM) | (PLATFORM == PLT_ZETA))
OUT (MPCL_ROM),A
OUT (MPCL_RAM),A
#ENDIF
#IF (PLATFORM == PLT_N8)
BIT 7,A
JR Z,HBX_ROM
;
HBX_RAM:
RES 7,A
RLCA
RLCA
RLCA
OUT0 (CPU_BBR),A
LD A,DEFACR | 80H
OUT0 (ACR),A
RET
;
HBX_ROM:
OUT0 (RMAP),A
XOR A
OUT0 (CPU_BBR),A
LD A,DEFACR
OUT0 (ACR),A
RET
;
#ENDIF
#IF (PLATFORM == PLT_MK4)
RLCA
RLCA
RLCA
OUT0 (CPU_BBR),A
#ENDIF
RET
;
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
; GETBNK - Get current memory bank and return in A.
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
;
HBX_GETBNK:
HBXI_GETBNK:
LD A,(HBX_CURBNK)
RET
;
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
; Set Banks for Inter-Bank Xfer. Save all Registers.
; B = Destination Bank, C = Source Bank
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
;
HBX_XCOPY:
HBXI_XCOPY:
LD (HBX_SRCBNK),BC ; SETS BOTH SRCBNK AND DSTBNK
RET
;
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
; Copy Data - Possibly between banks. This resembles CP/M 3, but
; usage of the HL and DE registers is reversed.
; Enter: HL = Source Address
; DE = Destination Address
; BC = Number of bytes to copy
; Exit : None
; Uses : AF,BC,DE,HL
;
;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
;
; Primary entry point activates private stack while doing work. The
; secondary entry point MUST be used by internal HBIOS code/drivers
; because our private stack is already active!
;
HBX_COPY:
LD (HBX_STKSAV),SP ; Save current stack
LD SP,HBX_STACK ; Activate our private stack
CALL HBX_COPY1 ; Do the work with private stack active
LD SP,(HBX_STKSAV) ; Back to original stack
LD A,(HBX_CURBNK) ; Get the "current" bank
JR HBXI_SETBNK ; Activate current bank and return
;
; Secondary entry point HBXI_COPY is for use internally by HBIOS and
; assumes a valid stack already exists in upper 32K. It also ignores
; the "current" bank and terminates with HBIOS bank active.
;
HBXI_COPY:
CALL HBX_COPY1
LD A,BID_HB ; Get the HBIOS bank
JR HBXI_SETBNK ; .. activate and return
;
;
;
HBX_COPY1:
; Setup for copy loop
LD (HBX_SRCADR),HL ; Init working source adr
LD (HBX_DSTADR),DE ; Init working dest adr
LD H,B ; Move bytes to copy from BC...
LD L,C ; to HL to use as byte counter
HBX_COPY2: ; Copy loop
INC L ; Set ZF to indicate...
DEC L ; if a partial page copy is needed
LD BC,$100 ; Assume a full page copy, 100H bytes
JR Z,HBX_COPY3 ; If full page copy, go do it
DEC B ; Otherwise, setup for partial page copy
LD C,L ; by making BC := 0
HBX_COPY3:
PUSH HL ; Save bytes left to copy
CALL HBX_COPY4 ; Do it
POP HL ; Recover bytes left to copy
XOR A ; Clear CF
SBC HL,BC ; Reflect bytes copied in HL
JR NZ,HBX_COPY2 ; If any left, then loop
LD HL,(HBX_DEFBNK) ; Get TPA Bank #
LD H,L ; .to both H and L
LD (HBX_SRCBNK),HL ; ..set Source & Destination Bank # to default
RET ; Done
HBX_COPY4:
; Switch to source bank
LD A,(HBX_SRCBNK) ; Get source bank
CALL HBXI_SETBNK ; Set bank without making it current
; Copy BC bytes from HL -> BUF
; Allow HL to increment
PUSH BC ; Save copy length
LD HL,(HBX_SRCADR) ; Point to source adr
LD DE,HBX_BUF ; Setup buffer as interim destination
LDIR ; Copy BC bytes: src -> buffer
LD (HBX_SRCADR),HL ; Update source adr
POP BC ; Recover copy length
; Switch to dest bank
LD A,(HBX_DSTBNK) ; Get destination bank
CALL HBXI_SETBNK ; Set bank without making it current
; Copy BC bytes from BUF -> HL
; Allow DE to increment
PUSH BC ; Save copy length
LD HL,HBX_BUF ; Use the buffer as source now
LD DE,(HBX_DSTADR) ; Setup final destination for copy
LDIR ; Copy BC bytes: buffer -> dest
LD (HBX_DSTADR),DE ; Update dest adr
POP BC ; Recover copy length
RET ; Done
;
;==================================================================================================
; HBIOS ENTRY FOR RST 08 PROCESSING
;==================================================================================================
;
; MARKER IMMEDIATELY PRECEDES INVOKE ROUTINE ADDRESS
;
HBX_MARKER:
.DB 'W',~'W' ; IDENTIFIES HBIOS
;
; ENTRY POINT FOR BIOS FUNCTIONS (TARGET OF RST 08)
;
HBX_INVOKE:
LD (HBX_STKSAV),SP ; SAVE ORIGINAL STACK FRAME
LD SP,HBX_STACK ; SETUP NEW STACK FRAME
LD A,BID_HB ; HBIOS BANK
CALL HBXI_SETBNK ; SELECT IT
CALL HB_DISPATCH ; CALL HBIOS FUNCTION DISPATCHER
PUSH AF ; SAVE AF (FUNCTION RETURN)
LD A,(HBX_CURBNK) ; GET ENTRY BANK
CALL HBXI_SETBNK ; SELECT IT
POP AF ; RESTORE AF
LD SP,(HBX_STKSAV) ; RESTORE ORIGINAL STACK FRAME
RET ; RETURN TO CALLER
;
;==================================================================================================
; HBIOS INTERBANK MEMORY COPY BUFFER
;==================================================================================================
;
.FILL $FE00 - $,$FF ; FILL TO START OF BUFFER PAGE
HBX_BUF .FILL $100,0 ; INTER-BANK COPY BUFFER
;
;==================================================================================================
; HBIOS INTERRUPT VECTOR TABLE
;==================================================================================================
;
.FILL $FF00 - $,$FF ; FILL TO START OF LAST PAGE
;
; AREA RESERVED FOR UP TO 16 INTERRUPT VECTOR ENTRIES (MODE 2)
;
HBX_IVT:
.FILL $20,$FF
;
;==================================================================================================
; Load A,(HL) from Alternate Bank (in Reg C)
;==================================================================================================
;
HBX_FRGETB:
LD (HBX_STKSAV),SP ; SAVE ORIGINAL STACK FRAME
LD SP,HBX_STACK ; SETUP NEW STACK FRAME
PUSH BC
LD A,C
DI
CALL HBXI_SETBNK ; SELECT IT
LD C,(HL)
LD A,(HBX_CURBNK)
CALL HBXI_SETBNK ; SELECT IT
EI
LD A,C
POP BC
LD SP,(HBX_STKSAV) ; RESTORE ORIGINAL STACK FRAME
RET
;
;==================================================================================================
; Load DE,(HL) from Alternate Bank
;==================================================================================================
;
HBX_FRGETW:
LD (HBX_STKSAV),SP ; SAVE ORIGINAL STACK FRAME
LD SP,HBX_STACK ; SETUP NEW STACK FRAME
LD A,C
DI
CALL HBXI_SETBNK ; SELECT IT
LD E,(HL)
INC HL
LD D,(HL)
DEC HL
LD A,(HBX_CURBNK)
CALL HBXI_SETBNK ; SELECT IT
EI
LD SP,(HBX_STKSAV) ; RESTORE ORIGINAL STACK FRAME
RET
;
;==================================================================================================
; Load (HL),A to Alternate Bank (in Reg C)
;==================================================================================================
;
HBX_FRPUTB:
LD (HBX_STKSAV),SP ; SAVE ORIGINAL STACK FRAME
LD SP,HBX_STACK ; SETUP NEW STACK FRAME
PUSH BC
LD B,A
LD A,C
DI
CALL HBXI_SETBNK ; SELECT IT
LD (HL),B
LD A,(HBX_CURBNK)
CALL HBXI_SETBNK ; SELECT IT
EI
POP BC
LD SP,(HBX_STKSAV) ; RESTORE ORIGINAL STACK FRAME
RET
;
;==================================================================================================
; Load (HL),DE to Alternate Bank
;==================================================================================================
;
HBX_FRPUTW:
LD (HBX_STKSAV),SP ; SAVE ORIGINAL STACK FRAME
LD SP,HBX_STACK ; SETUP NEW STACK FRAME
LD A,C
DI
CALL HBXI_SETBNK ; SELECT IT
LD (HL),E
INC HL
LD (HL),D
DEC HL
LD A,(HBX_CURBNK)
CALL HBXI_SETBNK ; SELECT IT
EI
LD SP,(HBX_STKSAV) ; RESTORE ORIGINAL STACK FRAME
RET
;
; PRIVATE DATA
;
HBX_STKSAV .DW 0 ; Saved stack pointer during HBIOS calls
HBX_CURBNK .DB BID_USR ; Currently active memory bank
HBX_SAVBNK .DB 0 ; Place to save entry bank during HB processing
HBX_DEFBNK .DB BID_USR ; Default bank number
HBX_SRCBNK .DB BID_USR ; Copy Source Bank #
HBX_DSTBNK .DB BID_USR ; Copy Destination Bank #
HBX_SRCADR .DW 0 ; Copy Source Address
HBX_DSTADR .DW 0 ; Copy Destination Address
;
; PRIVATE STACK
;
HBX_STKSIZ .EQU (HBX_END - $ - 2)
.ECHO "STACK space remaining: "
.ECHO HBX_STKSIZ
.ECHO " bytes.\n"
;
.FILL HBX_STKSIZ,$FF
HBX_STACK .EQU $
.DW HBX_MARKER ; POINTER TO HBIOS MARKER
.END