The
Cowgol v2.0

programming language

v1.0

compiled by Ladislau Szilagyi, 2024

Introduction
Cowgol is a programming language for very small systems (6502, Z80, etc).
The current version of the Cowgol language is v2.0.

Cowgol language was invented by David Given in the late 2010’s; he wrote also a Cowgol
compiler (see https://github.com/davidgiven/cowgol).

The basic set of Cowgol features is:

estrongly typed --- no implicit casting (not even between integers of different widths
of signedness)

erecords, pointers etc
esubroutines with multiple input and output arguments

earbitrarily nested subroutines, with access to variables defined in an outer
subroutine

eno recursion and limited stack use
ebyte, word and quad arithmetic for efficient implementation on small systems
esimple type inference of variables if they're assigned during a declaration

eseparate compilation with global analysis

For Z80 computers, there is a complete Cowgol development environment, hosted on
CP/M (see https://github.com/Laci1953/Cowgol_on_CP_M), enabling the user to mix
Cowgol, C and assembler source files to build an executable.

A short introduction will be followed by a detailed description of the syntax and semantics
of the Cowgol language.

Chapter 1 - A Cowgol language tutorial
We begin with a quick introduction in Cowgol, to show the essential elements of the

language in real programs, but without getting bogged down in details, rules, and
exceptions.

The first program to write is the same for all languages: Print the words “hello, world”.
In Cowgol, the source code to do this is:

include "cowgol.coh”;
print("hello, world");

After compiling-it (without showing here all the compilation details...)

A>cowgol hello.cow

, We can run-it:

A>hello

hello, world

Now, some explanations about the program itself.

A Cowgol program, consists of statements, subroutines and variables.

A subroutine (somehow equivalent to the C language function) contains statements that
specify the computing operations to be done, and variables store values used during the
computation.

In our example, we have only statements (not every program must have a subroutine).
The first line:

include "cowgol.coh™;

tells the compiler to include another file, named cowgol.coh; this file contains some useful,
basic subroutine definitions (e.g. print).

1.1 Variables and Arithmetic Expressions

The second program uses the formula OC:(5/9)(OF-32) to print the table of Fahrenheit
temperatures and their centigrade or Celsius equivalents.

This program introduces several new ideas, including comments, declarations, variables,
arithmetic expressions, loops , and subroutines:

include "cowgol.coh™;

record buffer is
bytes: uint8[5];

end record;
var buf: buffer;

sub itoa(i: int16): (pbuf: [uint8]) is
var sign: uints;

pbuf := &buf.bytes[4]; # points to terminating zero
[pbuf] := 0;

if (i >=0) then

sign := 0;
else

I :=-i; sign :=1;
end if;

loop
pbuf := pbuf - 1;
[pbuf] :='0" + ((i % 10) as uint8);
i:=1i/10;
if i == 0 then break; end if;
end loop;

if (sign == 1) then
pbuf := pbuf - 1; [pbuf] :="-"
end if;
end sub;

sub convertF() is
const TAB :=9;
var fahr: intl16;
var celsius: intl6;
var lower: intl6;
var upper: intl6;
var step: intl6;

lower := 0;
upper := 300;
step := 20;
fahr := lower;

while fahr <= upper loop
celsius ;=5 * (fahr - 32) / 9;
print(itoa(fahr)); print_char(TAB); print(itoa(celsius)); print_nl();
fahr := fahr + step;
end loop;
end sub;

convertF();

A>cowgol convert.cow
A>convert

0 -17

20 -6

40 4

60 15

80 26

100 37
120 48
140 60
160 71
180 82
200 93
220 104
240 115
260 126
280 137
300 148

The fragment “# points to terminating zero” is a comment; any characters following # in the
current line are ignored by the compiler.

In Cowgol, all variables must be declared before they are used, usually at the beginning of
the subroutine before any executable statements.

A declaration announces the properties of variables:

var fahr: int32;

declares a signed 32 bit variable named “fahr”.

1.2 Subroutines

There are two subroutines in this source file: “itoa” and “convertF”.

The first one, “itoa”, converts a signed 16 bit integer to its decimal ASCII representation as
a string. The second one, “convertF”, does the temperature conversion computations.

The method of communicating data between subroutines is for the caller to provide a list of
values, called arguments, to the subroutine it calls. The parentheses after the function
name surround the argument list.

Computation in the temperature conversion begins with the assignment statements:

lower :=0;
upper := 300;
step := 20;

which set the variables to their initial values.

Individual statements are terminated by semicolons. It is possible to include more than one
statement in a single program source line:

print(itoa(fahr)); print_char(TAB); print(itoa(celsius)); print_nl();

The print(itoa(fahr)); statement means that first the subroutine itoa is called, then the
returned pointer will be used to print the integer ASCII representation of the value
contained in the fahr variable.

Each line of the table is computed the same way, so we use a loop that repeats once per
output line; this is the purpose of the while loop:

while fahr <= upper loop
endlééb;

The while loop operates as follows: the condition following “while” is tested. If it is true (fahr
is less than or equal to upper), the body of the loop (the statements until “end loop”) is
executed. Then the condition is re-tested, and if true, the body is executed again. When
the test becomes false (fahr exceeds upper) the loop ends, and execution continues at the
statement that follows the loop.

Most of the work gets done in the body of the loop. The Celsius temperature is computed
and assigned to the variable “celsius” by the statement :

celsius := 5 * (fahr-32) / 9;

The reason for multiplying by 5 and dividing by 9 instead of just multiplying by 5/9 is that in
Cowgol, as in many other languages, integer division truncates: any fractional part is
discarded. Since 5 and 9 are integers. 5/9 would be truncated to zero and so all the
Celsius temperatures would be reported as zero.

Chapter 2 — Types, Operators and expressions
2.1 Variable names

There are some restrictions on the names of variables and symbolic constants. Names are
made up of letters and digits; the first character must be a letter. The underscore ="
counts as a letter; it is sometimes useful for improving the readability of long variable
names. Upper and lower case letters are distinct.

2.2 Data types
Cowgol provides the following set of scalar data types:

uint8 unsigned 8 bits integer
int8 signed 8 bits integer
uintl6 unsigned 16 bits integer
int16 signed 16 bits integer
intptr alias to uint16

uint32 unsigned 32 bits integer
int32 signed 32 bits integers

No floating point data type is provided.

No implicit casting is done. If you want to use mixed types, you must explicitly convert,
using the as keyword.

Example:

var i: uint8;

var j: uintl6;

ji=j+i # wrong, the compiler reports a syntax error here!

j :=] + (i as uintl6); # right!

=]+ 1 # as a special exception, numeric constants work anywhere

It is possible to define aliases for these data types, using typedef :

typedef byte is uint8;

Also, typedef can be used to define new data types having a specific value range:
typedef nibble is int(0,15); # 0 <= nibble <= 15

2.3 Constants

In Cowgol, you can also define constants:
const ZERO := 0;

The values used in Cowgol can be hexadecimal (0x12AB), decimal=default (123 or
0d123), octal (0017), binary (0b101) ; _ characters are ignored in numbers (12_345is a
valid number).

A character constant is an integer, written as one character within single quotes, such as

X

Certain characters can be represented in character and string constants by escape
sequences like \n (newline); these sequences look like two characters, but represent only
one.

A string constant, or string literal, is a sequence of zero or more characters (up to 128)
surrounded by double quotes, as in:

"l am a string"

or

" # the empty string

The quotes are not part of the string, but serve only to delimit it. The same escape
sequences used in character constants apply in strings; \" represents the double-quote
character.

2.4 Declarations
Variables are declared using the var keyword:
var n: uint8;

Variables are not initialised to anything, so if you don't zero arrays and structures yourself
before use, they'll be full of garbage.

When declaring a variable, you can initialize its value:

var i: uint8 := 4; # variable declaration with initialiser

You can omit the type of a variable if, at declaration, it is initialized with a value contained
in another variable:

var X: intl6 :=1;
vary = x; #y is declared as int16

2.5 Arithmetic operators

For computations, the following operators may be used: +-*/% & | * ~

In addition, there are the << and >> operators.
These are special; the second argument must always be a uint8.

Therefore, this is correct:
var a: uint8;

var b: uintl6;
b:=b>>a;

But the following one is not allowed (the compiler will issue an error message):

var a: uintle;

var b: uintl6;
b:=b>>a;

2.6 Relational and logical operations

The relational operators are
> >= < <=

They all have the same precedence. Just below them in precedence are the equality
operators:

Relational operators have lower precedence than arithmetic operators, so an expression
like i <lim-1 is taken as i < (lim-1), as would be expected.

More interesting are the logical operators not, and and or. Expressions connected by not
and ,or or are evaluated left to right, and evaluation stops as soon as the truth or falsehood
of the result is known.

2.7 Arrays
Cowgol supports single-dimensional arrays.

var array: uint8[42];
array[1] .= 9; #second element (indexes start at 0)

The index of an array is either a uint8 or a uint1l6 based on the size of the array. Using the
wrong type will cause a compilation error.

var array: uint8[42];

var i: uintlé = 9;
print_i8(array[i]); # wrong!
print_i8(array[i as uint8]); # right!

It is possible to automatically determine the type of an array index using special syntax.

var array: uint8[42];
var i: @indexof array := 9; # automatically picks a uint8 or a uint16
print_i8(arrayli]); # always works

That way you can resize your array later without having to rewrite lots of code.
Arrays also support the @sizeof modifier to return the number of elements in the array:
var array: uint8[42];

var i; @indexof array := 0;

while i = @sizeof array loop

array[i] :=9;
=i+ 1

end loop;

2.8 Records

Cowgol supports structured records.

record ComplexNumber is
i: int32;
r: int32;

end record,;

var c: ComplexNumber;
c.i:=4;
c.r:=9;

Records may inherit from other records:

record EvenMoreComplexNumber: ComplexNumber is
g: int32;
end record,;

var c: EvenMoreComplexNumber;

c.i:=4;
c.r:=9;
c.q:=-7,

An inherited record gets all the parameters of its base class, in the same place; so it's legal
to cast a pointer to one to a pointer to another and have those fields still be accessible.
Implicit downcasts are not done.

You may use @at() to specify the actual offset of a member. This is useful for
interoperation with hardware, and also to create unions.

record HardwareReqgister is
datareg @at(0): uint8;
statusreg @at(1): uint8;
end record,;

record UnionRecord is
option1l @at(0): OptionOne,;
option2 @at(0): OptionTwo;
option3 @at(0): OptionThree;
non_union_member: uint8; # goes after the three option members

end record

2.9 Static initialisers

You may define array and record variables statically. These work the way you would
expect and allow arrays inside records, arrays of records, and strings:
var arrayl: uint8[3] := {1, 2, 3}; # the number of elements must match the size

var array2: uint8[] := {4, 3, 2, 1}; # or the compiler can figure it out

record Record is
a: uints;
b: uint8;
C: uint8;
d: uint8[3];
a_string: [uint8];
end record,;
var a_record: Record :={1, 2, 3,{4, 5,6}, "foo"};

Variables declared in this way should be considered static --- they're initialised once on
program startup and then never again. So, if you define one inside a subroutine then any
changes will persist across multiple calls to the subroutine.

There's limited support for array initialisers. These only work for one-dimensional arrays of
scalars (so far). They work by embedding the data in the executable, so they generate no
code; but the data is intrinsically static (if you use one inside a subroutine, be careful).

var array: uint8[42] = {1, 2, 3, 4}; # remaining items initialised to zero
var hugearray: uint32[1024] = {}; # your executable just went up in size by 4kB
2.10 Pointer types

Cowgol has pointers.

record Structure is
i; uint8;

https://github.com/davidgiven/cowgol/blob/master/doc/language.md#static-initialisers
https://github.com/davidgiven/cowgol/blob/master/doc/language.md#pointer-types

end record;

var v: value :={ 1 }; # member of record
vari: uint8 :=1; # scalar type
var p: [uint8]; # pointer type

p = &v.i; # allowed: taking the address of a member
p = &i; # disallowed: taking the address of a scalar variable
[p] :=[p] + 1; # dereference pointer

You may not take the address of a scalar variable: that is, a simple variable containing an
integer or pointer.

You can take the address of a record, or a scalar member of a record.

If you know what you're doing you can bypass this restriction with p := @alias &i.

This doesn't make it safe, it just stops the compiler generating an error.

Pointers are not indexable! But you can do pointer arithmetic on them.

Pointer arithmetic always works in bytes.

var p: [uint32] := &v.alignedint; # p is correctly aligned

var badp :=p + 1; # now p is misaligned
var goodp := @next p; # @next advances a pointer to the next item
goodp := @prev goodp; # ...and back to the original item

You may have pointers to pointers, but remember that you can't take the address of a
scalar variable, so they're of limited use.
record Structure is
i: uint8;
p: [uint8];
pp: [[uint8]];
end record,;

var v: Structure,
V.p = &vV.i;

V.pp = &V.p;
[lv.ppll := 7;

2.11 Special type tricks

You can define type aliases.

https://github.com/davidgiven/cowgol/blob/master/doc/language.md#special-type-tricks

typedef Objld is int(0, 127); # a custom integer type (actually uint8)
typedef MyArray is Objld[42];
These just define a new name for the type. Type aliases to the same type are compatible.

You can use @bytesof to return the size of any type or variable.

var array: MyArray;
MemZero(&block as [uint8], @bytesof MyArray);
MemZero(&block as [uint8], @bytesof array); # this works too

var elementsize: intptr := @bytesof(@sizeof array); # use parentheses

2.12 Interfaces and implementations

There's an analogue of function pointers. It's stricter than in C; you may only take the
address of subroutines which have been explicitly declared to be a member of a particular
interface.

interface Comparator(ol: [Object], 02: [Object]): (result: int8);

sub PointerComparator implements Comparator is
result := 0;
if 01 >= 02 then
result := 1;
end if;
end sub;

sub StringComparator implements Comparator is
result := StrCmp(ol as [uint8], 02 as [uint8]);
end sub;

var someComparator: Comparator := PointerComparator;
if isString() !'= 0 then

someComparator := StringComparator;
end if;

var r := someComparator(&objectl, &object2);

Implementation references (e.g. PointerComparator or StringComparator above) are
opaque pointer-sized objects, but not actually pointers. As with @impl, they use the

https://github.com/davidgiven/cowgol/blob/master/doc/language.md#interfaces-and-implementations

parameter list of the interface. They behave exactly like normal subroutines and are
constant values which can be used in initialiser lists.

The language syntax makes it possible but slightly hard to return a subroutine reference to
an outer scope. Don't do this, because as the outer scope exits its variables will be reused
and the subroutine reference's upvalues will become garbage. On the other hand,

you can use them to call into a scope:

interface FileObserver(filename: [uint8]);

@decl sub ScanDirectory(path: [uint8], callback: FileObserver);

sub ShowDirectoryContents() is
sub Callback implements FileObserver is
print(filename);
print_nl();
end sub;

ScanDirectory(".", Callback);
end sub

2.13 Inline assembly

Fragments of code written in assembly language can be inserted anywhere:

@asm "ld a,1"; # emitted literally

var regs_pair: uintl6;

@asm "Id hl,(", regs_pair, “)";# you may have references to simple variables

@asm "ld a,", p.i; # not allowed!

Chapter 3 Control flow

3.1 Statements

An expression such as x = 0 or printf(...) becomes a statement when it is followed by a
semicolon, as in

X =0;

3.2 If Then Else
If-then-else statements can be used:

if X > 4 then
y=1
elseif x ==
y:=2;
else
y:=3;
end if;

Of course, if-then-else statements nesting is allowed.

3.3 Loops
Loops are also available, in two variants: the while and the loop.

while i =0 loop
X =xX+1;

end loop;

The break and continue work as in the C language:
loop
if x < 0 then
break;
end if;
if y > 5 then
continue;
end if;
y=y+1
end loop;

The following conditional expressions may only be used in if and while statements:

and

3.4 Case

The case statement is a multi-way decision that tests whether an expression matches one
of a number of constant integer values, and branches accordingly.

case Vvis # pis a pointer to a string
when 0: p:=" "; #Empty space
when 1: p :="*"; #Star
when 2: p := ">I<"; #Federation starbase
when 3: p := "+K+"; #Klingon battlecruiser
when else: p ;= "<*>"; #Your starship's position
end case;

Each ‘when’ ends with an implicit ‘break’, therefore the following code fragment, written in
the ideea that for both 1 and 2, do_something will be executed, is wrong:

case nis
when 1: # When n is 1, nothingh is executed, because the implicit ‘break’!
when 2: do_something();

end case;

Chapter 4 — Subroutines

Subroutines are declared as:

sub name(input parameters): (output parameters) is
<statements>

end sub;

Cowgol accepts subroutines with multiple input and output parameters:

subroutine with one input parameter
sub ThisIsASubroutine(i: uint8) is
subroutine with no input or output parameters
sub ThislsANestedSubroutine() is
print("nested subroutines can access upvalues!");
print_i8(i);
end sub;

subroutine with multiple output parameters
sub swap(inl: uint8, in2: uint8): (outl: uint8, out2: uint8) is

outl :=in2;
out2 :=inl;
end sub;

calling a subroutine with multiple output parameters
(i, J) := swap(i, j);
return; # does not take any parameters

end sub:;

The compiler is strictly single pass, so if you want to use a subroutine before it's been
defined you need to split the declaration and the implementation. It works like this.

sub CombinedDeclarationAndimplementation(i: uint8) is
DoSomethingWith(i);
end sub;

@decl sub SplitDeclarationAndimplementation(i: uint8);

...arbitrary code here...

@impl sub SplitDeclarationAndimplementation is
DoSomethingWith(i);

end sub;

Note that in the implementation, the parameters are the ones used in the declaration.

If you're using separate compilation, you can mark a subroutine as being external, with a
link name, and the linker will resolve these.
In filel.cow:
sub DefiningAnExternal(a: uint8): (ret: uint8) @extern("routinel") is
ret:=a+1;

end sub;

In file2.cow:

@decl sub ImportingAnExternal(i: uint8): (ret: uint8) @extern("routinel");
var x: uint8;

var y: uint8;

y := ImportingAnExternal(4);

Externals may only be defined at the top level. A good example of a program written using
externals is the game “Colossal cave adventure”: the source file is split in two parts, each
one making extensive use of the @extern feature.

It is important to mention that the parameters of the subroutines are loaded into registers,
when possible.

E.g.: for the Z80 implementation of the Cowgol compiler, if the subroutine has only one
parameter, the caller will load the register A, or HL, or HL and HL’ , depending on the size
of the parameter type. Any supplementary parameters will be pushed on the stack.

Also, it is important to know that the subroutine’s code is responsible to “pop” from the
stack these values.

The subroutine’s code will store each parameter into a statically allocated space, owned
by the subroutine.

This is why re-entrancy is impossible; therefore, no recursive subroutines are allowed, and
also “circular” calls (e.g. Subroutine X calling subroutine Y, that calls back the subroutine
X) are forbidden (the Cowlink linker will fail to build the executable...).

But, because it is possible to call C routines and assembler code from Cowgol programs,
the re-entracy issue can be fixed easily.

There are some advantages of storing statically the values of subroutine parameters.
The executables are smaller, compared with the same programs written in C.

As an example:

- The Startrek game, written in C, results in a 27KB executable; ported to Cowgol, the
executable has only 20KB.

The Cowgol executables are also faster, compared with their C implementation.
As an example:

- For a 272KB file, dumpx (written in C) takes 27 minutes to finish, while hexdump
(written in Cowgol, with a similar output) takes only 7 minutes.

Chapter 5 Include files
Use the include keyword:
include "myfile.coh";

It is possible to use nested include files (myfile.coh may start with another include
keyword...).

Chapter 6 Cowgol development environment, hosted on CP/M, for Z80 computers

This software development environment facilitates the construction of programs written in
Cowgol, C and Z80 assembler languages.

To compile Cowgol source files (and, optionally, C and assembler files), or to build an
executable starting from Cowgol source files (and, optionally, C & assembler files), the
following command is used:

COWGOL [-C] [-Mfile] [-Lfile] [-O] sourcel.cow [source2.cow | source.c | source.as | ...

More than one source file may be specified (with extensions: .cow = cowgol source file, .c
= C source file, .as = assembler source file)

The first file must be a Cowgol source file. If more than one Cowgol source files are used,
the first one will give the name of the executable being built, but the last one must contain
the 'main’ code.

C and assembler routines may be called from the cowgol source files.
If you want just to compile/assemble the files, the option -C must be used.

If the option -C is not specified, the files will be first compiled/assembled, then linked into a
CP/M executable (named after the first file in the list).

The option -Mfile builds a memory map for the executable.
The option -Lfile adds the file "libfile.lib" to the link list.

The option -O instructs COWFIX to perform various code optimizations in the file that will
be assembled by ZB0OAS. This may help also in case of big Cowgol programs, by letting
COWFIX to comment-out unused labels and allowing Z80AS to process very large source
files.

HiTech's LINK is used to link the object files.
The following executables are needed:

- $EXEC.COM, the "batch processor" from the HiTech's C compiler

- COWGOL.COM , the component that launches all other executables (a modified
variant of the HiTech's C.COM)

- COWFE.COM, part of the Cowgol compiler

- COWBE.COM, part of the Cowgol compiler

- COWLINK.COM, part of the Cowgol compiler

- COWFIX.COM , interface to Z80AS (transforms the COWLINK's output to a syntax
accepted by Z80AS and performs code optimizations)

- Z80AS.COM , the assembler (see https://github.com/Laci1953/Z80AS)

- LINK.COM, the HiTech's linker

- CPP.COM, the HiTech's C pre-processor (needed only when C source files will be
compiled)

- P1.COM, the HiTech's C compiler pass 1 (needed only when C source files will be
compiled)

https://github.com/Laci1953/Z80AS

- CGEN.COM, the HiTech's C compiler pass 2 (needed only when C source files will

be compiled)
- OPTIM.COM, the HiTech's C compiler optimizer (needed only when C source files

will be compiled)

Also, the library file "cowgol.coo” must be present.

ADDENDUM

Cowgol language Extended Backus-Naur form

program: :=

statements: :

statement::

SEMICOLON

statements

/*%empty*/

statements statement

SEMICOLON

RETURN SEMICOLON

VAR newid COLON typeref SEMICOLON

VAR newid COLON typeref ASSIGN expression SEMICOLON
VAR newid ASSIGN expression SEMICOLON

expression ASSIGN expression SEMICOLON
startloopstatement statements END LOOP

INCLUDE STRING SEMICOLON

startwhilestatement statements END LOOP

BREAK SEMICOLON

CONTINUE SEMICOLON

IF if begin if conditional THEN statements if optional else END IF
startcase whens END CASE SEMICOLON

CONST newid ASSIGN cvalue SEMICOLON

TYPEDEF ID IS typeref SEMICOLON

startsubcall inputargs SEMICOLON

outputargs ASSIGN startsubcall inputargs SEMICOLON

SUB newsubid subparams submodifiers substart statements subend

DECL SUB newsubid subparams submodifiers SEMICOLON
subimpldecl substart statements subend SEMICOLON
INTERFACE newsubid subparams submodifiers SEMICOLON

implementsstart substart statements subend SEMICOLON

| RECORD recordstart recordinherits IS recordmembers END RECORD
| initdecl OPENBR initialisers CLOSEBR SEMICOLON

| asmstart asms SEMICOLON

startloopstatement: :=

LOOP

initwhilestatement::

WHILE

startwhilestatement: :=

initwhilestatement conditional LOOP

if begin::=

/*%empty*/

if conditional::=

conditional

if optional else::=
/*%empty*/
| if else statements

| if elseif if conditional THEN statements if optional_ else

if else::

ELSE

if elseif::=

ELSEIF

startcase: :=

CASE expression IS

whens: :=
/*%empty*/

| whens when

when: :=

beginwhen statements

beginwhen: :=
WHEN cvalue COLON

| WHEN ELSE COLON

conditional: :=
OPENPAREN conditional CLOSEPAREN

| NOT conditional

| conditional AND conditional
| conditional OR conditional
| expression EQOP expression
| expression NEOP expression
| expression LTOP expression
| expression GEOP expression
| expression GTOP expression

| expression LEOP expression

leafexpression: :=
NUMBER
| OPENPAREN expression CLOSEPAREN
| oldid
| OPENSQ expression CLOSESQ

| STRING

expression: :=

leafexpression
| MINUS expression
| TILDE expression
| expression PLUS expression
| expression MINUS expression
| expression STAR expression
| expression SLASH expression
| expression PERCENT expression
| expression CARET expression
| expression AMPERSAND expression
| expression PIPE expression
| expression LSHIFT expression
| expression RSHIFT expression
| expression AS typeref
| AMPERSAND expression
| ALIAS AMPERSAND expression
| NEXT expression
| PREV expression
| BYTESOF varortypeid
| SIZEOF varortypeid
| expression OPENSQ expression CLOSESQ
| expression DOT ID

| startsubcall inputargs

cvalue: :=

expression

typeref::
INT OPENPAREN cvalue COMMA cvalue CLOSEPAREN
| eitherid
| OPENSQ typeref CLOSESQ

| typeref OPENSQ cvalue CLOSESQ

| typeref OPENSQ CLOSESQ

| INDEXOF varortypeid

newid: :=
ID
oldid::=
ID
eitherid::=
ID
varortypeid: :=
oldid
| OPENPAREN typeref CLOSEPAREN
startsubcall::=
leafexpression
inputargs::=
OPENPAREN inputarglist CLOSEPAREN
| OPENPAREN CLOSEPAREN
inputarglist::=
inputarg
| inputarglist COMMA inputarg
inputarg: :=
expression
outputargs::=

OPENPAREN outputarglist COMMA outputarg CLOSEPAREN

outputarglist::=
outputarg

| outputarglist COMMA outputarg

outputarg: :=

expression
implementsstart: :=

SUB newsubid IMPLEMENTS typeref
submodifiers::=

/*%$empty*/

| submodifiers EXTERN OPENPAREN STRING CLOSEPAREN

newsubid: :=

newid
subimpldecl: :=

IMPL SUB oldid
substart::=

IS
subend: :=

END SUB
subparams: :=

inparamlist

| inparamlist COLON paramlist

inparamlist: :=

paramlist

paramlist: :=
OPENPAREN CLOSEPAREN
| OPENPAREN params CLOSEPAREN
params: :=
param
| param COMMA params
param: :=
ID COLON typeref
recordstart::=
eitherid
recordinherits::=
/*%empty*/
| COLON typeref
recordmembers: :=
/*%empty*/
| recordmember recordmembers
recordmember: :=
memberid recordat COLON typeref SEMICOLON
recordat: :=

/*%empty*/

| AT OPENPAREN cvalue CLOSEPAREN

memberid: :=

ID

initdecl::=
VAR newid COLON typeref ASSIGN
initialisers::=
initialiser
| initialisers COMMA initialiser
initialiser::=
/*%empty*/
| expression

| startbracedinitialiser initialisers CLOSEBR

startbracedinitialiser: :=

OPENBR
asmstart::=
ASM
asms::=
asm
| asm COMMA asms
asm: :=
STRING
| NUMBER
| oldid
//Tokens

ALIAS ::= "Q@alias"

AMPERSAND ::= "&"

AND "and"

AS ::= "as"

ASM ::= "@asmn

ASSIGN ::= ":="

AT ::= '@at"

BREAK

"break"
BYTESOF ::= "@bytesof"
CARET ::= "A"

CASE ::= "case"
CLOSEBR ::= "}"
CLOSEPAREN ::= ")"

CLOSESQ = "] "

COLON = ".n
COMMA = " , "
CONST = "const"

CONTINUE ::= "continue"
DECL ::= "Q@decl"

DOT ::= "."

ELSE ::= "else"

ELSEIF ::= "elseif"

END ::= "end"

W=

EQOP

EXTERN ::= "(@extern"
GEOP ::= ">="

GTOP ::= ">"

IF ::= "if"

IMPL "Q 1mpl n

IMPLEMENTS ::= "implements"
INCLUDE ::= "include"
INDEXOF ::= "@indexof"

INT ::= "int"

INTERFACE ::= "interface"
IS ::= "is"

LEOP ::= "<="

LOOP ::= "loop"

LSHIFT ::= "<<"

LTOP ngn

MINUS ::= "-"

NEOP Ti= "!="

NEXT

"@next"
NOT ::= "not"
OPENBR ::= "{"
OPENPAREN ::= " ("
OPENSQ ::= "["
OR ::= "or"

PERCENT ::= "%"

PIPE "

PLUS Ti= ngn

PREV ::= "Q@prev"

RECORD = "record"
RETURN = "return"
RSHI FT = ">>"

SEMICOLON ::= ";"

SIZEOF

"@sizeof"
SLASH ::= "/"

STAR ::= "*n

SUB ::= "sub"

THEN ::= "then"

TILDE ::= "~"

TYPEDEF ::= "typedef"
VAR ::= "var"

WHEN ::= "when"

WHILE ::= "while"

