CP/M
Operating System

Manual

Copyright (c) 1982

Digital Research
P.0. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

A1l Rights Reserved

COPYRIGHT

Copyright (c) 1976, 1977, 1978, 1979, 1982, 1983,
and 1984 by Digital Research 1Inc. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research Inc., Post Office Box
579, Pacific Grove, California, 93950.

Thus, readers are granted permission to include the
example programs, either in whole or in part, in
their own programs.

DISCLAIMER

Digital Research Inc. makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research 1Inc. reserves
the right to revise this publication and to make
changes from time to time in the content hereof
without obligation of Digital Research Inc. to
notify any person of such revision or changes.

TRADEMARKS

CP/M, CP/NET, and Digital Research and its logo are
registered trademarks of Digital Research. ASM,
DESPOOL, DDT, LINK-80, MAC, MP/M, PL/I-80 and SID
are trademarks of Digital Research. IBM 1is a
registered trademark of International Business
Machines. 1Intel is a registered trademark of Intel
Corporation. TI Silent 700 is a trademark of Texas
Instruments Incorporated. Zilog and Z80 are
registered trademarks of Zilog, Inc.

The CP/M Operating System Manual was prepared using
the Digital Research TEX Text Formatter and printed
in the United States of America.

Sk 5k 3 >k ok sk 3k ok ok 3 >k ok sk sk ok ok 3K ok ok K >k ok ok sk >k ok K >k ok ok Kk ok
* First Edition: 1976 *
* Second Edition: July 1982 =
* Third Edition: March 1983 x
* Fourth Edition: March 1984 x
3k 3k 3k 5k 3k 3k >k 5k >k 3k 5k >k 3k 5k >k 3kok 3k 3k ok ok >k Sk ok >k 3k ok >k kok ko kok

Table of Contents

1 CP/M Features and Facilities

1.1 Introduction 1-1
1.2 Functional Description 1-3
1.2.1 General Command Structure 1-3
1.2.2 File References 1-3
1.3 Switching Disks . 1-5
1.4 Built-in Commands 1-6
1.4.1 ERA Command 1-6
1.4.2 DIR Command 1-7
1.4.3 REN Command 1-8
1.4.4 SAVE Command . 1-8
1.4.5 TYPE Command . 1-9
1.4.6 USER Command . 1-9
1.5 Line Editing and Output Control 1-10
1.6 Transient Commands 1-11
1.6.1 STAT Command « . « . « . . 1-12
1.6.2 ASM Command « +« +« . « . . . 1-18
1.6.3 LOAD Command « +« « +« « « « . 1-19
1.6.4 PIP « v v v v v v v e e e e . 1-20
1.6.5 ED Command 1-29
1.6.6 SYSGEN Command 1-31
1.6.7 SUBMIT Command 1-33
1.6.8 DUMP Command « +« +« +« +« « « . 1-35
1.6.9 MOVCPM Command 1-35
1.7 BDOS Error Messages « « « « « « . . 1-37
1.8 CP/M Operation on the Model 800 1-38
2 The CP/M Editor
2.1 Introduction to ED o . .. 2-1
2.1.1 ED Operation . . 2-1
2.1.2 Text Transfer Functlons e e e e e 2-3
2.1.3 Memory Buffer Organization 2-4
2.1.4 Line Numbers and ED Start-up . 2-5
2.1.5 Memory Buffer Operation 2-6
2.1.6 Command Strings . 2-7
2.1.7 Text Search and Alteratlon . 2-10
2.1.8 Source Libraries . . 2-13
2.1.9 Repetitive Command Executlon . 2-14

iii

Table of Contents

(continued)

2.2 ED Error Conditions

2.3 Control Characters and Commands .

CP/M Assembler

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Introduction

Program Format

Forming the Operand .

wwwwww
wwwwww
oOuUlh WN =

Labels . ..

Numeric Constants

Reserved Words

String Constants
Arithmetic and Logical Operators .
Precedence of Operators

Assembler Directives

3.4.1 The
3.4.2 The
3.4.3 The
3.4.4 The
3.4.5 The
3.4.6 The
3.4.7 The
3.4.8 The

ORG Directive
END Directive
EQU Directive
SET Directive
IF and ENDIF Directives
DB Directive .
DW Directive .
DS Directive .

Operation Codes .

wwwwww
(SO, IO, B, RO, C,
SO Uk, WN -

Jumps, Calls, and Returns

Immediate Operand Instructions .
Increment and Decrement Instructions .
Data Movement Instructions . .
Arithmetic Logic Unit Operations .
Control Instructions .

Error Messages

A Sample Session

iv

2-14

2-16

3-10
3-10
3-11
3-11
3-12
3-13
3-14
3-14

3-15

3-15
3-17
3-17
3-18
3-19
3-21

3-21

3-23

Table of Contents

(continued)

4 CP/M Dynamic Debugging Tool

4.1 Introduction

4.2 DDT Commands

The
The
The
The
The
The
The
The
The
.1- The
.11 The
.12 The

B R il s i i
N NNNNDNNNNNNN
Ooo~NOUD, WNR

XcHunVWXIX=ErHommo >

Assembly) Command .
Display) Command
Fill) Command .
o) Command .
Input) Command
List) Command .
Move) Command .
Read) Command .
Set) Command
Trace) Command
Untrace) Command
Examine) Command

(
(
(
(G
(
(
(
(
(
(
(
(

4.3 Implementation Notes

4.4 A Sample Program

5 CP/M 2 System Interface

5.1 Introduction

5.2 Operating System Call Conventions .

5.3 A Sample File-to-File Copy Program

5.4 A Sample File Dump Utility

5.5 A Sample Random Access Program

5.6 System Function Summary .

6 CP/M 2 Alteration

6.1 Introduction

6.2 First-level System Regeneration .

6.3 Second-level System Generation

6.4 Sample GETSYS and PUTSYS Programs .

£ £y
1 1
w =

A, DMS

1
COWwoooo~N~NoOoOuULu bW

4-10

4-11

5-1

5-3

5-35

5-38

5-42

5-50

6-2

6-5

6-9

Table of Contents

(continued)

.5 Disk Organization .

.6 The BIOS Entry Points

.7 A Sample BIOS .

.8 A Sample Cold Start Loader

.9 Reserved Locations in Page Zero .
.10 Disk Parameter Tables

.11 The DISKDEF Macro Library

.12 Sector Blocking and Deblocking .

vi

6-11

6-13

6-21

6-21

6-22

6-23

6-28

6-32

Appendixes

Basic Input/Output System (BIOS)

A Skeletal CBIOS

A Skeletal GETSYS/PUTSYS Program

The Model 800 Cold Start Loader for CP/M 2

A Skeletal Cold Start Loader

CP/M Disk Definition Library

Blocking and Deblocking Algorithms

Glossary

CP/M Error Messages .

vii

B-1

C-1

D-1

E-1

F-1

G-1

H-1

I-1

Tables

A WN R

[= =
L

NNNNNDN
1 1

W wwwwwwwww
1

> Db
1
WN =

(G, BN O, B0, |
1
wN =

H OO ~NO UL, WN -

o -

[e)BNe) I e) I o) BN e) BNe) B o) o) BNe) BN o))
1

—
]

Figures

2-
2

SO, WN B

H OO ~NOUE, WNRF

[t

1.
-2.

Tables, Figures, and Listings

Line-editing Control Characters .
CP/M Transient Commands

Physical Devices

PIP Parameters

ED Text Transfer Commands .
Editing Commands
Line-editing Controls .
Error Message Symbols .

ED Control Characters .

ED Commands .

Reserved Characters . .
Arithmetic and Logical Operators
Assembler Directives .

Jumps, Calls, and Returns .
Immediate Operand Instructions
Increment and Decrement Instructions
Data Movement Instructions
Arithmetic Logic Unit Operations
Error Codes .

Error Messages

Line-editing Controls .
DDT Commands
CPU Registers

CP/M Filetypes . .
File Control Block Flelds .
Edit Control Characters .

Standard Memory Size Values .
Common Values for CP/M Systems
CP/M Disk Sector Allocation .
IOBYTE Field Values .

BIOS Entry Points .
Reserved Locations in Page Zero .
Disk Parameter Headers

BSH and BLM Values

EXM Values

BLS Tabluation

CP/M Error Messages .

Overall ED Operation
Memory Buffer Organization

viii

Tables, Figures, and Listings

(continued)
Figures
2-3. Logical Organization of Memory Buffer 2-4
5-1. CP/M Memory Organization 5-1
5-2. File Control Block Format . 5-7
6-1 IOBYTE Fields 6-15
6-2. Disk Parameter Header Format 6-22
6-3. Disk Parameter Header Table 6-23
6-4 Disk Parameter Block Format 6-24
6-5 ALO and AL b6-25
Listings
6-1. GETSYS Program« 6-9
6-2. BIOS Entry Points 6-13

ix

Section 1

CP/M Features and Facilities

1.1 Introduction

CP/M 1is a monitor control program for microcomputer system
development that uses floppy disks or Winchester hard disks for
backup storage. Using a computer system based on the Intel 8080
microcomputer, CP/M provides an environment for program
construction, storage, and editing, along with assembly and program
check-out facilities. CP/M can be easily altered to execute with
any computer configuration that uses a Zilog Z80 or an Intel 8080
Central Processing Unit (CPU) and has at least 20K bytes of main
memory with up to 16 disk drives. A detailed discussion of the
modifications required for any particular hardware environment is
given in Section 6. Although the standard Digital Research version
operates on a single-density Intel Model 800, microcomputer
development system several different hardware manufacturers support
their own input-output (I/0) drivers for CP/M.

The CP/M monitor provides rapid access to programs through a
comprehensive file management package. The file subsystem supports
a named file structure, allowing dynamic allocation of file space as
well as sequential and random file access. Using this file systenm,
a large number of programs can be stored in both source and machine-
executable form.

CP/M 2 is a high-performance, single console operating system
that uses table-driven techniques to allow field reconfiguration to
match a wide variety of disk capacities. All fundamental file
restrictions are removed, maintaining upward compatibility from
previous versions of release 1.

Features of CP/M 2 include field specification of one to
sixteen logical drives, each containing up to eight megabytes. Any
particular file can reach the full drive size with the capability of
expanding to thirty-two megabytes in future releases. The directory
size can be field-configured to contain any reasonable number of
entries, and each file 1is optionally tagged with Read-Only and
system attributes. Users of CP/M 2 are physically separated by user
numbers, with facilities for file copy operations from one user area
to another. Powerful relative-record random access functions are
present in CP/M 2 that provide direct access to any of the 65536
records of an eight-megabyte file.

CP/M also supports ED, a powerful context editor, ASM , an
Intel-compatible assembler, and DDT , debugger subsystems. Optional
software includes a powerful Intel-compatible macro assembler,
symbolic debugger, along with various high-level languages. When
coupled with CP/M’s Console Command Processor (CCP), the resulting
facilities equal or exceed similar large computer facilities.

1-1

CP/M Operating System Manual 1.1 Introduction

CP/M is logically divided into several distinct parts:

BIOS (Basic I/0 System), hardware-dependent
BDOS (Basic Disk Operating System)

CCP (Console Command Processor)

TPA (Transient Program Area)

O O o o

The BIOS provides the primitive operations necessary to access
the disk drives and to interface standard peripherals: teletype,
CRT, paper tape reader/punch, and user-defined peripherals. You can
tailor peripherals for any particular hardware environment by
patching this portion of CP/M. The BDOS provides disk management by
controlling one or more disk drives containing independent file
directories. The BDOS implements disk allocation strategies that
provide fully dynamic file construction while minimizing head
movement across the disk during access. The BDOS has entry points
that include the following primitive operations, which the program
accesses:

SEARCH looks for a particular disk file by name.

OPEN opens a file for further operations.

CLOSE closes a file after processing.

RENAME changes the name of a particular file.

READ reads a record from a particular file.

WRITE writes a record to a particular file.

SELECT selects a particular disk drive for further operations.

O O OO0 o o o

The CCP provides a symbolic interface between your console and
the remainder of the CP/M system. The CCP reads the console device
and processes commands, which include listing the file directory,
printing the contents of files, and controlling the operation of
transient programs, such as assemblers, editors, and debuggers. The
standard commands that are available in the CCP are 1listed 1in
Section 1.2.1.

The last segment of CP/M is the area called the Transient
Program Area (TPA). The TPA holds programs that are loaded from the
disk under command of the CCP. During program editing, for example,
the TPA holds the CP/M text editor machine code and data areas.
Similarly, programs created under CP/M can be checked out by loading
and executing these programs in the TPA.

Any or all of the CP/M component subsystems can be overlaid by
an executing program. That is, once a user’s program is loaded into
the TPA, the CCP, BDOS, and BIOS areas can be used as the program’s
data area. A bootstrap loader 1is programmatically accessible
whenever the BIOS portion is not overlaid; thus, the wuser program
need only branch to the bootstrap loader at the end of execution and
the complete CP/M monitor is reloaded from disk.

The CP/M operating system is partitioned into distinct modules,
including the BIOS portion that defines the hardware environment in
which CP/M is executing. Thus, the standard system 1is easily
modified to any nonstandard environment by changing the peripheral
drivers to handle the custom system.

1-2

CP/M Operating System Manual 1.2 Functional Description

1.2 Functional Description

You interact with CP/M primarily through the CCP, which reads
and interprets commands entered through the console. 1In general,
the CCP addresses one of several disks that are on-line. The
standard system addresses up to sixteen different disk drives.
These disk drives are labeled A through P. A disk is 1logged-in if
the CCP is currently addressing the disk. To clearly indicate which
disk is the currently 1logged disk, the CCP always prompts the
operator with the disk name followed by the symbol >, indicating
that the CCP is ready for another command. Upon initial start-up,
the CP/M system 1is 1loaded from disk A, and the CCP displays the
following message:

CP/M VER x.x

where x.x 1is the CP/M version number. ALl CP/M systems are
initially set +to operate in a 20K memory space, but can be easily
reconfigured to fit any memory size on the host system (see Section
1.6.9). Following system sign-on, CP/M automatically logs in disk
A, prompts you with the symbol A>, indicating that CP/M is currently
addressing disk A, and waits for a command. The commands are
implemented at two levels: built-in commands and transient
commands.

1.2.1 General Command Structure

Built-in commands are a part of the CCP program, while
transient commands are loaded into the TPA from disk and executed.
The following are built-in commands:

ERA erases specified files.

DIR lists filenames in the directory.

REN renames the specified file.

SAVE saves memory contents in a file.

TYPE types the contents of a file on the logged disk.

O O 0O oo

Most of the commands reference a particular file or group of files.
The form of a file reference is specified in Section 1.2.2.

1.2.2 File References

A file reference identifies a particular file or group of files
on a particular disk attached to CP/M. These file references are
either unambiguous (ufn) or ambiguous (afn). An unambiguous file
reference uniquely identifies a single file, while an ambiguous file
reference is satisfied by a number of different files.

File references consist of two parts: the primary filename and
the filetype. Although the filetype 1is optional, it usually is
generic. For example, the filetype ASM is used to denote that the
file is an assembly language source file, while the primary filename
distinguishes each particular source file. The two names are
separated by a period, as shown in the following example:

1-3

CP/M Operating System Manual 1.2 Functional Description

filename. typ
In this example, filename 1is the primary filename of eight
characters or less, and typ is the filetype of no more than three
characters. As mentioned above, the name

filename
is also allowed and is equivalent to a filetype consisting of three
blanks. The characters wused in specifying an unambiguous file
reference cannot contain any of the following special characters:

<>.,; :+=?2x[1_%]()/\

while all alphanumerics and remaining special characters are
allowed.

An ambiguous file reference is used for directory search and
pattern matching. The form of an ambiguous file reference is
similar to an unambiguous reference, except the symbol ? can be
interspersed throughout the primary and secondary names. In various
commands throughout CP/M, the ? symbol matches any character of a
filename in the ? position. Thus, the ambiguous reference

X?Z.C?M
matches the following unambiguous filenames
XYZ.COM
and
X3Z.CAM
The x wildcard character can also be wused in an ambiguous file

reference. The x character replaces all or part of a filename or
filetype. Note that

equals the ambiguous file reference

272?720, 2°?7

while

filename.*
and

*.typ
are abbreviations for

filename.???

1-4

CP/M Operating System Manual 1.2 Functional Description

and
respectively. As an example,
A>DIR *.x*

is interpreted by the CCP as a command to list the names of all disk
files in the directory. The following example searches only for a
file by the name X.Y:

A>DIR X,Y
Similarly, the command
A>DIR X?Y.C?M

causes a search for all wunambiguous filenames on the disk that
satisfy this ambiguous reference.

The following file references are valid unambiguous file
references:

X

X.Y

XYZ
XYZ.COM
GAMMA
GAMMA.1

As an added convenience, the programmer can generally specify
the disk drive name along with the filename. 1In this case, the
drive name is given as a letter A through P followed by a colon (:).
The specified drive is then Tlogged-in before the file operation
occurs. Thus, the following are valid file references with disk
name prefixes:

N <

Y
Y
.A?M
AMMA
.ASM

.COM

N

OO mWwW T >
¥ O X X X X

All alphabetic lower-case letters in file and drive names are
translated to upper-case when they are processed by the CCP.
1.3 Switching Disks

The operator can switch the currently logged disk by typing the
disk drive name, A through P, followed by a colon when the CCP is
waiting for console input. The following sequence of prompts and

commands can occur after the CP/M system is loaded from disk A:

1-5

CP/M Operating System Manual 1.3 Switching Disks

CP/M VER 2.2

A>DIR List all files on disk A.
A:SAMPLE ASM SAMPLE PRN

A>B: Switch to disk B.

B>DIR *.ASM List all ASM files on B.
B:DUMP ASM FILES ASM

b>A: Switch back to A.

1.4 Built-in Commands

The file and device reference forms described can now be used
to fully specify the structure of the built-in commands. Assume the
following abbreviations in the description below:

ufn unambiguous file reference
afn ambiguous file reference

Recall that the CCP always translates 1lower-case characters to
upper-case characters internally. Thus, lower-case alphabetics are
treated as if they are upper-case in command names and file
references.

1.4.1 ERA Command
Syntax:
ERA afn

The ERA (erase) command removes files from +the currently
logged-in disk, for example, the disk name currently prompted by
CP/M preceding the >. The files that are erased are those that
satisfy the ambiguous file reference afn. The following examples
illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently 1logged
disk is removed from the disk directory and
the space is returned.

ERA X.=* All files with primary name X are removed
from the current disk.

ERA x.ASM All files with secondary name ASM are
removed from the current disk.

ERA X?Y.C?M All files on the current disk that satisfy
the ambiguous reference X?Y.C?M are
deleted.

1-6

CP/M Operating System Manual 1.4 Built-in Commands

ERA x.x Erase all files on the current disk. In
this case, the CCP prompts the console with
the message

ALL FILES (Y/N)?

which requires a Y response before files
are actually removed.

ERA b:*.PRN All files on drive B that satisfy the
ambiguous reference ????????.PRN are
deleted, independently of the currently
logged disk.

1.4.2 DIR Command
Syntax:
DIR afn

The DIR (directory) command causes the names of all files that
satisfy the ambiguous filename afn to be listed at the console
device. As a special case, the command

DIR

lists the files on the currently logged disk (the command DIR is
equivalent to the command DIR *.x). The following are valid DIR
commands:

DIR X.Y
DIR X?Z.C?M
DIR ?7.Y

Similar to other CCP commands, the afn can be preceded by a
drive name. The following DIR commands cause the selected drive to
be addressed before the directory search takes place:

DIR B:
DIR B:X.Y
DIR B:*.A?M

If no files on the selected disk satisfy the directory request,
the message NO FILE appears at the console.

1-7

CP/M Operating System Manual 1.4 Built-in Commands

1.4.3 REN Command
Syntax:
REN ufnl=ufn2

The REN (rename) command allows you to change the names of
files on disk. The file satisfying ufn2 is changed to ufnl. The
currently logged disk is assumed to contain the file to rename
(ufn2). You can also type a left-directed arrow instead of the
equal sign if the console supports this graphic character. The
following are examples of the REN command:

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.COM=XYZ.XXX The file XYZ.XXX 1is changed to
XYZ.COM.

The operator precedes either ufnl or ufn2 (or both) by an
optional drive address. If ufnl is preceded by a drive name, then
ufn2 is assumed to exist on the same drive. Similarly, if ufn2 is
preceded by a drive name, then ufnl is assumed to exist on the drive
as well. The same drive must be specified in both cases if both
ufnl and ufn2 are preceded by drive names. The following REN
commands illustrate this format:

REN A:X.ASM=Y.ASM The file Y.ASM is changed to X.ASM
on drive A.

REN B:ZAP.BAS=Z0T.BAS The file ZOT.BAS 1is changed to
ZAP.BAS on drive B.

REN B:A.ASM=B:A.BAK The file A.BAK is renamed to A.ASM

on drive B.

If ufnl is already present, the REN command responds with the
error FILE EXISTS and not perform the change. If ufn2 does not
exist on the specified disk, the message NO FILE is printed at the
console.

1.4.4 SAVE Command
Syntax:
SAVE n ufn
The SAVE command places n pages (256-byte blocks) onto disk
from the TPA and names this file ufn. In the CP/M distribution

system, the TPA starts at 100H (hexadecimal) which is +the second
page of memory. The SAVE command must specify 2 pages of memory if

1-8

CP/M Operating System Manual 1.4 Built-in Commands

the user’s program occupies the area from 100H through 2FFH. The
machine code file can be subsequently loaded and executed. The
following are examples of the SAVE command:

SAVE 3X.COM Copies 100H through 3FFH to X.COM.

SAVE 40 Q Copies 100H through 28FFH to Q.
Note that 28 is the page count in
28FFH, and that 28H = 2%x16+8=40
decimal.

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the ufn portion of
the command, as shown in the following example:

SAVE 10 B:Z0T.COM Copies 10 pages, 100H through OAFFH,
to the file ZOT.COM on drive B.

1.4.5 TYPE Command
Syntax:
TYPE ufn
The TYPE command displays the content of the ASCII source file
ufn on the currently logged disk at the console device. The
following are valid TYPE commands:
TYPE X.Y

TYPE X.PLM
TYPE XXX

The TYPE command expands tabs, CTRL-I characters, assuming tab
positions are set at every eighth column. The ufn can also

reference a drive name.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

1.4.6 USER Command
Syntax:
USER n
The USER command allows maintenance of separate files in the
same directory. In the syntax line, n is an integer value in the
range 0 to 15. On cold start, the operator is automatically logged

into wuser area number 0, which is compatible with standard CP/M 1
directories. You can issue the USER command at any time to move to

1-9

CP/M Operating System Manual 1.4 Built-in Commands

another 1logical area within the same directory. Drives that are
logged-in while addressing one user number are automatically active
when the operator moves to another. A wuser number is simply a
prefix that accesses particular directory entries on the active
disks.

The active user number is maintained until changed by a
subsequent USER command, or until a cold start when user 0 is again
assumed.

1.5 Line Editing and Output Control

The CCP allows certain 1line-editing functions while typing
command 1lines. The CTRL-key sequences are obtained by pressing the
control and letter keys simultaneously. Further, CCP command 1lines
are generally up to 255 characters in length; they are not acted
upon until the carriage return key is pressed.

Table 1-1. Line-editing Control Characters

Character Meaning

CTRL-C Reboots CP/M system when pressed at start of
line.

CTRL-E Physical end of line; carriage is returned,

but T1line is not sent until the carriage
return key is pressed.

CTRL-H Backspaces one character position.

CTRL-J Terminates current input (line feed).

CTRL-M Terminates current input (carriage return).
CTRL-P Copies all subsequent console output to the

currently assigned list device (see Section
1.6.1). Output is sent to the 1list device
and the console device until the next CTRL-P

is pressed.

CTRL-R Retypes current command line; types a clean
line following character deletion with
rubouts.

CTRL-S Stops the console output temporarily.

Program execution and output continue when
you press any character at the console, for
example another CTRL-S. This feature stops
output on high speed consoles, such as CRTs,
in order to view a segment of output before
continuing.

1-10

CP/M Operating System Manual 1.5 Line Editing and Output Control

Table 1-1. (continued)

Character Meaning

CTRL-U Deletes the entire 1line typed at the
console.

CTRL-X Same as CTRL-U.

CTRL-Z Ends input from the console (used in PIP and
ED).

RUB/DEL Deletes and echoes the last character typed

at the console.

1.6 Transient Commands

Transient commands are loaded from the currently logged disk
and executed in the TPA. The transient commands for execution under
the CCP are below. Additional functions are easily defined by the
user (see Section 1.6.3).

Table 1-2. CP/M Transient Commands
Command Function
STAT Lists the number of bytes of storage remaining

on the currently logged disk, provides
statistical information about particular

files, and displays or alters device
assignment.
ASM Loads the CP/M assembler and assembles the

specified program from disk.

LOAD Loads the file in Intel HEX machine code
format and produces a file in machine
executable form which can be loaded into the
TPA. This loaded program becomes a new
command under the CCP.

DDT Loads the CP/M debugger into TPA and starts
execution.

PIP Loads the Peripheral Interchange Program for
subsequent disk file and peripheral transfer
operations.

ED Loads and executes the CP/M text editor
program.

SYSGEN Creates a new CP/M system disk.

1-11

CP/M Operating System Manual 1.6 Transient Commands

Table 1-2. (continued)

Command Function

SUBMIT Submits a file of commands for batch
processing.

DUMP Dumps the contents of a file in hex.

MOVCPM Regenerates the CP/M system for a particular

memory size.

Transient commands are specified in the same manner as built-in
commands, and additional commands are easily defined by the user.
For convenience, the transient command can be preceded by a drive
name which causes the transient to be loaded from the specified
drive into the TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily log in drive B for the source of the STAT
transient, and then return to the original 1logged disk for
subsequent processing.

1.6.1 STAT Command
Syntax:

STAT
STAT "command line"

The STAT command provides general statistical information about
file storage and device assignment. Special forms of the command
line allow the current device assignment to be examined and altered.
The various command lines that can be specified are shown with an
explanation of each form to the right.

STAT If you type an empty command line, the STAT
transient calculates the storage remaining
on all active drives, and prints one of the
following messages:

d: R/W, SPACE: nnnK
d: R/0, SPACE: nnnK

for each active drive d:, where R/W
indicates the drive can be read or written,
and R/0 indicates the drive is Read-Only (a
drive becomes R/0 by explicitly setting it
to Read-Only, as shown below, or by
inadvertently changing disks without

1-12

CP/M Operating System Manual 1.6 Transient Commands

STAT d:

STAT afn

STAT d:afn

STAT d:=R/0

performing a warm start). The space
remaining on the disk in drive d: is given
in kilobytes by nnn.

If a drive name is given, then the drive is
selected before the storage is computed.
Thus, the command STAT B: could be issued
while logged into drive A, resulting in the
message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of
files to be scanned by STAT. The files
that satisfy afn are listed in alphabetical
order, with storage requirements for each
file under the heading:

RECS BYTES EXT D:FILENAME.TYP
rrrr bbbK ee d:filename.typ

where rrrr is the number of 128-byte
records allocated to the file, bbb is the
number of kilobytes allocated to the file
(bbb=rrrr«128/1024), ee 1is the number of
16K extensions (ee=bbb/16), d is the drive
name containing the file (A...P), filename
is the eight-character primary filename,
and typ 1is the three-character filetype.
After listing the individual files, the
storage usage is summarized.

The drive name can be given ahead of the
afn. The specified drive is first
selected, and the form STAT afn is
executed.

This form sets the drive given by d +to
Read-Only, remaining in effect until the
next warm or cold start takes place. When
a disk is Read-Only, the message

BDOS ERR ON d: Read-Only

appears if there is an attempt to write +to
the Read-Only disk. CP/M waits until a key
is pressed before performing an automatic
warm start, at which time the disk becomes
R/W.

1-13

CP/M Operating System Manual 1.6 Transient Commands

The STAT command allows you to control the physical-to-logical
device assignment. See the IOBYTE function described in Sections 5
and 6. There are four logical peripheral devices that are, at any
particular instant, each assigned one of several physical peripheral
devices. The following is a list of the four logical devices:

o CON: 1is the system console device, used by CCP for
communication with the operator.

o RDR: is the paper tape reader device.

o PUN: is the paper tape punch device.

0 LST: is the output list device.

The actual devices attached to any particular computer system
are driven by subroutines in the BIOS portion of CP/M. Thus, the
logical RDR: device, for example, could actually be a high speed
reader, teletype reader, or cassette tape. To allow some

flexibility in device naming and assignment, several physical
devices are defined in Table 1-3.

Table 1-3. Physical Devices

Device Meaning

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)
BAT: Batch processing (console 1is current RDR:,

output goes to current LST: device)

UC1: User-defined console

PTR: Paper tape reader (high speed reader)
URL: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)
UP1: User-defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULL: User-defined list device #1

1-14

CP/M Operating System Manual 1.6 Transient Commands

It is emphasized that the physical device names might not
actually correspond to devices that the names imply. That is, you
can implement the PTP: device as a cassette write operation. The
exact correspondence and driving subroutine is defined in the BIOS
portion of CP/M. 1In the standard distribution version of CP/M,
these devices correspond to their names on the Model 800 development
system.

The command,
STAT VAL:

produces a summary of the available status commands, resulting in
the output:

Temp R/0 Disk d:$R/0

Set Indicator: filename.typ $R/0 $R/W $SYS $DIR
Disk Status: DSK: d:DSK

Iobyte Assign:

which gives an instant summary of the possible STAT commands and
shows the permissible logical-to-physical device assignments:

CON: TTY: CRT: BAT: UC1:
RDR: = TTY: PTR: UR1l: UR2:
PUN: TTY: PTP: UP1l: UP2:
LST: = TTY: CRT: LPT: UL1:

The logical device to the 1left takes any of the four physical
assignments shown to the right. The current logical-to-physical
mapping is displayed by typing the command:

STAT DEV:
This command produces a list of each logical device to the left and

the current corresponding physical device to the right. For
example, the list might appear as follows:

CON: = CRT:
RDR: = URL:
PUN: = PTP:
LST: = TTY:

The current logical-to-physical device assignment is changed by
typing a STAT command of the form:

STAT 1d1 = pdl, 1d2 = pd2, ... , ldn = pdn

where 1d1l through ldn are logical device names and pdl through pdn
are compatible physical device names. For example, ldi and pdi
appear on the same line in the VAL: command shown above. The
following example shows valid STAT commands that change the current
logical-to-physical device assignments:

1-15

CP/M Operating System Manual 1.6 Transient Commands
STAT CON:=CRT:
STAT PUN:=TTY:, LST:=LPT:, RDR:=TTY:
The command form,
STAT d:filename.typ $S
where d: 1is an optional drive name and filename.typ is an

unambiguous or ambiguous filename, produces the following output
display format:

Size Recs Bytes Ext Acc
48 48 6K 1 R/0 A:ED.COM
55 55 12K 1 R/0 (A:PIP.COM)
65536 128 16K 2 R/W A:X.DAT

where the $S parameter causes the Size field to be displayed.
Without the $S, the Size field is skipped, but the remaining fields
are displayed. The Size field 1lists the virtual file size 1in
records, while the Recs field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. The Bytes field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time; thus, the number of bytes
corresponds to the record count plus the remaining unused space 1in
the Tlast allocated block for sequential files. Random access files
are given data areas only when written, so the Bytes field contains
the only accurate allocation figure. In the case of random access,
the Size field gives the logical end-of-file record position and the
Recs field counts the logical records of each extent. Each of these
extents, however, can contain unallocated holes even though they are
added into the record count.

The Ext field counts the number of physical extents allocated
to the file. The Ext count corresponds to the number of directory
entries given to the file. Depending on allocation size, there can
be up to 128K bytes (8 logical extents) directly addressed by a
single directory entry. 1In a special case, there are actually 256K
bytes that can be directly addressed by a physical extent.

The Acc field gives the R/0 or R/W file indicator, which you
can change using the commands shown. The four command forms,

STAT d:filename.typ $R/0
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/0 indicator
places the file, or set of files, in a Read-Only status until
changed by a subsequent STAT command. The R/0 status is recorded in
the directory with the file so that it remains R/0 through

1-16

CP/M Operating System Manual 1.6 Transient Commands

intervening cold start operations. The R/W indicator places the
file in a permanent Read-Write status. The SYS indicator attaches
the system indicator to the file, while the DIR command removes the
system indicator. The filename.typ may be ambiguous or unambiguous,
but files whose attributes are changed are 1listed at the console
when the change occurs. The drive name denoted by d: is optional.

When a file is marked R/0, subsequent attempts to erase or
write into the file produce the following BDOS message at your
screen:

BDOS Err on d: File R/O

lists the drive characteristics of the disk named by d: that is in
the range A:, B:,...,P:. The drive characteristics are listed in
the following format:

d: Drive Characteristics
65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/Extent
128: Records/Block
58: Sectors/Track
2: Reserved Tracks

where d: is the selected drive, followed by the total record
capacity (65536 is an eight-megabyte drive), followed by the total
capacity listed in kilobytes. The directory size 1is 1listed next,
followed by the checked entries. The number of checked entries is
usually identical to the directory size for removable media, because
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, because the media are not changed without at least a
cold or warm start.

The number of records per extent determines the addressing
capacity of each directory entry (1024 times 128 bytes, or 128K in
the previous example). The number of records per block shows the
basic allocation size (in the example, 128 records/block times 128
bytes per record, or 16K bytes per block). The 1listing is then
followed by the number of physical sectors per track and the number
of reserved tracks.

For logical drives that share the same physical disk, the
number of reserved tracks can be quite large because this mechanism
is used to skip lower-numbered disk areas allocated to other logical
disks. The command form

STAT DSK:

produces a drive characteristics table for all currently active
drives. The final STAT command form is

1-17

CP/M Operating System Manual 1.6 Transient Commands

STAT USR:

which produces a list of the user numbers that have files on the
currently addressed disk. The display format is

Active User: 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as
set by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In this case, the active user
number is 0 (default at cold start) with three user numbers that
have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging in with USER 1 or USER 3 commands, followed by a DIR command
at the CCP level.

1.6.2 ASM Command
Syntax:
ASM ufn

The ASM command loads and executes the CP/M 8080 assembler.
The ufn specifies a source file containing assembly language
statements, where the filetype is assumed to be ASM and is not
specified. The following ASM commands are valid:

ASM X
ASM GAMMA

The two-pass assembler is automatically executed. Assembly errors
that occur during the second pass are printed at the console.

The assembler produces a file:
X.PRN

where X is the primary name specified in the ASM command. The PRN
file contains a 1listing of the source program with embedded tab
characters if present in the source program, along with the machine
code generated for each statement and diagnostic error messages, if
any. The PRN file is listed at the console using the TYPE command,
or sent to a peripheral device using PIP (see Section 1.6.4). Note
that the PRN file contains the original source program, augmented by
miscellaneous assembly information in the leftmost 16 columns; for
example, program addresses and hexadecimal machine code. The PRN
file serves as a backup for the original source file. If the source
file is accidentally removed or destroyed, the PRN file can be
edited by removing the 1leftmost 16 characters of each line (see
Section 2). This is done by issuing a single editor macro command.
The resulting file is identical to the original source file and can
be renamed from PRN to ASM for subsequent editing and assembly. The
file

1-18

CP/M Operating System Manual 1.6 Transient Commands

X.HEX

is also produced, which contains 8080 machine language in Intel HEX
format suitable for subsequent loading and execution (see Section
1.6.3). For complete details of CP/M’'s assembly language program,
see Section 3.

The source file for assembly is taken from an alternate disk by
prefixing the assembly language filename by a disk drive name. The
command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes
the source program ALPHA.ASM on drive B. The HEX and PRN files are
also placed on drive B in this case.

1.6.3 LOAD Command
Syntax:
LOAD ufn

The LOAD command reads the file wufn, which is assumed to
contain HEX format machine code, and produces a memory image file
that can subsequently be executed. The filename ufn is assumed to
be of the form:

X.HEX

and only the filename X need be specified in the command. The LOAD
command creates a file named

X.COM

that marks it as containing machine executable code. The file is
actually loaded into memory and executed when the user types the
filename X immediately after the prompting character > printed by
the CCP.

Generally, the CCP reads the filename X following the prompting
character and 1looks for a built-in function name. If no function
name is found, the CCP searches the system disk directory for a file
by the name

X.COM

If found, the machine code is loaded into the TPA, and the program
executes. Thus, the user need only LOAD a hex file once; it can be
subsequently executed any number of times by +typing the primary
name. This way, you can 1invent new commands 1in the CCP.
Initialized disks contain the transient commands as COM files, which
are optionally deleted. The operation takes place on an alternate
drive if the filename is prefixed by a drive name. Thus,

1-19

CP/M Operating System Manual 1.6 Transient Commands

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk
and operates on drive B after execution begins.

Note: the BETA.HEX file must contain valid Intel format hexadecimal
machine code records (as produced by the ASM program, for example)
that begin at 100H of the TPA. The addresses 1in the hex records
must be 1in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read.
Thus, LOAD must be used only for creating CP/M standard COM files
that operate in the TPA. Programs that occupy regions of memory
other than the TPA are loaded under DDT.

1.6.4 PIP
Syntax:
PIP
PIP destination=source#l, source#2, ..., source #n

PIP is the CP/M Peripheral Interchange Program that implements
the basic media conversion operations necessary to load, print,
punch, copy, and combine disk files. The PIP program is initiated
by typing one of the following forms:

PIP
PIP command line

In both cases PIP is loaded into the TPA and executed. 1In the first
form, PIP reads command lines directly from the console, prompted
with the x character, until an empty command 1line is typed (for
example, a single carriage return is issued by the operator). Each
successive command line causes some media conversion to take place
according to the rules shown below.

In the second form, the PIP command is equivalent to the first,
except that the single command line given with the PIP command is
automatically executed, and PIP terminates immediately with no
further prompting of the console for input command lines. The form
of each command line is

destination = source#l, source#2, ..., source#n

where destination is the file or peripheral device to receive the
data, and source#l, ..., source#n is a series of one or more files
or devices that are copied from left to right to the destination.

When multiple files are given in the command line (for example,
n>1), the individual files are assumed to contain ASCII characters,
with an assumed CP/M end-of-file character (CTRL-Z) at the end of
each file (see the 0 parameter to override this assumption). Lower-
case ASCII alphabetics are internally translated to upper-case to be

1-20

CP/M Operating System Manual 1.6 Transient Commands

consistent with CP/M file and device name conventions. Finally, the
total command line length cannot exceed 255 characters. CTRL-E can
be used to force a physical carriage return for lines that exceed
the console width.

The destination and source elements are unambiguous references
to CP/M source files with or without a preceding disk drive name.
That is, any file can be referenced with a preceding drive name (A:
through P:) that defines the particular drive where the file can be
obtained or stored. When the drive name is not included, the
currently logged disk is assumed. The destination file can also
appear as one or more of the source files, in which case the source
file 1is not altered until the entire concatenation is complete. If
it already exists, the destination file is removed if the command
line 1is properly formed. It is not removed if an error condition
arises. The following command 1lines, with explanations to the
right, are valid as input to PIP:

X=Y Copies to file X from file Y, where
X and Y are unambiguous filenames;
Y remains unchanged.

X=Y,Z Concatenates files Y and z and
copies to file X, with Y and Z
unchanged.

X.ASM=Y.ASM, Z.ASM Creates the file X.ASM from the
concatenation of the Y and Z.ASM
files.

NEW.Z0T=B:0LD.ZAP Moves a copy of OLD.ZAPP from drive

B to the currently 1logged disk;
names the file NEW.ZOT.

B:A.U=B:B.V,A:C.W,D.X Concatenates file B.V from drive B
with C.W from drive a and D.X from
the logged disk; creates the file
A.U on drive b.

For convenience, PIP allows abbreviated commands for
transferring files between disk drives. The abbreviated PIP forms
are

PIP d:=afn

PIP dl=d2:afn
PIP ufn = d2:
PIP dl:ufn = d2:

The first form copies all files from the currently logged disk that
satisfy the afn to the same files on drive d, where d = A...P. The
second form is equivalent to the first, where the source for the
copy is drive d2, where d2 = A...P. The third form is equivalent to
the command PIP dl:ufn=d2:ufn which copies the file given by ufn

1-21

CP/M Operating System Manual 1.6 Transient Commands

from drive d2 to the file ufn on drive dl:. The fourth form is
equivalent to the third, where the source disk is explicitly given
by d2:.

The source and destination disks must be different in all of
these cases. If an afn 1is specified, PIP 1lists each ufn that
satisfies the afn as it is being copied. If a file exists by the
same name as the destination file, it is removed after successful
completion of the copy and replaced by the copied file.

The following PIP commands give examples of valid disk-to-disk
copy operations:
B:=x.COM Copies all files that have the secondary

name COM to drive B from the current drive.

A:=B:ZAP.x Copies all files that have the primary name
ZAP to drive A from drive B.

ZAP.ASM=B: Same as ZAP.ASM=B:ZAP.ASM
B:Z0T.COM=A: Same as B:Z0T.COM=A:ZO0T.COM
B:=GAMMA.BAS Same as B:GAMMA.BAS=GAMMA.BAS
B:=A:GAMMA.BAS Same as B:GAMMA.BAS=A:GAMMA.BAS
PIP allows reference to physical and logical devices that are
attached to the CP/M system. The device names are the same as given
under the STAT command, along with a number of specially named

devices. The following 1is a list of logical devices given in the
STAT command

CON: (console)
RDR: (reader)
PUN: (punch)
LST: (list)

while the physical devices are

TTY: (console), reader, punch, or list)
CRT: (console, or list), UCl1l: (console)
PTR: (reader), UR1l: (reader), UR2: (reader)
PTP: (punch), UP1l: (punch), UP2: (punch)
LPT: (list), UL1: (list)

The BAT: physical device is not included, because this assignment is
used only to indicate that the RDR: and LST: devices are used for
console input/output.

The RDR, LST, PUN, and CON devices are all defined within the

BIOS portion of CP/M, and are easily altered for any particular I/0
system. The current physical device mapping is defined by IOBYTE;

1-22

CP/M Operating System Manual 1.6 Transient Commands

see Section 6 for a discussion of this function. The destination
device must be capable of receiving data, for example, data cannot
be sent to the punch, and the source devices must be capable of
generating data, for example, the LST: device cannot be read.

The following list describes additional device names that can
be used in PIP commands.

o NUL: sends 40 nulls (ASCII O0s) to the device. This can be
issued at the end of punched output.

o EOF: sends a CP/M end-of-file (ASCII CTRL-Z) to the destination
device (sent automatically at the end of all ASCII data
transfers through PIP).

o INP: is a special PIP input source that can be patched into the
PIP program. PIP gets the input data character-by-character,
by CALLing location 103H, with data returned in Tlocation 109H
(parity bit must be zero).

o OUT: is a special PIP output destination that can be patched
into the PIP program. PIP CALLs location 106H with data in
register C for each character to transmit. Note that locations
109H through 1FFH of the PIP memory image are not used and can
be replaced by special purpose drivers using DDT (see Section
4).

o PRN: is the same as LST:, except that tabs are expanded at
every eighth character position, lines are numbered, and page
ejects are inserted every 60 lines with an initial eject (same
as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands.
In each case, the specific device is read until end-of-file (CTRL-Z
for ASCII files, and end-of-data for non-ASCII disk files). Data
from each device or file are concatenated from left to right until
the last data source has been read.

The destination device or file is written using the data from
the source files, and an end-of-file character, CTRL-Z, is appended
to the result for ASCII files. If the destination is a disk file, a
temporary file 1is <created ($$$ secondary name) that is changed to
the actual filename only on successful completion of the copy.
Files with the extension COM are always assumed to be non-ASCII.

The copy operation can be aborted at any time by pressing any
key on the keyboard. PIP responds with the message ABORTED to
indicate that the operation has not been completed. If any
operation 1is aborted, or if an error occurs during processing, PIP
removes any pending commands that were set up while using the SUBMIT
command.

1-23

CP/M Operating System Manual 1.6 Transient Commands

PIP performs a special function if the destination is a disk
file with type HEX (an Intel hex-formatted machine code file), and
the source is an external peripheral device, such as a paper tape
reader. In this case, the PIP program checks to ensure that the
source file contains a properly formed hex file, with Tlegal
hexadecimal values and checksum records.

When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. Usually,
you can open the reader and rerun a section of the tape (pull the
tape back about 20 inches). When the tape is ready for the reread,
a single carriage return is typed at the console, and PIP attempts
another read. If the tape position cannot be properly read,
continue the read by typing a return following the error message,
and enter the record manually with the ED program after the disk
file is constructed.

PIP allows the end-of-file to be entered from the console if
the source file 1is an RDR: device. 1In this case, the PIP program
reads the device and monitors the keyboard. If CTRL-Z is typed at
the keyboard, the read operation is terminated normally.

The following are valid PIP commands:

PIP LST: = X.PRN

Copies X.PRN to the LST device and
terminates the PIP program.

PIP

Starts PIP for a sequence of commands. PIP
prompts with *.

*CON:=X.ASM,Y.ASM, Z.ASM

Concatenates three ASM files and copies to
the CON device.

*X.HEX=CON:,Y.HEX, PTR:
Creates a HEX file by reading the CON until
a CTRL-Z 1is typed, followed by data from
Y.HEX and PTR until a CTRL-Z is
encountered.

PIP PUN:=NUL:,X.ASM,EOF:, 6 NUL:
Sends 40 nulls to the punch device; copies
the X.ASM file to the punch, followed by an
end-of-file, CTRL-Z, and 40 more null
characters.

(carriage return)

A single carriage return stops PIP.

1-24

CP/M Operating System Manual 1.6 Transient Commands

You can also specify one or more PIP parameters, enclosed 1in
left and right square brackets, separated by zero or more blanks.
Each parameter affects the copy operation, and the enclosed list of
parameters must immediately follow the affected file or device.
Generally, each parameter can be followed by an optional decimal
integer value (the S and Q parameters are exceptions). Table 1-4
describes valid PIP parameters.

Table 1-4. PIP Parameters

Parameter Meaning
B Blocks mode transfer. Data are buffered by
PIP wuntil an ASCII x-off character, CTRL-S,
is received from the source device. This

allows transfer of data to a disk file from a
continuous reading device, such as a cassette
reader. Upon receipt of the x-off, PIP
clears the disk buffers and returns for more
input data. The amount of data that can be
buffered depends on the memory size of the
host system. PIP issues an error message if
the buffers overflow.

Dn Deletes characters that extend past column n
in the transfer of data to the destination
from the character source. This parameter is
generally wused to truncate long lines that
are sent to a narrow printer or console
device.

E Echoes all transfer operations to the console
as they are being performed.

F Filters form-feeds from the file. All
embedded form-feeds are removed. The P
parameter can be used simultaneously to
insert new form-feeds.

Gn Gets file from user number n (n in the range
0-15).
H Transfers HEX data. All data are checked for

proper Intel hex file format. Nonessential
characters between hex records are removed
during the copy operation. The console is
prompted for corrective action in case errors

occur.
I Ignores :00 records in the transfer of Intel
hex format file. The I parameter

automatically sets the H parameter.

1-25

CP/M Operating System Manual 1.6 Transient Commands

Table 1-4. (continued)

Parameter Meaning
L Translates upper-case alphabetics to lower-
case.
N Adds line numbers to each line transferred to
the destination, starting at one and
incrementing by 1. Leading zeroes are

suppressed, and the number is followed by a
colon. If N2 is specified, 1leading zeroes
are 1included and a tab is inserted following
the number. The tab is expanded if T is set.

0 Transfers non-ASCII object files. The normal
CP/M end-of-file is ignored.

Pn Includes page ejects at every n lines with an
initial page eject. If n =1 or is excluded
altogether, page ejects occur every 60 lines.
If the F parameter is wused, form-feed
suppression takes place before the new page
ejects are inserted.

Qs™Z Quits copying from the source device or file
when the string s, terminated by CTRL-Z, is
encountered.

R Reads system files.

Ss™Z Start copying from the source device when the

string s, terminated by CTRL-Z, is
encountered. The S and Q parameters can be
used to abstract a particular section of a

file, such as a subroutine. The start and
quit strings are always included in the copy
operation.

If you specify a command line after the PIP
command keyword, the CCP translates strings
following the S and Q parameters to upper-
case. If you do not specify a command line,
PIP does not perform the automatic upper-case
translation.

Tn Expands tabs, CTRL-I characters, to every nth
column during the transfer of characters to

the destination from the source.

u Translates lower-case alphabetics to upper-
case during the copy operation.

1-26

CP/M Operating System Manual 1.6 Transient Commands

Table 1-4. (continued)
Parameter Meaning
v Verifies that data have been copied correctly

by rereading after the write operation (the
destination must be a disk file).

W Writes over R/0 files without console
interrogation.

z Zeros the parity bit on input for each ASCII
character.

The following examples show valid PIP commands that specify
parameters in the file transfer.

PIP X.ASM=B:[v]

Copies X.ASM from drive B to the current
drive and verifies that the data were
properly copied.

PIP LPT:=X.ASM[nt8u]

Copies X.ASM to the LPT: device; numbers
each 1line, expands tabs to every eighth
column, and translates lower-case
alphabetics to upper-case.

PIP PUN:=X.HEX[i],Y.Z0T[h]

First copies X.HEX to the PUN: device and
ignores the +trailing :00 record in X.HEX;
continues the transfer of data by reading
Y.Z0T, which contains HEX records,
including any :00 records it contains.

PIP X.LIB=Y.ASM[sSSUBRI:~z qJMP L3"z]

Copies from the file Y.ASM into the file
X.LIB. The command starts the copy when
the string SUBR1: has been found, and quits
copying after the string JMP L3 is
encountered.

1-27

CP/M Operating System Manual 1.6 Transient Commands

PIP PRN:=X.ASM[p50]

Sends X.ASM to the LST: device with 1line
numbers, expands tabs to every eighth
column, and ejects pages at every 50th
line. The assumed parameter list for a PRN
file is nt8p60; p50 overrides the default
value.

Under normal operation, PIP does not overwrite a file that is
set to a permanent R/0 status. If an attempt is made to overwrite
an R/0 file, the following prompt appears:

DESTINATION FILE IS R/0, DELETE (Y/N)?

If you type Y, the file is overwritten. Otherwise, the following
response appears:

*x NOT DELETED xx

The file transfer is skipped, and PIP continues with the next
operation in sequence. To avoid the prompt and response in the case
of R/0 file overwrite, the command line can include the W parameter,
as shown in this example:

PIP A:=B:x.COM[W]

The W parameter copies all nonsystem files to the A drive from the B
drive and overwrites any R/0 files in the process. If the operation
involves several concatenated files, the W parameter need only be
included with the last file in the list, as in this example:

PIP A.DAT=B.DAT,F:NEW.DAT,G:0LD.DAT[W]

Files with the system attribute can be included in PIP
transfers if the R parameter is included; otherwise, system files
are not recognized. For example, the command line:

PIP ED.COM=B:ED.COM[R]

reads the ED.COM file from the B drive, even if it has been marked
as an R/0 and system file. The system file attributes are copied,
if present.

Downward compatibility with previous versions of CP/M 1is only
maintained if the file does not exceed one megabyte, no file
attributes are set, and the file 1is <created by user 0. If
compatibility is required with nonstandard, for example, double-
density versions of 1.4, it might be necessary to select 1.4
compatibility mode when constructing the internal disk parameter
block. See Section 6 and refer to Section 6.10, which describes
BIOS differences.

1-28

CP/M Operating System Manual 1.6 Transient Commands

Note: +to copy files into another user area, PIP.COM must be located
in that wuser area. Use the following procedure to make a copy of
PIP.COM in another user area.

USER © Log in user 0.
DDT PIP.COM (note PIP size s) Load PIP to memory.
GO Return to CCP.
USER 3 Log in user 3.

SAVEs PIP.COM

In this procedure, s is the integral number of memory pages, 256-
byte segments, occupied by PIP. The number s can be determined when
PIP.COM is loaded under DDT, by referring to the value under the
NEXT display. If, for example, the next available address is 1D00,
then PIP.COM requires 1C hexadecimal pages, or 1 times 16 + 12 = 28
pages, and the value of s is 28 in the subsequent save. Once PIP is
copied in this manner, it can be copied to another disk belonging to
the same user number through normal PIP transfers.

1.6.5 ED Command
Syntax:
ED ufn

The ED program is the CP/M system context editor that allows
creation and alteration of ASCII files in the CP/M environment.
Complete details of operation are given in Section 2. ED allows the
operator to create and operate upon source files that are organized
as a sequence of ASCII characters, separated by end-of-line
characters (a carriage return/line-feed sequence). There 1is no
practical restriction on line length (no single line can exceed the
size of the working memory) that is defined by the number of
characters typed between carriage returns.

The ED program has a number of commands for character string
searching, replacement, and insertion that are useful for creating
and correcting programs or text files under CP/M. Although the CP/M
has a limited memory work space area (approximately 5000 characters
in a 20K CP/M system), the file size that can be edited is not
limited, since data are easily paged through this work area.

If it does not exist, ED creates the specified source file and
opens the file for access. If the source file does exist, the

programmer appends data for editing (see the A command). The
appended data can then be displayed, altered, and written from the
work area back to the disk (see the W command). Particular points

in the program can be automatically paged and located by context,

1-29

CP/M Operating System Manual 1.6 Transient Commands

allowing easy access to particular portions of a large file (see the
N command).

If you type the following command line:
ED X.ASM
the ED program creates an intermediate work file with the name

X.$33%

to hold the edited data during the ED run. Upon completion of ED,
the X.ASM file (original file) is renamed to X.BAK, and the edited
work file is renamed to X.ASM. Thus, the X.BAK file contains the
original unedited file, and the X.ASM file contains the newly edited
file. The operator can always return to the previous version of a
file by removing the most recent version and renaming the previous
version. If the current X.ASM file has been improperly edited, the
following sequence of commands reclaim the back-up file.

DIR X.x Checks to see that BAK file is
available.

ERA X.ASM Erases most recent version.

REN X.ASM=X.BAK Renames the BAK file to ASM.

You can abort the edit at any point (reboot, power failure, CTRL-C,
or CTRL-Q command) without destroying the original file. In this
case, the BAK file is not created and the original file is always
intact.

The ED program allows the user to edit the source on one disk
and create the back-up file on another disk. This form of the ED
command is

ED ufn d:

where ufn is the name of the file to edit on the currently Tlogged
disk and d is the name of an alternate drive. The ED program reads
and processes the source file and writes the new file to drive d
using the name ufn. After processing, the original file becomes the
back-up file. If the operator is addressing disk A, the following
command is valid.

ED X.ASM b:

This edits the file X.ASM on drive A, creating the new file X.$$$ on
drive B. After a successful edit, A:X.ASM is renamed to A:X.BAK,
and B:X.$$$ is renamed to B:X.ASM. For convenience, the currently
logged disk becomes drive B at the end of the edit. Note that if a
file named B:X.ASM exists before the editing begins, the following
message appears on the screen:

1-30

CP/M Operating System Manual 1.6 Transient Commands

FILE EXISTS

This message is a precaution against accidentally destroying a
source file. You should first erase the existing file and then
restart the edit operation.

Similar to other transient commands, editing can take place on
a drive different from the currently logged disk by preceding the
source filename by a drive name. The following are examples of
valid edit requests:

ED A:X.ASM Edits the file X.ASM on drive A, with new
file and back-up on drive A.

ED B:X.ASM A: Edits the file X.ASM on drive B to the
temporary file X.$$$ on drive A. After
editing, this command changes X.ASM on
drive B to X.BAK and changes X.$$$ on
drive A to X.ASM.

1.6.6 SYSGEN Command
Syntax:
SYSGEN
The SYSGEN transient command allows generation of an
initialized disk containing the CP/M operating system. The SYSGEN
program prompts the console for commands by interacting as shown.
SYSGEN <cr>

Initiates the SYSGEN program.

SYSGEN VERSION x.x

SYSGEN sign-on message.

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Respond with the drive name (one of the
letters A, B, C, or D) of the disk
containing a CP/M system, usually A. If a
copy of CP/M already exists in memory due
to a MOVCPM command, press only a carriage
return. Typing a drive name d causes the
response:

1-31

CP/M Operating System Manual 1.6 Transient Commands

SOURCE ON d THEN TYPE RETURN

Place a disk containing the CP/M operating
system on drive d (d is one of A, B, C, or
D). Answer by pressing a carriage return
when ready.

FUNCTION COMPLETE

System is copied to memory. SYSGEN then
prompts with the following:

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

If a disk is being initialized, place the
new disk into a drive and answer with the
drive name. Otherwise, press a carriage
return and the system reboots from drive A.
Typing drive name d causes SYSGEN to prompt
with the following message:

DESTINATION ON d
THEN TYPE RETURN

Place new disk into drive d; press return
when ready.

FUNCTION COMPLETE

New disk is initialized in drive d.

The DESTINATION prompt is repeated until a single carriage return is
pressed at the console, so that more than one disk can be
initialized.

Upon completion of a successful system generation, the new disk
contains the operating system, and only the built-in commands are
available. An IBM-compatible disk appears to CP/M as a disk with an
empty directory; therefore, the operator must copy the appropriate
COM files from an existing CP/M disk to the newly constructed disk
using the PIP transient.

You can copy all files from an existing disk by +typing the
following PIP command:

PIP B: = A:x.x[v]

1-32

CP/M Operating System Manual 1.6 Transient Commands

This command copies all files from disk drive A to disk drive B and
verifies that each file has been copied correctly. The name of each
file is displayed at the console as the copy operation proceeds.

Note that a SYSGEN does not destroy the files that already
exist on a disk; it only constructs a new operating system. If a
disk is being used only on drives B through P and will never be the
source of a bootstrap operation on drive A, the SYSGEN need not take
place.

1.6.7 SUBMIT Command
Syntax:
SUBMIT ufn parm#l ... parm#n

The SUBMIT command allows CP/M commands to be batched for
automatic processing. The ufn given in the SUBMIT command must be
the filename of a file that exists on the «currently 1logged disk,
with an assumed file +type of SUB. The SUB file contains CP/M
prototype commands with possible parameter substitution. The actual
parameters parm#l ... parm#n are substituted into the prototype
commands, and, if no errors occur, the file of substituted commands
are processed sequentially by CP/M.

The prototype command file is created using the ED program,
with interspersed $ parameters of the form:

$1 $2 $3 ...%n

corresponding to the number of actual parameters that will be
included when the file is submitted for execution. When the SUBMIT
transient is executed, the actual parameters parm#l ... parm#n are
paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not
correspond, the SUBMIT function is aborted with an error message at
the console. The SUBMIT function «creates a file of substituted
commands with the name

$$$.SUB

on the logged disk. When the system reboots, at the termination of
the SUBMIT, this command file is read by the CCP as a source of
input rather than the console. If the SUBMIT function is performed
on any disk other than drive A, the commands are not processed until
the disk is inserted into drive A and the system reboots. You can
abort command processing at any time by pressing the rubout key when
the command is read and echoed. 1In this case, the $$$.SUB file is
removed and the subsequent commands come from the console. Command
processing is also aborted if the CCP detects an error in any of the
commands. Programs that execute under CP/M can abort processing of
command files when error conditions occur by erasing any existing
$$$.SUB file.

1-33

CP/M Operating System Manual 1.6 Transient Commands

To introduce dollar signs into a SUBMIT file, you can type a $$
which reduces to a single $ within the command file. A caret, ©,
precedes an alphabetic character s, which produces a single CTRL-X
character within the file.

The last command in a SUB file can initiate another SUB file,
allowing chained batch commands:

Suppose the file ASMBL.SUB exists on disk and contains the
prototype commands

ASM 351

DIR $1.=x

ERA *.BAK

PIP $2:=$1.PRN
ERA $1.PRN

then, you issue the following command:
SUBMIT ASMBL X PRN

The SUBMIT program reads the ASMBL.SUB file, substituting X: for all
occurrences of $1 and PRN for all occurrences of $2. This results
in a $$$.SUB file containing the commands:

ASM X

DIR X.x

ERA *.BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file on an alternate drive
by preceding the filename by a drive name. Submitted files are only
acted upon when they appear on drive A. Thus, it 1is possible to
create a submitted file on drive B that is executed at a later time
when inserted in drive A.

An additional utility program called XSUB extends the power of
the SUBMIT facility to include line input to programs as well as the
CCP. The XSUB command is included as the first line of the SUBMIT
file. When it 1is executed, XSUB self-relocates directly below the
CCP. All subsequent SUBMIT command lines are processed by XSUB so
that programs that read buffered console input, BDOS Function 10,
receive their input directly from the SUBMIT file. For example, the
file SAVER.SUB can contain the following SUBMIT lines:

XSUB
DDT

|$1.COM

R

GO

SAVE 1 $2.COM

1-34

CP/M Operating System Manual 1.6 Transient Commands

a subsequent SUBMIT command, such as
A>SUBMIT SAVER PIP Y

substitutes X for $1 and Y for $2 in the command stream. The XSUB
program loads, followed by DDT, which is sent to the command lines
PIP.COM, R, and GO, thus returning to the CCP. The final command
SAVE 1 Y.COM is processed by the CCP.

The XSUB program remains in memory and prints the message
(xsub active)

on each warm start operation to indicate its presence. Subsequent
SUBMIT command streams do not require the XSUB, unless an
intervening cold start occurs. Note that XSUB must be loaded after
the optional CP/M DESPOOL utility, if both are to run
simultaneously.

1.6.8 DUMP Command
Syntax:
DUMP ufn

The DUMP program types the contents of the disk file (ufn) at
the console 1in hexadecimal form. The file contents are listed
sixteen bytes at a time, with the absolute byte address listed to
the 1left of each line in hexadecimal. Long typeouts can be aborted
by pressing the rubout key during printout. The source 1listing of
the DUMP program 1is given in Section 5 as an example of a program
written for the CP/M environment.

1.6.9 MOVCPM Command
Syntax:
MOVCPM

The MOVCPM program allows you to reconfigure the CP/M system
for any particular memory size. Two optional parameters can be used
to indicate the desired size of the new system and the disposition
of the new system at program termination. If the first parameter is
omitted or an * is given, the MOVCPM program reconfigures the system
to its maximum size, based upon the kilobytes of contiguous RAM in
the host system (starting at 0000H). If the second parameter 1is
omitted, the system is executed, but not permanently recorded; if
is given, the system is 1left in memory, ready for a SYSGEN
operation. The MOVCPM program relocates a memory image of CP/M and
places this image in memory in preparation for a system generation
operation. The following is a list of MOVCPM command forms:

1-35

CP/M Operating System Manual 1.6 Transient Commands

MOVCPM Relocates and executes CP/M for management
of the current memory configuration (memory
is examined for contiguous RAM, starting at
100H). On completion of the relocation, the
new system is executed but not permanently
recorded on the disk. The system that is
constructed contains a BIOS for the Intel
microcomputer development system 800.

MOVCPM n Creates a relocated CP/M system for
management of an n kilobyte system (n must
be in the range of 20 to 64), and executes
the system as described.

MOVCPM * x Constructs a relocated memory image for the
current memory configuration, but leaves the
memory image in memory in preparation for a
SYSGEN operation.

MOVCPM n * Constructs a relocated memory image for an n
kilobyte memory system, and leaves the

memory image in preparation for a SYSGEN
operation.

For example, the command,

MOVCPM * =x

constructs a new version of the CP/M system and leaves it in memory,
ready for a SYSGEN operation. The message

READY FOR ’'SYSGEN' OR
"SAVE 34 CPMxx.COM’

appears at the console upon completion, where xx 1is the current
memory size in kilobytes. You can then type the following sequence:

SYSGEN This starts the system
generation.

SOURCE DRIVE NAME Respond with a carriage return

(OR RETURN TO SKIP) to skip the CP/M read operation,

because the system is already
in memory as a result of the
previous MOVCPM operation.

DESTINATION DRIVE NAME Respond with B to write new

(OR RETURN TO REBOOT) system to the disk in drive B.
SYSGEN prompts with the
following message:

DESTINATION ON B, Place the new disk on drive B
THEN TYPE RETURN and press the RETURN key when
ready.

1-36

CP/M Operating System Manual 1.6 Transient Commands

If you respond with A rather than B above, the system is
written to drive A rather than B. SYSGEN continues to print this
prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until you respond with a single carriage return, which stops the
SYSGEN program with a system reboot.

You can then go through the reboot process with the old or new
disk. Instead of performing the SYSGEN operation, you can type a
command of the form:

SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where xx 1is the value
indicated in the SYSGEN message. The CP/M memory image on the
currently logged disk is in a form that can be patched. This 1is
necessary when operating in a nonstandard environment where the BIOS
must be altered for a particular peripheral device configuration, as
described in Section 6.

The following are valid MOVCPM commands:

MOVCPM 48 Constructs a 48K version of CP/M and starts
execution.

MOVCPM 48 x Constructs a 48K version of CP/M in
preparation for permanent recording; the
response is

READY FOR 'SYSGEN' OR
"SAVE 34 CPM48.COM’

MOVCPM * Constructs a maximum memory version of CP/M
and starts execution.

The newly created system is serialized with the number attached
to the original disk and is subject to the conditions of the Digital
Research Software Licensing Agreement.

1.7 BDOS Error Messages

There are three error situations that the Basic Disk Operating

System intercepts during file processing. When one of these

conditions is detected, the BDOS prints the message:

BDOS ERR ON d: error

1-37

CP/M Operating System Manual 1.7 BDOS Error Messages

where d is the drive name and error is one of the three error
messages:

BAD SECTOR
SELECT
READ ONLY

The BAD SECTOR message indicates that the disk controller
electronics has detected an error condition in reading or writing
the disk. This condition is generally caused by a malfunctioning
disk controller or an extremely worn disk. If you find that CP/M
reports this error more than once a month, the state of the
controller electronics and the condition of the media should be
checked.

You can also encounter this condition 1in reading files
generated by a controller produced by a different manufacturer.
Even though controllers claim to be 1IBM..-compatible, one often
finds small differences in recording formats. The Model 800
controller, for example, requires two bytes of one’s following the
data CRC byte, which 1is not required in the IBM format. As a
result, disks generated by the Intel microcomputer development
system can be read by almost all other IBM-compatible system, while
disk files generated on other manufacturers’ equipment produce the
BAD SECTOR message when read by the microcomputer development
system. To recover from this condition, press a CTRL-C to reboot
(the safest course), or a return, which ignores the bad sector in
the file operation.

Note: pressing a return might destroy disk integrity if the
operation 1is a directory write. Be sure you have adequate back-ups
in this case.

The SELECT error occurs when there is an attempt to address a
drive beyond the vrange supported by the BIOS. 1In this case, the
value of d in the error message gives the selected drive. The
system reboots following any input from the console.

The READ ONLY message occurs when there is an attempt to write
to a disk or file that has been designated as Read-Only in a STAT
command or has been set to Read-Only by the BDOS. Reboot CP/M by
using the warm start procedure, CTRL-C, or by performing a cold
start whenever the disks are changed. If a changed disk is +to be
read but not written, BDOS allows the disk to be changed without the
warm or cold start, but internally marks the drive as Read-Only.
The status of the drive is subsequently changed to Read-Write if a
warm or cold start occurs. On issuing this message, CP/M waits for
input from the console. An automatic warm start takes place
following any input.

1.8 CP/M Operation on the Model 800

1-38

CP/M Operating System Manual 1.8 Operation of CP/M on the Model 800

This section gives operating procedures for using CP/M on the
Intel Model 800 microcomputer development system microcomputer
development system. Basic knowledge of the microcomputer
development system hardware and software systems is assumed.

CP/M is initiated in essentially the same manner as the Intel
ISIS operating system. The disk drives are labeled 0 through 3 on
the microcomputer development system, corresponding to CP/M drives A
through D, respectively. The CP/M system disk is inserted into
drive 0, and the BOOT and RESET switches are pressed 1in sequence.
The interrupt 2 light should go on at this point. The space bar is
then pressed on the system console, and the light should go out. If
it does not, the user should check connections and baud rates. The
BOOT switch is turned off, and the C(P/M sign-on message should
appear at the selected console device, followed by the A> system
prompt. You can then issue the various resident and transient
commands.

The CP/M system can be restarted (warm start) at any time by
pushing the INT 0 switch on the front panel. The built-in Intel ROM
monitor can be initiated by pushing the INT 7 switch, which
generates an RST 7, except when operating under DDT, in which case
the DDT program gets control instead.

Diskettes can be removed from the drives at any time, and the
system can be shut down during operation without affecting data
integrity. Do not remove a disk and replace it with another without
rebooting the system (cold or warm start) unless the inserted disk
is Read-Only.

As a result of hardware hang-ups or malfunctions, CP/M might
print the following message:

BDOS ERR ON d: BAD SECTOR

where d is the drive that has a permanent error. This error can
occur when drive doors are opened and closed randomly, followed by
disk operations, or can be caused by a disk, drive, or controller
failure. You can optionally elect to ignore the error by pressing a
single return at the console. The error might produce a bad data
record, requiring reinitialization of up to 128 bytes of data. You
can reboot the CP/M system and try the operation again.

Termination of a CP/M session requires no special action,
except that it is necessary to remove the disks before turning the
power off to avoid random transients that often make their way to
the drive electronics.

You should use IBM-compatible disks rather than disks that have
previously been used with any ISIS version. In particular, the ISIS
FORMAT operation produces nonstandard sector numbering throughout
the disk. This nonstandard numbering seriously degrades the
performance of CP/M, and causes CP/M to operate noticeably slower
than the distribution version. If it becomes necessary to reformat
a disk, which should not be the case for standard disks, a program

1-39

CP/M Operating System Manual 1.8 Operation of CP/M on the Model 800

can be written wunder CP/M that causes the Model 800 controller to

reformat with sequential sector numbering (1-26) on each track.
Generally, IBM-compatible 8-inch disks do not need to be

formatted. However, 5 1/4-inch disks need to be formatted.

End of Section 1

1-40

Section 2

The CP/M Editor

2.1 Introduction to Ed

Ed is the context editor for CP/M, and is used to create and
alter CP/M source files. To start ED, type a command of the
following form:

ED filename
or
ED filename.typ

Generally, ED reads segments of the source file given by filename or
filename.typ into the central memory, where you edit the file and it
is subsequently written back to disk after alterations. If the
source file does not exist before editing, it is created by ED and
initialized to empty. The overall operation of Ed is shown in
Figure 2-1.

2.1.1 ED Operation

Ed operates upon the source file, shown in Figure 2-1 by Xx.y,
and passes all text through a memory buffer where the text can be
viewed or altered. The number of lines that can be maintained 1in
the memory buffer varies with the 1line length, but has a total
capacity of about 5000 characters in a 20K CP/M system.

Edited text material is written into a temporary work file
under your command. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining (unread)
text 1in the source file. The name of the original file is changed
from x.y to x.BAK so that the most recent edited source file can be
reclaimed if necessary. See the CP/M commands ERASE and RENAME.
The temporary file is then changed from x.$$$ to x.y, which becomes
the resulting edited file.

The memory buffer is logically between the source file and
working file, as shown in Figure 2-2.

CP/M Operating System Manual 2.1 Introduction to ED

Figure 2-1. Overall ED Operation

Source File Memory Buffer Temporary File
1 First Line 1 First Line 1 First Line
2 Appended 2 Buffered 2 Processed
3 Lines 3 Text 3 Text
SP MP TP
Unprocessed Next Free Next Free File
Source Append Memory Write Space
Lines Space
SP = Source Pointer
MP = Memory Pointer
TP = Temporary Pointer

Figure 2-2. Memory Buffer Organization

2-2

CP/M Operating System Manual 2.1 Introduction to ED

2.1.2 Text Transfer Functions

Given that n is an integer value in the range 0 through 65535,
several single-letter ED commands transfer lines of text from the
source file through the memory buffer to the temporary (and
eventually final) file. Single letter commands are shown in upper-
case, but can be typed in either upper- or lower-case.

Table 2-1. ED Text Transfer Commands
Command Result

nA Appends the next n unprocessed source lines
from the source file at SP to the end of the
memory buffer at MP. 1Increment SP and MP by n.
If wupper-case translation is set (see the U
command) and the A command is typed in upper-
case, all input 1lines will automatically be
translated to upper-case.

nW Writes the first n lines of the memory buffer
to the temporary file free space. Shift the
remaining lines n+1 through MP to the top of
the memory buffer. Increment TP by n.

E Ends the edit. Copy all buffered text to
temporary file and copy all unprocessed source
lines to temporary file. Rename files.

H Moves to head of new file by performing
automatic E command. The temporary file
becomes the new source file, the memory buffer
is emptied, and a new temporary file 1is
created. The effect is equivalent +to issuing
an E command, followed by a reinvocation of ED,
using x.y as the file to edit.

0 Returns to original file. The memory buffer is
emptied, the temporary file is deleted, and the
SP is returned to position 1 of the source
file. The effects of the previous editing
commands are thus nullified.

Q Quits edit with no file alterations, returns to
CP/M.
There are a number of special cases to consider. If the

integer n is omitted in any ED command where an integer is allowed,
then 1 is assumed. Thus, the commands A and W append one 1line and
write one 1line, respectively. 1In addition, if a pound sign # is
given in the place of n, then the integer 65535 1is assumed (the
largest value for n that is allowed). Because most source files can
be contained entirely in the memory buffer, the command #A is often

2-3

CP/M Operating System Manual 2.1 Introduction to ED

issued at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer to
the temporary file.

Two special forms of the A and W commands are provided as a
convenience. The command OA fills the current memory buffer at
least half full, while OW writes lines until the buffer is at least
half empty. An error is issued if the memory buffer size is
exceeded. You can then enter any command, such as W, that does not
increase memory requirements. The remainder of any partial line
read during the overflow will be brought into memory on the next
successful append.

2.1.3 Memory Buffer Organization

The memory buffer can be considered a sequence of source lines
brought in with the A command from a source file. The memory buffer
has an imaginary character pointer (CP) that moves throughout the
memory buffer under command of the operator.

The memory buffer appears logically as shown in Figure 2-3,
where the dashes represent characters of the source 1line of
indefinite length, terminated by carriage return (<cr>) and line-
feed (<lf>) characters, and CP represents the imaginary character
pointer. Note that the CP is always 1located ahead of the first
character of the first line, behind the last character of the last
line, or between two characters. The current line CL is the source
line that contains the CP.

Memory Buffer

first line = coooeeeia o <cr><lf>
-------------------- <cr><lf>
current line CL ----mmmmmmmmi e <cr><lf>
CP
last line coooeeeeeeea <cr><lf>

Figure 2-3. Logical Organization of Memory Buffer

2-4

CP/M Operating System Manual 2.1 Introduction to ED

2.1.4 Line Numbers and ED Start-up

ED produces absolute line number prefixes that are used to
reference a line or range of lines. The absolute line number is
displayed at the beginning of each line when ED is in insert mode
(see the I command in Section 2.1.5). Each line number takes the
form

nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535.
If the memory buffer is empty or if the current line is at the end
of the memory buffer, nnnnn appears as 5 blanks.

You can reference an absolute 1line number by preceding any
command by a number followed by a colon, in the same format as the
line number display. In this case, the ED program moves the current
line reference to the absolute line number, if the line exists in
the current memory buffer. The line denoted by the absolute 1line
number must be in the memory buffer (see the A command). Thus, the
command

345:T

is interpreted as move to absolute 345, and type the Tline.
Absolute 1ine numbers are produced only during the editing process
and are not recorded with the file. 1In particular, the line numbers
will change following a deleted or expanded section of text.

You can also reference an absolute line number as a backward or
forward distance from the «current line by preceding the absolute
number by a colon. Thus, the command

:400T
is interpreted as type from the current line number through the line
whose absolute number is 400. Combining the two line reference
forms, the command

345::400T
is interpreted as move to absolute 1line 345, then type through
absolute 1line 400. Absolute 1line references of this sort can

precede any of the standard ED commands.

Line numbering is controlled by the V (Verify Line Numbers)
command. Line numbering can be turned off by typing the -V command.

2-5

CP/M Operating System Manual 2.1 Introduction to ED

If the file to edit does not exist, ED displays the following
message:

NEW FILE

To move text into the memory buffer, you must enter an i command
before typing input 1lines and terminate each line with a carriage
return. A single CTRL-Z character returns ED to command mode.

2.1.5 Memory Buffer Operation

When ED begins, the memory buffer is empty. You can either
append lines from the source file with the A command, or enter the
lines directly from the console with the insert command. The insert
command takes the following form:

I

ED then accepts any number of input lines. You must terminate each
line with a <cr> (the <lf> is supplied automatically). A single
CTRL-Z, denoted by a caret (*)Z, returns ED to command mode. The CP
is positioned after the 1last character entered. The following
sequence:

I<cr>

NOW IS THE<cr>
TIME FOR<cr>

ALL GOOD MEN<cr>
~Z

leaves the memory buffer as

NOW IS THE<cr><l1f>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

Generally, ED accepts command letters in upper- or lower-case.
If the command is upper-case, all input values associated with the
command are translated to upper-case. If the I command is typed,
all input 1lines are automatically translated internally to upper-
case. The lower-case form of the i command is most often wused to
allow both upper- and lower-case letters to be entered.

Various commands can be issued that control the CP or display
source text in the wvicinity of the CP. The commands shown below
with a preceding n indicate that an optional unsigned value can be
specified. When preceded by +, the command can be unsigned, or have
an optional preceding plus or minus sign. As before, the pound sign
1s replaced by 65535. If an integer n is optional, but not
supplied, then n=1 is assumed. Finally, if a plus sign is optional,
but none is specified, then + is assumed.

2-6

CP/M Operating

Command

+B

+nC

+nD

+nK

+nL

+nT

+Nn

2.1.6 Command

System Manual 2.1 Introduction to ED

Table 2-2. Editing Commands
Action

Move CP to beginning of memory buffer if + and
to bottom if -.

Move CP by +n characters (moving ahead if +),
counting the <cr><1f> as two characters.

Delete n characters ahead of CP if plus and
behind CP if minus.

Kill (remove) +n lines of source text using CP
as the current reference. If CP is not at the
beginning of the current line when K is issued,
the characters before CP remain if + is
specified, while the characters after CP remain
if - is given in the command.

If n=0, mve CP to the beginning of the
current line, if it is not already there. If n
= 0, first move the CP to the beginning of the
current line and then move it to the beginning
of the line that is n lines down (if +) or up
(if -). The CP will stop at the top or bottom
of the memory buffer if too large a value of n
is specified.

If n = 0, type the contents of the current line
up to CP. If n =1, type the contents of the
current line from CP to the end of the line.
If n>1, type the current line along with n - 1
lines that follow, if + is specified.
Similarly, if n>1 and - 1is given, type the
previous n lines up to the CP. Any key can be
depressed to abort long type-outs.

Equivalent to +nLT, which moves up or down and
types a single line.

Strings

Any number of commands can be typed contiguously (up to
capacity of the console buffer) and are executed only after you
Table 2-3 summarizes the CP/M console line-editing
commands used to control the input command line.

press the <cr>.

2-7

the

CP/M Operating System Manual 2.1 Introduction to ED

Table 2-3. Line-editing Controls
Command Result

CTRL-C Reboots the CP/M system when typed at the
start of a line.

CTRL-E Physical end of line: <carriage is returned,
but line is not sent until the carriage return
key is depressed.

CTRL-H Backspaces one character position.

CTRL-J Terminates current input (line-feed).

CTRL-M Terminates current input (carriage return).
CTRL-R Retypes current command line: types a clean

line character deletion with rubouts.

CTRL-U Deletes the entire line typed at the console.

CTRL-X Same as CTRL-U.

CTRL-Z Ends input from the console (used in PIP and
ED) .

rub/del Deletes and echos the last character typed at
the console.

Suppose the memory buffer contains the characters shown in the
previous section, with the CP following the last character of the
buffer. In the following example, the command strings on the left
produce the results shown to the right. Use lower-case command
letters to avoid automatic translation of strings to upper-case.

Command String Effect
B2T<cr> Move to beginning of the buffer and type
two lines:
NOW IS THE
TIME FOR

The result in the memory buffer is
NOW IS THE<cr><l1f>

TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

2-8

CP/M Operating System Manual 2.1 Introduction to ED

Command String Effect
5C0T<cr> Move CP five <characters and type the
beginning of the line NOW I. The result

in the memory buffer is

NOW I S THE<cr><1f>

2L-T<cr> Move two lines down and type the previous
line TIME FOR. The result in the memory
buffer is

NOW IS THE<cr><l1f>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

-L#K<cr> Move up one line, delete 65535 lines that
follow. The result in the memory buffer
is

NOW IS THE<cr><lf>

I<cr> Insert two 1lines of text with automatic
TIME TO<cr> translation to upper-case. The result in
INSERT<cr> the memory buffer is

~Z

NOW IS THE<cr><l1f>
TIME TO<cr><l1f>
INSERT<cr><1f>

-2L#T<cr> Move up two lines and type 65535 1lines
ahead of CP NOW IS THE. The result in the
memory buffer is

NOW IS THE<cr><l1f>
TIME TO<cr><l1f>

INSERT<cr><1f>

<cr> Move down one 1line and type one line
INSERT. The result in the memory buffer
is

NOW IS THE<cr><lf>
TIME TO<cr><l1f>
INSERT<cr><1f>

2-9

CP/M Operating System Manual 2.1 Introduction to ED

2.1.7 Text Search and Alteration

ED has a command that locates strings within the memory buffer.
The command takes the form

nF s <cr>
or
nF s ~Z

where s represents the string to match, followed by either a <cr> or
CTRL-Z, denoted by ~Z. ED starts at the current position of CP and
attempts to match the string. The match is attempted n times and,
if successful, the CP is moved directly after the string. If the n
matches are not successful, the CP is not moved from its initial
position. Search strings can include CTRL-L, which is replaced by
the pair of symbols <cr><lf>.

The following commands illustrate the use of the F command:

Command String Effect
B#T<cr> Move to the beginning and type the entire
buffer. The result in the memory buffer
is

NOW IS THE <cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

FS T<cr> Find the end of the string S T. The
result in the memory buffer is

NOW IS T HE<cr><lf>

FIs™ZOTT Find the next I and type to the CP; then
type the remainder of the current line ME
FOR. The result in the memory buffer is

NOW IS THE<cr><lf>
TI ME FOR<cr><1f>

ALL GOOD MEN<cr><lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make simple
textual changes. The form is

| s ~Z

or
| s<cr>

2-10

CP/M Operating System Manual 2.1 Introduction to ED

where s is the string to insert. If the insertion string is
terminated by a CTRL-Z, the string is inserted directly following
the CP, and the CP is positioned directly after the string. The
action 1is the same if the command is followed by a <cr> except that
a <cr><1f> is automatically inserted into the text following the
string. The following command sequences are examples of the F and I
commands:

Command String Effect
BITHIS IS "~Z<cr>

Insert THIS IS at the beginning of the
text. The result in the memory buffer is

THIS IS NOW THE<cr><lf>

TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf>

FTIME~Z-4DIPLACE"Z<cr>

Find TIME and delete it; then 1insert
PLACE. The result in the memory buffer is

THIS IS NOW THE<cr><lf>
PLACE FOR<cr><1f>

ALL GOOD MEN<cr><lf>

3F0”Z-3D5D1

CHANGES"Z<cr> Find third occurrence of 0 (that is, the
second 0 in GOOD), delete previous 3
characters and the subsequent 5
characters; then insert CHANGES. The
result in the memory buffer is

THIS IS NOW THE<cr><l1f>
PLACE FOR<cr><1f>
ALL CHANGES <cr><l1f>

-8CISOURCE<cr>

Move back 8 characters and insert the line
SOURCE<cr><1f>. The result in the memory
buffer is

THIS IS NOW THE<cr><l1f>

PLACE FOR<cr><l1f>

ALL SOURCE<cr><1f>
CHANGES<cr><1f>

2-11

CP/M Operating System Manual 2.1 Introduction to ED

ED also provides a single command that combines the F and I
commands to perform simple string substitutions. The command takes
the following form:

nS s17Zs2 <cr>
or
nS s1~zZs2 *~Z

and has exactly the same effect as applying the following command
string a total of n times:

F s17°Z-kDIs2 <cr>
or
F s1°Z-kDIs2 "~Z

where k is the length of the string. ED searches the memory buffer
starting at the current position of CP and successively substitutes
the second string for the first string until the end of buffer, or
until the substitution has been performed n times.

As a convenience, a command similar to F is provided by ED that
automatically appends and writes lines as the search proceeds. The
form is

nNs <cr>
or
nNs *~Z

which searches the entire source file for the nth occurrence of the
strings (you should recall that F fails if the string cannot be
found in the current buffer). The operation of the N command is
precisely the same as F except in the case that the string cannot be
found within the current memory buffer. In this case, the entire
memory content 1is written (that 1is, an automatic #W is issued).
Input lines are then read until the buffer is at least half full, or
the entire source file is exhausted. The search continues in this
manner until the string has been found n times, or until the source
file has been completely transferred to the temporary file.

A fipal 1line editing function, called the juxtaposition
command, takes the form

n J s17Zs2”7s3 <cr>
or
n J s1°Zs2”7s3 ~Z

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the string sl.
If found, insert the string s2, and move CP to follow s2. Then
delete all characters following CP up to, but not including, the
string s3, leaving CP directly after s2. If s3 cannot be found,
then no deletion is made. If the current line is

2-12

CP/M Operating System Manual 2.1 Introduction to ED

NOW IS THE TIME<cr><lf>
the command

JW ~ZWHAT~Z"1<cr>
results in

NOW WHAT <cr 1f>

You should recall that ~1 (CTRL-L) represents the pair <cr><1lf> 1in
search and substitute strings.

The number of characters ED allows in the F, S, N, and J
commands is limited to 100 symbols.

2.1.8 Source Libraries

ED also allows the inclusion of source libraries during the
editing process with the R command. The form of this command is

R filename "~Z
or
R filename <cr>

where filename is the primary filename of a source file on the disk
with an assumed filetype of LIB. ED reads the specified file, and
places the characters into the memory buffer after CP, in a manner
similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB until
the end-of-file and automatically inserts the characters into the
memory buffer.

ED also includes a block move facility implemented through the
X (Transfer) command. The form

nX

transfers the next n lines from the current line to a temporary file
called

X$$$$$$.LIB

which is active only during the editing process. You can reposition
the current 1line reference to any portion of the source file and
transfer 1lines to the temporary file. The +transferred Tlines
accumulate one after another in this file and can be retrieved by
simply typing

R

2-13

CP/M Operating System Manual 2.1 Introduction to ED

which is the trivial case of the library read command. In this
case, the entire transferred set of lines is read into the memory
buffer. Note that the X command does not remove the +transferred
lines from the memory buffer, although a K command can be used
directly after the X, and the R command does not empty the
transferred LIB file. That is, given that a set of lines has been
transferred with the X command, they can be reread any number of
times back into the source file. The command

0X
is provided to empty the transferred line file.

Note that upon normal completion of the ED program through Q or
E, the temporary LIB file is removed. If ED is aborted with a CTRL-
C, the LIB file will exist if lines have been transferred, but will
generally be empty (a subsequent ED invocation will erase the
temporary file).

2.1.9 Repetitive Command Execution

The macro command M allows you to group ED commands together
for repeated evaluation. The M command takes the following form:

nMCS <cr>
or
nMCS *~Z

where CS represents a string of ED commands, not including another M
command. ED executes the command string n times if n>1. If n=0 or
1, the command string is executed repetitively until an error
condition is encountered (for example, the end of the memory buffer
is reached with an F command).

As an example, the following macro changes all occurrences of
GAMMA to DELTA within the current buffer, and types each line that
is changed:

MFGAMMA~Z-5DIDELTANZOTT<cCcr>

or equivalently

MSGAMMA"~ZDELTA®ZOTT<cr>

2.2 ED Error Conditions

On error conditions, ED prints the message BREAK X AT C where X
is one of the error indicators shown in Table 2-4.

2-14

CP/M Operating System Manual 2.2 ED Error Conditions

Table 2-4. Error Message Symbols

Symbol Meaning
? Unrecognized command.
> Memory buffer full (use one of the commands D, K,

N, S, or W to remove characters); F, N, or S
strings too long.

Cannot apply command the number of times
specified (for example, in F command).

0 Cannot open LIB file in R command.

If there is a disk error, CP/M displays the following message:

BDOS ERR on d: BAD SECTOR
You can choose to ignore the error by pressing RETURN at the console
(in this case, the memory buffer data should be examined to see if
they were incorrectly read), or you can reset the system with a
CTRL-C and reclaim the back-up file if it exists. The file can be
reclaimed by first typing the contents of the BAK file to ensure
that it contains the proper information. For example, type the
following:

TYPE x.BAK
where x is the file being edited. Then remove the primary file

ERA x.y
and rename the BAK file

REN x.y=x.BAK

The file can then be reedited, starting with the previous version.

ED also takes file attributes into account. If you attempt to
edit a Read-Only file, the message

*+x FILE IS READ/ONLY =xx
appears at the console. The file can be loaded and examined, but
cannot be altered. You must end the edit session and use STAT to
change the file attribute to R/W. If the edited file has the system
attribute set, the following message:

"SYSTEM’ FILE NOT ACCESSIBLE

is displayed and the edit session 1is aborted. Again, the STAT
program can be used to change the system attribute, if desired.

2-15

CP/M Operating System Manual 2.3 Control Characters and Commands

2.3 Control Characters and Commands

Table

available in ED.

Control
Character

CTRL-C

CTRL-E

CTRL-H

CTRL-J

CTRL-L

CTRL-R

CTRL-U

CTRL-X

CTRL-Z

rub/del

summarizes the control characters and commands

Table 2-5. ED Control Characters

Function

System reboot

Physical <cr><lf> (not actually entered in
command)

Backspace
Logical tab (cols 1, 9, 16, ...)

Logical <cr><1f> in search and substitute
strings

Repeat line
Line delete
Line delete
String terminator

Character delete

Table 2-6 summarizes the commands used in ED.

Command

nA

+B

+nC

+nD

nF

Table 2-6. ED Commands
Function
Append lines
Begin or bottom of buffer
Move character positions
Delete characters
End edit and close files (normal end)

Find string

2-16

CP/M Operating System Manual 2.3 Control Characters and Commands

Command

nJ

+nK

+nL

nM

nN

+nP

nsS

+nT

+U

+V

oV

nw

nZ

+n

Table 2-6. (continued)
Function
End edit, close and reopen files

Insert characters, use i if both upper and
lower-case characters are to be entered.

Place strings in juxtaposition
Kill lines

Move down/up lines

Macro definition

Find next occurrence with autoscan
Return to original file

Move and print pages

Quit with no file changes

Read library file

Substitute strings

Type lines

Translate lower- to upper-case if U, no
translation if -U

Verify line numbers, or show remaining
free character space

A special case of the V command, OV,
prints the memory buffer statistics in the
form

free/total

where free is the number of free bytes 1in
the memory buffer (in decimal) and total
is the size of the memory buffer

Write lines

Wait (sleep) for approximately n seconds

Move and type (+nLT).

2-17

CP/M Operating System Manual 2.3 Control Characters and Commands

Because of common typographical errors, ED requires several
potentially disastrous commands to be typed as single letters,
rather than in composite commands. The following commands:

must be typed as single letter commands.

The commands I, J, M, N, R, and S should be typed as i, j, m,
n, r, and s if both upper- and lower-case characters are used in the
operation, otherwise all characters are converted to upper-case.
When a command is entered in upper-case, ED automatically converts
the associated string to upper-case, and vice versa.

End of Section 2

2-18

Section 3

CP/M Assembler

3.1 Introduction

The CP/M assembler reads assembly-language source files from
the disk and produces 8080 machine language in Intel hex format. To
start the CP/M assembler, type a command in one of the following
forms:

ASM filename
ASM filename.parms

In both cases, the assembler assumes there is a file on the disk
with the name:

filename.ASM

which contains an 8080 assembly-language source file. The first and
second forms shown above differ only in that the second form allows
parameters to be passed to the assembler to control source file
access and hex and print file destinations.

In either case, the CP/M assembler 1loads and prints the
message:

CP/M ASSEMBLER VER n.n

where n.n is the current version number. 1In the case of the first
command, the assembler reads the source file with assumed filetype
ASM and creates two output files

filename.HEX
filename.PRN

The HEX file contains the machine code corresponding to the
original program 1in Intel hex format, and the PRN file contains an
annotated listing showing generated machine code, error flags, and
source 1lines. If errors occur during translation, they are listed
in the PRN file and at the console.

The form ASM filename parms is wused to redirect input and
output files from their defaults. 1In this case, the parms portion
of the command is a three-letter group that specifies the origin of
the source file, the destination of the hex file, and the
destination of the print file. The form is

CP/M Operating System Manual 3.1 Introduction

filename.plp2p3

where pl, p2, and p3 are single letters. P1l can be

A,B, ...,P
which designates the disk name that contains the source file. P2
can be

A,B, ...,P

which designates the disk name that will receive the hex file; or,
P2 can be

pA
which skips the generation of the hex file.
P3 can be
A,B, ...,P

which designates the disk name that will receive the print file. P3
can also be specified as

X
which places the listing at the console; or

Z
which skips generation of the print file. Thus, the command

ASM X.AAA
indicates that the source, X.HEX, and print, X.PRN, files are also
to be created on disk A. This form of the command is implied if the
assembler is run from disk A. Given that you are currently
addressing disk A, the above command is the same as

ASM X
The command

ASM X.ABX
indicates that the source file is to be taken from disk A, the hex
file 1is to be placed on disk B, and the listing file is to be sent
to the console. The command

ASM X.BZZ
takes the source file from disk B and skips the generation of the

hex and print files. This command is useful for fast execution of
the assembler to check program syntax.

3-2

CP/M Operating System Manual 3.1 Introduction

The source program format is compatible with the 1Intel 8080
assembler. Macros are not implemented in ASM; see the optional MAC
macro assembler. There are certain extensions in the CP/M assembler
that make it somewhat easier to use. These extensions are described
below.

3.2 Program Format

An assembly-language program acceptable as input to the
assembler consists of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular
instance. Each assembly-language statement is terminated with a
carriage return and line-feed (the line-feed is inserted
automatically by the ED program), or with the character !, which is
treated as an end-of-line by the assembler. Thus, multiple
assembly-language statements can be written on the same physical
line if separated by exclamation point symbols.

The line# is an optional decimal integer value representing the
source program line number, and ASM ignores this field if present.

The label field takes either of the following forms:

identifier
identifier:

The label field is optional, except where noted in particular
statement +types. The identifier is a sequence of alphanumeric
characters where the first character is alphabetic. Identifiers can
be freely wused by the programmer to label elements such as program
steps and assembler directives, but cannot exceed 16 characters in
length. All characters are significant in an identifier, except for
the embedded dollar symbol $, which can be used to improve
readability of +the name. Further, all lower-case alphabetics are
treated as upper-case. The following are all valid instances of
labels:

X Xy long$name
X: yx1l: longer$named$data:
X1Y2 X1x2 X234$5678$9012$3456:
The operation field contains either an assembler directive or

pseudo operation, or an 8080 machine operation code. The pseudo
operations and machine operation codes are described in Section 3.3.

3-3

CP/M Operating System Manual 3.2 Program Format

Generally, the operand field of the statement contains an
expression formed out of constants and labels, along with arithmetic
and logical operations on these elements. Again, the complete
details of properly formed expressions are given in Section 3.3.

The comment field contains arbitrary characters following the
semicolon symbol until the next real or logical end-of-line. These
characters are read, listed, and otherwise ignored by the assembler.
The CP/M assembler also treats statements that begin with an x in
column one as comment statements that are listed and ignored in the
assembly process.

The assembly-language program is formulated as a sequence of
statements of the above form, terminated by an optional END
statement. A1l statements following the END are ignored by the
assembler.

3.3 Forming the Operand

To describe the operation codes and pseudo operations
completely, it is necessary first to present the form of the operand
field, since it is used in nearly all statements. Expressions in
the operand field consist of simple operands, labels, constants, and
reserved words, combined in properly formed subexpressions by
arithmetic and 1logical operators. The expression computation is
carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly.
Further, the number of significant digits in the result must not
exceed the intended use. If an expression is to be used in a byte
move immediate instruction, the most significant 8 bits of the
expression must be zero. The restriction on the expression
significance is given with the individual instructions.

3.3.1 Labels

As discussed above, a label is an identifier that occurs on a
particular statement. In general, the 1label is given a value
determined by the type of statement that it precedes. If the label
occurs on a statement that generates machine code or reserves memory
space (for example, a MOV instruction or a DS pseudo operation), the
label is given the value of the program address that it labels. If
the label precedes an EQU or SET, the label is given the value that
results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the operand field, its value 1is
substituted by the assembler. This value can then be combined with
other operands and operators to form the operand field for a
particular instruction.

3-4

CP/M Operating System Manual 3.3 Forming the Operand

3.3.2 Numeric Constants

A numeric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a trailing
radix indicator. The following are radix indicators:

is a binary constant (base 2).
is a octal constant (base 8).

is a octal constant (base 8).

is a decimal constant (base 10).

is a hexadecimal constant (base 16).

O O 0O oo
T OO oOw

Q is an alternate radix indicator for octal numbers because the
letter 0 is easily confused with the digit 0. Any numeric constant
that does not terminate with a radix indicator is a decimal
constant.

A constant is composed as a sequence of digits, followed by an
optional radix indicator, where the digits are in the appropriate
range for the radix. Binary constants must be composed of 0 and 1
digits, octal constants can contain digits in the range 0-7, while
decimal constants contain decimal digits. Hexadecimal constants
contain decimal digits as well as hexadecimal digits A(16D), B(11D),
C(12D), D(13D), E(14D), and F(15D). Note that the leading digit of
a hexadecimal constant must be a decimal digit to avoid confusing a
hexadecimal constant with an identifier. A leading 0 will always
suffice. A constant composed in this manner must evaluate to a
binary number that can be contained within a 16-bit counter,
otherwise it is truncated on the right by the assembler.

Similar to identifiers, embedded $ signs are allowed within
constants to improve their readability. Finally, the radix
indicator is translated to upper-case if a lower-case letter is
encountered. The following are all valid instances of numeric
constants:

1234 1234D 11008B 1111$0000$1111$0000B
1234H OFFEH 33770 33$77%$22Q
33770 0fe3h 1234d offffh

3.3.3 Reserved Words

There are several reserved character sequences that have
predefined meanings in the operand field of a statement. The names
of 8080 registers are given below. When they are encountered, they
produce the values shown to the right.

3-5

CP/M Operating System Manual 3.3 Forming the Operand

Table 3-1. Reserved Characters

Character Value
A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

Again, lower-case names have the same values as their upper-
case equivalents. Machine instructions can also be used in the
operand field; they evaluate to their internal codes. In the case of
instructions that require operands, where the specific operand
becomes a part of the binary bit pattern of the instruction, for
example, MOV A,B, the value of the instruction, in this case MOV, is
the bit pattern of the instruction with zeros in the optional
fields, for example, MOV produces 40H.

When the symbol $ occurs in the operand field, not embedded
within identifiers and numeric constants, its value becomes the
address of the next instruction to generate, not including the
instruction contained within the current logical line.

3.3.4 String Constants

String constants represent sequences of ASCII characters and
are represented by enclosing the characters within apostrophe
symbols. A1l strings must be fully contained within the current
physical 1line (thus allowing exclamation point symbols within
strings) and must not exceed 64 characters in Tlength. The
apostrophe character itself can be included within a string by
representing it as a double apostrophe (the +two keystrokes ''),
which becomes a single apostrophe when read by the assembler. 1In
most cases, the string length is restricted to either one or two
characters (the DB pseudo operation is an exception), in which case
the string becomes an 8- or 16-bit value, respectively. Two -
character strings become a 16-bit constant, with the second
character as the low-order byte, and the first character as the
high-order byte.

The value of a character is its corresponding ASCII code.
There 1is no case translation within strings; both upper- and lower-
case characters can be represented. You should note that only
graphic printing ASCII characters are allowed within strings.

3-6

CP/M Operating System Manual 3.3 Forming the Operand

Valid strings: How assembler reads strings:
'"A’" "AB’' 'ab’' ’'c’ A AB ab c
vroagrra rran ray a’ '
'Walla Walla Wash.’ Walla Walla Wash.
'She said '’'Hello’’ to me.’ She said ’'’'Hello’’ to me
'I said ''Hello’’ to her.’ I said ''Hello’’ to her

3.3.5 Arithmetic and Logical Operators

The operands described in Section 3.3 can be combined in normal
algebraic notation using any combination of properly formed
operands, operators, and parenthesized expressions. The operators
recognized in the operand field are described in Table 3-2.

Table 3-2. Arithmetic and Logical Operators

Operators Meaning

a+b unsigned arithmetic sum of a and b

a-b unsigned arithmetic difference between a
and b

+ b unary plus (produces b)
- b unary minus (identical to 0 - b)

axb unsigned magnitude multiplication of a and
b

a/b unsigned magnitude division of a by b

a MOD b remainder after a / b.

NOT b logical inverse of b (all 0s become 1ls, 1s
become 0s), where b is considered a 16-bit
value

a AND b bit-by-bit logical and of a and b

aORb bit-by-bit logical or of a and b

a XO0R b bit-by-bit logical exclusive or of a and b

a SHL b the value that results from shifting a to

the left by an amount b, with zero fill

a SHR b the value that results from shifting a to
the right by an amount b, with zero fill

3-7

CP/M Operating System Manual 3.3 Forming the Operand

In each case, a and b represent simple operands (labels,
numeric constants, reserved words, and one- or two-character
strings) or fully enclosed parenthesized subexpressions, like those
shown in the following examples:

10+20 10h+37Q LI/3 (L2+4) SHR 3
('a’ and 5fh) + '0" ('B'+B) OR (PSW+M)

(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly time as
16-bit wunsigned operations. Thus, -1 1is computed as 0-1, which
results in the value Offffh (that is, all 1s). The resulting
expression must fit the operation code in which it is used. For
example, if the expression 1is wused in an ADI (add immediate)
instruction, the high-order 8 bits of the expression must be zero.
As a result, the operation ADI-1 produces an error message (-1
becomes Offffh, which cannot be represented as an 8-bit value),
while ADI(-1) AND OFFH is accepted by the assembler because the AND
operation zeros the high-order bits of the expression.

3.3.6 Precedence of Operators

As a convenience to the programmer, ASM assumes that operators
have a relative precedence of application that allows the programmer
to write expressions without nested 1levels of parentheses. The
resulting expression has assumed parentheses that are defined by the
relative precedence. The order of application of operators in
unparenthesized expressions is listed below. Operators listed first
have highest precedence (they are applied first in an
unparenthesized expression), while operators listed last have lowest
precedence. Operators 1listed on the same line have equal
precedence, and are applied from 1left to right as they are
encountered in an expression.

* / MOD SHL SHR
-+
NOT
AND
OR XOR
Thus, the expressions shown to the left below are interpreted

by the assembler as the fully parenthesized expressions shown to the
right.

3-8

CP/M Operating System Manual 3.3 Forming the Operand

axb+c (axb)+c
a+bxc a+(bxc)
a MOD bxc SHL d ((a MOD b)*c) SHL d

a OR b AND NOT c+d SHL e a OR (b AND (NOT (c+(d SHL e))))

Balanced, parenthesized subexpressions can always be wused to
override the assumed parentheses; thus, the last expression above
could be rewritten to force application of operators in a different
order, as shown:

(a OR b) AND (NOT c)+ d SHL e
This results in these assumed parentheses:
(a OR b) AND ((NOT c) + (d SHL e))

An unparenthesized expression is well-formed only if the
expression that results from inserting the assumed parentheses is
well-formed.

3.4 Assembler Directives

Assembler directives are used to set labels to specific values
during the assembly, perform conditional assembly, define storage
areas, and specify starting addresses in the program. Each
assembler directive is denoted by a pseudo operation that appears in
the operation field of the line. The acceptable pseudo operations
are shown in Table 3-3.

Table 3-3. Assembler Directives

Directive Meaning
ORG set the program or data origin
END end program, optional start address
EQU numeric equate
SET numeric set
IF begin conditional assembly
ENDIF end of conditional assembly
DB define data bytes
DwW define data words
DS define data storage area

3-9

CP/M Operating System Guide 3.4 Assembler Directives

3.4.1 The ORG Directive
The ORG statement takes the form:
label ORG expression

where label is an optional program identifier and expression 1is a
16-bit expression, consisting of operands that are defined before
the ORG statement. The assembler begins machine code generation at
the 1location specified in the expression. There can be any number
of ORG statements within a particular program, and there are no
checks to ensure that the programmer is not defining overlapping
memory areas. Note that most programs written for the CP/M system
begin with an ORG statement of the form:

ORG 106H

which causes machine code generation to begin at the base of the
CP/M transient program area. If a label is specified in the ORG
statement, the label is given the value of the expression. This
label can then be used in the operand field of other statements to
represent this expression.

3.4.2 The END Directive

The END statement is optional in an assembly-language program,
but if it is present it must be the last statement. All subsequent
statements are ignored in the assembly. The END statement takes the
following two forms:

label END
label END expression

where the label is again optional. If the first form is wused, the
assembly process stops, and the default starting address of the
program is taken as 0000. Otherwise, the expression is evaluated,
and becomes the program starting address. This starting address is
included in the last record of the Intel-formatted machine code hex
file that results from the assembly. Thus, most CP/M assembly-
language programs end with the statement:

END 106H

resulting in the default starting address of 100H (beginning of the
transient program area).

3-10

CP/M Operating System Guide 3.4 Assembler Directives

3.4.3 The EQU Directive

The EQU (equate) statement is wused to set up synonyms for
particular numeric values. The EQU statement takes the form:

label EQU expression

where the label must be present and must not Tlabel any other
statement. The assembler evaluates the expression and assigns this
value to the identifier given in the label field. The identifier 1is
usually a name that describes the value in a more human-oriented
manner. Further, this name is used throughout the program to place
parameters on certain functions. Suppose data received from a
teletype appears on a particular input port, and data is sent to the
teletype through the next output port in sequence. For example, you
can use this series of equate statements to define these ports for a
particular hardware environment:

TTYBASE EQU 106H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ; TTY DATA 1IN
TTYOUT EQU TTYBASE+1 ; TTY DATA OUT

At a later point in the program, the statements that access the
teletype can appear as follows:

IN TTYIN ;READ TTY DATA TO REG-A

ouT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/0 ports are
used. Further, if the hardware environment is redefined to start
the teletype communications ports at 7FH instead of 10H, the first
statement need only be changed to
TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statements.
3.4.4 The SET Directive

The SET statement is similar to the EQU, taking the form:

label SET expression

except that the label can occur on other SET statements within the
program. The expression is evaluated and becomes the current value

3-11

CP/M Operating System Guide 3.4 Assembler Directives

associated with the label. Thus, the EQU statement defines a label
with a single value, while the SET statement defines a value that is
valid from the current SET statement to the point where the Tlabel
occurs on the next SET statement. The use of the SET is similar to
the EQU statement, but is used most often in controlling conditional
assembly.

3.4.5 The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly-language
statements that are to be included or excluded during the assembly
process. These statements take on the form:

IF expression
statement#1

statement#2

statement#n

ENDIF

When encountering the IF statement, the assembler evaluates the
expression following the IF. All operands in the expression must be
defined ahead of the IF statement. If the expression evaluates to a
nonzero value, then statement#l through statement#n are assembled.
If the expression evaluates to zero, the statements are listed but
not assembled. Conditional assembly is often used to write a single
generic program that includes a number of possible run-time
environments, with only a few specific portions of the program
selected for any particular assembly. The following program
segments, for example, might be part of a program that communicates
with either a teletype or a CRT console (but not both) by selecting
a particular value for TTY before the assembly begins.

3-12

CP/M Operating System Guide 3.4 Assembler Directives

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE
TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
TTYBASE EQU 10H ;BASE OF TTY I/0 PORTS
CRTBASE EQU 20H ;BASE OF CRT I/0 PORTS
IF TTY ;ASSEMBLE RELATIVE TO
; TTYBASE
CONIN EQU TTYBASE ; CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT
ENDIF
; IF NOT TTY ;ASSEMBLE RELATIVE TO
; CRTBASE
CONIN EQU CRTBASE ; CONSOLE INPUT
CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT
ENDIF
IN CONIN ;READ CONSOLE DATA
ouT CONTOUT ;WRITE CONSOLE DATA

In this case, the program assembles for an environment where a
teletype 1s connected, based at port 10H. The statement defining
TTY can be changed to

TTY EQU FALSE

and, in this case, the program assembles for a CRT based at port
20H.

3.4.6 The DB Directive

The DB directive allows the programmer to define initialized
storage areas 1in single-precision byte format. The DB statement
takes the form:

label DB e#l, e#2, ..., e#n

where e#l through e#n are either expressions that evaluate to 8-bit
values (the high-order bit must be zero) or are ASCII strings of
length no greater than 64 characters. There 1is no practical
restriction on the number of expressions included on a single source
line. The expressions are evaluated and placed sequentially into
the machine code file following the last program address generated
by the assembler. String characters are similarly placed into
memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions.

3-13

CP/M Operating System Guide

Note: ASCII characters are always
bit reset (0). Also, there is no
case within strings. The optional
the data area throughout the
following are examples of valid DB

data: DB 0,1,
DB

sign-on: DB
DB "AB’

3.4.7 The DW Directive

3.4 Assembler Directives

placed in memory with the parity
translation from lower- to upper-

label can be wused to reference
remainder of the program. The
statements:

2,3,4,5

data and 0ffh,5,377Q,1+2+3+4

'please type your name’,cr,1f,0

SHR 8, 'C’, 'DE’ AND 7FH

The DW statement is similar to the DB statement except double-
precision two-byte words of storage are initialized. The DW
statement takes the form:

label DW e#l, e#2, ..., e#n
where e#l through e#n are expressions that evaluate to 16-bit
results. Note that ASCII strings of one or two characters are

allowed, but strings longer than two characters are disallowed.

all cases,
the least significant byte of the
memory,
examples of DW statements:

doub: DW

DwW

3.4.8 The DS Directive

The DS statement is used to reserve an

memory, and takes the form:

label DS

where the label is optional.
generation after the area

statement given above has exactly the same effect as

statement:

label: EQU $

ORG $+expression

3-14

In

the data storage is consistent with the 8080 processor;
expression
followed by the most significant byte.

stored first in
The following are

is

0ffefh,doub+4,signon-$,255+255
la” 5'

'ab’, 'CD’, 6 shl 8 or 11lb.

area of wuninitialized

expression
The assembler begins subsequent code
reserved by the DS. Thus, the DS
the following

;LABEL VALUE IS CURRENT CODE LOCATION

;MOVE PAST RESERVED AREA

CP/M Operating System Manual 3.5 Operation Codes

3.5 Operation Codes

Assembly-language operation codes form the principal part of
assembly-language programs and form the operation field of the
instruction. In general, ASM accepts all the standard mnemonics for
the Intel 8080 microcomputer, which are given in detail in the Intel
8080 Assembly Language Programming Manual. Labels are optional on
each input line. The individual operators are listed briefly in the
following sections for completeness, although the Intel manuals
should be referenced for exact operator details. In Tables 3-4
through 3-8, bit values have the following meaning:

0 e3 represents a 3-bit value in the range 0-7 that can be one of
the predefined registers A, B, C, D, E, H, L, M, SP, or PSW.

0 e8 represents an 8-bit value in the range 0-255.

0 el6 represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination
of operands and operators. In some cases, the operands are
restricted to particular values within the allowable range, such as
the PUSH instruction. These cases are noted as they are
encountered.

In the sections that follow, each operation code is 1listed 1in
its most general form, along with a specific example, a short
explanation, and special restrictions.

3.5.1 Jumps, Calls, and Returns
The Jump, Call, and Return instructions allow several different

forms that test the condition flags set in the 8080 microcomputer
CPU. The forms are shown in Table 3-4.

Table 3-4. Jumps, Calls, and Returns

Form Bit Example Meaning
Value
JMP el6 JMP L1 Jump unconditionally to label
JINZ el6 INZ L2 Jump on nonzero condition to label
JZ el6 JZ 100H Jump on zero condition to label

JINC el6 JNC L1+4 Jump no carry to label
JC el6 JC L3 Jump on carry to label

JPO el6 JPO $+8 Jump on parity odd to label

3-15

CP/M Operating System Manual 3.5 Operation Codes

Table 3-4. (continued)

Form Bit Example Meaning
Value
JPE el6 JPE L4 Jump on even parity to label
JP el6 JP GAMMA Jump on positive result to label
JM el6 JM al Jump on minus to label
CALL elo CALL S1 Call subroutine unconditionally
CNZ el6 CNzZ S2 Call subroutine on nonzero
condition
Cz el6 CZ 1066H Call subroutine on zero condition

CNC el6 CNC S1+4 Call subroutine if no carry set

cc el6 CC Ss3 Call subroutine if carry set

CPO el6 CPO $+8 Call subroutine if parity odd

CPE el6 CPE $4 Call subroutine if parity even

CcpP el6 CP GAMMA Call subroutine if positive result
CM el6 CM bl$c2 Call subroutine if minus flag

RST e3 RST 0 Programmed restart, equivalent to

CALL 8xe3, except one byte call

RET Return from subroutine

RNZ Return if nonzero flag set
RZ Return if zero flag set

RNC Return if no carry

RC Return if carry flag set
RPO Return if parity is odd

RPE Return if parity is even

RP Return if positive result
RM Return if minus flag is set

3-16

CP/M Operating System Manual 3.5 Operation Codes

3.5.2 1Immediate Operand Instructions

Several instructions are available that load single- or double-
precision registers or single-precision memory cells with constant
values, along with instructions that perform immediate arithmetic or
logical operations on the accumulator (register A). Table 3-5
describes the immediate operand instructions.

Table 3-5. Immediate Operand Instructions

Form with Example Meaning
Bit Values
MVI e3,e8 MVI B, 255 Move immediate data to

register A, B, C, D, E, H,
L, or M (memory)

ADI e8 ADI 1 Add immediate operand to A
without carry

ACI e8 ACI OFFH Add immediate operand to A
with carry

SUI e8 SUI L + 3 Subtract from A without
borrow (carry)

SBI e8 SBI L AND 11B Subtract from A with borrow
(carry)
ANI eS8 ANI $ AND 7FH Logical and A with

immediate data

XRI e8 XRI 1111$0000B Exclusive or A with
immediate data

ORI e8 ORI L AND 1+1 Logical or A with immediate
data
CPI e8 CPI ’'a’ Compare A with immediate

data, same as SUI except
register A not changed.

LXI e3,el6 LXI B, 1006H Load extended immediate to
register pair. e3 must be
equivalent to B, D, H, or
SP.

3.5.3 Increment and Decrement Instructions
The 8080 provides instructions for incrementing or decrementing

single- and double-precision registers. The instructions are
described in Table 3-6.

3-17

CP/M Operating System Manual 3.5 Operation Codes

Table 3-6. Increment and Decrement Instructions

Form with Example Meaning
Bit Value
INR e3 INR E Single-precision increment

register. e3 produces one
of A, B, C, D, E, H, L, M.

DCR e3 DCR A Single-precision decrement
register. e3 produces one
of A, B, C, D, E, H, L, M.

INX e3 INX SP Double-precision increment
register pair. e3 must be
equivalent to B, D, H, or
SP.

DCX e3 DCX B Double-precision decrement
register pair. e3 must be

equivalent to B, D, H, or
SP.

3.5.4 Data Movement Instructions

Instructions that move data from memory to the CPU and from CPU
to memory are given in the following table.

Table 3-7. Data Movement Instructions

Form with Example Meaning
Bit Value
MOV e3,e3 MOV A,B Move data to leftmost

element from rightmost
element. e3 produces on
of A, B, C, D, E, H, L, or
M. MOV M,M is disallowed.

LDAX e3 LDAX B Load register A from
computed address. e3 must
produce either B or D.

STAX e3 STAX D Store register A to
computed address. e3 must
produce either B or D.

LHLD el6 LHLD L1 Load HL direct from

location el6. Double-
precision load to H and L.

3-18

CP/M Operating System Manual

Form with
Bit Value

SHLD el6

LDA el6

STA el6

POP e3

PUSH e3

IN e8

OUT e8

XTHL

PCHL

SPHL

XCHG

Table 3-7. (

Example

SHLD L5+x

LDA Gamma

STA X3-5

POP PSW

PUSH B

IN 0

OUT 255

3.5 Operation Codes

continued)
Meaning
Store HL direct to

location el6. Double-
precision store from H and
L to memory.

Load register A from
address el6.

Store register A into
memory at el6.

Load register pair from
stack, set SP. e3 must

produce one of B, D, H, or

PSW.

Store register pair into
stack, set SP. e3 must

produce on of B, D, H, or

PSW.

Load register A with data
from port e8.

Send data from register A
to port e8.

Exchange data from top of
stack with HL.

Fill program counter with
data from HL.

Fill stack pointer with
data from HL.

Exchange DE pair with HL
pair.

3.5.5 Arithmetic Logic Unit Operations

Instructions that act upon the single-precision accumulator

perform arithmetic
table.

to

and logic operations are given in the following

3-19

CP/M Operating System Manual

3.5 Operation Codes

Table 3-8. Arithmetic Logic Unit Operations

Form with Example
Bit Value

ADD e3 ADD B
ADC e3 ADC L
SUB e3 SUB H
SBB e3 SBB 2
ANA e3 ANA 1+1
XRA e3 XRA A
ORA e3 ORA B
CMP e3 CMP H
DAA

CMA

STC

cMC

RLC

RRC

Meaning

Add register given by e3 to
accumulator without carry.
e3 must produce one of A,
B, C, D, E, H, or L.

Add register to A with
carry, e3 as above.

Subtract reg e3 from A
without carry, e3 is
defined as above.

Subtract register e3 from A
with carry, e3 defined as
above.

Logical and reg with A, e3
as above.

Exclusive or with A, e3 as
above.

Logical or with A, e3
defined as above.

Compare register with A, e3
as above.

Decimal adjust register A
based upon last arithmetic
logic unit operation.

Complement the bits in
register A.

Set the carry flag to 1.
Complement the carry flag.

Rotate bits 1left, (re)set
carry as a side effect.
High-order A bit becomes
carry.

Rotate bits right, (re)set
carry as side effect.
Low-order A bit becomes
carry.

3-20

CP/M Operating System Manual 3.5 Operation Codes

Table 3-8. (continued)

Form with Example Meaning
Bit Value
RAL Rotate carry/A register to

left. Carry 1is involved
in the rotate.

RAR Rotate carry/A register to
right. Carry 1is involved
in the rotate.

DAD e3 DAD B Double-precision add
register pair e3 to HL.
e3 must produce B, D, H,
or SP.

3.5.6 Control Instructions

The four remaining instructions, categorized as control
instructions, are the following:

HLT halts the 8080 processor.

DI disables the interrupt system.
EI enables the interrupt system.
NOP means no operation.

O O o o

3.6 Error Messages

When errors occur within the assembly-language program, they
are listed as single-character flags in the leftmost position of the
source listing. The line in error is also echoed at the console so
that the source listing need not be examined to determine if errors
are present. The error codes are listed in the following table.

Table 3-9. Error Codes

Error Code Meaning

D Data error: element in data statement cannot
be placed in the specified data area.

E Expression error: expression 1is ill-formed
and cannot be computed at assembly time.

L Label error: label cannot appear in this
context; might be duplicate label.

N Not implemented: features that will appear in

future ASM versions. For example, macros are
recognized, but flagged in this version.

3-21

CP/M Operating System Manual 3.6 Error Messages

Table 3-9. (continued)
Error Code Meaning
0 Overflow: expression is too complicated (too

many pending operators) to be computed and
should be simplified.

P Phase error: 1label does not have the same
value on two subsequent passes through the
program.

R Register error: the value specified as a
register 1is not compatible with the operation
code.

S Syntax error: statement 1is not properly
formed.

Y Value error: operand encountered in

expression is improperly formed.

Table 3-10 lists the error messages that are due to terminal
error conditions.
Table 3-10. Error Messages
Message Meaning
NO SOURCE FILE PRESENT
The file specified in the ASM command does
not exist on disk.
NO DIRECTORY SPACE
The disk directory is full; erase files
that are not needed and retry.
SOURCE FILE NAME ERROR
Improperly formed ASM filename, for
example, it is specified with ? fields.
SOURCE FILE READ ERROR
Source file cannot be read properly by the

assembler; execute a TYPE to determine the
point of error.

3-22

CP/M Operating System Manual 3.6 Error Messages

Table 3-10. (continued)
Message Meaning
OUTPUT FILE WRITE ERROR
Output files cannot be written properly;
most likely cause is a full disk, erase and
retry.

CANNOT CLOSE FILE

Output file cannot be closed; check to see
if disk is write protected.

3.7 A Sample Session

The following sample session shows interaction with the
assembler and debugger in the development of a simple assembly-
language program. The arrow represents a carriage return keystroke.

A>ASM SORT Assemble SORT.ASM
CP/M ASSEMBLER - VER 1.0

0015C Next free address
003H USE FACTOR Percent of table used 00 to ff (hexadecimal)
END OF ASSEMBLY

A>DIR SORT.*

SORT ASM Source file

SORT BAK Back-up from last edit

SORT PRN Print file (contains tab characters)
SORT HEX Machine code file

A>TYPE SORT.PRN
Source line

; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE
; START AT THE BEGINNING OF THE TRANSIENT
PROGRAM AREA

Machine code location
0100 ORG 100H

Generated machine code
0100 214601 SORT: LXI H,SW ;ADDRESS SWITCH TOGGLE

0103 3601 MVI M,1 ;SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H,I ; ADDRESS INDEX
0108 3600 MVI M,0 ; I=0

3-23

CP/M Operating System Manual 3.7 A Sample Session

’

010A 7E COMPL:
010B FEO09

016D D21901

0110 214601

0113 7EB7C200001
0118 FF

Truncated ;

0119
5F16002148CONT:
0121 4E792346

0125 23

’

0126 965778239E

012B DA3FO1

’

012E B2CA3F01
0132 56702B5E
0136 712B722B73

’

013B 21460134

’

013F 21470134C3INCI:

’

0146 00 SW:

0147 I:
0148 050064001EAV:
000A = N
015C

A>TYPE SORT.HEX

COMPARE I WITH ARRAY SIZE

MOV A,M ;A REGISTER = I

CPI N-1 ;CY SET IF I<(N-1)
JNC CONT ;CONTINUE IF I<=(N-2)

END OF ONE PASS THROUGH DATA
LXI H,SW ;CHECK FOR ZERO SWITCHES
MOV A, M! ORA A! JINZ SORT ;END OF SORT IF SW=0

RST 7 ;GO TO THE DEBUGGER INSTEAD OF REB

CONTINUE THIS PASS
ADDRESSING I, SO LOAD AV(I) INTO REGISTERS

MOV E, A! MVI D, 0! LXI H, AV! DAD D! DAD D
Mov C, M! MOV A, C! INX H! MOV B, M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B

MOV H AND L TO ADDRESS AV(I+1)
INX H

COMPARE VALUE WITH REGS CONTAINING AV (I)
SuB M! MOV D, A! MOV A, B! INX H! SBB M ;SUBTRACT

BORROW SET IF AV(I+1)>AV(I)
JC INCI ;SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES

ORA D! JZ INCI ;SKIP IF AV(I) = AV(I+1)
mMov D, M! MOV M, B! DCX H! MOV E, M

Mov M, C! DCX H! MOV M, D! DCX H! MOV M, E

INCREMENT SWITCH COUNT
LXI H,SW! INR M

INCREMENT I
LXI H,I! INR M! JMP COMP

DATA DEFINITION SECTION

DB 0 ;RESERVE SPACE FOR SWITCH COUNT

DS 1 ; SPACE FOR INDEX

DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767
EQU($-AV)/2 ; COMPUTE N INSTEAD OF PRE

END

Equate value

:10010000214601360121470136007EFEO9D2190140
:100110002146017EB7C20001FF5F16002148011988 Machine code in
:10012000194E79234623965778239EDA3FO1B2CAA7 HEX format

:100130003F0156702B5E712B722B732146013421C7
:07014000470134C30A01006E Machine code in
:10014800050064001E00320014000700E8032C01BB HEX format

:0401580064000180BE
10000000000

3-24

CP/M Operating System Manual 3.7 A Sample Session

A>DDT SORT.HEX Start debug run

16K DDT VER 1.0

NEXT PC

015C 0000 Default address (no address on END statement)
-XP

P=0000 100 Change PC to 100

-UFFFF Untrace for 65535 steps

Abort with rubout
COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,0146x0100
-T10 Trace 1016 steps

COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0163 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=01068 MVI M, 00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, M
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1ZOM1EQGIO A=00 B=0000 D=0000 H=0147 S=0100 P=016D JNC 0119
C1ZOM1EQGIO A=00 B=0000 D=0000 H=0147 S=0100 P=0110 LXI H, 0146
C1ZOM1EOIO® A=00 B=0000 D=0000 H=0146 S=0100 P=0113 MOV A, M
C1ZOM1EQIO A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0115 JINZ 0100
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0163 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0168 MVI M, 00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, Mx010B
-A10D Stopped at 10BH

010D JC 119 Change to a jump on carry
0110

-XP

P=010B 100 Reset program counter back to beginning of program

-T10 Trace execution for 10H steps

Altered instruction
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0100 LXI H,0146
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H,0147
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010A MOV A,M
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1ZOM1EOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010D JC 0119
C1ZOM1EOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0119 MOV E,A
C1ZOM1EOGIO A=00 B=0000 D=0000 H=0147 S=0100 P=011A MVI D, 00
C1ZOM1EOIO A=00 B=0000 D=0000 H=0147 S=0100 P=011C LXI H,0148
C1ZOM1EQIO A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
COZOM1EOIO A=00 B=0000 D=0000 H=0148 S=0100 P=0120 DAD D
COZOM1EOIO A=00 B=0000 D=0000 H=0148 S=0100 P=0121 MOV C,M

3-25

CP/M Operating System Manual

3.7 A Sample Session

COZOM1EOIO A=00 B=0005 D=0000 H=0148 S=0100 P=0122 MOV A,C
COZOM1EOIO A=05 B=0005 D=0000 H=0148 S=0100 P=0123 INX H
COZOM1EOIO A=05 B=0005 D=0000 H=0149 S=0100 P=0124 MOV B,M*0125

-L100 Automatic breakpoint

0100 LXI H,0146

0163 MVI M,01

0105 LXI H,0147

0168 MVI M, 00

010A MOV A,M List some code

016B CPI 09 from 100H

016D JC 0119

0110 LXI H,0146

0113 MOV A,M

0114 ORA A

0115 INZ 0100

-L

0118 RST 07

0119 MOV E,A List more

011A MVI D,00

011C LXI H,0148

-Abort list with rubout

-G,11B Start program from current PC (0125H)

and run in real time to 11BH
*0127 Stopped with an external interrupt 7 from front panel
-T4 (program was looping indefinitely)
Look at looping program in trace mode
COZOMOEOIO A=38 B=0064 D=0006 H=0156 S=0100 P=0127 MOV D,A
COZOMOEOIO A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MOV A,B
COZOMOEOIO A=00 B=0064 D=3806 H=0156 S=0100 P=0129 INX H
COZOMOEOIO A=00 B=0064 D=3806 H=0157 S=0100 P=012A SBB M+012B
-D148
Data are sorted, but program does not stop.

0148 05 00 07 00 14 00 1E 00........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D.,........
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00..........ccvun.
-GO Return to CP/M
A>DDT SORT.HEX Reload the memory image
16K DDT VER 1.0
NEXT PC
015C 0000

-XP
P=0000 100 Set PC to beginning of program

-L10D List bad OPCODE

3-26

CP/M Operating System Manual 3.7 A Sample Session

016D JNC 0119

0110 LXI H,0146

-Abort list with rubout
-A10D Assemble new OPCODE

016D JC 119

0110

-L100 List starting section of program
0100 LXI H,0146

0163 MVI M,01

0165 LXI H,0147

0168 MVI M,00

-Abort list with rubout

-A103 Change switch initialization to 00
0163 MVI M,0

0105

-~C Return to CP/M with CTRL-C (GO works as well)

SAVE 1 SORT.COM Save 1 page (256 bytes, from 100H to 1ffH) on
disk in case there is need to reload later
A>DDT SORT.COM Restart DDT with saved memory image

16K DDT VER 1.0

NEXT PC
0200 0100 COM file always starts with address 100H
-G Run the program from PC=100H

*0118 Programmed stop (RST 7) encountered
-D148

Data properly sorted
0148 05 00 07 00 14 00 1E 00........
0150 32 00 64 00 64 00 2C 01 E8 63 01 80 00 00 00 00 2.D.D.........

0160 00 00 GO 00 0O OO0 00 GO 00 0O GO0 00 60 00 60 00................
0170 00 00 GO 00 0O OO0 0O GO OO0 6O GO0 00 GO 00 60 00................

-GO Return to CP/M
A>ED SORT.ASM Make changes to original program

*N, 0”ZOTT Find next ,0
MVI M,0 I =0

* - Up one line in text
LXI H,I ; ADDRESS INDEX

3-27

CP/M Operating System Manual 3.7 A Sample Session

* - Up another line
MVI M,1 ;SET TO 1 FOR FIRST ITERATION

*KT Kill line and type next line
LXI H,I ; ADDRESS INDEX

*I Insert new line

MVI M,0 ; ZERO SW
*T
LXI H,I ; ADDRESS INDEX
*NINC"ZOT
INC*T
CONT ; CONTINUE IF I<=(N-2)

*x-2DIC"ZOLT

JC CONT ;CONTINUE IF I<=(N-2)
*E Source from disk A
HEX to disk A
A>ASM SORT.AAZ Skip PRN file

CP/M ASSEMBLER - VER 1.0

015C Next address to assemble
003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEX Test program changes

16K DDT VER 1.0
NEXT PC

015C 0000

-G100

*x0118
-D148

Data sorted
0148 05 00 07 00 14 00 1E 00........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D..........
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.......ccvvuuunn
-Abort with rubout

-GO Return to CP/M--program checks OK.

End of Section 3

3-28

Section 4

CP/M Dynamic Debugging Tool

4.1 Introduction

The DDT program allows dynamic interactive testing and
debugging of programs generated in the CP/M environment. Invoke the
debugger with a command of one of the following forms:

DDT
DDT filename.HEX
DDT filename.COM

where filename is the name of the program to be loaded and tested.
In both cases, the DDT program is brought into main memory in place
of the Console Command Processor (CCP) and resides directly below
the Basic Disk Operating System (BDOS) portion of CP/M. Refer to
Section 5 for standard memory organization. The BDOS starting
address, located in the address field of the JMP instruction at
location 5H, is altered to reflect the reduced Transient Program
Area (TPA) size.

The second and third forms of the DDT command perform the same
actions as the first, except there is a subsequent automatic load of
the specified HEX or COM file. The action is identical to the
following sequence of commands:

DDT
Ifilename.HEX or Ifilename.COM
R

where the I and R commands set up and read the specified program to
test. See the explanation of the I and R commands below for exact
details.

Upon initiation, DDT prints a sign-on message in the form:
DDT VER m.m
where m.m is the revision number.
Following the sign-on message, DDT prompts you with the hyphen
character, -, and waits for input commands from the console. You
can type any of several single-character commands, followed by a

carriage return to execute the command. Each line of input can be
line-edited using the following standard CP/M controls:

CP/M Operating System Manual 4.1 Introduction

Table 4-1. Line-editing Controls

Control Result

rubout removes the last character typed

CTRL-U removes the entire line, ready for retyping
CTRL-C reboots system

Any command can be up to 32 characters in length. An automatic
carriage return is inserted as character 33, where the first
character determines the command type. Table 4-2 describes DDT
commands.

Table 4-2. DDT Commands

Command Result
Character
A enters assembly-language mnemonics with
operands.
D displays memory in hexadecimal and ASCII.
F fills memory with constant data.
G begins execution with optional breakpoints.
I sets up a standard input File Control
Block.
L lists memory using assembler mnemonics.
M moves a memory segment from source to
destination.
R reads a program for subsequent testing.
S substitutes memory values.
T traces program execution.
u untraced program monitoring.
X examines and optionally alters the CPU
state.

The command character, in some cases, is followed by zero, one, two,
or three hexadecimal values, which are separated by commas or single
blank characters. All DDT numeric output is in hexadecimal form.
The commands are not execution until the carriage return is typed at
the end of the command.

4-2

CP/M Operating System Manual 4.1 Introduction

At any point in the debug run, you can stop execution of DDT by
using either a CTRL-C or GO (jump to location Q000H) and save the
current memory image by using a SAVE command of the form:

SAVE n filename. COM

where n is the number of pages (256 byte blocks) to be saved on
disk. The number of blocks is determined by taking the high-order
byte of the address in the TPA and converting this number to
decimal. For example, if the highest address in the TPA is 134H,
the number of pages is 12H or 18 in decimal. You could type a CTRL-
C during the debug run, returning to the CCP level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the disk and can be directly
executed by typing the name X. If further testing is required, the
memory image can be recalled by typing

DDT X.COM

which reloads the previously saved program from Tlocation 100H
through page 18, 23FFH. The CPU state is not a part of the COM
file; thus, the program must be restarted from the beginning to test
it properly.

4.2 DDT Commands

The individual commands are detailed below. In each case, the
operator must wait for the hyphen prompt character before entering
the command. If control is passed to a program under test, and the
program has not reached a breakpoint, control can be returned to DDT
by executing a RST 7 from the front panel. In the explanation of
each command, the command letter is shown in some cases with numbers
separated by commas, the the numbers are represented by Tlower-case
letters. These numbers are always assumed to be in a hexadecimal
radix and from one to four digits in length. Longer numbers are
automatically truncated on the right.

Many of the commands operate upon a CPU state that corresponds
to the program under test. The CPU state holds the registers of the
program being debugged and initially contains zeros for all
registers and flags except for the program counter, P, and stack
pointer, S, which default to 100H. The program counter is
subsequently set to the starting address given in the last record of
a HEX file if a file of this form 1is 1loaded, see the I and R
commands.

4.2.1 The A (Assembly) Command

DDT allows in-line assembly language to be inserted into the
current memory image using the A command, which takes the form:

4-3

CP/M Operating System Manual 4.2 DDT Commands

As

where s 1is the hexadecimal starting address for the in-line
assembly. DDT prompts the console with the address of the next
instruction to fill and reads the console, 1looking for assembly-
language mnemonics followed by register references and operands in
absolute hexadecimal form. See the Intel 8080 Assembly Language
Reference Card for a 1list of mnemonics. Each successive load
address is printed before reading the console. The A command
terminates when the first empty line is input from the console.

Upon completion of assembly language input, you can review the
memory segment using the DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be
overlaid by the transient program being tested, in which case the
DDT program responds with an error condition when the A and L
commands are used.

4.2.2 The D (Display) Command

The D command allows you to view the contents of memory in
hexadecimal and ASCII formats. The D command takes the forms:

D
Ds
Ds, f

In the first form, memory is displayed from the current display
address, initially 100H, and continues for 16 display lines. Each
display line takes the followng form:

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ccccccceccececccccc

where aaaa is the display address in hexadecimal and bb represents
data present in memory starting at aaaa. The ASCII characters
starting at aaaa are to the right (represented by the sequence of
character c¢) where nongraphic characters are printed as a period.
You should note that both upper- and Tlower-case alphabetics are
displayed, and will appear as upper-case symbols on a console device
that supports only upper-case. Each display line gives the values
of 16 bytes of data, with the first line truncated so that the next
line begins at an address that is a multiple of 16.

The second form of the D command is similar to the first,
except that the display address is first set to address s.

The third form causes the display to continue from address s
through address f. 1In all cases, the display address is set to the
first address not displayed in this command, so that a continuing
display can be accomplished by issuing successive D commands with no
explicit addresses.

4-4

CP/M Operating System Manual 4.2 DDT Commands

Excessively long displays can be aborted by pressing the return
key.

4.2.3 The F (Fill) Command
The F command takes the form:
Fs,f,c,

where s is the starting address, f is the final address, and c is a
hexadecimal byte constant. DDT stores the constant c at address s,
increments the value of s and test against f. If s exceeds f, the
operation terminates, otherwise the operation is repeated. Thus,
the fill command can be used to set a memory block to a specific
constant value.

4.2.4 The G (Go) Command

A program is executed using the G command, with up to two
optional breakpoint addresses. The G command takes the forms:

G

Gs
Gs,b
Gs,b,c
G,b
G,b,c

The first form executes the program at the current value of the
program counter in the current machine state, with no breakpoints
set. The only way to regain control in DDT is through a RST 7
execution. The current program counter can be viewed by typing an X
or XP command.

The second form is similar to the first, except that the
program counter in the current machine state is set to address s
before execution begins.

The third form is the same as the second, except that program
execution stops when address b is encountered (b must be in the area
of the program under test). The instruction at location b is not
executed when the breakpoint is encountered.

The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c.
Encountering either breakpoint causes execution to stop, and both
breakpoints are cleared. The 1last two forms take the program
counter from the current machine state and set one and two
breakpoints, respectively.

4-5

CP/M Operating System Manual 4.2 DDT Commands

Execution continues from the starting address in real-time to
the next breakpoint. There is no intervention between the starting
address and the break address by DDT. If the program under test
does not reach a breakpoint, control cannot return to DDT without
executing a RST 7 instruction. Upon encountering a breakpoint, DDT
stops execution and types

*d

where d is the stop address. The machine state can be examined at
this point wusing the X (Examine) command. You must specify
breakpoints that differ from the program counter address at the
beginning of the G command. Thus, if the current program counter is
1234H, then the following commands:

G,1234
G400, 400

both produce an immediate breakpoint without executing any
instructions.

4.2.5 The I (Input) Command

The I command allows you to insert a filename into the default
File Control Block (FCB) at 5CH. The FCB created by CP/M for
transient programs is placed at this location (see Section 5). The
default FCB can be used by the program under test as if it had been
passed by the CP/M Console Processor. Note that this filename is
also used by DDT for reading additional HEX and COM files. The I
command takes the forms:

Ifilename
Ifilename.typ

If the second form is used and the filetype is either HEX or
COM, subsequent R commands can be used to read the pure binary or
hex format machine code. Section 4.2.8 gives further details.

4.2.6 The L (List) Command

The L command is used to list assembly-language mnemonics in a
particular program region. The L command takes the forms:

L
Ls
Ls,f

The first form lists twelve lines of disassembled machine code
from the current 1list address. The second form sets the list
address to s and then lists twelve lines of code. The Tlast form
lists disassembled code from s through address f. 1In all three
cases, the list address is set to the next unlisted 1location 1in
preparation for a subsequent L command. Upon encountering an

4-6

CP/M Operating System Manual 4.2 DDT Commands

execution breakpoint, the list address is set to the current value
of the program counter (G and T commands). Again, long typeouts can
be aborted by pressing RETURN during the list process.

4.2.7 The M (Move) Command

The M command allows block movement of program or data areas
from one location to another in memory. The M command takes the
form:

Ms, f,d

where s is the start address of the move, f is the final address,
and d 1is the destination address. Data is first removed from s to
d, and both addresses are incremented. If s exceeds f, the move
operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

The R command is used in conjunction with the I command to read
COM and HEX files from the disk into the transient program area in
preparation for the debug run. The R command takes the forms:

R
RB

where b is an optional bias address that is added to each program or
data address as it is loaded. The load operation must not overwrite
any of the system parameters from 000H through OFFH (that 1is, the
first page of memory). If b is omitted, then b=0000 is assumed.
The R command requires a previous I command, specifying the name of
a HEX or COM file. The load address for each record is obtained
from each individual HEX record, while an assumed 1load address of
100H 1is used for COM files. Note that any number of R commands can
be issued following the I command to reread the program under test,
assuming the tested program does not destroy the default area at
5CH. Any file specified with the filetype COM is assumed to contain
machine code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code 1in
Intel hex format (produced, for example, with the ASM command).

Recall that the command,
DDT filename.filetype
which initiates the DDT program, equals to the following commands:
DDT

-Ifilename.filetype
-R

4-7

CP/M Operating System Manual 4.2 DDT Commands

Whenever the R command is issued, DDT responds with either the
error indicator ? (file <cannot be opened, or a checksum error
occurred in a HEX file) or with a load message. The Tload message
takes the form:

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program and pppp
is the assumed program counter (1l00H for COM files, or taken from
the last record if a HEX file is specified).

4.2.9 The S (Set) Command

The S command allows memory locations to be examined and
optionally altered. The S command takes the form:

Ss

where s is the hexadecimal starting address for examination and
alteration of memory. DDT responds with a numeric prompt, giving
the memory location, along with the data currently held in memory.
If you type a carriage return, the data is not altered. If a byte
value is typed, the value is stored at the prompted address. In
either case, DDT continues to prompt with successive addresses and
values until you type either a period or an invalid input value is
detected.

4.2.10 The T (Trace) Command

The T command allows selective tracing of program execution for
1 to 65535 program steps. The T command takes the forms:

T
Tn

In the first form, the CPU state is displayed and the next
program step is executed. The program terminates immediately, with
the termination address displayed as

xhhhh

where hhhh is the next address to execute. The display address
(used in the D command) is set to the value of H and L, and the list
address (used in the L command) is set to hhhh. The CPU state at
program termination can then be examined using the X command.

The second form of the T command is similar to the first,
except that execution is traced for n steps (n is a hexadecimal
value) before a program breakpoint occurs. A breakpoint can be
forced in the trace mode by typing a rubout character. The CPU
state is displayed before each program step is taken in trace mode.
The format of the display is the same as described in the X command.

4-8

CP/M Operating System Manual 4.2 DDT Commands

You should note that program tracing is discontinued at the
CP/M interface and resumes after return from CP/M to the program
under test. Thus, CP/M functions that access I/0 devices, such as
the disk drive, run in real-time, avoiding I/0 timing problems.
Programs running in trace mode execute approximately 500 times
slower than real-time because DDT gets control after each user
instruction is executed. Interrupt processing routines can be
traced, but commands that use the breakpoint facility (G, T, and U)
accomplish the break using an RST 7 instruction, which means that
the tested program cannot use this interrupt location. Further, the
trace mode always runs the tested program with interrupts enabled,
which may cause problems if asynchronous interrupts are received
during tracing.

To get control back to DDT during trace, press RETURN rather
than executing an RST 7. This ensures that the trace for current
instruction is completed before interruption.

4.2.11 The U (Untrace) Command

The U command is identical to the T command, except that
intermediate program steps are not displayed. The untrace mode
allows from 1 to 65535, (OFFFFH) steps to be executed in monitored
mode and 1is wused principally to retain control of an executing
program while it reaches steady state conditions. All conditions of
the T command apply to the U command.

4.2.12 The X (Examine) Command
The X command allows selective display and alteration of the
current CPU state for the program under test. The X command takes

the forms:

X
Xr

where r is one of the 8080 CPU registers 1listed in the following
table.

Table 4-3. CPU Registers

Register Meaning Value
C Carry flag (0/1)
z Zero flag (0/1)
M Minus flag (0/1)
E Even parity flag (0/1)
I Interdigit carry (0/1)
A Accumulator (0-FF)
B BC register pair (0-FFFF)
D DE register pair (0-FFFF)

4-9

CP/M Operating System Manual 4.2 DDT Commands

Table 4-3. (continued)

Register Meaning Value
H HL register pair (0-FFFF)
S Stack pointer (0-FFFF)
P Program counter (0-FFFF)

In the first case, the CPU register state is displayed in the
format:

CfZfMfEfLf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a
double-byte quantity corresponding to the register pair. The inst
field contains the disassembled instruction, that occurs at the
location addressed by the CPU state’s program counter.

The second form allows display and optional alteration of
register values, where r is one of the registers given above (C, Z,
M, E, I, A, B, D, H, S, or P). 1In each case, the flag or register
value 1is first displayed at the console. The DDT program then
accepts input from the console. If a carriage return is typed, the
flag or register value 1is not altered. If a value in the proper
range is typed, the flag or register value is altered. You should
note that BC, DE, and HL are displayed as register pairs. Thus, you
must type the entire register pair when B, C, or the BC pair 1is
altered.

4.3 Implementation Notes

The organization of DDT allows certain nonessential portions to
be overlaid to gain a larger transient program area for debugging
large programs. The DDT program consists of two parts: the DDT
nucleus and the assembler/disassembler module. The DDT nucleus is
loaded over the CCP and, although loaded with the DDT nucleus, the
assembler/disassembler 1is overlayable unless used to assemble or
disassemble.

In particular, the BDOS address at location 6H (address field
of the JMP instruction at location 5H) is modified by DDT to address
the base location of the DDT nucleus, which, in turn, contains a JMP
instruction to the BDOS. Thus, programs that use this address field
to size memory see the logical end of memory at the base of the DDT
nucleus rather than the base of the BDOS.

The assembler/disassembler module resides directly below the
DDT nucleus in the transient program area. If the A, L, T, or X
commands are used during the debugging process, the DDT program
again alters the address field at 6H to include this module, further
reducing the logical end of memory. If a program loads beyond the
beginning of the assembler/disassembler module, the A and L commands
are lost (their use produces a ? in response) and the trace and

4-10

CP/M Operating System Manual 4.3 Implementation Notes

display (T and X) commands list the inst field of the display in
hexadecimal, rather than as a decoded instruction.

4.4 A Sample Program

The following example shows an edit, assemble, and debug for a
simple program that reads a set of data values and determines the
largest value in the set. The largest value is taken from the
vector and stored into LARGE at the termination of the program.

A>ED SCAN.ASM Create source program;
" " represents carriage return.
*1
ORG 1-00H ; START OF TRANSIENT
; AREA
MVI B, LEN ;LENGTH OF VECTOR TO SCAN
MVI c, 0 ; LARGER_RST VALUE SO FAR
LOOP LXI H, VECT ;BASE OF VECTOR
LOOP: MoV A, M ; GET VALUE
SUB C ; LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT
; FOUND
; NEW LARGEST VALUE, STORE IT TO C
MoV C, A
NFOUND INX H ; TO NEXT ELEMENT
DCR B ;MORE TO SCAN?
JINZ LOOP ; FOR ANOTHER
; END OF SCAN, STORE C
MoV A, C ;GET LARGEST VALUE
STA LARGE
JMP 0 ; REBOOT
; TEST DATA
VECT: DB 2,0,4,3,5,6,1,5
LEN EQU $-VECT ; LENGTH
LARGE: DS 1 ; LARGEST VALUE ON EXIT

END

4-11

CP/M Operating System Manual

4.4 A Sample Program

*BOP
ORG 100H ; START OF TRANSIENT AREA
MVI B, LEN ; LENGTH OF VECTOR TO SCAN
MVI c,0 ; LARGEST VALUE SO FAR
LXI H,VECT ;BASE OF VECTOR

LOOP: MoV AM ; GET VALUE
SUB C ; LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT

; FOUND

; NEW LARGEST VALUE, STORE IT TO C
MoV C,A

NFOUND: INX H ; TO NEXT ELEMENT
DCR B ;MORE TO SCAN?
INZ LOOP ; FOR ANOTHER

; END OF SCAN, STORE C
MoV A,C ; GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

; TEST DATA

VECT: DB 2,0,4,3,5,6,1,5

LEN EQU $-VECT ; LENGTH

LARGE: DS 1 ; LARGEST VALUE ON EXIT
END

*E <--End of edit

A>ASM SCAN Start Assembler

CP/M ASSEMBLER - VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY

A>TYPE SCAN.PRN

Code address Source program

0100 ORG
0100 0608 MVI
0102 OEOO Machine code MVI
0104 211901 LXI
0107 7E LOOP: MoV
0108 91 SUB
0109 D20D01 JINC

; NEW
010C 4F MoV

Assembly complete; lock

at program listing

100H ; START OF TRANSIENT AREA

B, LEN ;LENGTH OF VECTOR TO SCAN

c,0 ; LARGEST VALUE SO FAR

H,VECT. ;BASE OF VECTOR

AM ; GET VALUE

C ; LARGER VALUE IN C?

NFOUND ;JUMP IF LARGER VALUE NOT
; FOUND

LARGEST VALUE, STORE IT TO C

C,A

4-12

CP/M Operating System Manual

010D 23 NFOUND:
010E 05
010F C20701
0112 79
0113 322101
0116 C30000
Code--data listing;
truncated ;
0119 0200040305 VECT:
0008 = Value of LEN
0121 equate LARGE:
0122

A>DDT SCAN.HEX

DDT VER 1.0

NEXT PC

0121 0000

-X Last load address + 1

4.4 A Sample Program

INX H ; TO NEXT ELEMENT
DCR B ;MORE TO SCAN?

JNZ LOOP ; FOR ANOTHER

END OF SCAN, STORE C

MOV A,C ; GET LARGEST VALUE
STA LARGE

JMP © ; REBOOT

TEST DATA

pB 2,0,4,3,5,6,1,5

EQU $-VECT ; LENGTH

DS 1 ; LARGEST VALUE ON EXIT
END

Start debugger using hex format machine code

Next instruction
to execute at
PC=0

COZOMOEOGIO A=00 B=0000 D=0000 H=0000 S=0100 P=0000 OUT 7F

-XP

P=0000 100

-X

Look at registers again

Examine registers before debug run

Change PC to 100

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0160 P=01060 MVI B, 08

-L100

0100 MVI B,08
0102 MVI C,00
0104 LXI H,0119
0167 MOV A,M
0108 SUB C
0109 JNC 016D
010C MOV C,A
016D INX H
010E DCR B
010F JINZ 0107
0112 MOV A,C
-L

Next instruction
to execute at PC=100

PC changed

Disassembled machine
code at 100H

(see source listing
for comparison)

4-13

CP/M Operating System Manual 4.4 A Sample Program

0113 STA 0121

0116 JMP 0000

0119 STAX B

011A NOP A little more machine
011B INR B code. Note that pro-
011C INX B gram ends at location
011D DCR B 116 with a JMP to
011E MVI B,01 0000. Remainder of
0120 DCR B listing is assembly of
0121 LXI D,2200 data.

0124 LXI H,0200

-A116 Enter in-line assembly mode to change the JMP to 0000 into a RST 7,
which will cause the program under test to return to DDT if 116H is
ever executed.

0116 RST 7

0117 (Single carriage return stops assemble mode)

-L113 List code at 113H to check that RST 7 was properly inserted

0113 STA 0121

0116 RST 07 in place of JMP
0117 NOP

0118 NOP

0119 STAX B

011A NOP

011B INR B

011C INX B

-X Look at registers

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0160 MVI B,08
-T
Execute Program for one stop. Initial CPU state, before is executed

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0160 MVI B,08+0102
Automatic breakpoint

Trace one step again (note 08H in B)
COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00+0104
-T

Trace again (Register C is cleared)
COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119x0107
-T3 Trace three steps
COZOMOEOIO A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
COZOMOEOIO A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JINC 0106D+0160D
-D119

Display memory starting at 119H. Automatic breakpoint at 10DH

0119 02 00 04 03 05 06 O01.Program data Lower-case X

0120 05 11 00 22 21 00 02 7E EB 77 13 23 EB 0B 78 B1 ..."!.. . W .#..X.
0130 C2 27 01 C3 63 29 00 GO 00 0O 0O 00 GO 00 00 00 ... " ...).........
0140 00 00 GO 00 0O OO 0O GO 00 0O OO 00 GO0 00 00 00cvvun..

4-14

CP/M Operating System Manual 4.4 A Sample Program

0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00ccvvvveunn
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Data are displayed
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 in ASCI with a "."
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 in the position of
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 nongraphic........
01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 characters........
01BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00covvvvernn
01CO 00 00 0O 00 OO 0O OO OO OO0 GO 00 00 00 60 00 60c.vvvun..
-X
Current CPU state

COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
-T5

Trace 5 steps from current CPU state
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
COZOMOEOI1 A=02 B=0800 D=0000 H=011A S=0100 P=010E DCR B
COZOMOEOI1 A=02 B=0700 D=0000 H=011A S=0100 P=010F JINZ 0107
COZOMOEOI1 A=02 B=0700 D=0000 H=011A S=0100 P=0107 MOV A,M
COZOMOEOI1 A=00 B=0700 D=0000 H=011lA S=0100 P=01068 SUB Cx0109

us
Automatic breakpoint

Trace without listing intermediate states
COZ1MOE1I1l A=00 B=0700 D=0000 H=011A S=0100 P=0109 JINC 010D*0108
-X

CPU state at end of U5

COZOMOE1I1l A=04 B=0600 D=0000 H=011B S=0100 P=0168 SUB C
-G Run program from current PC until completion (in real-time)

*0116 breakpoint at 116H, caused by executing RST 7 in machine code.

-X

CPU state at end of program
COZ1MOE1I1l A=00 B=0000 D=0000 H=0121 S=0100 P=0116 RST 07
-XP

Examine and change program counter

P=0116 100
-X

COZ1IMOE1I1l A=00 B=0000 D=0000 H=0121 S=0100 P=0160 MVI B,08
-T10

First data element
Current largest value
Subtract for comparison C
Trace 10 (hexadecimal) steps

COZIMOE1I1l A=00 B=0800 D=0000 H=0121 S=0100 P=0100 MVI B, 08
COZIMOE1I1l A=00 B=0000 D=0000 H=0121 S=0100 P=0102 MVI C,00
COZIMOE1I1l A=00 B=0800 D=0000 H=0121 S=0100 P=0104 LXI H,0119
COZIMOE1I1 A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
COZIMOE1I1l A=02 B=0800 D=0000 H=0119 S=0100 P=01068 SUB C
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 016D
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=016D INX H
COZOMOEOI1 A=02 B=0800 D=0000 H=011A S=0100 P=010E DCR B

4-15

CP/M Operating System Manual 4.4 A Sample Program

COZOMOEOI1 A=02 B=0700 D=0000 H=011A S=0100 P=010F JINZ 0107

COZOMOEOI1 A=02 B=0700 D=0000 H=011lA S=0100 P=0107 MOV A,M

COZOMOEOI1 A=00 B=0700 D=0000 H=011A S=0100 P=0108 SUB C

COZ1IMOE1I1l A=00 B=0700 D=0000 H=011A S=0100 P=0109 JNC 010D

COZ1MOE1I1l A=00 B=0700 D=0000 H=011A S=0100 P=010D INX H

COZ1MOE1I1l A=00 B=0700 D=0000 H=011B S=0100 P=010E DCR B

COZOMOE1I1l A=00 B=0600 D=0000 H=011B S=0100 P=010F JNZ 0107

COZOMOE1I1l A=00 B=0600 D=0000 H=011B S=0100 P=0107 MOV A,M+0108

-A109
Insert a "hot patch" into Program should have moved the
the machine code value from A into C since A>C.

0109 JC 10D to change the Since this code was not executed,
JNC to JC it appears that the JNC should

010C have been a JC instruction

Stop DDT so that a version of
-GO the patched program can be saved

A>SAVE 1 SCAN.COM Program resides on first
page, so save 1 page.
A>DDT SCAN.COM
Restart DDT with the save memory
DDT VER 1.0 image to continue testing
NEXT PC
0200 0100

-L100 List some code

0100 MVI B,08

0102 MVI C,00

0104 LXI H,0119

0107 MOV A,M

0108 SUB C

0109 JC 016D Previous patch is present in X.COM
010C MOV C,A

016D INX H

010E DCR B

010F JINZ 0107

0112 MOV A,C

-XP
P=0100

-T10

Trace to see how patched version operates Data is moved from A to C

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0160 MVI B,08

COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0162 MVI C,00

COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119
COZOMOEOIO A=00 B=0800 D=0000 H=0119 S=0160 P=0107 MOV A,M

COZOMOEOIO A=02 B=0800 D=0000 H=0119 S=0100 P=01068 SUB C
COZOMOEOGI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JC 0
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=016C MOV C
COZOMOEOI1 A=02 B=0802 D=0000 H=0119 S=0100 P=016D INX H
COZOMOEOI1 A=02 B=0802 D=0000 H=011A S=0160 P=010E DCR B
COZOMOEOI1 A=02 B=0702 D=0000 H=011A S=0100 P=010F JINZ ©

4-16

CP/M Operating System Manual

COZOMOEOI1
COZOMOEOI1
C1ZOM1EOIO
C1ZOM1EOIO
C1ZOM1EOIO
C1ZOMOE1I1

B=0702
B=0702
B=0702
B=0702
B=0702
B=0602

D=0000
D=0000
D=0000
D=0000
D=0000
D=0000

H=011A
H=011A
H=011A
H=011A
H=011B
H=011B

S=0100
5=0100
S=0100
S=0100
S=0100
S=0100

4.4

P=0107
P=0108
P=0109
P=010D
P=010E
P=010F

Sample Program

MOV A,M

SUB C

JC 016D

INX H

DCR B

JNZ 0107x0107

-X

C1ZOMOE1I1l A=FE B
-G, 108

Run from current PC and brea

Breakpoint after 16 steps

=0602 D=0000 H=011B S=0100 P=0107 MOV A,M

at 108H

+x0108
-X
Next data item
C1ZOMOE1I1l A=04 B=0602 D=0000 H=011B
-T
Single step for a few cycles

C1ZOMOE1I1l A=04 B=0602 D=0000 H=011B
-T

COZOMOEOI1 A=02 B=0602 D=0000 H=011B
-X

COZOMOEOI1 A=02 B=0602 D=0000 H=011B
-G Run to completion

*0116
-X

COZIMOE1I1l A=03 B=0003 D=0000 H=0121

-S121 Look at the value of "LARGE"
0121 03 Wrong value!

0122 00

0123 22

0124 21

0125 00

0126 02

0127 7E End of the S command
-L100

0100 MVI B,08

0102 MVI C,00

0104 LXI H,0119

0107 MOV AM

0108 SUB C

0109 JC 010D

010C MOV C,A

4-17

kpoint

S=0100

S5=0100

S=0100

S5=0100

S=0100

P=0108

P=0108

P=0109

P=010C

P=0116

SUB C

SUB Cx0109

JC 010Dx*010C

MOV C,A

RST 07

CP/M Operating System Manual

010D INX
010E DCR
010F INZ
0112 MoV
-L

0113 STA
0116 RST
0117 NOP
0118 NOP
0119 STA
011A NOP
011B INR
011C INX
011D DCR
011E MVI
0120 DCR
-XP

P=0116 100
-T

X

0121
07

[oe e ve e o]
(<]
=

Reset the PC

4.4 A Sample Program

Review the code

Single step, and watch data values
COZIMOE1I1 A=03 B=0003 D=0000 H=0121 S=0100 P=0100 MVI B,08%0102

-T

COZIMOE1I1l A=03 B=0803

-T

Count set
COZIMOE1I1l A=03 B=0800

-T

COZIMOE1I1
-T

COZIMOE1I1
-T

COZOMOEOI1
-T

COZOMOEOT 1
-T

COZOMOEOTI1
-T

COZOMOEOT 1
-T

COZOMOEOT1
-T

COZOMOEOT 1
-T

A

A

A

A

03

02

02

02

A=02

A

02

A=02

A

02

D=0000 H=0121 S=0160 P=0162 MVI C,00+x0104

Largest set
D=0000 H=0121 S=0100 P=0104 LXI H,0119x0107

Base address of data set

B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M*x0108

First data item brought to A
B=0800 D=0000 H=0119 S=0100 P=0108 SUB Cx0109

B=0800 D=0000 H=0119 S=0100 P=0109 JC 016D*016C

B=0800 D=0000 H=0119 S=0160 P=016C MOV C,A*010D

First data item moved to C correctly
B=0802 D=0000 H=0119 S=0100 P=0106D INX H*01OQE

B=0802 D=0000 H=011A S=0100 P=010E DCR B*010F

B=0702 D=0000 H=011A S=0100 P=010F JNZ 0107x0107

B=0702 D=0000 H=011A S=0100 P=0107 MOV A,M*x0108

4-18

CP/M Operating System Manual 4.4 A Sample Program

Second data item brought to A
COZOMOEOI1 A=00 B=0702 D=0000 H=011A S=0100 P=0108 SUB Cx0109
-T

Subtract destroys data value that was loaded!
C1ZOM1EOIO A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D*016D
-T

C1ZOM1EOIO A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H=x010E
-L100

0100 MVI B,08

0102 MVI C,00

0104 LXI H,0119

0167 MOV AM

0108 SUB C This should have been a CMP so that register A
0109 IC 016D would not be destroyed.
010C MOV C,A

016D INX H

010E DCR B

016F JNZ 0107

0112 MOV A,C

-A108

0108 CMP C Hot patch at 108H changes SUB to CMP
0109

-GO Stop DDT for SAVE

A>SAVE 1 SCAN.COM Save memory image

A>DDT SCAN.COM Restart DDT

DDT VER 1.0

NEXT PC

0200 0100

-XP

P=0100

-L116

0116 RST 07

0117 NOP

0118 NOP Look at code to see if it was properly loaded
0119 STAX B (long typeout aborted with rubout)
011A NOP

-G,116 Run from 100H to completion

*0116

-XC Look at carry (accidental typo)
C1

-X Look at CPU state

4-19

CP/M Operating System Manual 4.4 A Sample Program

C1Z1IMOE1I1l A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07
-S121 Look at "large"--it appears to be correct.

0121 06

0122 00

0123 22

-GO Stop DDT
A>ED SCAN.ASM
*NSUB

*OLT

CTRL-Z
*SSUB"ZCMP~ZOLT

*SNC~ZC~ZOLT

*E

A>ASM SCAN.AAZ
CP/M ASSEMBLER
0122

002H USE FACTOR
END OF ASSEMBLY

A>DDT SCAN.HEX

DDT VER 1.0
NEXT PC
0121 0000
-L116
0116 IMP
0119 STAX
011A NOP
011B INR
-(rubout)

Re-edit the source program, and make both changes

SuUB

CMP

JINC

JC

C ;LARGER VALUE IN C?
D ; LARGER VALUE IN C?
NFOUND ;JUMP IF LARGER VALUE NOT FOUND
NFOUND ;JUMP IF LARGER VALUE NOT FOUND

Reassemble, selecting source from disk A
<--- Hex to disk A
Print to Z (selects no print file)

VER 1.0

Rerun debugger to check changes

0000

Check to ensure end is still at 116H

-G100,116 Go from beginning with breakpoint at end

*0116 Breakpoint reached

-D121 Look at "LARGE"
Correct value computed

0121 06 00 22 21 60 02 7E EB 77 13 23 EB 6B 78 B1 .. '!l... W .#..X.
0130 C2 27 01 C3 63 29 00 00 GO 0O 0O 00 0O 60 60 0O ."...)........

4-20

CP/M Operating System Manual 4.4 A Sample Program

0140 00 00 0O GO0 0O OO 0O GO OO0 0O GO 00 GO 00 60 0O
-(rubout) Aborts long typeout

GO Stop DDT, debug session complete.

End of Section 4

4-21

Section 5

CP/M 2 System Interface

5.1 Introduction

This chapter describes CP/M (release 2) system organization including the
structure of memory and system entry points. This section provides
the information you need to write programs that operate under CP/M and
that use the peripheral and disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic Input/Output
System (BIOS), the Basic Disk Operating System (BDOS), the Console Command
Processor (CCP), and the Transient Program Area (TPA). The BIOS is a
hardware-dependent module that defines the exact low level interface with a
particular computer system that is necessary for peripheral device I/0.
Although a standard BIOS is supplied by Digital Research, explicit
instructions are provided for field reconfiguration of the BIOS to match
nearly any hardware environment, see Section 6.

The BIOS and BDOS are
logically combined into a single module with a common entry point and
referred to as the FDOS. The CCP is a distinct program that uses the FDOS to
provide a human-oriented interface with the information that is cataloged on
the back-up storage device. The TPA is an area of memory,
not used by the FDOS and CCP, where various nonresident operating
system commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown in Figure 5-1.

High
Memory FDOS (BDOS+BIOS)
FBASE:

CcCcpP
CBASE:

TPA
TBASE :

System Parameters

BOOT:

Figure 5-1. CP/M Memory Organization

The exact memory addresses corresponding to BOOT, TBASE, CBASE,
and FBASE vary from version to version and are described fully in
Section 6. All standard CP/M versions assume BOOT=0000H, which 1is
the base of random access memory. The machine code found at

CP/M Operating System Manual 5.1 Introduction

location BOOT performs a system warm start, which loads and
initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location
BOOT to return control to CP/M at the command level. Further, the
standard versions assume TBASE=BO0T+0100H, which is normally
location 0100H. The principal entry point to the FDOS is at
location BOOT+0005H (normally 0005H) where a jump to FBASE is found.
The address field at BOOT+0006H (normally 0006H) contains the value
of FBASE and can be used to determine the size of available memory,
assuming that the CCP is being overlaid by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command line takes one of the
following forms:

command
command filel
command filel file2

where command is either a built-in function, such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise,
the CCP searches the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a
program that executes in the TPA and thus implicity originates at
TBASE in memory. The CCP loads the COM file from the disk into
memory starting at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications,
the CCP prepares one or two File Control Block (FCB) names in the
system parameter area. These optional FCBs are in the form
necessary to access files through the FDOS and are described in
Section 5.2.

The transient program receives control from the CCP and begins
execution, wusing the I/0 facilities of the FDOS. The transient
program is called from the CCP. Thus, it can simply return to the
CCP upon completion of its processing, or can jump to BOOT to pass
control back to CP/M. 1In the first case, the transient program must
not use memory above CBASE, while in the latter case, memory up
through FBASE-1 can be used.

The transient program can use the CP/M I/0 facilities to
communicate with the operator’s console and peripheral devices,
including the disk subsystem. The I/0 system is accessed by passing
a function number and an information address to CP/M through the
FDOS entry point at BOOT+0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the

5-2

CP/M Operating System Manual 5.1 Introduction

disk read was unsuccessful.

5.2 Operating System Call Conventions

This section provides detailed information for performing
direct operating system calls from user programs. Many of the
functions listed below, however, are accessed more simply through
the I/0 macro 1library provided with the MAC macro assembler and
listed in the Digital Research manual entitled, Programmer’s
Utilities Guide for the CP/M Family of Operating Systems.

CP/M facilities that are available for access by transient
programs fall into two general categories: simple device I/0 and
disk file I/0. The simple device operations are

read a console character
write a console character
read a sequential character
write a sequential character
get or set I/0 status

print console buffer
interrogate console ready

O O OO o o o

The following FDOS operations perform disk I/0:

disk system reset

drive selection

file creation

file close

directory search

file delete

file rename

random or sequential read
random or sequential write
interrogate available disks
interrogate selected disk
set DMA address

set/reset file indicators.

O OO OO O0OO0OOoOOoOOoOOoOOoo

As mentioned above, access to the FDOS functions is
accomplished by passing a function number and information address
through the primary point at location BOOT+0005H. In general, the
function number is passed in register C with the information address
in the double byte pair DE. Single byte values are returned 1in
register A, with double byte values returned in HL, a zero value is
returned when the function number is out of range. For reasons of
compatibility, register A = L and register B = H upon return in all
cases. Note that the register passing conventions of CP/M agree
with those of the Intel PL/M systems programming language. CP/M
functions and their numbers are listed below.

5-3

CP/M Operating System Manual 5.2 Call Conventions

0 System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console Output 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Qutput 23 Rename File

5 List Output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get I/0 Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/0 Vector

11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random

15 Open File 34 Write Random

16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive

40 Write Random with Zero Fill

Functions 28 and 32 should be avoided in application programs
to maintain upward compatibility with CP/M.

Upon entry to a transient program, the CCP 1leaves the stack
pointer set to an eight-level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (most
transients return to the CCP through a jump to location 0Q000H) it is
large enough to make CP/M system calls because the FDOS switches to
a local stack at system entry. For example, the assembly-language
program segment below reads characters continuously until an
asterisk is encountered, at which time control returns to the CCP,
assuming a standard CP/M system with BOOT = Q0O00H.

BDOS EQU 0005H ; STANDARD CP/M ENTRY
CONIN EQU 1 ; CONSOLE INPUT FUNCTION
ORG 01060H ;BASE OF TPA
NEXTC: MVI C, CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN <A>
CPI Tkt ;END OF PROCESSING?
INZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing
a logical organization that allows any particular file to contain
any number of records from completely empty to the full capacity of
the drive. Each drive is logically distinct with a disk directory
and file data area. The disk filenames are 1in three parts: the
drive select code, the filename (consisting of one to eight nonblank

5-4

CP/M Operating System Manual 5.2 Call Conventions

characters), and the filetype (consisting of zero to three nonblank
characters). The filetype names the generic category of a
particular file, while the filename distinguishes individual files
in each category. The filetypes 1listed in Table 5-1 name a few
generic categories that have been established, although they are
somewhat arbitrary.

Table 5-1. CP/M Filetypes

Filetype Meaning
ASM Assembler Source
PRN Printer Listing
HEX Hex Machine Code
BAS Basic Source File
INT Intermediate Code
CoM Command File
PLI PL/I Source File
REL Relocatable Module
TEX TEX Formatter Source
BAK ED Source Backup
SYM SID Symbol File
$$% Temporary File

Source files are treated as a sequence of ASCII characters,
where each line of the source file is followed by a carriage return,
and line-feed sequence (ODH followed by OAH). Thus, one 128-byte
CP/M record can contain several lines of source text. The end of an
ASCII file is denoted by a CTRL-Z character (1AH) or a real end-of-
file returned by the CP/M read operation. CTRL-Z characters
embedded within machine code files (for example, COM files) are
ignored and the end-of-file condition returned by CP/M is used to
terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they
may not be physically contiguous in the disk data area. Internally,
all files are divided into 16K byte segments called logical extents,
so that counters are easily maintained as 8-bit values. The
division 1into extents 1is discussed in the paragraphs that follow:
however, they are not particularly significant for the programmer,
because each extent is automatically accessed in both sequential and
random access modes.

In the file operations starting with Function 15, DE wusually
addresses a FCB. Transient programs often use the default FCB area
reserved by CP/M at location BOOT+005CH (normally 005CH) for simple
file operations. The basic unit of file information is a 128-byte
record used for all file operations. Thus, a default 1location for
disk I/0 is provided by CP/M at location BOOT+0080H (normally 0080H)
which is the initial default DMA address. See Function 26.

5-5

CP/M Operating System Manual 5.2 Call Conventions

All directory operations take place in a reserved area that
does not affect write buffers as was the case in release 1, with the
exception of Search First and Search Next, where compatibility is
required.

The FCB data area consists of a sequence of 33 bytes for
sequential access and a series of 36 bytes in the case when the file
is accessed randomly. The default FCB, normally located at 005CH,
can be wused for random access files, because the three bytes
starting at BOOT+007DH are available for this purpose. Figure 5-2
shows the FCB format with the following fields.

dr f1 f2 / / f8 t1 t2 t3 ex s1 s2 rc d0® / / dn cr r@ rl1 r2
00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

Figure 5-2. File Control Block Format

The following table lists and describes each of the fields in the
File Control Block figure.
Table 5-2. File Control Block Fields
Field Definition

dr drive code (0-16)
0 = use default drive for file

1 = auto disk select drive A,
2 = auto disk select drive B,
16= auto disk select drive P.
fl...f8 contain the filename in ASCII

upper-case, with high bit = 0

t1l, t2, t3 contain the filetype in ASCII
upper-case, with high bit = 0
tl’, t2’', and t3’ denote the
bit of these positions,
tl’ = 1 =>Read-0Only file,
t2’' = 1 =>SYS file, no DIR list

ex contains the current extent
number, normally set to 00 by
the user, but in range 0-31
during file I/0

5-6

CP/M Operating System Manual 5.2 Call Conventions

Table 5-2. (continued)

Field Definition
sl reserved for internal system use
s2 reserved for internal system use,
set to zero on call to OPEN, MAKE,
SEARCH
rc record count for extent ex;

takes on values from 0-127

do...dn filled in by CP/M; reserved for
system use
cr current record to read or write in

a sequential file operation;
normally set to zero by user

ro, rl, r2 optional random record number in
the range 0-65535, with overflow
to r2, r0, rl constitute a 16-bit
value with low byte r0@, and high
byte rl

Each file being accessed through CP/M must have a corresponding
FCB, which provides the name and allocation information for all
subsequent file operations. When accessing files, it 1is the
programmer’s responsibility to fill the lower 16 bytes of the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set
to the ASCII character values for the filename and filetype, while
all other fields are zero.

FCBs are stored in a directory area of the disk, and are
brought into central memory before the programmer proceeds with file
operations (see the OPEN and MAKE functions). The memory copy of
the FCB is updated as file operations take place and later recorded
permanently on disk at the termination of the file operation, (see
the CLOSE command).

The CCP constructs the first 16 bytes of two optional FCBs for
a transient by scanning the remainder of the line following the
transient name, denoted by filel and file2 in the prototype command
line described above, with unspecified fields set to ASCII blanks.
The first FCB is constructed at location BOOT+005CH and can be used
as 1s for subsequent file operations. The second FCB occupies the
d0...dn portion of the first FCB and must be moved to another area
of memory before use. If, for example, the following command line
is typed:

PROGNAME B:X.ZOT Y.ZAP

5-7

CP/M Operating System Manual 5.2 Call Conventions

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive code 2, filename X, and filetype
Z0T. The second drive code takes the default value 0, which is
placed at BO00T-006CH, with the filename Y placed into location
BOOT+006DH and filetype ZAP located 8 bytes 1later at BOOT+0075H.
A1l remaining fields through cr are set to zero. Note again that it
is the programmer’s responsibility to move this second filename and
filetype to another area, usually a separate file control block,
before opening the file that begins at BOOT+005CH, because the open
operation overwrites the second name and type.

If no filenames are specified in the original command, the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In
all cases, the CCP translates lower-case alphabetics to upper-case
to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at 1location
BOOT+0080H 1is initialized to the command line tail typed by the
operator following the program name. The first position contains
the number of characters, with the characters themselves following
the character count. Given the above command 1line, the area
beginning at BOOT+0080H is initialized as follows:

BOOT+0080H:

+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +A +B +C +D +E
E r IBI I:I le ’.’ IZI IOI IT' r ’Yl ’.I IZI IAI IPI

where the <characters are translated to upper-case ASCII with
uninitialized memory following the last valid character. Again, it
is the responsibility of the programmer to extract the information
from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

Individual functions are described in detail in the pages that
follow.

5-8

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION O: SYSTEM RESET

Entry Parameters:
Register C: OOH

The System Reset function returns control to the CP/M operating
system at the CCP level. The CCP reinitializes the disk subsystem
by selecting and logging-in disk drive A. This function has exactly
the same effect as a jump to location BOOT.

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next console character to
register A. Graphic characters, along with carriage return, line-
feed, and back space (CTRL-H) are echoed to the console. Tab
characters, CTRL-I, move the cursor to the next tab stop. A check
is made for start/stop scroll, CTRL-S, and start/stop printer echo,
CTRL-P. The FDOS does not return to the calling program until a
character has been typed, thus suspending execution if a character
is not ready.

5-9

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters
Register C: O2H
Register E: ASCII Character

The ASCII character from register E is sent to the console
device. As in Function 1, tabs are expanded and checks are made for
start/stop scroll and printer echo.

FUNCTION 3: READER INPUT

Entry Parameters:
Register C: 0O3H

Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the
logical reader into register A. See the IOBYTE definition in
Chapter 6. Control does not return until the character has been
read.

5-10

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 4: PUNCH OUTPUT
Entry Parameters:

Register C: 04H
register E: ASCII Character

The Punch Output function sends the character from register E
to the logical punch device.

FUNCTION 5: LIST OUTPUT
Entry Parameters:

Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register
E to the logical listing device.

5-11

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 6: DIRECT CONSOLE I/O

Entry Parameters:
Register C: O6H
Register E: OFFH (input) or
char (output)

Returned Value:
Register A: char or status

Direct Console I/0 is supported under CP/M for those
specialized applications where basic console input and output are
required. Use of this function should, in general, be avoided since
it bypasses all of the CP/M normal control character functions (for
example, CTRL-S and CTRL-P). Programs that perform direct 1I/0
through the BIOS under previous releases of CP/M, however, should be
changed to use direct I/0 under BDOS so that they can be fully
supported under future releases of MP/M and CP/M.

Upon entry to Function 6, register E either contains
hexadecimal FF, denoting a console input request, or an ASCII
character. If the input value is FF, Function 6 returns A = 00 if
no character 1is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, Function 6 assumes that E
contains a valid ASCII character that is sent to the console.

Function 6 must not be used in conjunction with other console
I/0 functions.

FUNCTION 7: GET I/0 BYTE

Entry Parameters:
Register C: 0O7H

Returned Value:
Register A: I/0 Byte Value

The Get I/0 Byte function returns the current value of IOBYTE
in register A. See Chapter 6 for IOBYTE definition.

5-12

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 8: SET I/0 BYTE

Entry Parameters:
Register C: 08H
Register E: 1I/0 Byte Value

The SET I/0 Byte function changes the IOBYTE value to that
given in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a $
is encountered in the string. Tabs are expanded as in Function 2,
and checks are made for start/stop scroll and printer echo.

5-13

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer functions reads a line of edited console input
into a buffer addressed by registers DE. Console input 1is
terminated when either input buffer overflows or a carriage return
or line-feed is typed. The Read Buffer takes the form:

DE:+0 +1 +2 +3 +4 45 +6 +7 +8 . . .+n
mx nc ¢l c2 ¢c3 c4 ¢c5 ¢c6 c7 ... ??

where mx is the maximum number of characters that the buffer will
hold, 1 to 255, and nc is the number of characters read (set by FDOS
upon return) followed by the characters read from the console. If
nc < mx, then wuninitialized positions follow the last character,
denoted by ?? in the above figure. A number of control functions,
summarized in Table 5-3, are recognized during line editing.

Table 5-3. Edit Control Characters

Character Edit Control Function

rub/del removes and echoes the last character
CTRL-C reboots when at the beginning of line
CTRL-E causes physical end of line

CTRL-H backspaces one character position
CTRL-J (line feed) terminates input line
CTRL-M (return) terminates input line

CTRL-R retypes the current line after new line
CTRL-U removes current line

CTRL-X same as CTRL-U

5-14

CP/M Operating System Manual 5.2 Call Conventions

The user should also note that certain functions that return the
carriage to the leftmost position (for example, CTRL-X) do so only
to the column position where the prompt ended. 1In earlier releases,
the carriage returned to the extreme left margin. This convention
makes operator data input and line correction more legible.

5-15

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: ©OBH

Returned Value:
Register A: Console Status

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value OFFH
is returned in register A. Otherwise a 00H value is returned.

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: OCH

Returned Value:
Registers HL: Version Number

Function 12 provides information that allows version
independent programming. A two-byte value is returned, with H = 00
designating the CP/M release (H = 01 for MP/M) and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21,22, through 2F. Using Function 12, for example, the user
can write application programs that provide both sequential and
random access functions.

5-16

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: ODH

The Reset Disk function is used to programmatically restore the
file system to a reset state where all disks are set to Read-Write.
See functions 28 and 29, only disk drive A 1is selected, and the
default DMA address 1is reset to BOOT+0080H. This function can be
used, for example, by an application program that requires a disk
change without a system reboot.

FUNCTION 14: SELECT DISK

Entry Parameters:
Register C: OEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with
E= 0 for drive A, 1 for drive B, and so on through 15,
corresponding to drive P in a full 16 drive system. The drive is
placed in an on-line status, which activates its directory until the
next cold start, warm start, or disk system reset operation. If the
disk medium is changed while it is on-line, the drive automatically
goes to a Read-Only status in a standard CP/M environment, see
Function 28. FCBs that specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16 ignore the selected default drive and
directly reference drives A through P.

5-17

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 15: OPEN FILE

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Open File operation is wused to activate a file that
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed) where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no
question marks are included, and bytes ex and s2 of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of FCB, thus allowing
access to the files through subsequent read and write operations.
The wuser should note that an existing file must not be accessed
until a successful open operation is completed. Upon return, the
open function returns a directory code with the value 0 through 3 if
the open was successful or OFFH (255 decimal) if the file cannot be
found. If question marks occur in the FCB, the first matching FCB
is activated. Note that the current record, (cr) must be zeroed by
the program if the file 1is to be accessed sequentially from the
first record.

5-18

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the Open File
function. Given that the FCB addressed by DE has been previously
activated through an open or make function, the close function
permanently records the new FCB in the reference disk directory see
functions 15 and 22. The FCB matching process for the <close is
identical to the open function. The directory code returned for a
successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal) 1is returned if the filename cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, the close operation
is necessary to record the new directory information permanently.

5-19

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C: 11H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Search First scans the directory for a match with the file
given by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found; otherwise, 0, 1, 2, or 3 is
returned indicating the file is present. When the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A %32 (that
is, rotate the A register 1left 5 bits, or ADD A five times).
Although not normally required for application programs, the
directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from f1l through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
dr field contains an ASCII question mark, the auto disk select
function is disabled and the default disk 1is searched, with the
search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but it allows complete flexibility to
scan all current directory values. If the dr field is not a
question mark, the s2 byte is automatically zeroed.

5-20

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to Function 17, Function 18 returns the
decimal value 255 in A when no more directory items match.

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Delete File function removes files that match the FCB
addressed by DE. The filename and type may contain ambiguous
references (that is, question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found; otherwise, a value in the range 0 to 3
returned.

5-21

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through
an Open or Make function, the Read Sequential function reads the
next 128-byte record from the file into memory at the current DMA
address. The record is read from position cr of the extent, and the
cr field is automatically incremented to the next record position.
If the cr field overflows, the next logical extent is automatically
opened and the cr field is reset to zero in preparation for the next
read operation. The value 00H is returned in the A register if the
read operation was successful, while a nonzero value is returned if
no data exist at the next record position (for example, end-of-file
occurs) .

FUNCTION 21: WRITE SEQUENTAIL

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through
an Open or Make function, the Write Sequential function writes the
128-byte data record at the current DMA address to the file named by
the FCB. The record is placed at position cr of the file, and the
cr field is automatically incremented to the next record position.
If the cr field overflows, the next logical extent is automatically
opened and the cr field is reset to zero in preparation for the next
write operation. Write operations can take place into an existing
file, in which case, newly written records overlay those that
already exist in the file. Register A = 00H upon return from a
successful write operation, while a nonzero value indicates an
unsuccessful write caused by a full disk.

5-22

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Make File operation is similar to the Open File operation
except that the FCB must name a file that does not exist in the
currently referenced disk directory (that is, the one named
explicitly by a nonzero dr code or the default disk if dr is zero).
The FDOS creates the file and initializes both the directory and
main memory value to an empty file. The programmer must ensure that
no duplicate filenames occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A =0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The Make
function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

FUNCTION 23: RENAME FILE

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named 1in the first 16 bytes to the file
named in the second 16 bytes. The drive code dr at postion 0 is
used to select the drive, while the drive code for the new filename
at position 16 of the FCB is assumed to be =zero. Upon return,
register A 1is set to a value between 0 and 3 if the rename was
successful and OFFH (255 decimal) if the first filename could not be
found in the directory scan.

5-23

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 24: RETURN LOG-IN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/M is a 16-bit value 1in
HL, where the 1least significant bit of L corresponds to the first
drive A and the high-order bit of H corresponds to the sixteenth
drive, Tlabeled P. A 0 bit indicates that the drive is not on-line,
while a 1 bit marks a drive that is actively on-line as a result of
an explicit disk drive selection or an implicit drive select caused
by a file operation that specified a nonzero dr field. The user
should note that compatibility is maintained with earlier releases,
because registers A and L contain the same values upon return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15
corresponding to drives A through P.

5-24

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register C: 1AH
Registers DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often
used 1in connection with disk controllers that directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
(that 1is, the data is transferred through programmed I/0
operations), the DMA address has, in CP/M, come to mean the address
at which the 128-byte data record resides before a disk write and
after a disk read. Upon cold start, warm start, or disk system
reset, the DMA address is automatically set to BOOT+0080H. The Set
DMA function can be wused to change this default value to address
another area of memory where the data records reside. Thus, the DMA
address becomes the value specified by DE until it is changed by a
subsequent Set DMA function, cold start, warm start, or disk system
reset.

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters:
Register C: 1BH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-
line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
base address of the allocation vector for the currently selected
disk drive. However, the allocation information might be invalid if
the selected disk has been marked Read-Only. Although this function
is not normally used by application programs, additional details of
the allocation vector are found in Chapter 6.

5-25

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: 1CH

The Write Protect Disk function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk before the next cold or warm start operation produces the
message:

BDOS ERR on d:R/0

FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register C: 1DH

Returned Value:
Registers HL: R/0 Vector Value

Function 29 returns a bit vector in register pair HL, which
indicates drives that have the temporary Read-Only bit set. As in
Function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/0 bit is set
either by an explicit call to Function 28 or by the automatic
software mechanisms within CP/M that detect changed disks.

5-26

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register C: 1EH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. 1In
particular, the R/0 and System attributes (tl’ and t2’') can be set
or reset. The DE pair addresses an unambiguous filename with the
appropriate attributes set or reset. Function 30 searches for a
match and changes the matched directory entry to contain the
selected indicators. Indicators fl' through f4' are not currently
used, but may be useful for applications programs, since they are
not involved in the matching process during file open and close
operations. Indicators f5’ through f8' and t3’ are reserved for
future system expansion.

FUNCTION 31: GET ADDR (DISK PARMS)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is
returned 1in HL as a result of this function call. This address can
be used for either of two purposes. First, the disk parameter
values can be extracted for display and space computation purposes,
or transient programs can dynamically change the values of current
disk parameters when the disk environment changes, if required.
Normally, application programs will not require this facility.

5-27

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
(no value)

An application program can change or interrogate the currently
active wuser number by calling Function 32. If register E = OFFH,
the value of the current user number 1is returned in register A,
where the value 1is in the range of 0 to 15. If register E is not
OFFH, the current user number is changed to the value of E, modulo
16.

5-28

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 33: READ RANDOM

Entry Parameters:
Register C: 21H

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the 3-byte field following the FCB (byte positions
ro at 33, rl at 34, and r2 at 35). The user should note that the
sequence of 24 bits is stored with least significant byte first
(re@), middle byte next (rl), and high byte last (r2). CP/M does not
reference byte r2, except in computing the size of a file (Function
35). Byte r2 must be zero, however, since a nonzero value indicates
overflow past the end of file.

Thus, the r@, rl byte pair is treated as a double-byte, or word
value, that contains the record to read. This value ranges from 0
to 65535, providing access to any particular record of the 8-
megabyte file. To process a file wusing random access, the base
extent (extent 0) must first be opened. Although the base extent
might or might not contain any allocated data, this ensures that the
file is properly recorded in the directory and is visible in DIR
requests. The selected record number is then stored in the random
record field (r@, rl), and the BDOS is called to read the record.

Upon return from the call, register A either contains an error
code, as listed below, or the value 00, indicating the operation was
successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. However, note that, in this case, the last
randomly read record will be reread as one switches from random mode
to sequential read and the 1last record will be rewritten as one
switches to a sequential write operation. The wuser can simply
advance the random record position following each random read or
write to obtain the effect of sequential I/0 operation.

5-29

CP/M Operating System Manual 5.2 Call Conventions

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data

02 (not returned in random mode)

03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk

Error codes 01 and 04 occur when a random read operation

accesses a data block that has not been previously written or an
extent that has not been created, which are equivalent conditions.
Error code 03 does not normally occur under proper system operation.
If it does, it can be cleared by simply rereading or reopening
extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is nonzero under the current

2.0 release. Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete.

5-30

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation is initiated similarly to the Read
Random call, except that data is written to the disk from the
current DMA address. Further, if the disk extent or data block that
is the target of the write has not vyet been allocated, the
allocation is performed before the write operation continues. As in
the Read Random operation, the random record number is not changed
as a result of the write. The logical extent number and current
record positions of the FCB are set to correspond to the random
record that 1is being written. Again, sequential read or write
operations can begin following a random write, with the notation
that the currently addressed record is either read or rewritten

again as the sequential operation begins. You can also simply
advance the random record position following each write to get the
effect of a sequential write operation. Note that reading or

writing the last record of an extent in random mode does not cause
an automatic extent switch as it does in sequential mode.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created as a result of
directory overflow.

5-31

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous filename that is used 1in
the directory scan. Upon return, the random record bytes contain
the virtual file size, which is, in effect, the record address of
the record following the end of the file. Following a call to
Function 35, if the high record byte r2 is 01, the file contains the
maximum record count 65536. Otherwise, bytes r0@ and rl constitute a
16-bit value as before (r@ is the least significant byte), which 1is
the file size.

Data can be appended to the end of an existing file by simply
calling Function 35 to set the random record position to the end of
file and then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If the file was created in
random mode and holes exist in the allocation, the file might
contain fewer records than the size indicates. For example, if only
the last record of an 8-megabyte file is written in random mode
(that 1is, record number 65535), the virtual size is 65536 records,
although only one block of data is actually allocated.

5-32

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to
produce the random record position from a file that has been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary initially to read and scan a
sequential file to extract the positions of various key fields. As
each key is encountered, Function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into
a table with the key for later retrieval. After scanning the entire
file and tabulating the keys and their record numbers, the user can
move 1instantly to a particular keyed record by performing a random
read, using the corresponding random record number that was saved
earlier. The scheme 1is easily generalized for variable record
lengths, because the program need only store the buffer-relative
byte position along with the key and record number to find the exact
starting position of the keyed data at a later time.

A second use of Function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, Function 36
is called, which sets the record number, and subsequent random read
and write operations continue from the selected point in the file.

5-33

CP/M Operating System Manual 5.2 Call Conventions

FUNCTION 37: RESET DRIVE

Entry Parameters:
Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: OOH

The Reset Drive function allows resetting of specified drives.

The passed parameter is a 16-bit vector of drives to be reset; the
least significant bit is drive A:.

To maintain compatibility with MP/M, CP/M returns a zero value.

FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Entry Parameters:
Register C: 28H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write With Zero Fill operation is similar to Function 34,
with the exception that a previously unallocated block is filled
with zeros before the data is written.

5-34

CP/M Operating System Manual 5.3 A Sample Copy Program

5.3 A Sample File-to-File Copy Program

The following program provides a relatively simple example of
file operations. The program source file is created as COPY.ASM
using the CP/M ED program and then assembled using ASM or MAC,
resulting in a HEX file. The LOAD program is used to produce a
COPY.COM file that executes directly under the CCP. The program
begins by setting the stack pointer to a local area and proceeds to
move the second name from the default area at 006CH to a 33-byte
File Control Block called DFCB. The DFCB is then prepared for file
operations by clearing the current record field. At this point,
the source and destination FCBs are ready for processing, because
the SFCB at 005CH is properly set up by the CCP upon entry to the
COPY program. That 1is, the first name is placed into the default
FCB, with the proper fields zeroed, including the current record
field at 007CH. The program continues by opening the source file,
deleting any existing destination file, and creating the destination
file. If all this 1is successful, the program loops at the label
COPY until each record is read from the source file and placed into
the destination file. Upon completion of the data transfer, the
destination file is closed and the program returns to the CCP
command level by jumping to BOOT.

; sample file-to-file copy program
; at the ccp level, the command

; copy a:x.y b:u.v

; copies the file named x.y from drive
; a to a file named u.v. on drive b.

0000 = boot equ 0000h ;system reboot

0005 = bdos equ 0005h ;bdos entry point
005¢c = fcbl equ 005ch ;first file name
005¢c = sfcb equ fcbl ;source fcb

006¢c = fcb2 equ 006ch ;second file name
0080 = dbuff equ 0080h ;default buffer
0100 = tpa equ 0100h ;beginning of tpa
0009 = printf equ 9 ;print buffer func#
000f = openf equ 15 ;open file func#
0010 = closef equ 16 ;close file func#
0013 = deletef equ 19 ;delete file func#
0014 = readf equ 20 ;sequential read
0015 = writef equ 21 ;sequential write
0016 = makef equ 22 ;make file func#
0100 org tpa ;beginning of tpa
0100 311b02 1xi sp,stack ;local stack

; move second file name to dfcb
0103 0elO mvi c,16 ;half an fcb

5-35

CP/M

0105
0108
010b
010c
010d
010e
01oef
0110

0113
0114

0117
011a
011d
0120
0121

0124
0127

012a
012d
0130
0133
0134

0137
013a
013d
013e

0141
0144
0147
014a
014b
0l4e

0151
0154
0157
015a
015b

Operating System Manual

116c00
21da01
la
13
77
23
0d
c10b01

af
32fa0l

115c00
cd6901
118701
3c

cc6101

11da01l
cd7301

11da01l
cd8201
119601
3c

cc6101

115¢00
cd7801
b7

c25101

11da01
cd7do1l
11a901
b7

c46101
c33701

11da01l
cd6e0l
21bb01
3c

cc6101

mfcb:

’

eofile:

5-36

5.3 A Sample Copy Program

1xi d,fcb2 ;source of move
1xi h,dfcb ;destination fcb
Idax d ;source fcb

inx d ; ready next

mov m,a ;dest fcb

inx h ;ready next

dcr c ;count 16...0
jnz mfcb ; Lloop 16 times

name has been removed, zero cr
Xra a ;a = 00h
sta dfcbcr ;current rec = 0

source and destination fcb'’s ready

1xi d,sfcb ;source file
call open ;error if 255
1xi d,nofile ;ready message
inr a ;255 becomes 0
cz finis ;done if no file

source file open, prep destination

1xi d,dfcb ;destination

call delete ;remove if present
1xi d,dfcb ;destination

call make ;create the file

1xi d,nodir ; ready message

inr a ;255 becomes 0

cz finis ;done if no dir space

source file open, dest file open
copy until end of file on source

1xi d,sfcb ;source

call read ;read next record
ora a ;end of file?

jnz eofile ;skip write if so

not end of file, write the record

lix d,dfcb ;destination
call write ;write record
1xi d,space ; ready message
ora a ;00 if write ok
cnz finis ;end if so

jmp copy ; Lloop until eof

;end of file, close destination

1xi d,dfcb ;destination

call close ;255 if error

1xi h,wrprot ;ready message
inr a ;255 becomes 00
cz finis ;shouldn’t happen

copy operation complete, end

CP/M Operating System Manual 5.3 A Sample Copy Program

015e 11ccOl 1xi d,normal ;ready message
finis ;write message given by de, reboot

0161 0e09 mvi c,printf

0163 cd0500 call bdos ;write message

0166 c30000 jmp boot ;reboot system

; system interface subroutines
; (all return directly from bdos)

0169 0eOf open: mvi c,openf
016b c30500 jmp bdos
016e 0el0 close: mvi c,closef
0170 ¢30500 jmp bdos
0173 0el3 delete mvi c,deletef
0175 c30500 jmp bdos
0178 0el4d read: mvi c,readf
017a c30500 jmp bdos
017d 0el5 write: mvi c,writef
017f c30500 jmp bdos
0182 0Oelb make: mvi c,makef
0184 c30500 jmp bdos
; console messages
0187 6e6f20f nofile: db "'no source file$’
0196 6e6f209 nodir: db 'no directory space$’
01a9 6f7574f space: db "out of dat space$’
01lbb 7772695 wrprot: db 'write protected?$’
0lcc 636700 normal: db "copy complete$’
; data areas
Olda dfcb: ds 33 ;destination fcb
Ol1lfa dfcbcr equ dfcb+32 ;current record
01fb ds 32 ;16 level stack
stack:
021b end

Note that there are several simplifications in this particular
program. First, there are no checks for invalid filenames that
could contain ambiguous references. This situation could be
detected by scanning the 32-byte default area starting at location
005CH for ASCII question marks. A check should also be make to
ensure that the filenames have been included (check locations 005DH
and 006DH for nonblank ASCII characters). Finally, a check should
be made to ensure that the source and destination filenames are
different. An improvement in speed could be obtained by buffering
more data on each read operation. One could, for example, determine

5-37

CP/M Operating System Manual 5.3 A Sample Copy Program

the size of memory by fetching FBASE from location 0006H and using
the entire remaining portion of memory for a data buffer. 1In this
case, the programmer simply resets the DMA address to the next
successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning of the
buffer and incremented by 128 bytes to the end as each record is
transferred to the destination file.

5.4 A Sample File Dump Utility

The following file dump program is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP’'s stack upon
entry, resets the stack to a local area, and restores the CCP’s
stack before returning directly to the CCP. Thus, the dump program
does not perform and warm start at the end of processing.

x.in 5
;DUMP program reads input file and displays
hex data
0100 org 100h
0005 = bdos equ 0005h = ;bdos entry point
0001 = cons equ 1 ;read console
0002 = typef equ 2 ;type function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key function
;(true if char
000f = openf equ 15 ;file open
0014 = readf equ 20 ;read function
005c = fcb equ 5ch ;file control block
;address
0080 = buff equ 80h ;input disk buffer
;address
; non graphic characters
000d = cr equ 0dh ;carriage return
000a = If equ 0Oah ;line feed
; file control block definitions
005c = fcbdn equ fcb+0 ;disk name
005d = fcbfn equ fcb+l ;file name
0065 = fcbft equ fcb+9 ;disk file type (3
;Characters)
0068 = fcbrl equ fcb+12 ;file’s current reel
;number
006b = fcbrc equ fcb+15 ;file’s record count (0 to
;128)128)
007c = fcber’ equ fcb+32 ;current (next) record

5-38

CP/M Operating System Manual 5.4 A Sample File Dump Utility

;number (0
007d = fcbin equ fcb+33 ; fcb length
; set up stack
0100 210000 xi h,0
0103 39 dad sp
; entry stack pointer in hl from the ccp
0104 221502 shld oldsp
; set sp to local stack area (restored at
; finis)
0107 315702 1xi sp,stktop
; read and print successive buffers
010a cdcl01l call setup ;set up input file
0l10d feff cpi 255 ;255 if file not present
010f c21b01 jnz openok ;skip if open is ok

; file not there, give error message and

; return
0112 11301 1xi d,opnmsg
0115 cd9cOl call err
0118 c35101 jmp finis ;to return
openok: ;open operation ok, set buffer index to
;end
011b 3e80 mvi a,80h
011d 321302 sta 1ibp ;set buffer pointer to 86h
; hl contains next address to print
0120 210000 xi h,0 ;start with 0000
gloop:
0123 e5 push h ;save line position
0124 cda201 call gnb
0127 el pop h ;recall line position
0138 da5101 jc finis ;carry set by gnb if end
;file
012b 47 mov b,a
; print hex values
; check for line fold
012c 7d
mov a,l
012d e60f ani 0Ofh ;check low 4 bits
012f c24401 jnz nonum
; print line number
0132 cd7201 call crlf
; check for break key
0135 cd5901 call break
; accum lsb = 1 if character ready
0138 of rrc ;into carry
0139 da5101 jc finis ;don’t print any more
013c 7c mov a,h
013d cd8fol call phex
0140 7d mov a,l
0141 cd8fol call phex

5-39

CP/M

0144
0145
0147
0l4a
014b
014e

0151
0154
0157

0158

0159

015c
015e
0161

0164

0165
0168
016a
016b
016e
0171

0172
0174
0177
0179
017c

017d
017f
0181

0184
0186

Operating System Manual

23
3e20
€d6501
78
cdsfol
32301

cd7201
2a1502
f9

c9

e5d5c5

0eOb
cd0500
cldlel

c9

e5d5c5
0e02
5f
cd0500
cldlel
c9

3e0d
cd6501
3ela
cd6501
c9

e60f
fela
d28901

€630
c38b01

5.4 A Sample File Dump Utility

nonum

finis

pchar:

crlf

pnib:

5-40

inx
mvi
call
mov
call

jmp

h ;to next line number
a,’’

pchar

a,b

phex

gloop

end of dump, return to cco

(note that a jmp to 0000h reboots)
call crif

1lhld oldsp

sphl

stack pointer contains ccp’s stack
location

ret ;to the ccp

subroutines

;check break key (actually any key will
;do)

push h! push d! push b; environment

; saved

mvi c,brkf

call bdos

pop b! pop d! pop h; environment
restored

ret

;print a character

push h! push d! push b; saved
mvi c, typef

mov e,a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,cr

call pchar
mvi a,lf

call pchar
ret

;print nibble in reg a

ani ofh ;low 4 bits
cpi 10

jnc plo

less than or equal to 9
adi '0’

jmp prn

CP/M

0189
018b
018e

018f
0190
0191
0192
0193
0194
0197
0198
019b

019c

019%e
0lal

0la2
01a5
0l1a7

Operating System Manual

c637
cd6501
c9

f5
of
of
of
of
cd7dol
f1l
cd7dol
c9

0e09

cd0500
c9

321302
fe80
c2b301

0laa cdceOl

Olad
Olae

01bl

01b2

01b3

01b4

01b6

01b7

Olba

01bd

Olbe

01bf
01cO

b7
cab301

37

c9

5f

1600

3c

321302

218000

19

Te

b7
c9

5.4 A Sample File Dump Utility

plo:
prn:

phex

err:

gnb:

go:

setup:

5-41

greater or equal to 10

adi
call
ret

'a' - 10
pchar

;print hex char in reg a
pushpsw

rrc
rrc
rrc
rrc
call
pop
call
ret

pnib ;print nibble
psw
pnip

;print error message
d,e addresses message ending with "$"

mvi

call
ret

;get
lda
cpi
jnz
read

call
ora
jz

c,printf ;print buffer
; function
bdos

next byte

ibp

80h

go

another buffer

diskr
a ;zero value if read ok
g0 ;for another byte

end of data, return with carry set for eof

stc
ret

;read the byte at buff+reg a

mov
mvi
inr
sta

e,a ;Is byte of buffer index
d,o ;double precision
;index to de
a ;index=index+1
ibp ;back to memory

pointer is incremented

save the current file address

xi h,buff

dad d

absolute character address is in hl
mov a,m

byte is in the accumulator

ora a ;reset carry bit

ret

;set up file

CP/M Operating System Manual 5.4 A Sample File Dump Utility

; open the file for input

01lcl af Xra a ;zero to accum
01c2 327c00 sta fcbcr ;clear current record
01c5 115c00 1xi d,fcb
01c8 0eOf mvi c,openf
Olca cd0500 call bdos
; 255 in accum if open error
0lcd c9 ret
diskr: ;read disk file record
0lce e5d5c5 push h! push d! push b
01d1 115c00 1xi d,fcb
01d4 0el4d mvi c,readf
01d6 cd0500 call bdos
01d9 cldlel pop b! pop d! pop h
0ldc c9 ret

’

; fixed message area

01dd 46494c0 signon: db "file dump version 2.0$’
01f3 0d0ade0d opnmsg: db cr,lf,’no input file present on
disk$’

; variable area

0213 ibp: ds 2 ;input buffer pointer

0215 oldsp: ds 2 ;entry sp value from ccp
; stack area

0217 ; ds 64 ;reserve 32 level stack
stktop:

0257 end

5.5 A Sample Random Access Program

This chapter concludes with an extensive example of random
access operation. The program 1listed below performs the simple
function of reading or writing random records upon command from the
terminal. When a program has been created, assembled, and placed
into a file labeled RANDOM.COM, the CCP level command

RANDOM X.DAT
starts the test program. The program looks for a file by the name
X.DAT and, if found, proceeds to prompt the console for input. If
not found, the file is created before the prompt is given. Each
prompt takes the form

next command?

and is followed by operator input, followed by a carriage return.
The input commands take the form

5-42

CP/M Operating System Manual 5.5 Sample Random Access Program

nw nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is
issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed
by a carriage return. RANDOM then writes the character string into
the X.DAT file at record n. If the R command is issued, RANDOM
reads record number n and displays the string value at the console,
If the Q command is issued, the X.DAT file is closed, and the
program returns to the CCP. 1In the interest of brevity, the only
error message 1is

error, try again.

The program begins with an initialization section where the
input file 1is opened or created, followed by a continuous loop at
the label ready where the individual commands are interpreted. The
DFBC at 005CH and the default buffer at 0080H are used in all disk
operations. The utility subroutines then follow, which contain the
principal input T1line processor, called readc. This particular
program shows the elements of random access processing, and can be
used as the basis for further program development.

Sample Random Access Program for CP/M 2.0

0100 org 100h ;base of tpa

0000 = reboot equ 0000h ;system reboot

0005 = bdos equ 0005h ;bdos entry point

0001 = coninp equ 1 ;console input function

0002 = conout equ 2 ;console output function

0009 = pstring equ 9 ;print string until ’'$’

000a = rstring equ 10 ;read console buffer

000c = version equ 12 ;return version number

000f = openf equ 15 ;file open function

0010 = closef equ 16 ;close function

0016 = makef equ 22 ;make file function

0021 = readr equ 33 ;read random

0022 = writer equ 34 ;write random

005¢c = fcb equ 005ch ;default file control
;block

007d = ranrec equ fcb+33 ;random record position

007f = ranovf equ fcb+35 ;high order (overflow)
;byte

0080 = buff equ 0080h ;buffer address

’

5-43

CP/M

oood
000a

0100

0103
0105
0108
010a

o1oed
0110
0113

0116
0118
011b
0lle
011f

0122
0124
0127
012a
012b

012e
0131
0134

0137
013a
013d
0140
0142
0144

0147

Operating System Manual

31bc00

0e0Oc
cd0500
fe20
d21600

111b00
cdda0o
c30000

0e0f
115c00
cd 0500
3c
c23700

0el6
115¢00
cd0500
3c
c23700

113200
cdda0o
c30000

cde500
227d00
217100
3600
fe51
25600

0elo

cr
1f

Load SP,

H
versok:

’

5.5

Sample Random Access Program

equ 0dh ;carriage return
equ Oah ; line feed

Set-Up File for Random Access
1xi sp,stack

version 2.0

mvi c,version

call bdos

cpi 20h ;version 2.0 or better?
jnc versok

bad version, message and go back
xi d,badver

call print

jmp reboot

correct versionm for random access

mvi c,openf ;open default fcb

xi d, fcb

call bdos

inr a ;err 255 becomes zero
jnz ready

connot open file, so create it

mvi c,makef

1xi d, fcb

call bdos

inr a ;err 255 becomes zero
jnz ready

cannot create file, directory full
1xi d,nospace

call print

jmp reboot ;back to ccp

Loop Back to Ready After Each Command

ready:

file is ready for processing

call readcom ;read next command

shld ranrec ;store input record#
xi h, ranovf

mvi m,0Q ;Clear high byte if set
cpi Q’ ;quit?

jnz notq

quit processing, close file
mvi c,closef

5-44

CP/M Operating System Manual 5.5 Sample Random Access Program

0149 115c00 xi d,fcb

014c cd0500 call bdos

014f 3c inr a ;err 255 becomes 0
0150 cab9e0 jz error ;error message, retry
0153 c30000 jmp reboot ;back to ccp

End of Quit Command, Process Write

notq:
; not the quit command, random write?
0156 fe57 cpi "W’
0158 c28900 jnz notw
; this is a random write, fill buffer untill cr
015b 114d00 xi d,datmsg
015e cdda00 call print ;data prompt
0161 Oe7f mvi c,127 ;up to 127 characters
0163 218000 1xi h,buff ;destination
rloop: ;read next character to buff
0166 c5 push b ;save counter
0167 e5 push h ;next destination
0168 cdc200 call getchr ;character to a
016b el pop h ;restore counter
016¢c cl pop b ;restore next to fill
0led febd cpi cr ;end of line?
016f ca7800 jz erloop
; not end, store character
0172 77 mov m,a
0173 23 inx h ;next to fill
0174 od dcr C ;counter goes down
0175 c26600 jnz rloop ;end of buffer?
erloop:
; end of read loop, store 00
0178 3600 mvi m,0
; write the record to selected record number
017a 0e22 mvi c,writer
017c 115c00 1xi d, fcb
017c cd0500 call bdos
0182 b7 ora a ;erro code zero?
0183 c2b900 jnz error ;message if not
0186 c33700 jmp ready ;for another record

End of Write Command, Process Read

notw:

; not a write command, read record?
0189 fe52 cpi 'R’
018b c2b900 jnz error ;skip if not

; read random record

5-45

CP/M

018e
0190
0193
0196
0197

019a
019d
019f

0la2
0la3
0lad
01la6

01a9
Olaa
0lab
0lad
01b0o
01bl
01b2
01b3
01b6

Operating System Manual

0e21l
115c00
cd0500
b7
c2b900

cdcfo0
0e80
218000

Te

23
e67f
ca3700

c5

e5
fe20
d4c800
el

cl

od
c2a200
c33700

wloop:

5.5 Sample Random Access Program

mvi
1xi
call
ora
jnz

c,readr
d,fcb
bdos

a

error

;return code 007

read was successful, write to console

call
mvi
Ixi

mov
inx
ani
jz

push
push
cpi
cnc
pop
pop
dcr
jnz
jmp

5-46

crif
c,128
h,buff

a,m
h

7fh
ready

;new line
;max 128 characters
;next to get

;next character
;next to get

;mask parity

; for another command
;if 00

;save counter

;save next to get
;graphic?

;skip output if not

;count=count-1

CP/M

01b9
0lbc
01bf

01c2
0lc4
01c7

01c8
Olca
0lcb
Olce

0lcf
01d1
01d4
01d6
01d9

0lda
01db
0lde
01df
01e0
0led

01e5
01e8
Oleb
Oled
01f0

01f3
01f6
01f9

Olfa

Operating System Manual

115900
cdda0o
c33700

0e01
cd0500
c9

0e02
5f
cd0500
c9

3e0d
cdc800
3ela
cdc800
c9

d5
cdcfoo
dl
0e09
cd0500
c9

116b00
cdda0o
Oela

117a00
cd0500

210000
117c00
la

13

5.5 Sample Random Access Program

End of Read Command, All Errors End Up Here

error:

xi d,errmsg
call print
jmp ready

Utility Subroutines for Console I/0

getchr:
;read next console character to a
mvi c,coninp
call bdos
ret
putchr:
;write character from a to console
mvi c,conout
mov e,a ;character to send
call bdos ;send character
ret
crlf:
;send carriage return line feed
mvi a,cr ;carriage return
call putchr
mvi a, lf ; line feed
call putchr
ret
print:
;print the buffer addressed by de untill $
push d
call crlf
pop d ;new line
mvi c,pstring
call bdos ;print the string
ret
readcom:
;read the next command line to the conbuf
xi d,prompt
call print ; command?
mvi c,rstring
xi d, conbuf
call bdos ;read command line
; command line is present, scan it
1xi h,0 ;start with 0000
Ixi d,conlin ;command line
readc: ldax d ;next command
;character
inx d ;to next command

5-47

CP/M

01fb

0l1lfc

01fd
O1ff
0201

0204
0205
0206
0207
0208
0209
020a
020b
020c

Operating System Manual 5.

b7

c8

d630
fela
d21300

29
4d
44
29
29
09
85
6f
d2f900

02024

0210

0213
0215
0217

0218
021a

021b

023a

024d

0259

026b

027a
027b
027c
0021

029c

02bc

c3f900

c630
febl
ds

e65f
c9

536179

4e6f29

547970

457272

4e6570

21

endrd:

5 Sample Random Access Program

;position
ora a ;cannot be end of

; command
rz
not zero, numeric?
sui 0’
cpi 10 ;carry if numeric
jnc endrd
add-in next digit
dad h ;%2
mov c,l
mov b,h ;bc = value x 2
dad h ;x4
dad h ;%8
dad b ;¥2 + x8 = *x10
add 1 ;xdigit
mov 1,a
jnc readc ; for another char
inr h ;overflow
jmp readc ; for another char
end of read, restore value in a
adi "9’ ; command
cpi 'a’ ;translate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

String Data Area for Console Messages

badver:

db

nospace:

datmsg:
errmsg:

prompt:

Fixed

conbuf:
consiz:
conlin:
conlen

’

stack:

5

db

db

db

db

"sorry, you need cp/m version 2%’

'no directory space$’

"type data

H

"error, try again.$’

"next command? $’

and Variable Data Area

db
ds
ds
equ

ds

end

-48

conlen

1

32
$-consiz

32

; length of console buffer
;resulting size after read
; length 32 buffer

;16 level stack

CP/M Operating System Manual 5.5 Sample Random Access Program

Major improvements could be made to this particular program to
enhance its operation. In fact, with some work, this program could
evolve into a simple data base management system. One could, for
example, assume a standard record size of 128 bytes, consisting to
arbitrary fields within the record. A program, called GETKEY, could
be developed that first reads a sequential file and extracts a
specific field defined by the operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the LAST-NAME field from each record, starting in position 10 and
ending at character 20. GETKEY builds a table in memory consisting
of each particular LASTNAME field, along with its 16-bit record
number location within the file. The GETKEY program then sorts this
list and writes a new file, called LASTNAME.KEY, which is an
alphabetical list of LASTNAME fields with their corresponding record
numbers. This 1list 1is called an inverted index in information
retrieval parlance.

If the programmer were to rename the program shown above as
QUERY and modify it so that it reads a sorted key file into memory,
the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string that is a particular key to find in the NAMES.DAT data base.
Because the LASTNAME.KEY list is sorted, one can find a particular
entry rapidly by performing a binary search, similar to looking up a
name in the telephone book. Starting at both ends of the list, one
examines the entry halfway in between and, if not matched, splits
either the upper half or the lower half for the next search. You
will quickly reach the item you are looking for and find the
corresponding record number. You should fetch and display this
record at the console, just as was done in the program shown above.

With some more work, you can allow a fixed grouping size that
differs from the 128-byte record shown above. This is accomplished
by keeping track of the record number and the byte offset within the
record. Knowing the group size, vyou randomly access the record
containing the proper group, offset to the beginning of the group
within the record read sequentially until the group size has been
exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions, which compute the set of records that satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL and an
AGE lower than 45. Display all the records that fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access key files from the disk as well.

5-49

CP/M Operating System Manual

5.6 System Function Summary

Function
Number

Decimal

ok, WNEFO

11
12

13
14
15
16
17

18
19
20
21
22
23
24
25

26
27

28
29

30
31

Hex

Ok, WNEFO

{e]

O

=
mo©mmo

13
14
15
16
17
18
19

1A
1B

1C
1D

1E
1F

Function
Name

System Reset
Console Input
Console Output
Reader Input

Punch Output

List Output

Direct Console I/0

Get I/0 Byte

Set I/0 Byte
Print String
Read Console Buffer

Get Console Status
Return Version Number

Reset Disk System
Select Disk

Open File

Close File

Search For First
Search For Next
Delete File

Read Sequential
Write Sequential
Make File

Rename File
Return Login Vector

Return Current Disk

Set DMA Address
Get ADDR (ALLOC)

Write Protect Disk
Get Read/only Vector

Set File Attributes
Get ADDR (Disk Parms)

5-50

Input

C = OO6H
C = 01H
E = char
E = char
E = char
C = O6H

E = OFFH (input) or
OFEH (status) or
char (output)

none

E = I/0 Byte
DE Buffer Address
DE Buffer

none
none

none

E = Disk Number
DE FCB Address
DE FCB Address
DE = FCB Address

none

DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address
none

none

DE = DMA Address
none

none
none

DE = FCB Address
none

5.6 System Function Summary

Output

none
A = ASCII char
none

A = ASCII char
none

none

A = char or status

(no value)

A = I/0 byte
Value
none
none
Console
Characters
in Buffer
A = 00/non zero
HL: Version
Number
none
none
FF if not found
FF if not found
A = Directory
Code
A = Directory
Code
= none
Error Code
Error Code
= FF if no DIR
Space
A = FF in not
found
HL = Login
Vectorx*
A = Current Disk
Number
none
HL = ALLOC
Addressx*
none
HL = R/0
Vector Valuex
A = none
HL = DPB

> > > >

CP/M Operating System Manual

32

33
34
35
36
37
38
39
40

*Note that A =L, and B = H upon return.

20

21
22
23
24
25
26
27
28

Set/Get User Code

Read Random

Write Random

Compute File Size

Set Random Record
Reset Drive

Access Drive

Free Drive

Write Random with Fill

E
E

OFFH for Get

00 to OFH for Set
DE FCB Address

DE FCB Address

DE = FCB Address

DE FCB Address

DE Drive Vector

not supported

not supported

DE = FCB

End of Section 5

5-51

5.6 System Function Summary

Address
User Number

A =
A=
ro,

A =

Error Code
Error Code
rl, r2

rl, r2

0

Error Code

Section 6

CP/M 2 Alteration

6.1 Introduction

The standard CP/M system assumes operation on an Intel Model
800 microcomputer development system , but is designed so you can
alter a specific set of subroutines that define the hardware
operating environment.

Although standard CP/M 2 is configured for single-density
floppy disks, field-alteration features allow adaptation to a wide
variety of disk subsystems from single-drive minidisks to high-
capacity, hard disk systems. To simplify the following adaptation
process, it is assumed that CP/M 2 is first configured for single-
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M 1is available, the
customizing process is eased considerably. In this latter case, you
might want to review the system generation process and skip to later
sections that discuss system alteration for nonstandard disk
systems.

To achieve device independence, CP/M is separated into three
distinct modules:

0 BIOS is the Basic I/0 System, which is environment dependent.

0 BDOS is the Basic Disk Operating System, which is not dependent
upon the hardware configuration.

o CCP is the Console Command Processor, which uses the BDOS.

0f these modules, only the BIOS 1is dependent upon the
particular hardware. You can patch the distribution version of CP/M
to provide a new BIOS that provides a customized interface between
the remaining CP/M modules and the hardware system. This document
provides a step-by-step procedure for patching a new BIOS into CP/M.

All disk-dependent portions of CP/M 2 are placed into a BIOS, a
resident disk parameter block, which is either hand coded or
produced automatically wusing the disk definition macro library
provided with CP/M 2. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the 1logical disk,
directory size information, and reserved track values. The macros
use this information to generate the appropriate tables and table
references for use during CP/M 2 operation. Deblocking information
is provided, which aids in assembly or disassembly of sector sizes
that are multiples of the fundamental 128-byte data unit, and the
system alteration manual includes general purpose subroutines that
use the deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table-drive data
access algorithms, makes CP/M 2 a universal data management system.

6-1

CP/M Operating System Manual 6.1 Introduction

File expansion is achieved by providing up to 512 logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2 is structured, however, so that as much as 128K bytes of data are
addressed by a single physical extent, corresponding to a single
directory entry, maintaining compatibility with previous versions
while taking advantage of directory space.

If CP/M is being tailored to a computer system for the first
time, the new BIOS requires some simple software development and
testing. The standard BIOS is listed in Appendix A and can be used
as a model for the customized package. A skeletal version of the
BIOS given in Appendix B can serve as the basis for a modified BIOS.

In addition to the BIOS, you must write a simple memory loader,
called GETSYS, which brings the operating system into memory. To
patch the new BIOS into CP/M, you must write the reverse of GETSYS,
called PUTSYS, which places an altered version of CP/M back onto the
disk. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk write commands. Sample skeletal GETSYS and
PUTSYS programs are described in Section 6.4 and listed in Appendix
C.

To make the CP/M system 1load automatically, you must also
supply a cold start loader, similar to the one provided with CP/M,
listed in Appendixes A and D. A skeletal form of a cold start
loader is given 1in Appendix E, which serves as a model for the
loader.

6.2 First-level System Regeneration

The procedure to patch the CP/M system is given below. Address
references 1in each step are shown with H denoting the hexadecimal
radix, and are given for a 20K CP/M system. For larger CP/M
systems, a bias 1is added to each address that is shown with a +b
following it, where b is equal to the memory size-20K. Values for b
in various standard memory sizes are listed in Table 6-1.

Table 6-1. Standard Memory Size Values

Memory Size Value
24K: b = 24K - 20K = 4K = 1000H
32K: b = 32K - 20K = 12K = 3000H
40K: b = 40K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
62K: b = 62K - 20K = 42K = A800H
64K: b = 64K - 20K = 44K = BOOOH

6-2

CP/M Operating System Manual 6.2 First-level Regeneration

Note that the standard distribution version of CP/M is set for
operation within a 20K CP/M system. Therefore, you must first bring
up the 20K CP/M system, then configure it for actual memory size
(see Section 6.3).

Follow these steps to patch your CP/M system:

1)

2)

3)

4)

5)

6)

8)

Read Section 6.4 and write a GETSYS program that reads the
first two tracks of a disk into memory. The program from

the disk must be loaded starting at location 3380H. GETSYS

is coded to start at location 100H (base of the TPA) as

shown in Appendix C.

Test the GETSYS program by reading a blank disk into memory,
and check to see that the data has been read properly and
that the disk has not been altered in any way by the GETSYS
program.

Run the GETSYS program using an initialized CP/M disk to see
if GETSYS 1loads CP/M starting at 3380H (the operating
system actually starts 128 bytes later at 3400H).

Read Section 6.4 and write the PUTSYS program. This writes
memory starting at 3380H back onto the first two tracks of

the disk. The PUTSYS program should be located at 200H, as

shown in Appendix C.

Test the PUTSYS program using a blank, uninitialized disk by
writing a portion of memory to the first two tracks; clear

memory and read it back using GETSYS. Test PUTSYS

completely, because this program will be used to alter CP/M

on disk.

Study Sections 6.5, 6.6, and 6.7 along with the distribution
version of the BIOS given in Appendix A and write a simple

version that performs a similar function for the customized

environment. Use the program given 1in Appendix B as a

model. Call this new BIOS by name CBIOS (customized BIOS).

Implement only the primitive disk operations on a single

drive and simple console input/output functions in this

phase.

Test CBIOS completely to ensure that it properly performs
console character I/0 and disk reads and writes. Be

careful to ensure that no disk write operations occur

during read operations and check that the proper track and

sectors are addressed on all reads and writes. Failure to

make these checks might cause destruction of the

initialized CP/M system after it is patched.

Referring to Table 6-3 in Section 6.5, note that the BIOS is
placed between 1locations 4A00H and 4FFFH. Read the CP/M

system using GETSYS and replace the BIOS segment by the

CBIOS developed in step 6 and tested in step 7. This

replacement is done in memory.

6-3

CP/M Operating System Manual 6.2 First-level Regeneration

9)

10)

11)

12)

13)

14)

15)

Use PUTSYS to place the patched memory image of CP/M onto
the first two tracks of a blank disk for testing.

Use GETSYS to bring the copied memory image from the test
disk back into memory at 3380H and check to ensure that it

has loaded back properly (clear memory, if possible, before

the 1load). Upon successful load, branch to the cold start

code at location 4A0OH. The cold start routine initializes

page zero, then jumps to the CCP at location 3400H, which

calls the BD0OS, which calls the CBIOS. The CCP asks the

CBIOS to read sixteen sectors on track 2, and CP/M types

A>, the system prompt.

If difficulties are encountered, use whatever debug
facilities are available to trace and breakpoint the CBIOS.

Upon completion of step 10, CP/M has prompted the console
for a command input. To test the disk write operation,

type
SAVE 1 X.COM

A1l commands must be followed by a carriage return. CP/M
responds with another prompt after several disk accesses:

A>

If it does not, debug the disk write functions and retry.
Test the directory command by typing

DIR

CP/M responds with

A:X COoM

Test the erase command by typing

ERA X.COM

CP/M responds with the A prompt. This is now an
operational system that only requires a bootstrap loader to
function completely.

Write a bootstrap loader that is similar to GETSYS and place
it on track 0, sector 1, using PUTSYS (again using the test
disk, not the distribution disk). See Sections 6.5 and 6.8
for more information on the bootstrap operation.

Retest the new test disk with the bootstrap loader installed
by executing steps 11, 12, and 13. Upon completion of

these tests, type a CTRL-C. The system executes a warm
start, which reboots the system, and types the A prompt.

6-4

CP/M Operating System Manual 6.2 First-level Regeneration

all

16)

17)

18)

19)

20)

At this point, there is probably a good version of the
customized CP/M system on the test disk. Use GETSYS to

load CP/M from the test disk. Remove the test disk, place

the distribution disk, or a legal copy, into the drive, and

use PUTSYS to replace the distribution version with the

customized version. Do not make this replacement if you

are unsure of the patch because this step destroys the

system that was obtained from Digital Research.

Load the modified CP/M system and test it by typing
DIR

CP/M responds with a list of files that are provided on the
initialized disk. The file DDT.COM is the memory image for
the debugger. Note that from now on, you must always
reboot the CP/M system (CTRL-C is sufficient) when the disk
is removed and replaced by another disk, unless the new
disk is to be Read-Only.

Load and test the debugger by typing
DDT
See Chapter 4 for operating procedures.

Before making further CBIOS modifications, practice using
the editor (see Chapter 2), and assembler (see Chapter 3).

Recode and test the GETSYS, PUTSYS, and C(BIOS programs

using ED, ASM, and DDT. Code and test a COPY program that

does a sector-to-sector copy from one disk to another to

obtain back-up copies of the original disk. Read the CP/M

Licensing Agreement specifying legal responsibilities when

copying the CP/M system. Place the following copyright

notice:

Copyright (c), 1983
Digital Research

on each copy that is made with the COPY program.

Modify the CBIOS to include the extra functions for punches,
readers, and sign-on messages, and add the facilities for
additional disk drives, if desired. These changes can be
made with the GETSYS and PUTSYS programs or by referring to
the regeneration process in Section 6.3.

You should now have a good copy of the customized CP/M system.
Although the CBIOS portion of CP/M belongs to the user, the modified
version cannot be legally copied.

It should be noted that the system remains file-compatible with
other CP/M systems (assuming media compatibility) which allows
transfer of nonproprietary software between CP/M users.

6-5

CP/M Operating System Manual 6.3 Second-level System Generation

6.3 Second-level System Generation

Once the system is running, the next step is to configure CP/M
for the desired memory size. Usually, a memory image is first
produced with the MOVCPM program (system relocator) and then placed
into a named disk file. The disk file can then be loaded, examined,
patched, and replaced using the debugger and the system generation
program (refer to Chapter 1).

The CBIOS and BOOT are modified using ED and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain
the code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, type the command:

MOVCPM Xxxx*

where xx is the memory size in decimal K bytes, for example, 32 for
32K. The response is as follows:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

An image of CP/M in the TPA is configured for the requested
memory size. The memory image is at location 0900H through 227FH,
that is, the BOOT is at 0900H, the CCP is at 980H, the BDOS starts
at 1180H, and the BIOS is at 1F80H. Note that the memory image has
the standard Model 800 BIOS and BOOT on it. It is now necessary to
save the memory image in a file so that you can patch the CBIOS and
CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the MOVCPM program is offset by a
negative bias so that it loads into the free area of the TPA, and
thus does not interfere with the operation of CP/M in higher memory.
This memory image can be subsequently loaded under DDT and examined
or changed in preparation for a new generation of the system. DDT
is loaded with the memory image by typing:

DDT CPMxx.COM Loads DDT, then reads the CP/M image.
DDT should respond with the following:

NEXT PC

2300 0100

- The DDT prompt
You can then give the display and disassembly commands to examine

portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, vyou

6-6

CP/M Operating System Manual 6.3 Second-level System Generation

must apply the negative bias to the CP/M address to find the actual
address. Track 00, sector 01, is loaded to location 900H (the user
should find the cold start loader at 900H to 97FH); track 00, sector
02, is loaded into 980H (this is the base of the CCP); and so on
through the entire CP/M system load. In a 20K system, for example,
the CCP resides at the CP/M address 3400H, but is placed into memory
at 980H by the SYSGEN program. Thus, the negative bias, denoted by
n, satisfies

3400H + n = 980H, or n =980H - 3400H

Assuming two’s complement arithmetic, n = D580H, which can be
checked by

3400H + D580H = 10980H = 0980H (ignoring high-order
overflow).

Note that for larger systems, n satisfies
(3400H+b) + n = 980H, or

n = 980H - (3400H + b), or
n D580H - b

The value of n for common CP/M systems is given below.

Table 6-2. Common Values for CP/M Systems

Memory Size BIAS b Negative Offset n
20K 0000H D580H - 0000H = D580H
24K 1000H D580H - 1000H = C586H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K 7000H D580H - 7000H = 6580H
56K 9000H D580H - 9000H = 4580H
62K A80OOH D580H - A80GH = 2D8GH
64K BOOOH D580H - BOOGH = 2580H

If you want to locate the address x within the memory image
loaded under DDT in a 20K system, first type

Hx,n Hexadecimal sum and difference
and DDT responds with the value of x+n (sum) and x-n (difference).
The first number printed by DDT is the actual memory address in the
image where the data or code is located. For example, the following
DDT command:

H3400,D580

produces 980H as the sum, which is where the CCP is located in the
memory image under DDT.

6-7

CP/M Operating System Manual 6.3 Second-level System Generation

Type the L command to disassemble portions of the BIOS located
at (4A00H+b)-n, which, when one uses the H command, produces an
actual address of 1F80H. The disassembly command would thus be as
follows:

L1F80
It is now necessary to patch in the CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is n, then to calculate the bias (m), type the command:

H900,n Subtract load address from target address.

The second number typed by DDT in response to the command 1is

the desired bias (m). For example, if the BOOT executes at 0080H,
the command

H900, 80
produces

0980 0880 Sum and difference in hex.

Therefore, the bias m would be 0880H. To read-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then

Rm Read CBOOT with a bias of m (=900H-n).
Examine the CBOOT with

L9006

You are now ready to replace the CBIOS by examining the area at
1F80H, where +the original version of the CBIOS resides, and then

typing
ICBIOS.HEX Ready the hex file for loading.

Assume that the CBIOS is being integrated into a 20K CP/M
system and thus originates at location 4AGOH. To locate the CBIOS
properly in the memory image under DDT, you must apply the negative
bias n for a 20K system when 1loading the hex file. This is
accomplished by typing

RD580 Read the file with bias D580H.
Upon completion of the read, reexamine the area where the CBIOS has
been 1loaded (use an L1F80 command) to ensure that it is properly

loaded. When you are satisfied that the change has been made,
return from DDT using a CTRL-C or, GO command.

6-8

CP/M Operating System Manual 6.3 Second-level System Generation

SYSGEN is used to replace the patched memory image back onto a
disk (you wuse a test disk until sure of the patch) as shown in the
following interaction:

SYSGEN Start the SYSGEN program.

SYSGEN VERSION 2.0 Sign-on message from SYSGEN.

SOURCE DRIVE NAME Respond with a carriage return

(OR RETURN TO SKIP) to skip the CP/M read operation
because the system is already
in memory.

DESTINATION DRIVE NAME Respond with B to write the new

(OR RETURN TO REBOOT) system to the disk in drive B.
DESTINATION ON B, Place a scratch disk in drive
THEN TYPE RETURN B, then press RETURN.

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

Place the scratch disk in drive A, then perform a cold start to
bring up the newly-configured CP/M system.

The new CP/M system is then tested and the Digital Research
copyright notice is placed on the disk, as specified in the
Licensing Agreement:

Copyright (c), 1979
Digital Research
6.4 Sample GETSYS and PUTSYS Programs
The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Sections 6.1 and 6.2. To read and

write the specific sectors, you must insert the READSEC and WRITESEC
subroutines.

6-9

CP/M Operating System Manual

6.4 Sample GETSYS and PUTSYS

; GETSYS PROGRAM -- READ TRACKS 0 AND 1 TO MEMORY AT 3380H
; REGISTER

START:

RDTRK:

RDSEC:

’

; ARRIVE

’

A

B

DE

HL

SP

LXI

LXI
MVI

MVI

CALL
LXI

DAD
INR
MoV
CPI
JC

HERE
INR
MOV
CPI
JC

SP,3380H

READSEC
D, 128

D

C

A,C
27
RDSEC

USE
(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2,...,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS

SET TO STACK ADDRESS

;SET STACK POINTER TO SCRATCH
; AREA

; SET BASE LOAD ADDRESS

; START WITH TRACK 0

;READ NEXT TRACK (INITIALLY 0)
;READ STARTING WITH SECTOR 1

;READ NEXT SECTOR

; USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2
; PAGE

;HL = HL + 128

;SECTOR = SECTOR + 1

;CHECK FOR END OF TRACK

; CARRY GENERATED IF SECTOR <27

AT END OF TRACK, MOVE TO NEXT TRACK

B

A,B

2
RDTRK

; TEST FOR LAST TRACK

; CARRY GENERATED IF TRACK <2

; USER-SUPPLIED SUBROUTINE TO READ THE DISK

READSEC:

; ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND

ADDRESS TO FILL IN HL

PUSH
PUSH

B
H

;SAVE B AND C REGISTERS
; SAVE HL REGISTERS

Listing 6-1. GETSYS Program

6-10

CP/M Operating System Manual 6.4 Sample GETSYS and PUTSYS

perform disk read at this point, branch to
label START if an error occurs

POP H ;RECOVER HL

POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

Listing 6-1. (continued)

This program is assembled and listed in Appendix B for
reference purposes, with an assumed origin of 100H. The hexadecimal
operation codes that are listed on the left might be useful if the
program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing
only a few operations in the GETSYS program given above, as shown in
Appendix C. The register pair HL becomes the dump address, next
address to write, and operations on these registers do not change
within the program. The READSEC subroutine 1is replaced by a
WRITESEC subroutine, which performs the opposite function; data from
address HL is written to the track given by register B and sector
given by register C. It 1is often wuseful to combine GETSYS and
PUTSYS into a single program during the test and development phase,
as shown in Appendix C.

6.5 Disk Organization

The sector allocation for the standard distribution version of
CP/M 1is given here for reference purposes. The first sector
contains an optional software boot section (see the table on the
following page. Disk controllers are often set up to bring track
0, sector 1, into memory at a specific location, often 1location
0000H. The program in this sector, called BOOT, has the
responsibility of bringing the remaining sectors into memory
starting at location 3400H+b. If +the controller does not have a
built-in sector load, the program in track 0, sector 1 can be
ignored. In this case, load the program from track 0, sector 2, to
location 3400H+b.

As an example, the Intel Model 800 hardware cold start loader
brings track 0, sector 1, into absolute address 3000H. Upon loading
this sector, control +transfers to 1location 3000H, where the
bootstrap operation commences by loading the remainder of track 0
and all of track 1 into memory, starting at 3400H+b. Note that this
bootstrap loader is of little use in a non-microcomputer development
system environment, although it is useful to examine it because some
of the boot actions will have to be duplicated in the user’s cold
start loader.

6-11

CP/M Operating System Manual 6.5 Disk Organization

Table 6-3. CP/M Disk Sector Allocation

Track # Sector Page# Memory Address CP/M Module name

00 01 (boot address) Cold Start Loader
00 02 00 3400H+b CCP
! 03 ! 3480H+b !
! 04 01 3500H+b !
! 05 ! 3580H+b !
! 06 02 3600H+b !
! 07 ! 3680H+b !
! 08 03 3700H+b !
! 09 ! 3780H+b !
! 10 04 3800H+b !
! 11 ! 3880H+b !
! 12 05 3900H+b !
! 13 ! 3980H+b !
! 14 06 3A00H+Db !
! 15 ! 3A80H+Db !
! 16 07 3BOOH+b !
00 17 ! 3B80OH+b CcCcpP
00 18 08 3CO0H+b BDOS
! 19 ! 3C80H+b !
! 20 09 3DOOH+b !
! 21 ! 3D80OH+b !
! 22 10 3E00H+b !
! 23 ! 3E80H+b !
! 24 11 3F00H+b !
! 25 ! 3F80H+b !
! 26 12 4000H+b !
01 01 ! 4080H+b !
! 02 13 4100H+b !
! 03 ! 4180H+B !
! 04 14 4200H+b !
! 05 ! 4280H+b !
! 06 15 4300H+b !
! 07 ! 4380H+b !
! 08 16 4400H+b !
! 09 ! 4480H+b !
! 10 17 4500H+b !
! 11 ! 4580H+b !
! 12 18 4600H+b !
! 13 ! 4680H+b !
! 14 19 4700H+b !
! 15 ! 4780H+b !
! 16 20 4800H+b !
! 17 ! 4880H+b !
! 18 21 4900H+b !
01 19 ! 4900H+b BDOS
07 20 22 4A00H+b BIOS
! 21 ! 4A80H+b !
! 22 23 4BOOH+b !
! 23 ! 4B80OH+b !
! 24 24 4CO0H+b !
01 25 ! 4C80H+b BIOS
01 26 25 4DOOH+b BIOS
02-76 01-26 (directory and data)

6-12

CP/M Operating System Manual 6.6 BIOS Entry Points

6.6 The BIOS Entry Points

The entry points into the BIOS from the cold start loader and
BDOS are detailed below. Entry to the BIOS is through a jump vector
located at 4A00H+b, as shown below. See Appendixes A and B. The
jump vector is a sequence of 17 jump instructions that send program
control to the individual BIOS subroutines. The BIOS subroutines
might be empty for certain functions (they might contain a single
RET operation) during reconfiguration of CP/M, but the entries must
be present in the jump vector.

The jump vector at 4A00H+b takes the form shown below, where
the individual jump addresses are given to the left:

4A00H+b JMP BOOT ;ARRIVE HERE FROM COLD
START LOAD

4A03H+b JMP WBOOT ;ARRIVE HERE FOR WARM START

4A06H+b JMP CONST ; CHECK FOR CONSOLE CHAR
READY

4A09H+b JMP CONIN ;READ CONSOLE CHARACTER IN

4A0CH+b JMP CONOUT ;WRITE CONSOLE CHARACTER
ouT

4A0FH+b JMP LIST ;WRITE LISTING CHARACTER OUT

4A12H+b JMP PUNCH ;WRITE CHARACTER TO PUNCH
DEVICE

4A15H+b JMP READER ;READ READER DEVICE

4A18H+b JMP HOME ;MOVE TO TRACK 00 ON

SELECTED DISK

4A1BH+b JMP SELDSK ; SELECT DISK DRIVE
4A1EH+b JMP SETTRK ; SET TRACK NUMBER
4A21H+b JMP SETSEC ; SET SECTOR NUMBER
4A24H+b JMP SETDMA ; SET DMA ADDRESS
4A27H+b JMP READ ;READ SELECTED SECTOR
4A2AH+b JMP WRITE ;WRITE SELECTED SECTOR
4A2DH+b JMP LISTST ;RETURN LIST STATUS
4A30H+b JMP SECTRAN ; SECTOR TRANSLATE
SUBROUTINE

Listing 6-2. BIOS Entry Points

6-13

CP/M Operating System Manual 6.6 BIOS Entry Points

Each jump address corresponds to a particular subroutine that
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system reinitialization,
which results from calls on BOOT and WBOOT; simple character I/0,
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST; and disk 1I/0, performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/0 operations are assumed to be performed
in ASCII, upper- and lower-case, with high-order (parity bit) set to
zero. An end-of-file condition for an input device is given by an
ASCII CTRL-Z (1AH). Peripheral devices are seen by CP/M as logical
devices and are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT
subroutines. LIST, PUNCH, and READER can be used by PIP, but not
the BDOS. Further, the LISTST entry is currently used only by
DESPOOL, the print spooling utility. Thus, the initial version of
CBIOS can have empty subroutines for the remaining ASCII devices.

The following 1list describes the characteristics of each
device.

0 CONSOLE is the principal interactive console that communicates
with the operator and it is accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a CRT or
teletype.

o LIST is the principal listing device. If it exists on the
user’'s system, it is wusually a hard-copy device, such as a
printer or teletype.

0 PUNCH is the principal tape punching device. If it exists, it
is normally a high-speed paper tape punch or teletype.

0 READER is the principal tape reading device, such as a simple
optical reader or teletype.

A single peripheral can be assigned as the LIST, PUNCH, and
READER device simultaneously. If no peripheral device is assigned
as the LIST, PUNCH, or READER device, the CBIOS gives an appropriate
error message so that the system does not hang if the device is
accessed by PIP or some other user program. Alternately, the PUNCH
and LIST routines can just simply return, and the READER routine can
return with a 1AH (CTRL-Z) in register A to indicate immediate end-
of-file.

For added flexibility, you can optionally implement the IOBYTE
function, which allows reassignment of physical devices. The IOBYTE
function creates a mapping of logical-to-physical devices that can
be altered during CP/M processing, see the STAT command in Section
1.6.1.

6-14

CP/M Operating System Manual 6.6 BIOS Entry Points
The definition of the IOBYTE function corresponds to the Intel
standard as follows: a single location in memory, currently
location 0003H, is maintained, called IOBYTE, which defines the
logical-to-physical device mapping that is in effect at a particular
time. The mapping is performed by splitting the IOBYTE into four

distinct fields of two bits each, called the CONSOLE, READER, PUNCH,
and LIST fields, as shown in the following figure.

most significant least significant
IOBYTE AT 003H LIST PUNCH READER CONSOLE

bits 6,7 bits 4,5 bits 2,3 bits 0,1

Figure 6-1. IOBYTE Fields

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. Table 6-4
gives the values that can be assigned to each field.

Table 6-4. IOBYTE Field Values

Value Meaning

CONSOLE field (bits 0,1)

0 console is assigned to the console printer
device (TTY:)

1 console is assigned to the CRT device (CRT:)

2 batch mode: wuse the READER as the CONSOLE input,
and the LIST device as the CONSOLE output (BAT:)

3 user-defined console device (UC1:)

READER field (bits 2,3)

READER is the teletype device (TTY:)

READER is the high speed reader device (PTR:)
user-defined reader #1 (UR1:)

user-defined reader #2 (UR2:)

WNRFRO

PUNCH field (bits 4,5)

PUNCH is the teletype device (TTY:)

PUNCH is the high speed punch device (PTP:)
user-defined punch #1 (UP1:)

user-defined punch #2 (UP2:)

WN =R

LIST field (bits 6,7)

LIST is the teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user-defined 1list device (UL1:)

W N RO

6-15

CP/M Operating System Manual 6.6 BIOS Entry Points

The implementation of the IOBYTE is optional and effects only
the organization of the CBIOS. No CP/M systems use the IOBYTE
(although they tolerate the existence of the IOBYTE at Tlocation
0003H) except for PIP, which allows access to the physical devices,
and STAT, which allows logical-physical assignments to be make or
displayed. For more information see Section 1. 1In any case the
IOBYTE implementation should be omitted until the basic CBIOS is
fully implemented and tested; then you should add the IOBYTE to
increase the facilities.

Disk I/0 is always performed through a sequence of calls on the
various disk access subroutines that set up the disk number to
access, the track and sector on a particular disk, and the Direct
Memory Access (DMA) address involved in the I/0 operation. After
all these parameters have been set up, a call is made to the READ or
WRITE function to perform the actual I/0 operation.

There is often a single call to SELDSK to select a disk drive,
followed by a number of read or write operations to the selected
disk before selecting another drive for subsequent operations.
Similarly, there might be a single call to set the DMA address,
followed by several calls that read or write from the selected DMA
address before the DMA address is changed. The track and sector
subroutines are always called before the READ or WRITE operations
are performed.

The READ and WRITE routines should perform several retries (10
is standard) before reporting the error condition to the BDOS. If
the error condition is returned to the BDOS, it reports the error to
the wuser. The HOME subroutine might or might not actually perform
the track 00 seek, depending upon controller characteristics; the
important point is that track 00 has been selected for the next
operation and is often treated in exactly the same manner as SETTRK
with a parameter of 00.

The following table describes the exact responsibilities of
each BIOS entry point subroutine.

Table 6-5. BIOS Entry Points
Entry Point Function

BOOT The BOOT entry point gets control from the cold
start loader and is responsible for basic
system initialization, including sending a
sign-on message, which can be omitted in the
first version. If the IOBYTE function is
implemented, it must be set at this point. The
various system parameters that are set by the
WBOOT entry point must be initialized, and
control is transferred to the CCP at 3400+b for
further processing. Note that register C must
be set to zero to select drive A.

6-16

CP/M Operating System Manual 6.6 BIOS Entry Points

Table 6-5. (continued)
Entry Point Function

WBOOT The WBOOT entry point gets control when a warm
start occurs. A warm start is performed
whenever a user program branches to location
0000H, or when the CPU is reset from the front
panel. The CP/M system must be loaded from the
first two tracks of drive A up to, but not
including, the BIOS, or CBIOS, if the user has
completed the patch. System parameters must be
initialized as follows:

location 0,1,2 Set to JMP WBOOT for warm
starts (OOOH: JMP 4A03H+b)

location 3 Set initial value of IOBYTE,
if implemented in the CBIOS

location 4 High nibble = current user no;
low nibble = current drive

location 5,6,7 Set to JMP BDOS, which is the
primary entry point to CP/M
for transient programs.
(0OO5H: IMP 3CO6H+b)

Refer to Section 6.9 for complete details of
page zero use. Upon completion of the
initialization, the WBOOT program must branch
to the CCP at 3400H+b to restart the system.
Upon entry to the CCP, register C is set to the
drive to select after system initialization.
The WBOOT routine should read 1location 4 in
memory, verify that is a legal drive, and pass
it to the CCP in register C.

CONST You should sample the status of the currently
assigned console device and return OFFH in
register A if a character is ready to read and
00H in register A if no console characters are
ready.

CONIN The next console character is read into
register A, and the parity bit is set, high-
order bit, to zero. If no console character is
ready, wait until a character is typed before
returning.

6-17

CP/M Operating System Manual 6.6 BIOS Entry Points

Table 6-5. (continued)
Entry Point Function

CONOUT The character is sent from register C to the
console output device. The character is in
ASCII, with high-order parity bit set to =zero.
You might want to include a time-out on a line-
feed or carriage return, if the console device
requires some time interval at the end of the
line (such as a TI Silent 700 terminal). You
can filter out control characters that cause
the console device to react in a strange way
(CTRL-Z causes the Lear-Seigler terminal to
clear the screen, for example).

LIST The character is sent from register C +to the
currently assigned listing device. The
character is in ASCII with zero parity bit.

PUNCH The character is sent from register C +to the
currently assigned punch device. The character
is in ASCII with zero parity.

READER The next character is read from the currently
assigned reader device into register A with
zero parity (high-order bit must be zero); an
end-of-file condition is reported by returning
an ASCII CTRL-Z(1AH).

HOME The disk head of the currently selected disk
(initially disk A) 1is moved to the track 00
position. If the controller allows access to
the track 0 flag from the drive, the head is
stepped until the track 0 flag is detected. If
the controller does not support this feature,
the HOME call is translated into a call to
SETTRK with a parameter of 0.

SELDSK The disk drive given by register C is selected
for further operations, where register C
contains O for drive A, 1 for drive B, and so
on up to 15 for drive P (the standard CP/M
distribution version supports four drives). On
each disk select, SELDSK must return in HL the
base address of a 16-byte area, called the Disk
Parameter Header, described in Section 6.10.
For standard floppy disk drives, the contents
of the header and associated tables do not
change; thus, the program segment included 1in
the sample CBIOS performs this operation
automatically.

6-18

CP/M Operating System Manual 6.6 BIOS Entry Points

Table 6-5. (continued)
Entry Point Function

If there is an attempt to select a nonexistent
drive, SELDSK returns HL=000OH as an error
indicator. Although SELDSK must return the
header address on each call, it is advisable to
postpone the physical disk select operation
until an I/0 function (seek, read, or write) is
actually performed, because disk selects often
occur without wutimately performing any disk
I/0, and many controllers unload the head of
the current disk before selecting the new
drive. This causes an excessive amount of
noise and disk wear. The least significant bit
of register E is zero if this 1is the first
occurrence of the drive select since the last
cold or warm start.

SETTRK Register BC contains the track number for
subsequent disk accesses on the currently
selected drive. The sector number in BC is the
same as the number returned from the SECTRAN
entry point. You can choose to seek the
selected track at this time or delay the seek
until the next read or write actually occurs.
Register BC can take on values in the range 0-
76 corresponding to valid track numbers for
standard floppy disk drives and 0-65535 for
nonstandard disk subsystems.

SETSEC Register BC contains the sector number, 1
through 26, for subsequent disk accesses on the
currently selected drive. The sector number in
BC 1is the same as the number returned from the
SECTRAN entry point. You can choose to send
this information to the controller at this
point or delay sector selection until a read or
write operation occurs.

SETDMA Register BC contains the DMA (Disk Memory
Access) address for subsequent read or write
operations. For example, if B = G0H and C =
80H when SETDMA is called, all subsequent read
operations read their data into 80H through
OFFH and all subsequent write operations get
their data from 80H through OFFH, until the
next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. The controller
need not actually support Direct Memory Access.
If, for example, all data transfers are through
I/0 ports, the CBIOS that is constructed uses
the 128-byte area starting at the selected DMA
address for the memory buffer during the
subsequent read or write operations.

6-19

CP/M Operating System Manual 6.6 BIOS Entry Points

Table 6-5. (continued)
Entry Point Function

READ Assuming the drive has been selected, the track
has been set, and the DMA address has been
specified, the READ subroutine attempts to read
one sector based upon these parameters and
returns the following error codes 1in register
A:

® no errors occurred
1 nonrecoverable error condition occurred

Currently, CP/M responds only to a =zero or
nonzero value as the return code. That is, if
the value in register A is 0, CP/M assumes that
the disk operation was completed properly. IF
an error occurs the CBIOS should attempt at
least 10 retries to see if the error is
recoverable. When an error is reported the
BDOS prints the message BDOS ERR ONx: BAD
SECTOR. The operator then has the option of
pressing a carriage return to ignore the error,
or CTRL-C to abort.

WRITE Data is written from the currently selected DMA
address to the currently selected drive, track,
and sector. For floppy disks, the data should
be marked as nondeleted data to maintain
compatibility with other CP/M systems. The
error codes given 1in the READ command are
returned in register A, with error recovery
attempts as described above.

LISTST You return the ready status of the list device
used by the DESPOOL program to improve console
response during its operation. The value 00 is
returned in A if the list device is not ready
to accept a character and OFFH if a character
can be sent to the printer. A 00 value should
be returned if LIST status is not implemented.

6-20

CP/M Operating System Manual 6.6 BIOS Entry Points

Table 6-5. (continued)
Entry Point Function

SECTRAN Logical-to-physical sector translation is
performed to improve the overall response of
CP/M. Standard CP/M systems are shipped with a
skew factor of 6, where six physical sectors
are skipped between each logical read
operation. This skew factor allows enough time
between sectors for most programs to load their
buffers without missing the next sector. 1In
particular computer systems that use fast
processors, memory, and disk subsystems, the
skew factor might be changed to improve overall
response. However, the user should maintain a
single-density IBM-compatible version of CP/M
for information transfer into and out of the
computer system, using a skew factor of 6.

In general, SECTRAN receives a logical sector
number relative to zero in BC and a translate
table address in DE. The sector number is used
as an index into the translate table, with the
resulting physical sector number in HL. For
standard systems, the table and indexing code
is provided in the CBIOS and need not be
changed.

6.7 A Sample BIOS

The program shown in Appendix B can serve as a basis for your
first BIOS. The simplest functions are assumed in this BIOS, so
that you can enter it through a front panel, if absolutely
necessary. You must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage
is reserved for wuser-supplied code in these regions. The scratch
area reserved in page zero (see Section 6.9) for the BIOS is used in
this program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to
print the initial sign-on message and perform better error recovery.
The subroutines for LIST, PUNCH, and READER can be filled out and
the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader

The program shown in Appendix E can serve as a basis for a cold
start Tloader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at Tlocation 0000.
Space 1is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes.

6-21

CP/M Operating System Manual 6.8 A Sample Cold Start Loader

Eventually, you might want to get this loader onto the first
disk sector (track 0, sector 1) and cause the controller to load it
into memory automatically upon system start up. Alternatively, the
cold start loader can be placed into ROM, and above the CP/M system.
In this case, it is necessary to originate the program at a higher
address and key in a jump instruction at system start up that
branches to the loader. Subsequent warm starts do not require this
key-in operation, because the entry point WBOOT gets control, thus
bringing the system in from disk automatically. The skeletal cold
start 1loader has minimal error recovery, which might be enhanced in
later versions.

6.9 Reserved Locations in Page Zero

Main memory page zero, between locations 00H and OFFH, contains
several segments of code and data that are used during CP/M
processing. The code and data areas are given in the following
table.

Table 6-6. Reserved Locations in Page Zero
Locations Contents

000H-0002H Contains a jump instruction to the warm
start entry location 4A03H+b. This
allows a simple programmed restart (JMP
0000H) or manual restart from the front
panel.

00O3H-0003H Contains the Intel standard IOBYTE is
optionally included in the user’s CBIOS
(refer to Section 6.6).

0004H-0004H Current default drive number
(6=A,...,15=P).
0005H-0007H Contains a jump instruction to the BDOS

and serves two purposes: JMP 0Q005H
provides the primary entry point to the
BDOS, as described in Chapter 5, and
LHLD 0006H brings the address field of
the instruction to the HL register
pair. This value is the lowest address
in memory wused by CP/M, assuming the
CCP is being overlaid. The DDT program
changes the address field to reflect
the reduced memory size in debug mode.

0008H-0027H Interrupt 1locations 1 through 5 not
used.
0030H-0037H Interrupt location 6 (not currently

used) is reserved.

6-22

CP/M Operating System Manual 6.9 Reserved Locations in Page Zero

Table 6-6. (continued)
Locations Contents

0038H-003AH Restart 7; contains a jump instruction
into the DDT or SID program when
running in debug mode for programmed
breakpoints, but is not otherwise used

by CP/M.
003BH-003FH Not currently used; reserved.
0040H-004FH A 16-byte area reserved for scratch by

CBIOS, but is not used for any purpose
in the distribution version of CP/M.

0050H-005BH Not currently used; reserved.

005CH-007CH Default File Control Block produced for
a transient program by the CCP.

007DH-007FH Optional default random record position.

0080H-00FFH Default 128-byte disk buffer, also
filled with the command 1line when a
transient is loaded under the CCP.

This information is set up for normal operation under the CP/M
system, but can be overwritten by a transient program if the BDOS
facilities are not required by the transient.

If, for example, a particular program performs only simple 1I/0
and must begin execution at location 0, it can first be loaded into
the TPA, using normal CP/M facilities, with a small memory move
program that gets control when loaded. The memory move program must
get control from location 0100H, which is the assumed beginning of
all transient programs. The move program can then proceed to the
entire memory image down to location O and pass control to the
starting address of the memory load.

If the BIOS is overwritten or if 1location 0, containing the
warm start entry point, is overwritten, the operator must bring the
CP/M system back into memory with a cold start sequence.

6.10 Disk Parameter Tables

Tables are included in the BIOS that describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix
B, or automatically generated using the DISKDEF macro library, as
shown in Appendix F. The purpose here is to describe the elements
of these tables.

6-23

CP/M Operating System Manual 6.10 Disk Parameter Tables

In general, each disk drive has an associated (16-byte) disk
parameter header that contains information about the disk drive and
provides a scratch pad area for certain BDOS operations. The format
of the disk parameter header for each drive is shown in Figure 6-2,
where each element is a word (16-bit) value.

XLT 0000 0000 0000 DIRBUF DPB csv ALV
16b 16b 16b 16b 16b 16b 16b 16b

Figure 6-2. Disk Parameter Header Format

The meaning of each Disk Parameter Header (DPH) element is
detailed in Table 6-7.

Table 6-7. Disk Parameter Headers

Disk Parameter Meaning
Header
XLT Address of the logical-to-physical

translation vector, if wused for this
particular drive, or the value 0000H if no
sector translation takes place (that is,
the physical and 1logical sector numbers
are the same). Disk drives with identical
sector skew factors share the same
translate tables.

0000 Scratch pad values for use within the
BDOS, initial value is unimportant.

DIRBUF Address of a 128-byte scratch pad area for
directory operations within BDO0S. All
DPHs address the same scratch pad area.

DPB Address of a disk parameter block for this
drive. Drives with identical disk
characteristics address the same disk
parameter block.

csv Address of a scratch pad area wused for
software check for changed disks. This
address is different for each DPH.

ALV Address of a scratch pad area used by the
BDOS to keep disk storage allocation
information. This address is different
for each DPH.

6-24

CP/M Operating System Manual 6.10 Disk Parameter Tables

Given n disk drives, the DPHs are arranged in a table whose
first row of 16 bytes corresponds to drive 0, with the last row
corresponding to drive n-1. In the following figure the Tlable
DPBASE defines the base address of the DPH table.

DPBASE:
00 XLT 00 0000 0000 0000 DIRBUF DBP 00 CSV 00 ALV 00

01 XLT 01 0000 0000 0000 DIRBUF DBP 01 CSV 01 ALV 01

n-1 XLTn-1 0000 0000 0000 DIRBUF DBTn-1 CSVn-1 ALVn-1

Figure 6-3. Disk Parameter Header Table

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence
of operations returns the table address, with a 0000H returned if
the selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK: ;SELECT DISK GIVEN BY BC
LSI H,0000H ; ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ; LOW(DISK)
MOV H,B ;HIGH(DISK)
DAD H ;%2
DAD H s %4
DAD H ;%8
DAD H ;%16
LXI D,DPBASE; FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors, XLT 00 through XLTn-1, are Tlocated
elsewhere 1in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count 1. The Disk
Parameter Block (DPB) for each drive is more complex. As shown in
Figure 6-4, particular DPB, that is addressed by one or more DPHs,
takes the general form:

6-25

CP/M Operating System Manual 6.10 Disk Parameter Tables

SPT BSH BLM EXM DSM DRM ALO ALl CKS OFF
16b 8b 8b 8b 16b 1ob 8b 8b 16b 16b

Figure 6-4. Disk Parameter Block Format

where each is a byte or word value, as shown by the 8b or 16b
indicator below the field.

The following field abbreviations are used in Figure 6-4:

0 SPT is the total number of sectors per track.

o0 BSH is the data allocation block shift factor, determined by
the data block allocation size.

o BLM is the data allocation block mask (2[BSH-11).

o EXM is the extent mask, determined by the data block allocation
size and the number of disk blocks.

0 DSM determines the total storage capacity of the disk drive.

0 DRM determines the total number of directory entries that can
be stored on this drive. ALO, ALl determine reserved directory
blocks.

0 CKS is the size of the directory check vector.

0 OFF is the number of reserved tracks at the beginning of the
(logical) disk.

The values of BSH and BLM determine the data allocation size BLS,
which is not an entry in the DPB. Given that the designer has
selected a value for BLS, the values of BSH and BLM are shown Table
6-8.

Table 6-8. BSH and BLM Values

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192 6 63
16,384 7 127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in Table 6-9.

6-26

CP/M Operating System Manual 6.10 Disk Parameter Tables

Table 6-9. EXM Values
BLS EXM values

DSM<256 DSM>255

1024 0 N/A
2048 1 0
4096 3 1
8192 7 3
16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product (DSM+1)
is the total number of bytes held by the drive and must be within
the capacity of the physical disk, not counting the reserved
operating system tracks.

The DRM entry is the one 1less than the total number of
directory entries that can take on a 16-bit value. The values of
ALO and AL1, however, are determined by DRM. The values ALO and ALl
can together be considered a string of 16-bits, as shown in Figure
6-5.

ALO ALl

60 01 02 063 04 65 66 67 68 069 106 11 12 13 14 15

Figure 6-5. ALO and ALl

Position 00 corresponds to the high-order bit of +the byte
labeled ALO and 15 corresponds to the low-order bit of the byte
labeled AL1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right wuntil position 15). Each directory entry
occupies 32 bytes, resulting in the following tabulation:

Table 6-10. BLS Tabulation

BLS Directory Entries
1024 32 times # bits
2048 64 times # bits
4096 128 times # bits
8192 256 times # bits

16,384 512 times # bits

6-27

CP/M Operating System Manual 6.10 Disk Parameter Tables

Thus, if DRM = 127 (128 directory entries) and BLS = 1024,
there are 32 directory entries per block, requiring 4 reserved
blocks. In this case, the 4 high-order bits of ALO® are set,
resulting in the values ALO = OFOH and ALl = OOH.

The CKS value is determined as follows: if the disk drive
media 1is removable, then CKS = (DRM+1l)/4, where DRM is the last
directory entry number. If the media are fixed, then set CKS = 0

(no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are
skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called and can be used as a
mechanism for skipping reserved operating system tracks or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address
the same DPB if their drive characteristics are identical. Further,
the DPB can be dynamically changed when a new drive is addressed by
simply changing the pointer in the DPH; because the BDOS copies the
DPB values to a local area whenever the SELDSK function is invoked.

Returning back to DPH for a particular drive, the two address
values CSV and ALV remain. Both addresses reference an area of
uninitialized memory following the BIOS. The areas must be unique
for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this
particular drive, If CKS = (DRM+1l)/4, you must reserve (DRM+1)/4
bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk and
is computed as (DSM/8)+1.

The CBIOS shown in Appendix B demonstrates an instance of these
tables for standard 8-inch, single-density drives. It might be
useful to examine this program and compare the tabular values with
the definitions given above.

6.11 The DISKDEF Macro Library

A macro library called DISKDEF (shown in Appendix F), greatly
simplifies the table construction process. You must have access to
the MAC macro assembler, of course, to use the DISKDEF facility,
while the macro 1library 1is included with all CP.M 2 distribution
disks.

6-28

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0,...
DISKDEF 1,...
DISKDEF n-1
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file, on the same
disk as the BIOS, into MAC’s internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
the wuser’s system, where n is an integer in the range 1 to 16. A
series of DISKDEF macro calls then follow that define the
characteristics of each logical disk, 0 through n-1, corresponding
to logical drives A through P. The DISKS and DISKDEF macros
generate the in-line fixed data tables described in the previous
section and thus must be placed in a nonexecutable portion of the
BIOS, typically directly following the BIOS jump vector.

The remaining portion of the BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas that are located in memory above
the BIOS.

The DISKDEF macro call takes the form:
DISKDEF dn,fsc,lsc,[skf],bls dks,dir,cks,ofs,[0]
where

dn is the logical disk number, 0 to n-1.

fsc is the first physical sector number (0 or 1).
lsc is the last sector number.

skf is the optional sector skew factor.

bls is the data allocation block size.

dks is the number of blocks on the disk.

dir is the number of directory entries.

cks is the number of checked directory entries.
ofs is the track offset to logical track 00.

[0] is an optional 1.4 compatibility flag.

O OO O O oo o o o

The value dn is the drive number being defined with this
DISKDEF macro invocation. The fsc parameter accounts for differing
sector numbering systems and is usually @ to 1. The 1lsc is the last
numbered sector on a track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation
table according to the skew.

6-29

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

If the number of sectors is less than 256, a single-byte table
is created, otherwise each translation table element occupies two
bytes. No translation table is created if the skf parameter is
omitted, or equal to 0.

The bls parameter specifies the number of bytes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases with larger data block
sizes because there are fewer directory references, and logically
connected data records are physically close on the disk. Further,
each directory entry addresses more data and the BIOS-resident RAM
space is reduced.

The dks parameter specifies the total disk size in bls units.
That is, if the bls = 2048 and dks = 1000, the total disk capacity
is 2,048,000 bytes. If dks is greater than 255, the block size
parameter bls must be greater than 1024. The value of dir is the
total number of directory entries that might exceed 255, if desired.

The «cks parameter determines the number of directory items to
check on each directory scan and is wused internally to detect
changed disks during system operation, where an intervening cold or
warm start has not occurred. When this situation is detected, CP/M
automatically marks the disk Read-Only so that data is not
subsequently destroyed.

As stated in the previous section, the value of cks = dir when
the medium 1is easily changed, as is the case with a floppy disk
subsystem. If the disk is permanently mounted, the value of cks 1is
typically 0, because the probability of changing disks without a
restart is low.

The ofs value determines the number of tracks to skip when this
particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 that have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the <case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form:
DISKDEF i,j

gives disk i the same characteristics as a previously defined drive
j. A standard four-drive, single-density system, which is
compatible with version 1.4, is defined using the following macro
invocations:

DISKS 4
DISKDEF 0,
1

1,26,6,1024,243,64,2
DISKDEF ,0

6-30

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

DISKDEF 2,0
DISKDEF 3,0

ENDEF
with all disks having the same parameter values of 26 sectors per
track, numbered 1 through 26, with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of

243K-byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS macro generates n DPHs, starting at the DPH table
address DPBASE generated by the macro. Each disk header block
contains sixteen bytes, as described above, and correspond one-for-
one to each of the defined drives. In the four-drive standard
system, for example, the DISKS macro generates a table of the form:

DPBASE EQU$

DPEO: Dw XLTO,0000H, 0000H,0000H,DIRBUF,DPBO,CSV0O,ALVO
DPE1: Dw XLTO,0000H, 0000H,0000H,DIRBUF,DPBO, CSV1,ALV1
DPE2: Dw XLTO,0000H,0000H,0000H,DIRBUF,DPBO,CSV2,ALV2
DPE3: Dw XLTO,0000H,0000H,0000H,DIRBUF,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the DPH are described in detail in the previous
section. The check and allocation vector addresses are generated by
the ENDEF macro in the ram area following the BIOS code and tables.

Note that if the skf (skew factor) parameter is omitted, or
equal to 0, the translation table is omitted and a 0000H value is
inserted in the XLT position of the DPH for the disk. 1In a
subsequent call to perform the Tlogical-to-physical translation,
SECTRAN receives a translation table address of DE = 0Q000H and
simply returns the original logical sector from BC in the HL
register pair.

A translate table is constructed when the skf parameter is
present, and the (nonzero) table address 1is placed into the
corresponding DPHs. The following for example, is constructed when
the standard skew factor skf = 6 is specified in the DISKDEF macro
call:

XLTO: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16, 22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
that is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area
is determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce the
following EQU statement:

6-31

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

4C72 = BEGDAT EQU $
(data areas)
4DBO = ENDDAT EQU $
013C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at Tlocation 4C72H,
ends at 4DBOH-1, and occupies 013CH bytes. You must ensure that
these addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check drive
characteristics, because STAT uses the disk parameter block to
decode the drive information. A STAT command of the form:

STAT d:DSK:

decodes the disk parameter block for drive d (d=A,...,P) and
displays the following values:

r: 128-byte record capacity
k: kilobyte drive capacity
d: 32-byte directory entries
c: checked directory entries
e: records/extent

b: records/block

s: sectors/track

t:

reserved tracks

Three examples of DISKDEF macro invocations are shown below
with corresponding STAT parameter values. The last example produces
a full 8-megabyte system.

DISKDEF ©0,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF ©0,1,58,,2048,1024,300,0,2
r=16348, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF ©0,1,58,,16348,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

6.12 Sector Blocking and Deblocking

Upon each call to BIOS WRITE entry point, the CP/M BDOS
includes information that allows effective sector blocking and
deblocking where the host disk subsystem has a sector size that is a
multiple of the basic 128-byte unit. The purpose here is to present
a general-purpose algorithm that can be included within the BIOS and
that uses the BDOS information to perform the operations
automatically.

6-32

CP/M Operating System Manual 6.12 Blocking and Deblocking

On each call to WRITE, the BDOS provides the following
information in register C:

0 = (normal sector write)

1 = (write to directory sector)

2 = (write to the first sector
of a new data block)

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update; when
the write is to other than the first sector of an unallocated block;
or when the write 1is not into the directory area. Condition 1
occurs when a write into the directory area is performed. Condition
2 occurs when the first record (only) of a newly allocated data
block is written. 1In most cases, application programs read or write
multiple 128-byte sectors in sequence; thus, there 1is little
overhead involved in either operation when blocking and deblocking
records, because preread operations can be avoided when writing
records.

Appendix G lists the blocking and deblocking algorithms in
skeletal form; this file is included on your CP/M disk. Generally,
the algorithms map all CP/M sector read operations onto the host
disk through an intermediate buffer that is the size of the host
disk sector. Throughout the program, values and variables that
relate to the CP/M sector involved in a seek operation are prefixed
by sek, while those related to the host disk system are prefixed by
hst. The equate statements beginning on 1line 29 of Appendix G
define the mapping between CP/M and the host system, and must be
changed if other than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically select the host disk at this point
(it 1is selected 1later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on
lines 110 and 125, respectively. These subroutines take the place
of your previous READ and WRITE operations.

The actual physical read or write takes place at either
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number, which may require translation to physical
sector number. You must insert code at this point that performs the
full sector read or write into or out of the buffer at hstbuf of
length hstsiz. A1l other mapping functions are performed by the
algorithms.

6-33

CP/M Operating System Manual 6.12 Blocking and Deblocking

This particular algorithm was tested using an 80-megabyte hard
disk unit that was originally configured for 128-byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512-byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall
response. In this situation, there is no apparent overhead involved
in deblocking sectors, with the advantage that user programs still
maintain 128-byte sectors. This 1is primarily because of the
information provided by the BD0OS, which eliminates the necessity for
preread operations.

End of Section 6

6-34

oNOOUTAE WN -

0016

FEFf =

0000

0000 =

0000

1600

1600

0000 =

0806
1600
002c
0002
0004

0080 =

bias

patch

’

cpmb
bdos
cpml
nsects
offset
cdisk
buff

Appendix A

The Microcomputer Development System Basic Input/Output System (BIOS)

mds-800 i/o drivers for cp/m 2.2
(four drive single density version)

version 2.2 february, 1980

equ 22 ;version 2.2
copyright (c) 1980

digital research

box 579, pacific grove
california, 93950

equ Offfh ;value of "true"

equ not true ;"false"

equ false ;true if test bios

if test

equ 03400h ;base of ccp in test system

endif

if not test

equ 0000h ;generate relocatable cp/m system
endif

equ 1600h

org patch

equ $-patch ;base of cpm console processor

equ 806h+cpmb ;basic dos (resident portion)

equ $-cpmb ;length (in bytes) of cpm system
equ cpml/128 ;number of sectors to load

equ 2 ;number of disk tracks used by cp/m
equ 0004h ;address of last logged disk on warm start
equ 0080h ;default buffer address

A-1

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

000a

1600
1603
1606
1609
160c
160f
1612
1615
1618
161b
161le
1621

c3b316
c3c316
c36117
c36417
c36al7
c36d17
c37217
c37517
c37817
c37d17
c3a7l7
c3acl7

wboote:

equ 10 ;max retries on disk i/o before error

perform following functions
boot cold start
wboot warm start (save i/o0 byte)
(boot and wboot are the same for mds)
const console status
reg-a = 00 if no character ready
reg-a = ff if character ready

conin console character in (result in reg-a)
conout console character out (char in reg-c)
list list out (char in reg-c)

punch punch out (char in reg-c)

reader paper tape reader in (result to reg-a)
home move to track 00

(the following calls set-up the io parameter block for the

mds, which is used to perform subsequent reads and writes)
seldsk select disk given by reg-c (0, 1, 2...)

settrk set track address (0,...76) for subsequent read-write
setsec set sector address (1,...,26) for subsequent read-write
setdma set subsequent dma address (initially 806h)

(read and write assume previous calls to set up the io parameters)
read read track/sector to preset dma address

write track/sector from preset dma address

jump vector for individual routines

jmp boot
jmp wboot
jmp const
jmp conin
jmp conout
jmp list
jmp punch
jmp reader
jmp home
jmp seldsk
jmp settrk
jmp setsec

A-2

75 1624 c3bbl7 jmp setdma

76 1627 c3cll7 jmp read

77 162a c3cal7 jmp write

78 162d c37017 jmp listst ;list status

79 1630 c3bll7 jmp sectran

80 ;

81 maclib diskdef ;load the disk definition library
82 disks 4 ; four disks

83 1633+= dpbase equ $;base of disk parameter blocks
84 1633+82160000 dpe0: dw x1t0, 0000h ;translate table

85 1637+00000000 dw 0000h, 0000h ;scratch area

86 163b+6€187316 dw dirbuf, dpb0 ;dir buff, parm block
87 163f+0d19eel8 dw csv0O, alvO ;check, alloc vectors
88 1643+82160000 dpel: dw x1tl, 0000h ;translate table

89 1647+00000000 dw 0000h, 0000h ;scratch area

90 164b+6e187316 dw dirbuf, dpbl ;dir buff, parm block
91 164f+3c191d19 dw csvl, alvl ;check, alloc vectors
92 1653+82160000 dpe2: dw x1t2, 00006h ;translate table

93 1657+00000000 dw 0000h, 0000h ;scratch area

94 165b+6e187316 dw dirbuf, dpb2 ;dir buff, parm block
95 165f+6b194c19 dw csv2, alv2 ;check, alloc vectors
96 1663+82160000 dpe3: dw x1t3, 0000h ;translate table

97 1667+00000000 dw 0000h, 0000h ;scratch area

98 166b+6e€187316 dw dirbuf, dpb3 ;check, alloc block
99 166f+9a197b19 dw csv3, alv3 ;dir buff, parm vectors
100 diskdef 0, 1, 26, 6, 1024, 243, 64, 64, offset
101 1673+= dpb0 equ $;disk parm block

102 1673+1a00 dw 26 ;sec per track

103 1675+03 db 3 ;block shift

104 1676+07 db 7 ;block mask

105 1677+00 db 0 ;extnt mask

106 1678+1200 dw 242 ;disk size-1

107 167a+3f00 dw 63 ;directory max

108 167c+c0 db 192 ;allocO

109 167d+00 db 0 ;allocl

110 167e+1000 dw 16 ;check size

111 1680+0200 dw 2 ;offset

112 1682+= x1t0 equ $;translate table

113 1682+01 db 1

114 1683+07 db 7

A-3

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

1684+06d
1685+13
1686+19
1687+05
1688+0b
1689+11
168a+17
168b+03
168c+09
168d+0f
168e+15
168f+02
1690+08
1691+0e
1692+14
1693+1a
1694+06
1695+0c
1696+12
1697+18
1698+04
1699+0a
169a+10
169b+16

1673+ =
001f+ =
0010+ =
1682+ =

1673+ =
001f+ =
0010+ =
1682+ =

1673+ =
001f+ =
0010+ =
1682+ =

dpbl
alsl
cssl
x1tl

dpb2
als2
css2
x1t2

dpb3
als3
Ccss3
x1t3

db 13

db 19

db 25

db 5

db 11

db 17

db 23

db 3

db 9

db 15

db 21

db 2

db 8

db 14

db 20

db 26

db 6

db 12

db 18

db 24

db 4

db 10

db 16

db 22

diskdef 1,0

equ dpbo ;equivalent parameters

equ also ;same allocation vector size
equ css0 ;same checksum vector size
equ x1t0 ;same translate table
diskdef 2, 0

equ dpbo ;equivalent parameters

equ also ;same allocation vector size
equ css0 ;same checksum vector size
equ x1t0 ;same translate table
diskdef 3, 0

equ dpbo ;equivalent parameters

equ also ;same allocation vector size
equ css0 ;same checksum vector size
equ x1t0 ;same translate table

endef occurs at end of assembly

A-4

155
156
157
158
159
160
lol
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

00fd
00fc
00f3
007E

800
ffof
803
806
809
f80c
f80f
812

0078
0078
0079
007b

0079
007a

0004
0006
0003
0004
oood
000a

mon80
rmon80
ci

ri

co

po

lo
csts
base
dstat
rtype
rbyte
ilow
ihigh
readf
writf
recal
iordy
cr

1f

’

end
are

of controller--independent code, the remaining subroutines
tailored to the particular operating environment, and must

be altered for any system which differs from the intel mds.

the
and

following code assumes the mds monitor exists at 0f800h
uses the i/o subroutines within the monitor

we also assume the mds system has four disk drives

equ
equ
equ
equ

mds
equ
equ
equ
equ
equ
equ
equ
equ

0fdh ;interrupt revert port

0fch ;interrupt mask port

0f3h ;interrupt control port

0111%$11106b ;enable rst 0 (warm boot), rst 7 (monitor)

monitor equates

0f800h ;mds monitor

0ffofh ;restart mon80 (boot error)

0f803h ;console character to reg-a

0f806h ;reader in to reg-a

0f809h ;console char from c to console out
0f80ch ;punch char from c to punch device
0f80fh ;list from ¢ to list device

0f812h ;console status 00/ff to register a

disk ports and commands

equ
equ
equ
equ

equ
equ

equ
equ
equ
equ
equ
equ

78h ;base of disk command io ports
base ;disk status (input)

base+1 ;result type (input)

base+3 ;result byte (input)

base+1 ;iopb low address (output)
base+2 ;iopb high address (output)
4h ;read function

6h ;write function

3h ;recalibrate drive

4h ;i/0 finished mask

0dh ;carriage return

Oah ; line-feed

A-5

195 signon: ;signon message: xxk cp/m vers y.y

196 169c 0dOala db cr, 1f, 1f

197 if test

198 db '32' ;32k example bios

199 endif

200 if not test

201 169f 3030 db '00’ ;memory size filled by relocator

202 endif

203 16al 6b2043502f db "k cp/m vers '

204 16ad 322e32 db ver/10+'0’, ', vers mod 10+'0’

205 16b0 0d0a0o db cr, 1f, 0

206 ;

207 boot: ;print signon message and go to ccp

208 ; (note: mds boot initialized iobyte at 0003h)

209 16b3 310001 1xi sp, buff+80h

210 16b6 219cl6 1xi h, signon

211 16b9 cdd317 call prmsg ;print message

212 16bc af xra a ;clear accumulator

213 16bd 320400 sta cdisk ;set initially to disk a

214 16c0 c30f17 jmp gocpm ;go to cp/m

215 ;

216 ;

217 wboot:; Tloader on track 0, sector 1, which will be skipped for warm
218 ; read cp/m from disk--assuming there is a 128 byte cold start
219 ; start

220 ;

221 16c3 318000 1xi sp, buff ;using dma--thus 80 thru ff available for stack
222 ;

223 16¢c6 0Oela mvi c, retry ;max retries

224 16¢8 c¢5 push b

225 wboot0: ;enter here on error retries

226 16c9 010000 1xi b, cpmb ;set dma address to start of disk system
227 16cc cdbbl? call setdma

228 16¢cf 0e00 mvi c, 0 ;boot from drive 0

229 16d1 cd7d17 call seldsk

230 16d4 0e00 mvi c, 0

231 16d6 cda717 call settrk ;start with track 0

232 16d9 0e02 mvi c, 2 ;start reading sector 2

233 16db cdacl7 call setsec

234 ;

A-6

235 ; read sectors, count nsects to zero

236 16de cl pop b ;10-error count

237 16df 062c mvi b, nsects

238 rdsec: ;read next sector

239 16el c5 push b ;save sector count

240 16e2 cdcll? call read

241 16e5 c24917 jnz booterr ;retry if errors occur
242 16e8 2a6cl8 lhld iod ;increment dma address
243 16eb 118000 1xi d, 128 ;sector size

244 16ee 19 dad d ;incremented dma address in hl
245 16ef 44 mov b, h

246 160 4d mov c, 1 ;ready for call to set dma
247 16f1 cdbbl7 call setdma

248 16f4 3a6bl8 lda ios ;sector number just read
249 16f7 fela cpi 26 ;read last sector?

250 169 da0517 jc rdl

251 ; must be sector 26, zero and go to next track
252 16fc 3a6als8 lda iot ;get track to register a
253 16ff 3c inr a

254 1700 4f mov c, a ;read for call

255 1701 cda717 call settrk

256 1704 af Xra a ;clear sector number
257 1705 3c rdl: inr a ;to next sector

258 1706 4f mov c, a ;ready for call

259 1707 cdacl? call setsec

260 170a cl pop b ;recall sector count
261 170b 05 dcr b ;done?

262 170c c2ellb jnz rdsec

263 ;

264 ; done with the load, reset default buffer address
265 gocpm: ;(enter here from cold start boot)

266 ; enable rst0® and rst7

267 170f f3 di

268 1710 3el2 mvi a, 12h ;initialize command

269 1712 d3fd out revrt

270 1714 af xra a

271 1715 d3fc out intc ;cleared

272 1717 3e7e mvi a, inte ;rst® and rst7 bits on
273 1719 d3fc out intc

274 171b af Xxra a

A-7

275 171c d3f3 out icon ;interrupt control
276 H

277 ; set default buffer address to 80h

278 171e 018000 1xi b, buff

279 1721 cdbbl7 call setdma

280 ;

281 ; reset monitor entry points

282 1724 3ec3 mvi a, jmp

283 1726 320000 sta 0

284 1729 210316 1xi h, wboote

285 172c 220100 shld 1 ;jump wboot at location 00
286 172f 320500 sta 5

287 1732 210608 1xi h, bdos

288 1735 220600 shld 6 ;jmp bdos at location 5
289 if not test

290 1738 323800 sta 7%8 ;jmp to mon80 (may have changed by ddt)
291 173b 2100f8 1xi h, mon80

292 173e 223900 shld 7%8+1

293 endif

294 ; leave iobyte set

295 ; previously selected disk was b, send parameter to cpm
296 1741 3a0400 lda cdisk ; last logged disk number
297 1744 4f mov c, a ;send to ccp to log it in
298 1745 fb ei

299 1746 c30000 jmp cpmb

300 ;

301 ; error condition occurred, print message and retry
302 booterr:

303 1749 c1 pop b ;recall counts

304 174a 0d dcr C

305 174b ca5217 jz bootero

306 ; try again

307 174e c5 push b

308 174f c3c916 jmp wboot0@

309 ;

310 bootero:

311 ; otherwise too many retries

312 1752 215b17 1xi h, bootmsg

313 1755 cdd317 call prmsg

314 1758 c30fff jmp rmon80 ;mds hardware monitor

A-8

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

175b

1761

1764

1767

1769

176a

176d

1770
1771

1772

1775

1778
177a

362676174

c312f8

cd03f8

eb67f

c9

c309f8

c30ff8

af
c9

c30cf8

c306f8

0e00
c3a7l17

’

bootmsg:

conout:

list:

’

listst:

punch:

’

’
reader:

’

home:

seldsk:

db "?boot’, O

console status to reg-a
(exactly the same as mds call)
jmp csts

;console character to reg-a

call ci

ani 7fh ;remove parity bit
ret

;console character from ¢ to console out
jmp co

;list device out
(exactly the same as mds call)
jmp lo

;return list status
xra a
ret ;always not ready

;punch device out
(exactly the same as mds call)

jmp po

;reader character in to reg-a
(exactly the same as mds call)
jmp ri

;move to home position
treat as track 00 seek
mvi c, 0

jmp settrk

;select disk given by register c

A-9

355 177d 210000 1xi h, 0000h ;return 0000 if error

356 1780 79 mov a, c

357 1781 fe04 cpi ndisks ;too large?

358 1783 do rnc ;leave hl = 0000

359 ;

360 1784 e602 ani 10b ;00 00 for drive 0, 1 and 10 10 for drive 2, 3
361 1786 326618 sta dbank ;to select drive bank

362 1789 79 mov a, c ;00, 01, 10, 11

363 178a e601 ani 1b ;mds has 0, 1 at 78, 2, 3 at 88
364 178c b7 ora a ;result 00?

365 178d ca9217 jz setdrive

366 1790 3e30 mvi a, 00110000b ;selects drive 1 in bank
367 setdrive:

368 1792 47 mov b, a ;save the function

369 1793 216818 1xi h, iof ;io function

370 1796 7e mov a, m

371 1797 eé6bcf ani 11001111b ;mask out disk number

372 1799 bo ora b ;mask in new disk number

373 179a 77 mov m, a ;save it in iopb

374 179b 69 mov 1, c

375 179c 2600 mvi h, 0 ;hl=disk number

376 179e 29 dad h ;%2

377 179f 29 dad h ;x4

378 17a0 29 dad h ; %8

379 17al 29 dad h ;%16

380 17a2 113316 1xi d, dpbase

381 17a5 19 dad d ;hl=disk header table address
382 17a6 c9 ret

383 ;

384 ;

385 settrk: ;set track address given by c

386 17a7 216al8 1xi h, iot

387 17aa 71 mov m, c

388 17ab c9 ret

389 ;

390 setsec: ;set sector number given by c

391 17ac 216b18 1xi h, ios

392 17af 71 mov m, C

393 17b0 c9 ret

394 sectran:

A-10

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

17b1
17b3
17b4
17b5
17b6
17b9
17ba

17bb
17bc
17bd
17¢c0

17cl
17c3
17c6
17¢c9

17ca
17cc
17cf
17d2

17d3
17d4
17d5

17d6
17d7
17d8
17db
17dc

0600
eb

09

7e
326b18
6f

c9

69
60
226¢18
c9

0e04
cde017
cdfol7
c9

0e06
cde017
cdfo17
c9

7e
b7
c8

e5
4f
cd6al7
el
23

setdma:

read:

write:

;translate sector bc using table at de

mvi b, 0 ;double-precision sector number in bc
xchg ;translate table address to hl

dad b ;translate (sector) address

mov a, m ;translated sector number to a

sta ios

mov 1, a ;return sector number in 1

ret

;set dma address given by regs b, c

mov 1, c
mov h, b
shld iod

ret

;read next disk record (assuming disk/trk/sec/dma set)

mvi c, readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

;disk write function

mvi c, writf

call setfunc ;set to write function
call waitio

ret ;may have error set

utility subroutines
;print message at h, 1 to 0

mov a, m
ora a zero?
rz

more to print

push h

mov c,a

call conout

pop h

inx h

A-11

435 17dd c3d317 jmp prmsg

436 ;

437 setfunc:

438 ; set function for next i/o (command in reg-c)

439 17e0 216818 1xi h, iof ;io function address

440 17e3 7e mov a, m ;get it to accumulator for masking
441 17e4 e6f8 ani 11111000b ;remove previous command

442 17e6 bl ora C ;set to new command

443 17e7 77 mov m, a ;replaced in iopb

444 ; the mds-800 controller requires disk bank bit in sector byte
445 ; mask the bit from the current i/o function

446 17e8 €620 ani 00100000b ;mask the disk select bit
447 17ea 216b18 1xi h, ios ;address the sector select byte
448 17ed b6 ora m ;select proper disk bank

449 17ee 77 mov m, a ;set disk select bit on/off
450 17ef c9 ret

451 ;

452 waitio:

453 17f0 Oela mvi c, retry ;max retries before perm error

454 rewait:

455 ; start the i/o function and wait for completion

456 17f2 cd3f18 call intype ;in rtype

457 17f5 cd4cl8 call inbyte ;clears the controller

458 ;

459 17f8 3a6618 lda dbank ;set bank flags

460 17fb b7 ora a ;zero if drive 0, 1 and nz if 2, 3
461 17fc 3e67 mvi a, iopb and offh ;low address for iopb

462 17fe 0618 mvi b, iopb shr 8 ;high address for iopb

463 1800 c20b18 jnz iodrl ;drive bank 17

464 1803 d379 out ilow ; low address to controller
465 1805 78 mov a, b

466 1806 d37a out ihigh ;high address

467 1808 c31018 jmp waito ;to wait for complete

468 ;

469 iodrl: ;drive bank 1

470 180b d389 out ilow+10h ;88 for drive bank 10

471 180d 78 mov a, b

472 180e d38a out ihigh+106h

473 ;

474 1810 cd5918 waito: call instat ;wait for completion

A-12

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

1813
1815

1818

181b
181d

1820
1821

1824
1827
1828
182b
182c
182e

1831

1832
1835

€604
calol8

cd3f18

fed?2
ca3218

b7
c23818

cd4cl8
17
da3218
1f
e6fe
c23818

c9

cd4cl8
c33818

ani
jz

iordy
waito

check io completion ok

call

intype

;ready?

;must be io complete (00) unlinked

00 unlinked i/o complete, 01 linked i/o complete (not used)
io disk status changed

cpi
jz

10b
wready

11 (not used)

; ready status change?

must be 00 in the accumulator

ora
jnz

a
werror

check i/o error bits

call
ral
jc
rar
ani
jnz

inbyte
wready

11111116b
werror

;some other condition, retry

;unit not ready

;any other errors? (deleted data ok)

read or write is ok, accumulator contains zero

ret

;not ready, treat as error for now

call
jmp

inbyte
trycount

;clear result byte

;return hardware malfunction (crc, track, seek, etc.)
the mds controller has returned a bit in each position
of the accumulator, corresponding to the conditions:
-deleted data (accepted as ok above)

0

— o Uk, WNBRE

-crc error
-seek erro

r

-address error (hardware malfunction)

-data over/under flow (hardware malfunction)
-write protect (treated as not ready)

-write error (hardware malfunction)

-not ready

A-13

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

1838
1839

183c
183e

183f
1842
1843
1846
1848
1849
184b

184c
184f
1850
1853
1855
1856
1858

1859
185c¢
185d
1860
1862
1863
1865

0d
c2f217

3e01
c9

3a6618
b7
c24918
db79
c9
db89
c9

3a6618
b7
c25618
db7b
c9
db8b
c9

3a6618
b7
c26318
db78
c9
db88
c9

trycount:

’

intype:

intypl:

inbyte:

inbytl:

instat:

instal:

(accumulator bits are numbered 7 6 54 3 2 1 0)

it may be useful to filter out the various conditions,
but we will get a permanent error message if it is not
recoverable. in any case, the not ready condition is

treated as a separated condition for later improvement

register c contains retry count, decrement 'til zero
dcr C
jnz rewait ;for another try

cannot recover from error
mvi a, 1 ;error code
ret

intype, inbyte, instat read drive bank 00 or 10
lda dbank

ora a

jnz intypl ;skip to bank 10
in rtype

ret

in rtype+10h ;78 for 0, 1 88 for 2, 3
ret

lda dbank

ora a

jnz inbytl

in rbyte

ret

in rbyte+10h

ret

lda dbank

ora a

jnz instal

in dstat

ret

in dstat+10h

ret

A-14

555 ;

556 ;

557 ; data areas (must be in ram)

558 1866 00 dbank: db 0 ;disk bank 00 if drive 0, 1
559 ; 10 if drive 2, 3
560 iopb: ;10 parameter block

561 1867 80 db 80h ;normal i/o operation

562 1868 04 iof: db readf ;io function, initial read
563 1869 01 ion: db 1 ;number of sectors to read
564 186a 02 iot: db offset ;track number

565 186b 01 ios: db 1 ;sector number

566 186¢c 8000 iod: dw buff ;10 address

567 ;

568 ;

569 ; define ram areas for bdos operation

570 endef

571 186e+= begdat equ $

572 186e+ dirbuf: ds 128 ;directory access buffer
573 18ee+ alvo: ds 31

574 190d+ csvO: ds 16

575 191d+ alvl: ds 31

576 193c+ csvl: ds 16

577 194c+ alv2: ds 31

578 196b+ csv2: ds 16

579 197b+ alv3: ds 31

580 199a+ csv3: ds 16

581 19aa+= enddat equ $

582 013c+= datsiz equ $-begdat

583 19aa end

alsl 001f 141#

als2 001f 146#

als3 001f 151#

alvo 18ee 87 573#

alvl 191d 91 575#

alv2 194c 95 577#

alv3 197b 99 5794#

base 0078 180# 181 182 183 185 186

bdos 0806 29# 287

A-15

begdat
bias
boot
bootero®
booterr
bootmsg
buff
cdisk
ci

co
conin
conout
const
cpmb
cpml
cr
cssl
Ccss2
css3
csts
csvo
csvl
csv2
csv3
datsiz
dbank
dirbuf
dpb0
dpbl
dpb2
dpb3
dpbase
dpe0
dpel
dpe2
dpe3
dstat
enddat
false
gocpm

186e
0000
16b3
1752
1749
175b
0080
0004
803
809
1764
176a
1761
0000
1600
000d
0010
0010
0010
812
190d
193c
196b
199a
013c
1866
186e
1673
1673
1673
1673
1633
1633
1643
1653
1663
0078
19aa
0000
170f

571+#
19#
63
305
241
312
34#
33#
172#
174#
66
67
65
28#
30#
192#
1424#
147#
152#
177#
87
91
95
99
582#
361
86
86
90
94
98
83#
84#
88#
92#
96#
181#
581#
15#
214

582
22#
207#
310#
302#
316#
209
213
325
330
324#
329+#
320#
29
31
196

322

574#
576#
578#
580+#

459
90
101#
140#
145#
150#

380

550

16
265#

221
296

432

30

205

531
94
140

552

278 566

226 299

539 539 547 558#
98 572#

145 150

A-16

home
icon
ihigh
ilow
inbytl
inbyte
instal
instat
intc
inte
intypl
intype
iod
iodrl
iof
ion
iopb
iordy
ios
iot

1f
list
listst
lo
mon80
nsects
offset
patch
po
prmsg
punch
rbyte
rdl
rdsec
read
reader
readf
recal
retry
revrt

1778
00fe
007a
0079
1856
184c
1863
1859
00fc
007e
1849
183f
186¢
180b
1868
1869
1867
0004
186b
186a
000a
176d
1770
f80f
800
002c
0002
1600
f80c
17d3
1772
007b
1705
16el
17c1
1775
0004
0003
000a
00fd

71
166#
186#
185#
541
457
549
474
165#
167#
533
456
242
463
369
563#
461
191#
248
252
193#

68

78
176#
170#

31#

32#

25#
175#
211

69
183#
250
238#

76

70
188#
190#

35#
164+#

349+#
275
466
464
544#
490
552#
547+#
271
272
536#
479
407
469#
439

462
475
391
386
196
332#
336#
334
201
237
100
27
343
313
341#
542
257#
262
240
345#
411

223
269

472
470

501

273

531#

566#

562#

560#

400

564+#
196

564
28

425#

544

410#

562

453

539#

447 565#

205

435

A-17

rewait
ri
rmon80
rtype
sectran
seldsk
setdma
setdrive
setfunc
setsec
settrk
signon
test
true
trycount
vers
waito
waitio
wboot
wboot0
wboote
werror
wready
write
writf
x1to
x1tl
x1t2
x1t3

1712
806
ffof
0079
17b1
177d
17bb
1792
17e0
17ac
17a7
169c
0000
ffff
1838
0016
1810
17f0
16¢3
16¢9
1603
1838
1832
17ca
0006
1682
1682
1682
1682

454+#
173#
171#
182#
79
72
75
365
412
74
73
195#
16#
14#
502
o#
467
413
64
225#
64#
487
483
77
189+#
84
88
92
96

524
347
314
534
394#
229
227
367#
419
233
231
210
18
15
521#
204
4744#
420
217#
308
284
495
492
417#
418
112#
143#
148#
153#

536

354+#
247

437#
259
255
21
204

476
452#

504+#
500#

143

279

390#

352

197

148

404+#

385#

200 289

153

A-18

oNOOUVTSA WN =

0014

0000
3400
3c06
4300
0004
0003

43200
002c

4a00
4a03
4306
4309
4a0c¢
4a0f
4al2
4al5
4318
4alb
4ale
4a21
4a24
4a27
4a2a

c39c4a
c3ab4a
c3114b
c3244b
c3374b
c3494b
c34d4b
c34f4b
c3544b
c35a4b
c37d4b
c3924b
c3ad4b
c3c34b
c3d64b

bias
ccp
bdos
bios
cdisk
iobyte

’

nsects

’

’

wboote:

Appendix B

A Skeletal CBIOS

skeletal cbios for first level of cp/m 2.0 alteration

equ

20

;cp/m version memory size in kilobytes

"bias" is address offset from 3400h for memory systems
than 16k (referred to as "b" throughout the text)

equ
equ
equ
equ
equ
equ

org
equ

(msize-20)*1024

3400h+bias
ccp+806h
ccp+1600h
0004h
0003h

bios
($-ccp)/128

;base of ccp
;base of bdos
;base of bios

;current disk number 0=a, ...

;intel i/0 byte

;origin of this program
;warm start sector count

jump vector for individual subroutines

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

boot
wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write

B-1

;cold start

ywarm start

;console status
;console character in
;console character out
;list character out
;punch character out
;reader character out
;move head to home position
;select disk

;set track number

;set sector number
;set dma address

;read disk

;write disk

’

15=p

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

4a2d
4a30

4a33
4a37
4a3b
4a3f

4a43
4a47
4a4b
4aaf

4a53
4a57
4a5b
4a5f

4a63
4a67
4a6b
4a6f

4a73
4a77
4a7b
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4390
4391

c34b4b
c3a74b

73420000
00000000
f04c8d4a
ec4d704d

73420000
00000000
f04c8d4a
fc4d8fad

73420000
00000000
f04c8d4a
Ocdeaedd

73420000
00000000
f04c8d4a
lcdecd4d

01070d13
19050b11
1703090f
1502080e
141a060c
1218040a
1016

1a00
03
07
00

trans:

dpblk:

jmp
jmp

listst
sectran

;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00

dw
dw
dw
dw

trans, 0000h
0000h, 00006h
dirbf, dpblk
chk00, alloeo

disk parameter header for disk

dw
dw
dw
dw

trans, 0000h
0000h, 0006h
dirbf, dpblk
chk01l, allol

disk parameter header for disk

dw
dw
dw
dw

trans, 0000h
0000h, 00006h
dirbf, dpblk
chk02, alloe2

disk parameter header for disk

dw
dw
dw
dw

sector
db
db
db
db
db
db
db

trans, 0000h
0000h, 0006h
dirbf, dpblk
chk03, alle3

translate vecto

1, 7, 13, 19
25, 5, 11, 17
23, 3, 9, 15
21, 2, 8, 14
20, 26, 6, 12
18, 24, 4, 10
16, 22

;disk parameter block,

r
;sectors
;sectors
;sectors
;sectors
;sectors
;sectors
;sectors

01

02

03

0, 11, 12
14, 15, 16
18, 19, 20
22, 23, 24
26

common to all disks

dw 26 ;sectors per track
db 3 ;block shift factor
db 7 ;block mask
db 0 ;null mask

B-2

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

4292
4394
4396
4397
42398
4a9a

4a9c
4a9d
4aa0
4aa3

4aab
4aa9
4aab
4aae

4abl
4ab3
4ab5

4ab7

4aba
4abb
4abc
4abd
4abe
4acl
4ac2
4ac3

4ac6

200
3f00
co
00
1000
0200

af

320300
320400
c3efda

318000
0e00

cd5adb
cd544b

062c
0e00
1602

210034

c5
d5
e5
4da
cd924b
cl
c5
cdad4b

cdc34b

wboot:

loadl:

dw 242 ;disk size-1
dw 63 ;directory max
db 192 ;alloc 0

db 0 ;alloc 1

dw 16 ;check size

dw 2 ;track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initialization

xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp gocpm ;initialize and go to cp/m

;simplest case is to read the disk until all sectors loaded

xi sp, 80h ;use space below buffer for stack
mvi c, 0 ;select disk 0

call seldsk

call home ;go to track 00

mvi b, nsects ;b counts # of sectors to load
mvi c, 0 ;€ has the current track number
mvi d, 2 ;d has the next sector to read

note that we begin by reading track 0, sector 2 since sector 1
contains the cold start loader, which is skipped in a warm start

xi h, ccp ;base of cp/m (initial load point)
; Lload one more sector

push b ;save sector count, current track
push d ;save next sector to read

push h ;save dma address

mov c, d ;get sector address to register c
call setsec ;set sector address from register c
pop b ;recall dma address to b, ¢

push b ;replace on stack for later recall
call setdma ;set dma address from b, c

drive set to 0, track set, sector set, dma address set
call read

B-3

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

4ac9
4achb

4ace
dacf
4ad2
4ad3
4ad4
4ad5
4ad6

4ad9
4ada
4adb
4add

43e0
4ae2

4ae3
4ae4
4ae5
4aeb
4ae9
4aea
4aeb
4aec

4aef
4afl
4af4
4af7

4afa

fe00
c2abda

el
118000
19
dl
cl
05
caefda

14

7a
felb
daba4da

1601
Oc

c5
d5
e5
cd7d4b
el
dl
cl
c3bada

3ec3

320000
21034a
220100

320500

gocpm:

cpi
jnz

no e
pop
1xi
dad

pop
pop
dcr
jz

00h
wboot

;any errors?
;retry the entire boot if an error occurs

rror, move to next sector

h
d, 128
d
d
b
b

gocpm

;recall dma address

; dma=dma+128

;new dma address is in h, 1

;recall sector address

;recall number of sectors remaining, and current trk
;sectors=sectors-1

;transfer to cp/m if all have been loaded

more sectors remain to load, check for track change

inr
mov
cpi
jc

d

a,d
27
loadl

;sector=27?, if so, change tracks

;carry generated if sector<27

end of current track, go to next track

mvi
inr

save register state,

push
push
push
call
pop
pop
pop
jmp
end
mvi
sta
1xi

shld

sta

d, 1
C

b

d

h
settrk
h

d

b
loadl

;begin with first sector of next track
;track=track+1l

and change tracks

;track address set from register c

;for another sector

of load operation, set parameters and go to cp/m

a, 0c3h

0

h, wboote
1

5

B-4

;€3 is a jmp instruction

;for jmp to wboot

;wboot entry point

;set address field for jmp at 0

;for jmp to bdos

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

4afd
4b00

4b03
4b06

4b09
4b0a
4b0d
4boe

4b11
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b49
4b4a

4b4b
4b4c

21063c
220600

018000
cdad4b

fb
320400

4f
30034

3e00
c9

e67f
c9

79

c9

79
c9

af
c9

conin:

’

conout:

list:

listst:

punch:

1xi h, bdos ;bdos entry point
shld 6 ;address field of jump at 5 to bdos
1xi b, 80h ;default dma address is 80h

call setdma

ei ;enable the interrupt system

lda cdisk ;get current disk number

mov c, a ;send to the ccp

jmp ccp ;go to cp/m for further processing

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with space reserved
to insert your own code

;console status, return Offh if character ready, 00h if not

ds 10h ;space for status subroutine
mvi a, 00h
ret

;console character into register a

ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

;console character output from register c

mov a, ¢ ;get to accumulator
ds 10h ;space for output routine
ret

;list character from register c
mov a, c ;character to register a
ret ;null subroutine

;return list status (0 if not ready, 1 if ready)
Xra a ;0 is always ok to return
ret

;punch character from register c

B-5

194 4b4ad 79 mov a, c ;character to register a

195 4bd4e c9 ret ;null subroutine

196 ;

197 ;

198 reader: ;reader character into register a from reader device

199 4b4f 3ela mvi a, lah ;enter end of file for now (replace later)
200 4b51 e67f ani 7fh ; remember to strip parity bit

201 4b53 c9 ret

202 ;

203 ;

204 ; i/o drivers for the disk follow

205 ; for now, we will simply store the parameters away for use
206 ; in the read and write subroutines

207 ;

208 home: ;move to the track 00 position of current drive

209 ; translate this call into a settrk call with parameter 00
210 4b54 0e00 mvi c, 0 ;select track 0

211 4b56 cd7d4b call settrk

212 4b59 c9 ret ;we will move to 00 on first read/write
213 ;

214 seldsk: ;select disk given by register c

215 4b51 210000 1xi h, 0000h ;error return code

216 4b5d 79 mov a, c

217 4b5e 32ef4c sta diskno

218 4b6l fe04 cpi 4 ;must be between 0 and 3

219 4b63 dO rnc ;no carry if 4, 5,...

220 ; disk number is in the proper range

221 4b64 ds 10 ;space for disk select

222 ; compute proper disk parameter header address

223 4b6e 3aef4dc lda diskno

224 4b71 6f mov 1, a ;l=disk number 0, 1, 2, 3

225 4b72 2600 mvi h, 0 ;high order zero

226 4b74 29 dad h ;%2

227 4b75 29 dad h x4

228 4b76 29 dad h ;%8

229 4b77 29 dad h ;%16 (size of each header)

230 4b78 11334a 1xi d, dpbase

231 4b7b 19 dad 0 ;hl=.dpbase (disknox16)

232 4b7c c9 ret

233 ;

B-6

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

4b7d
4b7e
4b81
4b91

4b92
4b93
4b96
4bab

4ba7
4ba8
4ba9
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bd6

79
32e94c

c9

79

32eb4c

c9

eb
09
6e
2600
c9

69
60
22ed4c

c9

c3eb4b

settrk:

’

setsec:

’

sectran:

’

setdma:

read:

write:

H
waitio:
H

’

;set track given by register c

mov a, c

sta track

ds 10h ;space for track select
ret

;set sector given by register c

mov a, c

sta sector

ds 10h ;space for sector select
ret

;translate the sector given by bc using the
;translate table given by de
xchg ;hl=.trans

dad b ;hl=.trans (sector)
mov 1, m ;l=trans (sector)
mvi h, 0 ;hl=trans (sector)
ret ;with value in hl

;set dma address given by registers b and c

mov 1, c ; low order address

mov h, b ;high order address

shld dmaad ;save the address

ds 10h ;space for setting the dma address
ret

;perform read operation (usually this is similar to write
so we will allow space to set up read command, then use
common code in write)

ds 10h ;set up read command

jmp waitio ;to perform the actual i/o

;perform a write operation
ds 10h ;set up write command

;enter here from read and write to perform the actual i/o
operation. return a 00h in register a if the operation completes
properly, and O@lh if an error occurs during the read or write

B-7

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

alloo
allol
alloe2
allo3
bdos

4beb

4ceb 3e01
4ce8 c9

4ce9
4ceb
4ced
4cef

4cfO=
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4e0c
4elc

4e2c
013c=
4e2c

4d70
4d8f
4dae
4dcd
3c06

in this case, we have saved the disk number in ’'diskno’ (0,
the track number in ’track’ (0-76)
the sector number in ’'sector’ (1-26)
the dma address in ’'dmaad’ (0-65535)

ds 256 ;space reserved for i/o drivers
mvi a, 1 ;error condition
ret ;replaced when filled-in

the remainder of the cbios is reserved uninitialized
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

track: ds 2 ;two bytes for expansion
sector: ds 2 ;two bytes for expansion
dmaad: ds 2 ;direct memory address
diskno: ds 1 ;disk number 0-15

; scratch ram area for bdos use

begdat equ $;beginning of data area
dirfb: ds 128 ;scratch directory area
alleo: ds 31 ;allocation vector 0
allol: ds 31 ;allocation vector 1
allo2: ds 31 ;allocation vector 2
allo3: ds 31 ;allocation vector 3
chk0O: ds 16 ;check vector 0

chko1l: ds 16 ;check vector 1

chk02: ds 16 ; check vector 2

chk03: ds 16 ;check vector 3

enddat equ $;end of data area
datsiz equ $-begdat; ;size of data area

end

43 296#
48 297#
53 298#
58 2994#

10# 154

B-8

begdat
bias
bios
boot
ccp
cdisk
chk0o
chkol
chk02
chk03
conin
conout
const
datsiz
dirbf
diskno
dmaad
dpbase
dpblk
enddat
gocpm
home
iobyte
list
listst
loadl
msize
nsects
punch
read
reader
sector
sectran
seldsk
setdma
setsec
settrk
track
trans
waitio

4cf0
0000
4300
4a9c
3400
0004
4dec
4dfc
4e0c
4elc
4b24
4b37
4b11
013c
4cf0
4cef
4ced
4a33
4a8d
4e2c
4aef
4b54
0003
4b49
4b4b
4aba
0014
002c
4b4ad
4bc3
4baf
4ceb
4ba7
4b5a
4bad
4b92
4b7d
4ce9
4a73
4beb

294#
8#
11#
19
o#
12#
43
48
53
58
22
23
21
306#
42
217
258
40#
42
305#
88
27
13#
24
34
102#
3#
16#
25
32
26
242
35
28
31
30
29
236
40
266

306

15
84#
10
87
300#
301#
302#
303#
175#
180#
170#

47
223
290+#
230

47

124
94
86

185#

189#

130

96
193#
113
198#
289#
246#

93
110
107
140
288#

45
271#

11
161

52

291#

52

147#
208#

144

262#

214#
158
240#
211

50

16 101
57 295#
57 69#
255#

234#

55 61#

B-9

163

wboot 42ab 20 90# 115
wboote 4303 20# 150
write 4bd6 33 268#

B-10

Appendix C

A Skeletal GETSYS/PUTSYS Program

; combined getsys and putsys programs from
; Sec 6.4
; Start the programs at the base of the TPA
0100 org 0100h
0014 = msize equ 20 ;size of cp/m in Kbytes

;"bias" is the amount to add to addresses for > 20k
; (referred to as "b" throughout the text)

0000 = bias equ (msize-20)x*1024
3400 = cecp equ 3400h+bias
3c00 = bdos equ ccp+0800h
4300 = bios equ ccp+1600h

; getsys programs tracks 0 and 1 to memory at
; 3880h + bias

; register usage

; a (scratch register)

; b track count (0...76)

; (0 sector count (1...26)

; d,e (scratch register pair)

; h,1 load address

; sp set to track address

gstart: ;start of getsys
0100 318033 1xi sp,ccp-0080h ;convenient place
0103 218033 1xi h,ccp-0080h ;set initial load
0106 0600 mvi b 0O ;start with track

rdstrk: ;read next track
0108 0e0l mvi c,1 ;each track start

rd$sec:

C-1

010a
o1oed
0110
0111
0112
0113
0115

0118
0119
0lla
0llc

011f
0120

0200

0200
0203
0206

0208

020a
020d
0210
0211
0212
0213
0215

cdoooe3
118000
19

0c

79
felb
dafa0bl

04

78
fe02
da0801

fb
76

318033
218033
0600

0e01

cdooo4
118000
19

0c

79
felb
dafa02

call read$sec ;get the next sector

1xi d,128 ;offset by one sector
dad d ; (h1=h1+128)

inr c ;next sector

mov a,c ;fetch sector number
cpi 27 ;and see if last

jc rdsec ;<, do one more

;arrive here at end of track, move to next track

inr b ;track = track+1
mov a,b ;check for last
cpi 2 ;track = 2 7

jc rdstrk ;<, do another

;arrive here at end of load, halt for lack of anything

;better

put$sys:

wr$trk:

wr$sec:

ei

hlt

putsys program, places memory image

starting at

3880h + bias back to tracks 0 and 1

start this program at the next page boundary
org ($+0100h) and 0ff00h

1xi sp,ccp-0080h ;convenient place
1xi h,ccp-0080h ;start of dump

mvi b,0 ;start with track
mvi b,1 ;start with sector
call write$sec ;write one sector
1xi d,128 ; length of each
dad d ;<hl>=<hl> + 128
inr c ;o <c>=<c> + 1

mov a,c ;see if

cpi 27 ;past end of track
jc wr$sec ;no, do another

C-2

0218
0219
021a
021c

021f
0220

0300

0300
0301
0302
0342
0343
0344

0400

04

78
fe0d2
da0802

fb
76

c5
e5

el
cl
c9

;arrive here at end of track, move to next track

inr b ;track = track+1
mov a,b ;see if

cpi 2 ;last track

jc wr$trk ;no, do another

done with putsys, halt for lack of anything
better

ei
hit

;user supplied subroutines for sector read and write

read$sec:

move to next page boundary

org ($+01006h) and Off0Oh

;read the next sector
;track in ,
;sector in <c>
;dmaaddr in <hl>

push b
push h
;user defined read operation goes here
ds 64
pop h
pop b
ret

write$sec:

org ($+0100h) and 0ff00h ;another page
;boundary

Cc-3

0400
0401
0402
0442

0443
0444

0445

c5
e5

el
cl
c9

;same parameters as read$sec

push b
push h
;user defined write operation goes here
ds 64
pop h
pop b
ret

;end of getsys/putsys program

end

C-4

oNOOUT A WN -

0000
ffff
0000

0000

0000 =

0806
1880
1600

1603 =

3000

1880 =

0002
0031
0019

0018 =

800
ffof
0078

0079 =

The Microcomputer Development System-800 Cold Start Loader for CP/M 2

false
true
testing

’

bias

bias

cpmb
bdos
bdose
boot
rboot

bdos1
ntrks
bdoss
bdoso
bdos1

mon80
rmon80
base
rtype

title

mds -800

version

equ
equ
equ

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

org

equ
equ
equ
equ
equ

equ
equ
equ
equ

Appendix D

mds cold start loader at 3000h’
cold start loader for cp/m 2.0
2.0 august, 1979

0

not false

false if true, then go to mon80 on errors

testing
03400h

not testing

0000h
bias ;base of dos load
806h+bias ;entry to dos for calls

1880h+bias ;end of dos load
1600h+bias ;cold start entry point

boot+3 ;warm start entry point

03000h ; Lloaded down from hardware boot at 3000H
bdose-cpmb

2 ;number of tracks to read

bdosl1/128 ;number of sectors in dos

25 ;number of bdos sectors on track 0

bdoss-bdoso ;number of sectors on track 1

0f800h ;intel monitor base

Offofh ;restart location for mon80
078h ; "base’ used by controller
base+1 ;result type

D-1

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

007b
007f

0078
0079
007a
0o0ff
0003
0004
0100

3000

3003
3005

3007
3009
300b

300e

3010
3012

3015
3016
3018
3019
301b
301d
301f

310001

db79
db7b

dbff
€602
c20730

d37f

0602
214230

7d
d379
7c
d37a
db78
€604
calb30

rbyte
reset

dstat
ilow
ihigh
bsw
recal
readf
stack

rstart:

coldstart:

waito:

equ base+3 ;result byte

equ base+7 ;reset controller

equ base ;disk status port

equ base+1 ; low iopb address

equ base+2 ;high iopb address

equ 0ffh ;boot switch

equ 3h ;recalibrate selected drive
equ 4h ;disk read function

equ 100h ;use end of boot for stack
xi sp,stack; ;in case of call to mon80
clear disk status

in rtype

in rbyte

check if boot switch if off

in bsw

ani 02h ;switch on?

jnz coldstart

clear the controller

out reset ;logic cleared

mvi b,ntrks ;number of tracks to read
1xi h,iopbo

read first/next track into cpmb

mov a,l
out ilow
mov a,h
out ihigh
in dstat
ani 4

jz waito

check disk status

D-2

75 3022 db79 in rtype

76 3024 €603 ani 11b

77 3026 fe02 cpi 2

78 ;

79 if testing

80 cnc rmon80 ;go to monitor if 11 or 10
81 endif

82 if not testing

83 3028 d20030 jnc rstart ;retry the load

84 endif

85 ;

86 302b db7b in rbyte ;1/0 complete, check status
87 ; if not ready, then go to mon80

88 302d 17 ral

89 302e dcOfff cc rmon80 ;not ready bit set

90 3031 1f rar ;restore

91 3032 eble ani 111106b ;overrun/addr err/seek/crc/xxxx
92 ;

93 if testing

94 cnz rmon80 ;go to monitor

95 endif

96 if not testing

97 3034 c20030 jnz rstart ;retry the load

98 endif

99 ;

100 ;

101 3037 110700 1xi d,iopbl ; length of iopb

102 303a 19 dad d ;addressing next iopb

103 303b 05 dcr b ;count down tracks

104 303c c21530 jnz start

105 ;

106 ;

107 ; jmp to boot to print initial message, and set up jmps
108 303f c30016 jmp boot

109 ;

110 ; parameter blocks

111 3042 80 iopbo: db 80h ;iocw, no update

112 3043 04 db readf ;read function

113 3044 19 db bdoso ;#sectors to read on track 0
114 3045 00 db 0 ;track 0

D-3

115 3046 02 db 2 ;start with sector 2 on track 0

116 3047 0000 dw cpmb ;start at base of bdos
117 0007 = iopbl equ $-iopbo

118 ;

119 3049 80 iopbl: db 80h

120 304a 04 db readf

121 304b 18 db bdosl ;sectors to read on track 1
122 304c 01 db 1 ;track 1

123 304d 01 db 1 ;sector 1

124 304e 800c dw cmpb+bdos0+*128;base of second read
125 ;

126 3050 end

base 0078 33¢# 34 35 36 38 39 40
bdos 0806 18#

bdoso 0019 28# 29 113 124

bdosl 0018 29# 121

bdose 1880 19# 25

bdosl 1880 25# 27

bdoss 0031 27# 29

bias 0000 12# 15# 17 18 19 20
boot 1600 20# 21 108

bsw 00ff 414# 53

coldstart 3007 52# 55

cpmb 0000 17# 25 116 124

dstat 0078 38# 70

false 0000 T# 8 9

ihigh 007a 40# 69

ilow 0079 39¢# 67

iopbo 3042 61 111# 117

iopbl 3049 119#

iopbl 0007 101 117#

mon80 800 31#

ntrks 0002 26# 60

rboot 1603 21#

rbyte 007b 35¢# 50 86

readf 0004 43# 112 120

recal 0003 424

reset 007f 36# 57

D-4

rmon80
rstart
rtype
stack
start
testing
true
waito

ffof
3000
0079
0100
3015
0000
ffff
301b

32#
46#
34#
444#
63#

o#

8#
70#

80
83
49
47
104
11

72

89
97
75

14

94

79

D-5

82

93

96

Appendix E

A Skeletal Cold Start Loader

;this is a sample cold start loader, which, when
;modified

;resides on track 00, sector 01 (the first sector on the
;diskette). we assume that the controller has loaded
;this sector into memory upon system start-up (this
;program can be keyed-in, or can exist in read-only
;memory

;beyond the address space of the cp/m version you are
;running). the cold start loader brings the cp/m system
;into memory at "loadp" (3400h + "bias"). in a 20k
;memory system, the value of "bias" is 000h, with

; large

;values for increased memory sizes (see section 2).
;after

; loading the cp/m system, the cold start loader
;branches

;to the "boot" entry point of the bios, which beings at
;"bios" + "bias". the cold start loader is not used un-
;til the system is powered up again, as long as the bios
;1s not overwritten. the origin is assumed at 0000h, and
;must be changed if the controller brings the cold start
; loader into another area, or if a read-only memory

;area
;is used.

0000 org 0 ;base of ram in
;cp/m

0014 = msize equ 20 ;min mem size in
; kbytes

0000 = bias equ (msize-20)x*1024 ;offset from 20k
;system

3400 = ccp equ 3400h+bias ;base of the ccp

4300 = bios equ ccp+1600h ;base of the bios

E-1

0300
4200
1900

0032

0000
0003

0005

0008

000b

006b
006¢

010200
1632

210034

c36b00

15
ca004a

biosl equ 0300h ; length of the bios
boot equ bios
size equ bios+biosl-ccp ;size of cp/m
;system
sects equ size/128 ;# of sectors to load

; begin the load operation

cold:
Ixi b,2 ;b=0, c=sector 2
mvi d,sects ;d=# sectors to
; Load
1xi h,ccp ;base transfer
;address
lsect: ;load the next sector

; insert inline code at this point to

; read one 128 byte sector from the

; track given in register b, sector

; given in register c,

; into the address given by <hl>

;branch to location "cold" if a read error occurs

; user supplied read operation goes

; here...
jmp past$patch ; remove this
;when patched
ds 60h
past$patch:
;9o to next sector if load is incomplete
dcr d ;sects=sects-1
jz boot ;head for the bios

; more sectors to load

E-2

006f

0072

0073
0074
0075

0077

007a
007c
007d
0080

318000
39

Oc

79
felb

da0800

0e01
04
c30800

;we aren’t using a stack, so use <sp> as scratch

;register

; to hold the load address increment

xi
dad
inr
mov

cpi

jc

;end of track,

mvi
inr
jmp
end

sp,12

sp

a,c
27

lsect

8

;128 bytes per
;sector

;<hl> = <hl> +

128

;sector=sector + 1

;last sector of
;track?

;no, go read
;another

increment to next track

c,l
b
lsect

E-3

;sector =1

;track = track + 1
; for another group
;of boot loader

oNOOUT A WN -

Appendix F

CP/M Disk Definition Library

CP/M 2.0 disk re-definition library

Copyright (c) 1979

Digital Research
Box 579

Pacific Grove, CA

93950

CP/M logical disk drives are defined using the
macros given below, where the sequence of calls

1s:

disks n

diskdef parameter-list-0
diskdef parameter-list-1

diskdef parameter-list-n

endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=0,1,...,n-1)

each parameter-list-i takes the form
dn, fsc,lsc, [skf],bls,dks,dir,cks,ofs, [0]

where
dn
fsc
lsc
skf
bls
dks
dir
cks
ofs

is
is
is
is
is
is
is
is
is

the
the
the

disk number 0,1,...,n-1
first sector number (usually 0 or 1)
last sector number on a track

optional "skew factor" for sector translate

the
the
the
the
the

data block size (1024,2048,...,16384)
disk size in bls increments (word)
number of directory elements (word)
number of dir elements to checksum
number of tracks to skip (word)

F-1

36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

6l:;

62

73

:dskhdr
63:
64:
65:
66:
67:
68:
69:;
70:
71:
72:
:dpbase
74:
75:

r

dpe&dn:

’
disks
Y

ndisks

r

disknxt

[0] is an optional 0 which forces 16K/directory end

for convenience, the form

dn,dm
defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four drive CP/M system is defined by

disks 4

diskdef 0,1,26,6,1024,243,64,64,2
dsk set 0

rept 3
dsk set dsk+1

diskdef %dsk, 0

endm

endef

the value of "begdat" at the end of assembly defines the
beginning of the uninitialize ram area above the bios,
while the value of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end of the
assembly. note that the allocation vector will be quite
large if a large disk size is defined with a small block
size.

macro dn

define a single disk header list

dw x1t&dn, 0000h ;translate table

dw 0000h,0000h ;scratch area

dw dirbuf,dpb&dn ;dir buff,parm block
dw csv&dn,alv&dn ;check, alloc vectors
endm

macro nd

define nd disks

set nd ;3 for later reference
equ $;base of disk parameter blocks

generate the nd elements
set 0

F-2

76: rept nd

77: dskhdr %dsknxt

78:dsknxt set dsknxc+1

79: endm

80: endm

81:;

82:dpbhdr macro dn

83:dpb&dn equ $;disk parm block
84: endm

85:;

86:ddb macro data, comment

87:;; define a db statement

88: db data comment

89: endm

90:;

91:ddw macro data, comment

92:;; define a dw statement

93: dw data comment

94: endm

95:;

96:9cd macro m,n

97:;; greatest common divisor of m,n

98:;; produces value gcdn as result

99:;; (used in sector translate table generation)
100:gcdm set m ;ivariable for m
101:gcdn set n ;3variable for n
102:gcdr set 0 ;yvariable for r
103: rept 65535

104:gcdx set gcdm/gcdn

105:gcdr set gcdm-gcdx*xgcdn

106: if gcdr = 0

107: exitm

108: endif

109:gcdm set gcdn

110:gcdn set gcdr

111: endm

112: endm

113:;

114:diskdef macro dn, fsc,lsc,skf,bls,dks,dir,cks,ofs, k16
115:;; generate the set statements for later tables

F-3

116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:

dpb&dn
als&dn
cssé&dn
x1t&dn

secmax
sectors
als&dn

als&dn

css&dn
blkval
blkshf
blkmsk

blkshf
blkmsk
blkval

blkval
extmsk

extmsk
blkval

154:;;

155:

r

if
current
equ
equ
equ
equ
else
set
set
set
if
set
endif
set
generate
set
set
set
rept
if
exitm
endif

nul lsc

disk dn same as previous fsc

dpbé&fsc ;equivalent parameters
als&fsc ;same allocation vector size
css&fsc ;same checksum vector size
x1t&fsc ;same translate table
lsc-(fsc) ;;sectors 0...secmax
secmax+1 ;number of sectors

(dks)/8 ;3size of allocation vector
((dks)mod8) ne 0

als&dn+l

(cks)/4 ; ;number of checksum elements
the block shift value

bls/128 ; ;number of sectors/block

0 ;;counts right 0's in blkval
0 ;7 Fills with 1's from right
16 ;;once for each bit position
blkval=1

otherwise, high order 1 not found yet

set
set
set
endm
generate
set
set
rept
if
exitm
endif

blkshf+1
(blkmsk shl 1) or 1
blkval/2

the extent mask byte

bls/1024 ; ;number of kilobytes/block
0 ;3 fill from right with 1’s
16

blkval=1

otherwise more to shift

set
set
endm

(extmsk shl 1) or 1
blkval/2

may be double byte allocation

if

(dks)>256

F-4

156:

extmsk

157:

158:;;

r

159:

160:

extmsk

161:

162:
163:
164:
165:

dirrem
dirbks
dirblk

166:
167:
168:
169:
170:;;

1

171:;;

172

:dirblk

173:

174:

dirrem

175:

176:

direem

177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:

190:;;

r

191:

192

:x1t&dn

193:
194:

195

:x1t&dn

set (extmsk shr 1)

endif

may be optional [0] in last position

if not nul k16

set k16

endif

now generate directory reservation bit vector

set dir ;;#remaining to process

set bls/32 ;;number of entries per block
set 0 ;;Fill with 1's on each loop
rept 16

if dirrem=0

exitm

endif

not complete, iterate once again
shift right and add 1 high order bit

set (dirblk shr 1) or 8000h

if dirrem>dirbks

set dirrem-dirbks

else

set 0

endif

endm

dpbhdr dn ;;generate equ $
ddw %ssectors,<;sec per track>

ddb %blkshf,<;block shift>

ddb %blkmsk,<;block mask>

ddb %extmsk,<;extnt mask>

ddw %(dks)-1,<;disk size-1>

ddw %(dir)-1,<directory max>

ddb %dirblk shr 8,<;allocO>

ddb %dirblk and 0ffh,<;allocl>

ddw %(cks)/4,<;check size>

ddw %0fs,<;offset>

generate the translate table, if requested
if nul skf

equ 0 ;no xlate table
else

if skf =0

equ 0 ;no xlate table

F-5

196:

197:
198:
199:

nxtsec
nxtbas

200:

201:
202:
203:
204:
205:
206:

neltst
nelts
x1t&dn

207:
208:
209:
210:
211:
212:

213:

nxtsec

214:

215:

nxtsec

216:

217

:nelts

218:

219
220
221

:nxtbas
:nxtsec
:nelts

222:
223:
224:
225:
226:
227:;

228
229

:defds
:lab:

230:
231:;

232

:lds

233:
234:

235:

else
generate the translate table

set 0 ;;next sector to fill

set 0 ; ;moves by one on overflow
gcd %sectors, skf

gcdn = gcd(sectors, skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap previous elements

set neltst ;ycounter
equ $;;translate table
rept sectors ;;once for each sector
if sectors<256

ddb %nxtsec+(fsc)

else

ddw %snxtsec+(fsc)

endif

set nxtsec+(skf)

if nxtsec>=sectors

set nxtsec-sectors

endif

set nelts-1

if nelts = 0

set nxtbas+1

set nxtbas

set neltst

endif

endm

endif ;;end of nul fac test

endif ;;end of nul bls test

endm

macro lab, space

ds space

endm

macro 1b,dn,val

defds 1b&dn,%val&dn

endm

F-6

236:
237:
238:
239:

240

247

endef

begdat

dirbuf:
:dsknxt

241:
242:
243:
244:
245:
246:

dsknxt

enddat

:datsiz
248:;;
249:

r

macro

generate the necessary ram data areas

equ $

ds 128 ;directory access buffer
set 0

rept ndisks ;;once for each disk
lds alv,%dsknxt,als

lds csv,%dsknxt, ccs

set dsknxt+1

endm

equ $

equ $-begdat

db 0 at this point forces hex record

endm

F-7

oNOOUT A WN -

0800
0200
0014
0004
0050
0003

Qy
@x

blksiz
hstsiz
hstspt
hstblk
cpmspt
secmsk

Appendix G

Blocking and Deblocking Algorithms

sector deblocking algorithms for cp/m 2.0

utility macro to compute sector mask
macro hblk

compute log2(hblk), return @x as result
(2 *x @x = hblk on return)

set hblk

set 0

count right shifts of @y until =1
rept 8

if @y =1

exitm

endif

@y is not 1, shift right one position
set @y shr 1

set @x + 1

endm

endm

cp/m to host disk constants

equ 2048 ;cp/m allocation size
equ 512 ;host disk sector size
equ 20 ;host disk sectors/trk
equ hstsiz/128 ;cp/m sects/host buff
equ hstblk * hstspt ;cp/m sectors/track
equ hstblk-1 ;sector mask

G-1

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

0002

0000
0001
0002

0000

0000
0001
0004
0007

0008
000b
000c
0oeof

0012

af
326a01
326¢01
c9

3a6b01
b7

€21200
326a01

c9

secshf

home:

home:

homed:

smask hstblk ;compute sector mask
equ @x ; Log2 (hstblk)

bdos constants on entry to write

equ 0 ;write to allocated
equ 1 ;write to directory
equ 2 ;write to unallocated

the bdos entry points given below show the
code which is relevant to deblocking only.

diskdef macro, or hand coded tables go here
equ $;disk param block base

;enter here on system boot to initialize
Xra a ;0 to accumulator

sta hstact ;host buffer inactive
sta unacnt ;clear unalloc count
ret

;home the selected disk

lda hstwrt ;check for pending write
ora a

jnz homed

sta hstact ;clear host active flag
ret

G-2

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

0013
0014
0017
0018

79
326101
6f
2600

001a+29
001b+29
001c+29
001d+29

001le
0021
0022

0023
0024
0025
0028

0029
002a
002d

002e
002f
0030
0033

0034

110000
19
c9

60
69
226201
c9

79
326401
c9

60
69
227501
c9

60

seldsk:

’

settrk:

’

setsec:

’

setdma:

sectran:

;select disk

mov a,c ;selected disk number
sta sekdsk ;seek disk number
mov 1,a ;disk number to hl
mvi h,0

rept 4 ;multiply by 16

dad h

endm

dad h

dad h

dad h

dad h

xi d,dpbase ;base of parm block
dad d ;hl=.dpb(curdsk)

ret

;set track given by registers bc

mov h,b

mov 1,c

shld sektrk ;track to seek
ret

;set sector given by register c

mov a,c
sta seksec ;sector to seek
ret

;set dma address given by bc

mov h,b
mov 1,c
shld dmaadr
ret

;translate sector number bc
mov h,b

G-3

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

0035
0036

0037
0038
003b
003d
0040
0043
0045
0048

004b
004c
004f
0050
0053
0050

0058
005a
005d
0060

69
c9

af
326¢01
3e01
327301
327201
3e02
327401
c3b600

af
327301
79
327401
fe0d2
c26f00

3el0

326¢01
326101
326d01

mov 1,c
ret

the read entry point takes the place of
the previous bios definition for read.

;read the selected cp/m sector

xra a

sta unacnt

mvi a,l

sta readop ;read operation

sta rsflag ;must read data

mvi a,wrual

sta wrtype ;treat as unalloc
jmp rwoper ;to perform the read

the write entry point takes the place of
the previous bios definition for write.

;write the selected cp/m sector

xra a ;0 to accumulator

sta readop ;not a read operation
mov a,c ;write type in ¢

sta wrtype

cpi wrual ;write unallocated?
jnz chkuna ;check for unalloc

write to unallocated, set parameters

mvi a,blksiz/128 ;next unalloc recs
sta unacnt

lda sekdsk ;disk to seek

sta unadsk ;unadsk = sekdsk

G-4

155
156
157
158
159
160
lol
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

0063
0066
0069
006¢

0o6f
0072
0073

0076
0077
007a
007d
0080
0081

0084
0087
008a

0osd
0090
0093
0094

0097
0098
0099
009b

00%e
00a0
00a3

226201
226e01
3a6401
327001

3a6¢01
b7
caae00

3d
326¢01
326101
216d01
be
Cc2ae0

216e01
cd5301
c2ae00

326401
217001
be

c2ae0

34

7e
fe50
daa700

3600
2a6e01
23

chkuna:

1hld settrk

shld unatrk ;unatrk = sectrk
lda seksec
sta unasec ;unasec = seksec

;check for write to unallocated sector

lda unacnt ;any unalloc remain?
ora a
jz alloc ;skip if not

more unallocated records remain

dcr a ;unacnt = unacnt-1
sta unacnt

lda sekdsk ;same disk?

1xi h,unadsk

cmp m ; sekdsk = unadsk?
jnz alloc ;skip if not

disks are the same

1xi h,unatrk
call sektrkcmp ;saektrk = unatrk?
jnz alloc ;skip if not

tracks are the same

lda seksec ;same sector?

1xi h,unasec

cmp m ;seksec = unasec?
jnz alloc ;skip if not

match, move to next sector for future ref

inr m ;unasec = unasec+l
mov a,m ;end of track?
cpi cpmspt ;count cp/m sectors

jc noovf ;skip if no overflow

overflow to next track

mvi m,o ;unasec = 0
1hld unatrk
inx h

G-5

195 00ad 226e01 shld unatrk ;unatrk = unatrk+1
196 ;

197 noovf:

198 ;match found, mark as unnecessary read

199 00a7 af Xra a ;0 to accumulator
200 00ab 327201 sta rsflag ;rsflag = 0

201 00ab c3b600 jmp rwoper ;to perform the write
202 ;

203 alloc:

204 ;not an unallocated record, requires pre-read

205 00ae af Xra a ;0 to accum

206 00af 326c01 sta unacnt ;unacnt = 0

207 00b2 3c inr a ;1 to accum

208 00b3 327201 sta rsflag = 1 ;rsflag = 1

209 ;

210 ;

211 ;

212 ; common code for read and write follows

213 ;

214 ;

215 rwoper:

216 ;enter here to perform the read-write

217 00b6 af xra a ;zero to accum
218 00b7 327101 sta erflag ;no errors (yet)
219 00ba 3a6401 lda seksec ;compute host sector
220 rept secshf

221 ora a ;carry = 0

222 rar ;shift right

223 endm

224 00bd+b7 ora a ;carry = 0

225 00be+1f rar ;shift right

226 00bf+b7 ora a ;carry = 0

227 00cO+1f rar ;shift right

228 00cl 326901 sta sekhst ;host sector to seek
229 ;

230 ; active host sector?

231 00c4 216a01 1xi h,hstact ;host active flag
232 00c7 7e mov a,m

233 00c8 3601 mvi m,1 ;always becomes 1
234 00ca b7 ora a ;was it already?

G-6

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

00cb

00ce
00d1
00d4
00d5

00d8
00db
00de

00el
00e4
00e7
00e8

00eb
00ee
00ef

002
00f5
00f8
00fb
00fe
0101
0104
0107
0108
010b
010c

caf200

326101
216501
be

c2eb00

216601
cd5301
c2eb00

326901
216801
be

cadfol

3a6b01
b7
c45701

326101
326501
226201
226601
326901
326801
3a7201
b7

c46001
af

326b01

’

nomatch:

filhst:

match:

jz filhst ;fill host if not

host buffer active, same as seek buffer?
lda sekdsk

1xi h,hstdsk ;same disk?
cmp m ;sekdsk = hstdsk?
jnz nomatch

same disk, same track?

1xi h,hsttrk

call sektrkcmp ;sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?

lda sekhst

1xi h,hstsec ;sekhst = hstsec?
cmp m

jz match ;skip if match
;proper disk, but not correct sector

lda hstwrt ;host written?
ora a

cnz writehst ;clear host buff

;may have to fill the host buffer

lda sekdsk

sta hstdsk

lhld sektrk

shld hsttrk

lda sekhst

sta hstsec

lda rsflag ;need to read?

ora a

cnz readhst ;yes, if 1

Xra a ;0 to accum
;no pending write

sta hstwrt

’

G-7

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

010f 3a6401
0112 e603
0114 6f
0115 2600

0117+29
0118+29
0119+29
011a+29
011b+29
011c+29
011d+29

0l1lle 117701
0121 19
0122 eb
0123 2a7501
0126 0e80
0128 3a7301
012b b7
012c c23501

012f 3e01
0131 326b01
0134 eb

rwmove:

0135 1la
0136 13
0137 77
0138 23
0139 od
013a c23501

;copy data to or from buffer

lda seksec ;mask buffer number
ani secmsk ; least signif bits
mov 1,a ;ready to shift
mvi h,0 ;double count

rept 7 ;shift left 7

dad h

endm

dad h

dad h

dad h

dad h

dad h

dad h

dad h

hl has relative host buffer address

1xi d,hstbuf

dad d ;hl = host address
xchg ;now in de

lhld dmaadr ;get/put cp/m data
mvi c,128 ; length of move
lda readop ;which way?

ora a

jnz rwmove ;skip if read

write operation, mark and switch direction

mvi a,l

sta hstwrt ;hstwrt = 1

xchg ;source/dest swap

;€ initially 128, de is source, hl is dest

ldax d ;source character
inx d

mov m,a ;to dest

inx h

dcr C ; Lloop 128 times
jnz rwmove

data has been moved to/from host buffer

G-8

315 013d 3a7401 lda wrtype ;write type

316 0140 fe0l cpi wrdir ;to directory?
317 0142 3a7101 lda erflag ;in case of errors
318 0145 coO rnz ;no further processing
319 ;

320 ; clear host buffer for directory write

321 0146 b7 ora a ;errors?

322 0147 cO rnz ;skip if so

323 0148 af Xra a ;0 to accum

324 0149 326b01 sta hstwrt ;buffer written
325 014c cd5fol call writehst

326 014f 3a7101 lda erflag

327 0152 c9

328 ;

329 ;

330 ;

331 ; utility subroutine for 16-bit compare

332 ;

333 ;

334 sektrkcmp:

335 ;hl = .unatrk or .hsttrk, compare with sektrk
336 0153 eb xchg

337 0154 216201 1xi h,sektrk

338 0157 1la ldax d ; low byte compare
339 0158 be cmp m ;same?

340 0159 c0 rnz ;return if not
341 ; low bytes equal, test high 1s

342 015a 13 inx d

343 015b 23 inx h

344 015c 1la ldax d

345 015d be cmp m ;sets flags

346 015e c9 ret

347 ;

348 ;

349 ;

350 ; writehst performs the physical write to

351 ; the host disk, readhst reads the physical

352 ; disk.

353 ;

354 ;

G-9

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

015f 9

0160 c9

0161
0162
0164

0165
0166
0168

0169
016a
016b

016¢C
0led
0l6e
0170

0171
0172
0173
0174

writehst:

’

readhst:

sekdsk:
sektrk:
seksec:

hstdsk:
hsttrk:
hstsec:

sekhst:
hstact:
hstwrt:
unacnt:
unadsk:
unatrk:
unasec:

erflag:
rsflag:
readop:
wrtype:

;hstdsk
;hstsec =

host disk #, hsttrk = host track #,
host sect #. write "hstsiz" bytes

;from hstbuf and return error flag in erflag.
;return erflag non-zero if error

ret

;hstdsk
;hstsec =

host sect #.

host disk #, hsttrk = host track #,
read "hstsiz" bytes

;into hstbuf and return error flag in erflag.

ret

uninitialized ram data areas

ds
ds
ds

ds
ds
ds

ds
ds
ds

ds
ds
ds
ds

ds
ds
ds
ds

N

=N R e

N e e

;seek disk number
;seek track number
;seek sector number

;host disk number
;host track number
;host sector number

;seek shr secshf
;host active flag
;host written flag

;unalloc rec cnt
;last unalloc disk
;last unalloc track
;last unalloc sector

;error reporting
;read sector flag

;1 if read operation
;write operation type

G-10

395
396
397
398
399
400
401
402
403

alloc
blksiz
boot
chkuna
cpmspt
dmaadr
dpbase
erflag
filhst
home
homed
hstact
hstblk
hstbuf
hstdsk
hstsec
hstsiz
hstspt
hsttrk
hstwrt
match
nomatch

0175
0177

0377

dmaadr:

hstbuf:
00ae 164
0800 29#
0000 57#
006f 148
0050 33#
0175 109
0000 55#
0171 218
00f2 235
0008 65#
0012 70
016a 61
0004 32#
0177 291
0165 239
0168 250
0200 30#
0014 31#
0166 244
016b 68
010f1 252
00eb 241

ds
ds

2
hstsiz

;last dma address
;host buffer

the endef macro invocation goes here

end

172
151

160#
188
294
88
317
260#
o67#
T72#
71
33
396#
263
267
32
33
265
256
274#
246

177

395#

326

231
34

378#
380#
396

379#
272

254#

183 203#

391#

383#

35

302 324 384#

G-11

noovf
read
readhst
readop
rsflag
rwmove
rwoper
secmsk
secshf
sectran
sekdsk
sekhst
seksec
sektrk
sektrkcmp
seldsk
setdma
setsec
settrk
unacnt
unadsk
unasec
unatrk
wboot
wrall
wrdir
write
writehst
wrtype
wrual

00a7
0037
0160
0173
0172
0135
00b6
0003
0002
0034
0161
0169
0164
0162
0153
0013
002e
0029
0023
016¢
0l16d
0170
0l6e
0000
0000
0001
004b
015f
0174
0002

189
124+#
270
129
130
298
133
34#
36#
112#
78
228
102
96
176
75#
105#
99#
92#
62
154
158
156
58#
43#
44#
141#
258
132
45#

197#

362#
144
200
305#
201
277
220

153
249
157
155
245

127
170
181
175

316

325

146
131

296
208
312
215#

169
266
180
264
334#

152
387+#
389+#
193

355#
315
147

393#
268

238
382#
219
337

162

195

394+#

392#

262

276
375#

168

388#

G-12

374#

376#

206

386#

Appendix H

Glossary

address: Number representing the location of a byte in memory.
Within CP/M there are two kinds of addresses: 1logical and physical.
A physical address refers to an absolute and unique location within
the computer’s memory space. A logical address refers to the offset
or displacement of a byte in relation to a base location. A
standard CP/M program 1is loaded at address 0100H, the base value;
the first instruction of a program has a physical address of 0100H
and a relative address or offset of OH.

allocation vector (ALV): An allocation vector is maintained in the
BIOS for each logged-in disk drive. A vector consists of a string
of bits, one for each block on the drive. The bit corresponding to
a particular block is set to one when the block has been allocated
and to zero otherwise. The first two bytes of this vector are
initialized with the bytes ALO and ALl on, thus allocating the
directory blocks. CP/M Function 27 returns the allocation vector
address.

ALO, AL1: Two bytes in the disk parameter block that reserve data
blocks for the directory. These two bytes are copied into the first
two bytes of the allocation vector when a drive is logged 1in. See
allocation vector.

ALV: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M
wildcard characters, ? or x, in the primary filename, filetype, or
both. When you replace characters in a filename with these wildcard
characters, you create an ambiguous filename and can -easily
reference more than one CP/M file in a single command line.

American Standard Code for Information Interchange: See ASCII.

applications program: Program designed to solve a specific problem.
Typical applications programs are business accounting packages, word
processing (editing) programs and mailing list programs.

archive attribute: File attribute controlled by the high-order bit
of the t3 byte (FCB+11l) in a directory element. This attribute is
set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which
you can substitute a number, letter, or name to give an appropriate
meaning to the formula in question.

ASCII: American Standard Code for Information Interchange. ASCII
is a standard set of seven-bit numeric character codes used to
represent characters in memory. Each character requires one byte of
memory with the high-order bit usually set to zero. Characters can

CP/M Operating System Manual H Glossary

be numbers, letters, and symbols. An ASCII file can be intelligibly
displayed on the video screen or printed on paper.

assembler: Program that translates assembly 1language into the
binary machine code. Assembly language is simply a set of mnemonics
used to designate the instruction set of the CPU. See ASM 1in
Section 3 of this manual.

back-up: Copy of a disk or file made for safekeeping, or the
creation of the duplicate disk or file.

Basic Disk Operating System: See BDOS.

BDOS: Basic Disk Operating System. The BDOS module of the CP/M
operating system provides an interface for a user program to the
operating system. This interface 1is in the form of a set of
function calls which may be made to the BDOS through calls to
location 0005H in page zero. The user program specifies the number
of the desired function in register C. User programs running under
CP/M should use BDOS functions for all I/0 operations to remain
compatible with other CP/M systems and future releases. The BDOS
normally resides in high memory directly below the BIOS.

bias: Address value which when added to the origin address of your
BIOS module produces 1F80H, the address of the BIOS module in the
MOVCPM image. There is also a bias value that when added to the
BOOT module origin produces 0900H, the address of the BOOT module in
the MOVCPM image. You must use these bias values with the R command
under DDT or SID when you patch a CP/M system. If you do not, the
patched system may fail to function.

binary: Base 2 numbering system. A binary digit can have one of
two values: 0 or 1. Binary numbers are used in computers because
the hardware can most easily exhibit two states: off and on.
Generally, a bit in memory represents one binary digit.

Basic Input/Output System: See BIOS.

BIOS: Basic Input/Output System. The BIOS is the only hardware-
dependent module of the CP/M system. It provides the BDOS with a
set of primitive I/0 operations. The BIOS is an assembly language
module wusually written by the wuser, hardware manufacturer, or
independent software vendor, and is the key to CP/M’s portability.
The BIOS interfaces the CP/M system to its hardware environment
through a standardized jump table at the front of the BIOS routine
and through a set of disk parameter tables which define the disk
environment. Thus, the BIOS provides CP/M with a completely table-
driven I/0 system.

BIOS base: Lowest address of the BIOS module in memory, that by
definition must be the first entry point in the BIOS jump table.

H-2

CP/M Operating System Manual H Glossary

bit: Switch in memory that can be set to on (1) or off (0). Bits
are grouped into bytes, eight bits to a byte, which is the smallest
directly addressable unit in an Intel 8080 or Zilog Z80. By common
convention, the bits in a byte are numbered from right, 0 for the
low-order bit, to left, 7 for the high-order bit. Bit values are
often represented in hexadecimal notation by grouping the bits from
the low-order bit in groups of four. Each group of four bits «can
have a value from 0 to 15 and thus can easily be represented by one
hexadecimal digit.

BLM: See block mask.

block: Basic unit of disk space allocation. Each disk drive has a
fixed block size (BLS) defined in its disk parameter block in the
BIOS. A block can consist of 1K, 2K, 4K, 8K, or 16K consecutive
bytes. Blocks are numbered relative to zero so that each block is
unique and has a byte displacement in a file equal to the block
number times the block size.

block mask (BLM): Byte value in the disk parameter block at DPB +
3. The block mask 1is always one less than the number of 128 byte
sectors that are in one block. Note that BLM = (2 *xx BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at
DPB + 2. Block shift and block mask (BLM) values are determined by
the block size (BLS). Note that BLM = (2 *x BSH) - 1.

blocking & deblocking algorithm: In some disk subsystems the disk
sector size 1is larger than 128 bytes, usually 256, 512, 1024, or
2048 bytes. When the host sector size is larger than 128 bytes,
host sectors must be buffered in memory and the 128-byte CP/M
sectors must be blocked and deblocked by adding an additional
module, the blocking and deblocking algorithm, between the BIOS disk
I/0 routines and the actual disk I/0. The host sector size must be
an even multiple of 128 bytes for the algorithm to work correctly.
The blocking and deblocking algorithm allows the BDOS and BIOS to
function exactly as if the entire disk consisted only of 128-byte
sectors, as in the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot
program is a small piece of code that is automatically executed when
you power-up or reset your computer. The boot program loads the
rest of the operating system into memory in a manner similar to a
person pulling himself up by his own bootstraps. This process 1is
sometimes called a cold boot or cold start. Bootstrap pocedures
vary from system to system. The boot program must be customized for
the memory size and hardware environment that the operating system
manages. Typically, the boot resides on the first sector of the
system tracks on your system disk. When executed, the boot loads
the remaining sectors of the system tracks into high memory at the
location for which the CP/M system has been configured. Finally,
the boot transfers execution to the boot entry point in the BIOS
jump table so that the system can initialize itself. 1In this case,

H-3

CP/M Operating System Manual H Glossary

the boot program should be placed at 900H in the SYSGEN image.
Alternatively, the boot program may be located in ROM.

bootstrap: See boot.
BSH: See block shift.

BTREE: General purpose file access method that has become the
standard organization for indexes in large data base systems. BTREE
provides near optimum performance over the full range of file
operations, such as insertion, deletion, search, and search next.

buffer: Area of memory that temporarily stores data during the
transfer of information.

built-in commands: Commands that permanently reside in memory.
They respond quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. A byte
can represent a binary number between 0 and 255, and is the smallest
unit of memory that can be addressed directly in 8-bit CPUs such as
the Intel 8080 or Zilog Z80.

CCP: Console Command Processor. The CCP is a module of the CP/M
operating system. It 1is loaded directly below the BDOS module and
interprets and executes commands typed by the console user. Usually
these commands are programs that the CCP loads and calls. Upon
completion, a command program may return control to the CCP if it
has not overwritten it. If it has, the program can reload the CCP
into memory by a warm boot operation initiated by either a jump to
zero, BDOS system reset (Function 0), or a cold boot. Except for
its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BDOS function calls for its I/0
operations.

CCP base: Lowest address of the CCP module in memory. This term
sometimes refers to the base of the CP/M system in memory, as the
CCP is normally the lowest CP/M module in high memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one
byte for each directory sector to be checked, that is, CKS bytes.
See CKS. A checksum vector is initialized and maintained for each
logged-in drive. Each directory access by the system results in a
checksum calculation that is compared with the one in the checksum
vector. If there 1is a discrepancy, the drive is set to Read-Only
status. This feature prevents the user from inadvertently switching
disks without 1logging in the new disk. If the new disk is not
logged-in, it is treated the same as the old one, and data on it
might be destroyed if writing is done.

CKS: Number of directory records to be checked summed on directory
accesses. This 1is a parameter in the disk parameter block located
in the BIOS. If the value of CKS is zero, then no directory records
are checked. CKS is also a parameter in the diskdef macro library,
where it is the actual number of directory elements to be checked
rather than the number of directory records.

H-4

CP/M Operating System Manual H Glossary

cold boot: See boot. Cold boot also refers to a jump to the boot
entry point in the BIOS jump table.

COM: Filetype for a CP/M command file. See command file.

command: CP/M command line. In general, a CP/M command 1line has
three parts: the command keyword, command tail, and a carriage
return. To execute a command, enter a CP/M command 1line directly
after the CP/M prompt at the console and press the carriage return
or enter key.

command file: Executable program file of filetype COM. A command
file 1is a machine 1language object module ready to be loaded and
executed at the absolute address of 0100H. To execute a command
file, enter its primary filename as the command keyword in a CP/M
command line.

command keyword: Name that identifies a CP/M command, wusually the
primary filename of a file of type COM, or a built-in command. The
command keyword precedes the command tail and the carriage return in
the command line.

command syntax: Statement that defines the correct way to enter a
command. The correct structure generally includes the command
keyword, the command tail, and a carriage return. A syntax line
usually contains symbols that you should replace with actual values
when you enter the command.

command tail: Part of a command that follows the command keyword in
the command line. The command tail can include a drive
specification, a filename and filetype, and options or parameters.
Some commands do not require a command tail.

CON: Mnemonic that represents the CP/M console device. For
example, the CP/M command PIP CON:=TEST.SUB displays the file
TEST.SUB on the console device. The explanation of the STAT command
tells how to assign the 1logical device CON: to various physical
devices. See console.

concatenate: Name of the PIP operation that copies two or more
separate files into one new file in the the specified sequence.

concurrency: Execution of two processes or operations
simultaneously.

CONIN: BIOS entry point to a routine that reads a character from
the console device.

CONOUT: BIOS entry point to a routine that sends a character to the
console device.

H-5

CP/M Operating System Manual H Glossary

console: Primary input/output device. The console consists of a
listing device, such as a screen or teletype, and a keyboard through
which the user communicates with the operating system or
applications program.

Console Command Processor: See CCP.

CONST: BIOS entry point to a routine that returns the status of the
console device.

control character: Nonprinting character combination. CP/M
interprets some control characters as simple commands such as line
editing functions. To enter a control character, hold down the
CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers. An operating system that
manages computer resources and provides a standard systems interface
to software written for a 1large variety of microprocessor-based
computer systems.

CP/M 1.41 compatibility: For a CP/M 2 system to be able to read
correctly single-density disks produced under a CP/M 1.4 system, the
extent mask must be zero and the block size 1K. This 1is because
under CP/M 2 an FCB may contain more than one extent. The number of
extents that may be contained by an FCB is EXM+1l. The issue of CP/M
1.4 compatibility also concerns random file I/0. To perform random
file I/0 under CP/M 1.4, you must maintain an FCB for each extent of
the file. This scheme 1is upward compatible with CP/M 2 for files
not exceeding 512K bytes, the largest file size supported under CP/M
1.4. If you wish to implement random I/0 for files larger than 512K
bytes under CP/M 2, you must use the random read and random write
functions, BDOS functions 33, 34, and 36. In this case, only one
FCB is used, and if CP/M 1.4 compatiblity is required, the program
must use the return version number function, BDOS Function 12, to
determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute
your next command. The CP/M prompt consists of an upper-case
letter, A-P, followed by a > character; for example, A>. The letter
designates which drive is currently logged in as the default drive.
CP/M will search this drive for the command file specified, unless
the command 1is a built-in command or prefaced by a select drive
command: for example, B:STAT.

CP/NET: Digital Research network operating system enabling
microcomputers to obtain access to common resources via a network.
CP/NET consists of MP/M masters and CP/M slaves with a network
interface between them.

CSV: See checksum vector.
cursor: One-character symbol that can appear anywhere on the
console screen. The «cursor indicates the position where the next

keystroke at the console will have an effect.

H-6

CP/M Operating System Manual H Glossary

data file: File containing information that will be processed by a
program.

deblocking: See blocking & deblocking algorithm.

default: Currently selected disk drive and user number. Any
command that does not specify a disk drive or a user number
references the default disk drive and user number. When CP/M is
first invoked, the default disk drive is drive A, and the default
user number is 0.

default buffer: Default 128-byte buffer maintained at 0080H in page
zero. When the CCP loads a COM file, this buffer is initialized to
the command tail; that is, any characters typed after the COM file
name are loaded into the buffer. The first byte at 0080H contains
the length of the command tail, while the command tail itself begins
at O0081H. The command tail 1is terminated by a byte containing a
binary zero value. The I command under DDT and SID initializes this
buffer in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH
and 006CH 1in page zero. The first default FCB is initialized from
the first delimited field in the command tail. The second default
FCB is initialized from the next field in the command tail.

delimiter: Special characters that separate different items in a
command line; for example, a colon separates the drive specification
from the filename. The CCP recognizes the following characters as
delimiters: . ¢ = ,; <>_, blank, and carriage return. Several
CP/M commands also treat the following as delimiter characters: , [
1 () $. It is advisable to avoid the use of delimiter characters
and lower-case characters in CP/M filenames.

DIR: Parameter in the diskdef macro library that specifies the
number of directory elements on the drive.

DIR attribute: File attribute. A file with the DIR attribute «can
be displayed by a DIR command. The file can be accessed from the
default user number and drive only.

DIRBUF: 128-byte scratchpad area for directory operations, usually
located at the end of the BIOS. DIRBUF is used by the BDOS during
its directory operations. DIRBUF also refers to the two-byte
address of this scratchpad buffer in the disk parameter header at
DPbase + 8 bytes.

directory: Portion of a disk that contains entries for each file on
the disk. In response to the DIR command, CP/M displays the
filenames stored in the directory. The directory also contains the
locations of the blocks allocated to the files. Each file directory
element is in the form of a 32-byte FCB, although one file can have
several elements, depending on its size. The maximum number of
directory elements supported is specified by the drive’s disk
parameter block value for DRM.

H-7

CP/M Operating System Manual H Glossary

directory element: Data structure. Each file on a disk has one or
more 32-byte directory elements associated with it. There are four
directory elements per directory sector. Directory elements can
also be referred to as directory FCBs.

directory entry: File entry displayed by the DIR command.
Sometimes this term refers to a physical directory element.

disk, diskette: Magnetic media used for mass storage in a computer
system. Programs and data are recorded on the disk in the same way
music can be recorded on cassette tape. The CP/M operating system
must be initially loaded from disk when the computer is turned on.
Diskette refers to smaller capacity removable floppy diskettes,
while disk may refer to either a diskette, removable cartridge disk,
or fixed hard disk. Hard disk capacities range from five to several
hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC, the
Digital Research macro assembler, creates disk definition tables
such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on
disk. CP/M assigns a letter to each drive under its control. For
example, CP/M may refer to the drives in a four-drive system as A,
B, C, and D.

disk parameter block (DPB): Data structure referenced by one or
more disk parameter headers. The disk parameter block defines disk
characteristics in the fields listed below:

SPT is the total number of sectors per track.

BSH is the data allocation block shift factor.

BLM is the data allocation block mask.

EXM is the extent mask determined by BLS and DSM.
DSM is the maximum data block number.

DRM is the maximum number of directory entries--1.
ALO reserves directory blocks.

AL1 reserves directory blocks.

CKS is the number of directory sectors check summed.
OFF is the number of reserved system tracks.

The address of the disk parameter block is Tlocated in the disk
parameter header at DPbase +0AH. CP/M Function 31 returns the DPB
address. Drives with the same characteristics can use the same disk
parameter header, and thus the same DPB. However, drives with
different characteristics must each have their own disk parameter
header and disk parameter blocks. When the BDOS calls the SELDSK
entry point in the BIOS, SELDSK must return the address of the
drive’s disk parameter header in register HL.

disk parameter header (DPH): Data structure that contains
information about the disk drive and provides a scratchpad area for
certain BDOS operations. The disk parameter header contains six
bytes of scratchpad area for the BD0S, and the following five 2-byte
parameters:

H-8

CP/M Operating System Manual H Glossary

XLT is the sector translation table address.
DIRBUF is the directory buffer address.

DPB is the disk parameter block address.

CSV is the checksum vector address.

ALV is the allocation vector address.

Given n disk drives, the disk parameter headers are arranged 1in a
table whose first row of 16 bytes corresponds to drive 0, with the
last row corresponding to drive n-1.

DKS: Parameter in the diskdef macro library specifying the number
of data blocks on the drive.

DMA: Direct Memory Access. DMA is a method of transferring data
from the disk into memory directly. In a CP/M system, the BDOS
calls the BIOS entry point READ to read a sector from the disk into
the currently selected DMA address. The DMA address must be the
address of a 128-byte buffer in memory, either the default buffer at
0080H in page zero, or a user-assigned buffer in the TPA.
Similarly, the BDOS calls the BIOS entry point WRITE to write the
record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the 1logical
drive number.

DPB: See disk parameter block.
DPH: See disk parameter header.

DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRM
is one less than the total number of directory entries allowed for
the drive. This value is related to DPB bytes ALO and AL1l, which
allocates up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM
is the maximum data block number supported by the drive. The
product BLS times (DSM+1) is the total number of bytes held by the
drive. This must not exceed the capacity of the physical disk less
the reserved system tracks.

editor: Utility program that creates and modifies text files. An
editor can be used for creation of documents or creation of code for
computer programs. The CP/M editor is invoked by typing the command
ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a
series of instructions that can be carried out by the computer. For
example, the computer cannot execute names and addresses, but it can
execute a program that prints all those names and addresses on

mailing labels.

execute a program: Start the processing of executable code.

H-9

CP/M Operating System Manual H Glossary

EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from
O to 31. One extent can contain 1, 2, 4, 8, or 16 blocks. EX is
the extent number field of an FCB and is a one-byte field at FCB +
12, where FCB Tlabels the first byte in the FCB. Depending on the
block size (BLS) and the maximum data block number (DSM), an FCB can
contain 1, 2, 4, 8, or 16 extents. The EX field is normally set to
0 by the user but contains the current extent number during file
I/0. The term FCB folding describes FCBs containing more than one
extent. In CP/M version 1.4, each FCB contained only one extent.
Users attempting to perform random record I/0 and maintain CP/M 1.4
compatiblity should be aware of the implications of this difference.
See CP/M 1.4 compatibility.

extent mask (EXM): A byte parameter in the disk parameter block
located at DPB + 3. The value of EXM is determined by the block
size (BLS) and whether the maximum data block number (DSM) exceeds
255. There are EXM + 1 extents per directory FCB.

FCB: See File Control Block.

file: Collection of characters, instructions, or data that can be
referenced by a wunique identifier. Files are usually stored on
various types of media, such as disk, or magnetic tape. A CP/M file
is identified by a file specification and resides on disk as a
collection of from zero to 65,536 records. Each record is 128 bytes
and can contain either binary or ASCII data. Binary files contain
bytes of data that can vary in value from OH to OFFH. ASCII files
contain sequences of character codes delineated by a carriage return
and line-feed combination; normally byte values range from OH to
7FH. The directory maps the file as a series of physical blocks.
Although files are defined as a sequence of consecutive logical
records, these records can not reside in consecutive sectors on the
disk. See also block, directory, extent, record, and sector.

File Control Block (FCB): Structure used for accessing files on
disk. Contains the drive, filename, filetype, and other information
describing a file to be accessed or created on the disk. A file
control block consists of 36 consecutive bytes specified by the user
for file I/0 functions. FCB can also refer to a directory element
in the directory portion of the allocated disk space. These contain
the same first 32 bytes of the FCB, but lack the current record and
random record number bytes.

filename: Name assigned to a file. A filename can include a
primary filename of one to eight characters; a filetype of zero to
three characters. A period separates the primary filename from the
filetype.

file specification: Unique file identifier. A complete CP/M file
specification includes a disk drive specification followed by a
colon, d:, a primary filename of one to eight characters, a period,
and a filetype of zero to three characters. For example,
b:example.tex is a complete CP/M file specification.

H-10

CP/M Operating System Manual H Glossary

filetype: Extension to a filename. A filetype can be from zero to
three characters and must be separated from the primary filename by
a period. A filetype can tell something about the file. Some
programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk wused to store information.
Floppy disks come in 5 1/4- and 8-inch diameters.

FSC: Parameter in the diskdef macro library specifying the first
physical sector number. This parameter is used to determine SPT and
build XLT.

hard disk: Rigid, platter-like, magnetic disk sealed in a
container. A hard disk stores more information than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal
digits and letters A, B, C, D, E, and F to represent the 16 digits.
Hexadecimal notation is often used to refer to binary numbers. A
binary number can be easily expressed as a hexadecimal value by
taking the bits in groups of 4, starting with the least significant
bit, and expressing each group as a hexadecimal digit, 0-F. Thus
the bit value 1011 becomes OBH and 10110101 becomes OB5H.

hex file: ASCII-printable representation of a command, machine
language, file.

hex file format: Absolute output of ASM and MAC for the Intel 8080
is a hex format file, containing a sequence of absolute records that
give a load address and byte values to be stored, starting at the
load address.

HOME: BIOS entry point which sets the disk head of the currently
selected drive to the track zero position.

host: Physical characteristics of a hard disk drive in a system
using the blocking and deblocking algorithm. The term, host, helps
distinguish physical hardware characteristics from CP/M’s 1logical
characteristics. For example, CP/M sectors are always 128 bytes,
although the host sector size can be a multiple of 128 bytes.

input: Data going into the computer, wusually from an operator
typing at the terminal or by a program reading from the disk.

input/output: See I/O0.

interface: Object that allows two independent systems to
communicate with each other, as an interface between hardware and
software in a microcomputer.

I/0: Abbreviation for input/output. Usually refers to input/output

operations or routines handling the input and output of data in the
computer system.

H-11

CP/M Operating System Manual H Glossary

IOBYTE: A one-byte field in page zero, currently at location 0003H,
that can support a Tlogical-to-physical device mapping for I/0.
However, its implementation in your BIOS is purely optional and
might or might not be supported in a given CP/M system. The IOBYTE
is easily set using the command:

STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, and LST:; each of
these can be assigned to one of four physical devices. The IOBYTE
can be initialized by the BOOT entry point of the BIOS and
interpreted by the BIOS I/0 entry points CONST, CONIN, CONOUT, LIST,
PUNCH, and READER. Depending on the setting of the IOBYTE,
different 1I/0 drivers can be selected by the BIOS. For example,
setting LST:=TTY: might cause LIST output to be directed to a serial
port, while setting LST:=LPT: causes LIST output to be directed to a
parallel port.

K: Abbreviation for kilobyte. See kilobyte.
keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytes of memory. This is a
standard unit of memory. For example, the Intel 8080 supports up to
64K of memory address space or 65,536 bytes. 1024 Kkilobytes equal
one megabyte, or over one million bytes.

linker: Utility program used to combine relocatable object modules
into an absolute file ready for execution. For example, LINK-80
creates either a COM or PRL file from relocatable REL files, such as
those produced by PL/I-80

LIST: A BIOS entry point to a routine that sends a character to the
list device, usually a printer.

list device: Device such as a printer onto which data can be listed
or printed.

LISTST: BIOS entry point to a routine that returns the ready status
of the list device.

loader: Utility program that brings an absolute program image into
memory ready for execution under the operating system, or a utility
used to make such an image. For example, LOAD prepares an absolute
COM file from the assembler hex file output that is ready to be
executed under CP/M.

logged in: Made known to the operating system, in reference to
drives. A drive is logged in when it is selected by the user or an
executing process. It remains selected or logged in wuntil you
change disks in a floppy disk drive or enter CTRL-C at the command
level, or until a BDOS Function 0 is executed.

logical: Representation of something that might or might not be the

H-12

CP/M Operating System Manual H Glossary

same 1in 1its actual physical form. For example, a hard disk can
occupy one physical drive, yet you can divide the available storage
on it to appear to the wuser as if it were in several different
drives. These apparent drives are the logical drives.

logical sector: See sector.
logical-to-physical sector translation table: See XLT.

LSC: Diskdef macro library parameter specifying the T1last physical
sector number.

LST: Logical CP/M list device, usually a printer. The CP/M 1list
device 1is an output-only device referenced through the LIST and
LISTST entry points of the BIOS. The STAT command allows assignment
of LST: to one of the physical devices: TTY:, CRT:, LPT:, or UL1:,
provided these devices and the IOBYTE are implemented in the LIST
and LISTST entry points of your CP/M BIOS module. The CP/NET
command NETWORK allows assignment of LST: to a 1list device on a
network master. For example, PIP LST:=TEST.SUB prints the file
TEST.SUB on the list device.

macro assembler: Assembler code translator providing macro
processing facilities. Macro definitions allow groups of
instructions to be stored and substituted in the source program as
the macro names are encountered. Definitions and invocations can be
nested and macro parameters can be formed to pass arbitrary strings
of text to a specific macro for substitution during expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, and
kilobyte.

microprocessor: Silicon chip that is the central processing unit
(CPU) of the microcomputer. The Intel 8080 and the Zilog Z80 are
microprocessors commonly used in CP/M systems.

MOVCPM image: Memory image of the CP/M system created by MOVCPM.
This image can be saved as a disk file using the SAVE command or
placed on the system tracks wusing the SYSGEN command without
specifying a source drive. This image varies, depending on the
presence of a one-sector or two-sector boot. If the boot 1is less
than 128 bytes (one sector), the boot begins at 0900H, the CP/M
system at 0980H, and the BIOS at 1F80H. Otherwise, the boot is at
0900H, the CP/M system at 1000H, and the BIOS at 2000H. 1In a CP/M
1.4 system with a one-sector boot, the addresses are the same as for
the CP/M 2 system--except that the BIOS begins at 1E80H instead of
1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer
operating system supporting multi-terminal access with multi-
programming at each terminal.

multi-programming: The capability of initiating and executing more
than one program at a time. These programs, usually called
processes, are time-shared, each receiving a slice of CPU time on a
round-robin basis. See concurrency.

H-13

CP/M Operating System Manual H Glossary

nibble: One half of a byte, usually the high-order or 1low-order 4
bits in a byte.

OFF: Two-byte parameter in the disk parameter block at DPB + 13
bytes. This value specifies the number of reserved system tracks.
The disk directory begins in the first sector of track OFF.

OFS: Diskdef macro 1library parameter specifying the number of
reserved system tracks. See OFF.

operating system: Collection of programs that supervises the
execution of other programs and the management of computer
resources. An operating system provides an orderly input/output
environment between the computer and its peripheral devices. It
enables user-written programs to execute safely. An operating
system standardizes the use of computer resources for the programs
running under it.

option: One of many parameters that can be part of a command tail.
Use options to specify additional conditions for a command’s
execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary,
whose base address is a multiple of 256 (100H) bytes. In hex
notation, pages always begin at an address with a least significant
byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000H and ©0100H used to hold
critical system parameters. Page zero functions primarily as an
interface region between user programs and the CP/M BDOS module.
Note that in non-standard systems this region is the base page of
the system and represents the first 256 bytes of memory used by the
CP/M system and user programs running under it.

parameter: Value in the command tail +that provides additional
information for the command. Technically, a parameter is a required
element of a command.

peripheral devices: Devices external to the CPU. For example,
terminals, printers, and disk drives are common peripheral devices
that are not part of the processor but are used in conjunction with
it.

physical: Characteristic of computer components, generally
hardware, that actually exist. In programs, physical components can
be represented by logical components.

primary filename: First 8 characters of a filename. The primary
filename 1is a unique name that helps the user identify the file
contents. A primary filename contains one to eight characters and
can 1include any letter or number and some special characters. The

H-14

CP/M Operating System Manual H Glossary

primary filename follows the optional drive specification and
precedes the optional filetype.

PRL: Page relocatable program. A page relocatable program is
stored on disk with a PRL filetype. Page relocatable programs are
easily relocated to any page boundary and thus are suitable for
execution in a nonbanked MP/M system.

program: Series of coded instructions that performs specific tasks
when executed by a computer. A program can be written in a
processor-specific language or a high-level 1language that can be
implemented on a number of different processors.

prompt: Any characters displayed on the video screen to help the
user decide what the next appropriate action is. A system prompt is
a special prompt displayed by the operating system. The alphabetic
character indicates the default drive. Some applications programs
have their own special prompts. See CP/M prompt.

PUN: Logical CP/M punch device. The punch device is an output-only
device accessed through the PUNCH entry point of the BIOS. 1In
certain implementations, PUN: can be a serial device such as a
modem.

PUNCH: BIOS entry point to a routine that sends a character to the
punch device.

RDR: Logical CP/M reader device. The reader device is an input-only
device accessed through the READER entry point in the BIOS. See
PUN: .

READ: Entry point in the BIOS to a routine that reads 128 bytes from
the currently selected drive, track, and sector into the current DMA
address.

READER: Entry point to a routine in the BIOS that reads the next
character from the currently assigned reader device.

Read-Only (R/0): Attribute that can be assigned to a disk file or a
disk drive. When assigned to a file, the Read-Only attribute allows
you to read from that file but not write to it. When assigned to a
drive, the Read-Only attribute allows you to read any file on the
disk, but prevents you from adding a new file, erasing or changing a
file, renaming a file, or writing on the disk. The STAT command can
set a file or a drive to Read-Only. Every file and drive is either
Read-Only or Read-Write. The default setting for drives and files
is Read-Write, but an error in resetting the disk or changing media
automatically sets the drive to Read-Only until the error is
corrected. See also ROM.

Read-Write (R/W): Attribute that can be assigned to a disk file or
a disk drive. The Read-Write attribute allows you to read from and
write to a specific Read-Write file or to any file on a disk that is
in a drive set to Read-Write. A file or drive can be set to either
Read-0Only or Read-Write.

H-15

CP/M Operating System Manual H Glossary

record: Group of bytes in a file. A physical record consists of
128 bytes and 1is the basic unit of data transfer between the
operating system and the application program. A logical record
might vary in length and is used to represent a unit of information.
Two 64-byte employee records can be stored in one 128-byte physical
record. Records are grouped together to form a file.

recursive procedure: Code that can call itself during execution.

reentrant procedure: Code that can be called by one process while
another is already executing it. Thus, reentrant code can be shared
between different users. Reentrant procedures must not be self-
modifying; that 1is, they must be pure code and not contain data.
The data for reentrant procedures can be kept in a separate data
area or placed on the stack.

restart (RST): One-byte call instruction wusually used during
interrupt sequences and for debugger break pointing. There are
eight restart locations, RST 0 through RST 7, whose addresses are
given by the product of 8 times the restart number.

R/0: See Read-Only.

ROM: Read-Only memory. This memory can be read but not written and
so is suitable for code and preinitialized data areas only.

RST: See restart.
R/W: See Read-Write.

sector: In a CP/M system, a sector is always 128 consecutive bytes.
A sector is the basic unit of data read and written on the disk by
the BIOS. A sector can be one 128-byte record in a file or a sector
of the directory. The BDOS always requests a logical sector number
between 0 and (SPT-1). This is typically translated into a physical
sector by the BIOS entry point SECTRAN. In some disk subsystems,
the disk sector size is larger than 128 bytes, usually a power of
two, such as 256, 512, 1024, or 2048 bytes. These disk sectors are
always referred to as host sectors in CP/M documentation and should
not be confused with other references to sectors, in which cases the
CP/M 128-byte sectors should be assumed. When the host sector size
is larger than 128 bytes, host sectors must be buffered in memory
and the 128-byte CP/M sectors must be blocked and deblocked from
them. This can be done by adding an additional module, the blocking
and deblocking algorithm, between the BIOS disk I/0 routines and the
actual disk I/O0.

sectors per track (SPT): A two-byte parameter in the disk parameter
block at DPB + 0. The BDOS makes calls to the BIOS entry point
SECTRAN with logical sector numbers ranging between 0 and (SPT - 1)
in register BC.

SECTRAN: Entry point to a routine in the BIOS that performs
logical-to-physical sector translation for the BDOS.

H-16

CP/M Operating System Manual H Glossary

SELDSK: Entry point to a routine in the BIOS that sets the
currently selected drive.

SETDMA: Entry point to a routine 1in the BIOS that sets the
currently selected DMA address. The DMA address is the address of a
128-byte buffer region in memory that is used to transfer data to
and from the disk in subsequent reads and writes.

SETSEC: Entry point to a routine 1in the BIOS that sets the
currently selected sector.

SETTRK: Entry point to a routine in the BIOS that sets the
currently selected track.

skew factor: Factor that defines the 1logical-to-physical sector
number translation in XLT. Logical sector numbers are used by the

BDOS and range between 0 and (SPT - 1). Data 1is written in
consecutive logical 128-byte sectors grouped in data blocks. The
number of sectors per block is given by BLS/128. Physical sectors

on the disk media are also numbered consecutively. If the physical
sector size is also 128 bytes, a one-to-one relationship exists
between logical and physical sectors. The logical-to-physical
translation table (XLT) maps this relationship, and a skew factor is
typically used 1in generating the table entries. For instance, if
the skew factor is 6, XLT will be:

Logical: 0 1 2 3 4 5 6 . 25
Physical: 1 7 13 19 25 5 11 cen 22

The skew factor allows time for program processing without missing
the next sector. Otherwise, the system must wait for an entire disk
revolution before reading the next logical sector. The skew factor
can be varied, depending on hardware speed and application
processing overhead. Note that no sector translation is done when
the physical sectors are larger than 128 bytes, as sector deblocking
is done in this case. See also sector, SKF, and XLT.

SKF: A diskdef macro library parameter specifying the skew factor
to be used in building XLT. If SKF is zero, no translation table is
generated and the XLT byte in the DPH will be 0000H.

software: Programs that contain machine-readable instructions, as
opposed to hardware, which is the actual physical components of a
computer.

source file: ASCII text file usually created with an editor that is
an 1input file to a system program, such as a language translator or

text formatter.

SP: Stack pointer. See stack.

H-17

CP/M Operating System Manual H Glossary

spooling: Process of accumulating printer output in a file while
the printer 1is busy. The file is printed when the printer becomes
free; a program does not have to wait for the slow printing process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return
address when a «call instruction 1is received. When a return
instruction is encountered, the processor restores the current
address on the stack to the program counter. Data such as the
contents of the registers can also be saved on the stack. The push
instruction places data on the stack and the pop instruction removes
it. An item is pushed onto the stack by decrementing the stack
pointer (SP) by 2 and writing the item at the SP address. In other
words, the stack grows downward in memory.

syntax: Format for entering a given command.
SYS: See system attribute.

SYSGEN image: Memory image of the CP/M system created by SYSGEN
when a destination drive is not specified. This is the same as the
MOVCPM image that can be read by SYSGEN if a source drive 1is not
specified. See MOVCPM image.

system attribute (SYS): File attribute. You can give a file the
system attribute by using the SYS option in the STAT command or by
using the set file attributes function, BDOS Function 12. A file
with the SYS attribute is not displayed in response to a DIR
command. If you give a file with user number 0 the SYS attribute,
you can read and execute that file from any user number on the same
drive. Use this feature to make your commonly used programs
available under any user number.

system prompt: Symbol displayed by the operating system indicating
that the system 1is ready to receive input. See prompt and CP/M
prompt.

system tracks: Tracks reserved on the disk for the CP/M systenm.
The number of system tracks is specified by the parameter OFF in the
disk parameter block (DPB). The system tracks for a drive always
precede its data tracks. The command SYSGEN copies the CP/M system
from the system tracks to memory, and vice versa. The standard
SYSGEN utility copies 26 sectors from track 0 and 26 sectors from
track 1. When the system tracks contain additional sectors or
tracks to be copied, a customized SYSGEN must be used.

terminal: See console.

TPA: Transient Program Area. Area in memory where user programs
run and store data. This area is a region of memory beginning at
0100H and extending to the base of the CP/M system in high memory.
The first module of the CP/M system 1is the CCP, which can be
overwritten by a user program. If so, the TPA is extended to the
base of the CP/M BDOS module. If the CCP is overwritten, the user

H-18

CP/M Operating System Manual H Glossary

program must terminate with either a system reset (Function 0) call
or a jump to location zero in page zero. The address of the base of
the CP/M BDOS is stored in 1location O0006H in page zero least
significant byte first.

track: Data on the disk media is accessed by combination of track
and sector numbers. Tracks form concentric rings on the disk; the
standard IBM single-density disks have 77 tracks. Each track
consists of a fixed number of numbered sectors. Tracks are numbered
from zero to one less than the number of tracks on the disk.

Transient Program Area: See TPA.

upward compatible: Term meaning that a program created for the
previously released operating system, or compiler, runs under the
newly released version of the same operating system.

USER: Term used in CP/M and MP/M systems to distinguish distinct
regions of the directory.

user number: Number assigned to files in the disk directory so that
different users need only deal with their own files and have their
own directories, even though they are all working from the same
disk. In CP/M, files can be divided into 16 user groups.

utility: Tool. Program that enables the user to perform certain
operations, such as copying files, erasing files, and editing files.
The utilities are created for the convenience of programmers and
users.

vector: Location in memory. An entry point into the operating
system used for making system calls or interrupt handling.

warm start: Program termination by a jump to the warm start vector
at location 0000H, a system reset (BDOS Function 0), or a CTRL-C
typed at the keyboard. A warm start reinitializes the disk
subsystem and returns control to the CP/M operating system at the
CCP level. The warm start vector is simply a jump to the WBOOT
entry point in the BIOS.

WBOOT: Entry point to a routine in the BIOS used when a warm start
occurs. A warm start is performed when a user program branches to
location 0000H, when the CPU is reset from the front panel, or when
the wuser types CTRL-C. The CCP and BDOS are reloaded from the
system tracks of drive A.

wildcard characters: Special characters that match certain
specified items. In CP/M there are two wildcard characters: ? and
*. The ? can be substituted for any single character in a filename,
and the *x can be substituted for the primary filename, the filetype,
or both. By placing wildcard characters in filenames, the user
creates an ambiguous filename and can quickly reference one or more
files.

H-19

CP/M Operating System Manual H Glossary

word: 16-bit or two-byte value, such as an address value. Although
the 1Intel 8080 is an 8-bit CPU, addresses occupy two bytes and are
called word values.

WRITE: Entry point to a routine in the BIOS that writes the record
at the currently selected DMA address to the currently selected
drive, track, and sector.

XLT: Logical-to-physical sector translation table 1located in the
BIOS. SECTRAN uses XLT to perform logical-to-physical sector number
translation. XLT also refers to the two-byte address in the disk
parameter header at DPBASE + 0. If +this parameter is zero, no
sector translation takes place. Otherwise this parameter is the
address of the translation table.

ZERO PAGE: See page zero.

End of Appendix H

H-20

Appendix I

CP/M Error Messages

Messages come from several different sources. CP/M displays
error messages when there are errors in calls to the Basic Disk
Operating System (BDOS). CP/M also displays messages when there are
errors 1in command 1lines. Each utility supplied with CP/M has its
own set of messages. The following lists CP/M messages and utility
messages. One might see messages other than those listed here if
one is running an application program. Check the application
program’s documentation for explanations of those messages.

Table I-1. CP/M Error Messages

Message Meaning

?

DDT. This message has four possible
meanings:

o DDT does not understand the assembly
language instruction.

o The file cannot be opened.

o A checksum error occurred in a HEX

file.
o The assembler/disassembler was
overlayed.

ABORTED

PIP. You stopped a PIP operation by
pressing a key.

ASM Error Messages

D Data error: data statement element
cannot be placed in specified data
area.

E Expression error: expression cannot

be evaluated during assembly.

L Label error: Tlabel cannot appear in
this context (might be duplicate
label).

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning

ASM Error Messages (continued)

N Not implemented: unimplemented
features, such as macros, are
trapped.

0 Overflow: expression is too complex
to evaluate.

P Phase error: 1label value changes on
two passes through assembly.

R Register error: the value specified
as a register 1is incompatible with
the code.

S Syntax error: improperly formed
expression.

1] Undefined label: 1label used does not
exist.

V. Value error: improperly formed
operand encountered in an expression.
BAD DELIMITER
STAT. Check command 1line for typing
errors.
Bad Load

CCP error message, or SAVE error message.

Bdos Err On d:

Basic Disk Operating System error on the
designated drive: CP/M replaces d: with
the drive specification of the drive where
the error occurred. This message 1is
followed by one of the four phrases in the
situations described below.

I-2

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
Bdos Err On d: Bad Sector

This message appears when CP/M finds no
disk in the drive, when the disk is
improperly formatted, when the drive latch
is open, or when power to the drive is
off. Check for one of these situations
and try again. This could also indicate a
hardware problem or a worn or improperly
formatted disk. Press ~C to terminate the
program and return to CP/M, or press
RETURN to ignore the error.

Bdos Err On d: File R/0

You tried to erase, rename, or set file
attributes on a Read-Only file. The file
should first be set to Read-Write (R/W)
with the command: STAT filespec $R/W.

Bdos Err On d: R/0

Drive has been assigned Read-Only status
with a STAT command, or the disk in the
drive has been changed without being
initialized with a ~C. CP/M terminates
the current program as soon as you press
any key.

Bdos Err on d: Select

CP/M received a command line specifying a
nonexistent drive. CP/M terminates the
current program as soon as you press any
key. Press RETURN or CTRL-C to recover.

Break "x" at c
ED. "x" is one of the symbols described
below and ¢ is the command letter being
executed when the error occurred.
Search failure. ED cannot find the

string specified in an F, S, or N
command.

I-3

CP/M Operating System Manual I CP/M Error Messages

Message

Table I-1. (continued)
Meaning

? Unrecognized command letter c. ED
does not recognize the indicated
command letter, or an E, H, Q, or O
command 1is not alone on its command
line.

0 The file specified in an R command
cannot be found.

> Buffer full. ED cannot put any more
characters in the memory buffer, or
the string specified in an F, N, or S
command is too long.

E Command aborted. A keystroke at the
console aborted command execution.

Break "x" at c (continued)

F Disk or directory full. This error is
followed by either the disk or
directory full message. Refer to the
recovery procedures listed under
these messages.

CANNOT CLOSE DESTINATION FILE--{filespec}

PIP. An output file <cannot be closed.
You should take appropriate action after
checking to see if the correct disk is in
the drive and that the disk is not write-
protected.

Cannot close, R/0
CANNOT CLOSE FILES

CP/M cannot write to the file. This
usually occurs because the disk is write-
protected.

ASM. An output file cannot be closed.
This 1is a fatal error that terminates ASM
execution. Check to see that the disk is
in the drive, and that the disk is not
write-protected.

I-4

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning

DDT. The disk file written by a W command
cannot be closed. This is a fatal error
that terminates DDT execution. Check if
the correct disk is in the drive and that
the disk is not write-protected.

SUBMIT. This error can occur during
SUBMIT file processing. Check if the
correct system disk is in the A drive and
that the disk is not write-protected. The
SUBMIT job can be restarted after
rebooting CP/M.

CANNOT READ

PIP. PIP cannot read the specified
source. Reader cannot be implemented.

CANNOT WRITE

PIP. The destination specified in the PIP

command is illegal. You probably
specified an input device as a
destination.

Checksum error

PIP. A HEX record checksum error was
encountered. The HEX record that produced
the error must be corrected, probably by
recreating the HEX file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:

hhhh:

LOAD. File contains incorrect data.
Regenerate HEX file from the source.

Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to
2048 characters in the input file.

I-5

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
Command too long

SUBMIT. A command in the SUBMIT file
cannot exceed 125 characters.

CORRECT ERROR, TYPE RETURN OR CTRL-Z

PIP. A HEX record checksum was
encountered during the transfer of a HEX
file. The HEX file with the checksum
error should be corrected, probably by
recreating the HEX file.

DESTINATION IS R/0, DELETE (Y/N)?

PIP. The destination file specified in a
PIP command already exists and it is Read-
Only. If you type Y, the destination file
is deleted before the file copy is done.

Directory full

ED. There is not enough directory space
for the file being written to the
destination disk. You can use the
0Xfilespec command to erase any
unnecessary files on the disk without
leaving the editor.

SUBMIT. There 1is not enough directory
space to write the $$$.SUB file used for
processing SUBMITs. Erase some files or
select a new disk and retry.

Disk full

ED. There is not enough disk space for
the output file. This error can occur on
the W, E, H, or X commands. If it occurs
with X command, you can repeat the command
prefixing the filename with a different
drive.

I-6

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
DISK READ ERROR--{filespec}

PIP. The input disk file specified in a
PIP command cannot be read properly. This
is usually the result of an unexpected
end-of-file. Correct the problem in your
file.

DISK WRITE ERROR--{filespec}

DDT. A disk write operation cannot be
successfully performed during a W command,
probably due to a full disk. You should
either erase some unnecessary files or get
another disk with more space.

PIP. A disk write operation cannot be
successfully performed during a PIP
command, probably due to a full disk. You
should either erase some unnecessary files
or get another disk with more space and
execute PIP again.

SUBMIT. The SUBMIT program cannot write
the $%$%$.SUB file to the disk. Erase some
files, or select a new disk and try again.
ERROR: BAD PARAMETER
PIP. You entered an illegal parameter in
a PIP command. Retype the entry
correctly.
ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Displayed if LOAD cannot find the
specified file or if no filename 1is
specified.
ERROR: CANNOT CLOSE FILE, LOAD ADDRESS hhhh
LOAD. Caused by an error code returned by

a BDOS function call. Disk might be
write-protected.

I-7

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Cannot find source file. Check
disk directory.

ERROR: DISK READ, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by
a BDOS function call.

ERROR: DISK WRITE, LOAD ADDRESS hhhh

LOAD. Destination disk is full.

ERROR: INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far
from the address of the previously-
processed record. This 1is an internal
limitation of LOAD, but it can be
circumvented. Use DDT to read the HEX
file into memory, then use a SAVE command
to store the memory image file on disk.

ERROR: NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh

LOAD. Disk directory is full.

Error on line nnn message

SUBMIT. The SUBMIT program displays 1its
messages 1in the format shown above, where
nnn represents the 1line number of the
SUBMIT file. Refer to the message
following the line number.

FILE ERROR

ED. Disk or directory is full, and ED
cannot write anything more on the disk.
This is a fatal error, so make sure there
is enough space on the disk to hold a
second copy of the file before invoking
ED.

I-8

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
FILE EXISTS

You have asked CP/M to create or rename a
file wusing a file specification that is
already assigned to another file. Either
delete the existing file or use another
file specification.

REN. The new name specified is the name
of a file that already exists. You cannot
rename a file with the name of an existing
file. If vyou want to replace an existing
file with a newer version of the same
file, either rename or erase the existing
file, or use the PIP utility.

File exists, erase it

ED. The destination filename already
exists when you are placing the
destination file on a different disk than
the source. It should be erased or
another disk selected to receive the
output file.

xx FILE IS READ/ONLY =xx

ED. The file specified in the command to
invoke ED has the Read-Only attribute. Ed
can read the file so that the wuser can
examine 1it, but ED cannot change a Read-
Only file.

File Not Found

CP/M cannot find the specified file.
Check that vyou have entered the correct
drive specification or that you have the
correct disk in the drive.

ED. ED cannot find the specified file.
Check that vyou have entered the correct
drive specification or that you have the
correct disk in the drive.

STAT. STAT cannot find the specified
file. The message might appear if you
omit the drive specification. Check to
see if the correct disk is in the drive.

I-9

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
FILE NOT FOUND--{filespec}

PIP. An input file that you have
specified does not exist.

Filename required

ED. You typed the ED command without a
filename. Reenter the ED command followed
by the name of the file you want to edit
or create.

hhhh??=dd

DDT. The ?? indicates DDT does not Kknow
how to represent the hexadecimal value dd
encountered at address hhhh in 8080
assembly language. dd is not an 8080
machine instruction opcode.

Insufficient memory

DDT. There is not enough memory to load
the file specified in an R or E command.

Invalid Assignment

STAT. You specified an invalid drive or
file assignment, or misspelled a device
name. This error message might be
followed by a 1list of the valid file
assignments that can follow a filename.
If an invalid drive assignment was
attempted the message Use: d:=R0 1is
displayed, showing the proper syntax for
drive assignments.

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
Invalid control character

SUBMIT. The only valid control characters
in the SUBMIT files of the type SUB are ©
A through ~ Z. Note that in a SUBMIT file
the control character is represented by
typing the circumflex, ©, not by pressing
the control key.

INVALID DIGIT--{filespec}

PIP. An invalid HEX digit has been
encountered while reading a HEX file. The
HEX file with the invalid HEX digit should
be corrected, probably by recreating the
HEX file.

Invalid Disk Assignment

STAT. Might appear if vyou follow the
drive specification with anything except
=R/0.

INVALID DISK SELECT

CP/M received a command line specifying a
nonexistent drive, or the disk in the
drive 1is improperly formatted. CP/M
terminates the current program as soon as
you press any key.

INVALID DRIVE NAME (Use A, B, C, or D)
SYSGEN. SYSGEN recognizes only drives A,
B, C, and D as valid destinations for
system generation.

Invalid File Indicator

STAT. Appears if you do not specify RO,
RW, DIR, or SYS.

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)
Message Meaning
INVALID FORMAT

PIP. The format of your PIP command 1is
illegal. See the description of the PIP
command.

INVALID HEX DIGIT

LOAD ADDRESS hhhh

ERROR ADDRESS hhhh
BYTES READ:

hhhh

LOAD. File contains incorrect HEX digit.

INVALID MEMORY SIZE

MOVCPM. Specify a value less than 64K or
your computer’s actual memory size.

INVALID SEPARATOR

PIP. You have placed an invalid character
for a separator Dbetween two input
filenames.

INVALID USER NUMBER

PIP. You have specified a wuser number
greater than 15. User numbers are in the
range 0 to 15.

n?

USER. You specified a number greater than
fifteen for a wuser area number. For
example, if you type USER 18<cr>, the
screen displays 187.

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)

Message Meaning

NO DIRECTORY SPACE
ASM. The disk directory is full. Erase
some files +to make room for PRN and HEX
files. The directory can usually hold
only 64 filenames.

NO DIRECTORY SPACE--{filespec}
PIP. There is not enough directory space
for the output file. You should either
erase some unnecessary files or get
another disk with more directory space and
execute PIP again.

NO FILE--{filespec}

DIR, ERA, REN, PIP. CP/M cannot find the
specified file, or no files exist.

ASM. The indicated source or include file
cannot be found on the indicated drive.

DDT. The file specified in an R or E
command cannot be found on the disk.

NO INPUT FILE PRESENT ON DISK
DUMP. The file you requested does not
exist.

No memory
There 1is not enough (buffer?) memory
available for loading the program
specified.

NO SOURCE FILE ON DISK
SYSGEN. SYSGEN cannot find CP/M either in

CPMxx.com form or on the system tracks of
the source disk.

CP/M Operating System Manual I CP/M Error Messages

Message

NO SOURCE FILE

NO SPACE

Table I-1. (continued)
Meaning
PRESENT

ASM. The assembler cannot find the file
you specified. Either you mistyped the
file specification in your command line,
or the filetype is not ASM.

SAVE. Too many files are already on the
disk, or no room is left on the disk to
save the information.

No SUB file present

SUBMIT. For SUBMIT to operate properly,
you must create a file with filetype of
SUB. The SUB file contains wusual CP/M
commands. Use one command per line.

NOT A CHARACTER SOURCE

*x NOT DELETED

NOT FOUND

PIP. The source specified in your PIP
command is illegal. You have probably
specified an output device as a source.

PIP. PIP did not delete the file, which
might have had the R/0 attribute.

PIP. PIP cannot find the specified file.

OUTPUT FILE WRITE ERROR

ASM. You specified a write-protected disk
as the destination for the PRN and HEX
files, or the disk has no space left.
Correct the problem before assembling your
program.

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)

Message Meaning

Parameter error
SUBMIT. Within the SUBMIT file of type
sub, valid parameters are $0 through $9.

PARAMETER ERROR, TYPE RETURN TO IGNORE
SYSGEN. If you press RETURN, SYSGEN
proceeds without processing the invalid
parameter.

QUIT NOT FOUND
PIP. The string argument to a Q parameter
was not found in your input file.

Read error
TYPE. An error occurred when reading the
file specified in the type command. Check
the disk and try again. The STAT filespec
command can diagnose trouble.

READER STOPPING

PIP. Reader operation interrupted.

Record Too Long
PIP. PIP cannot process a record longer
than 128 bytes.

Requires CP/M 2.0 or later

XSUB. XSUB requires the facilities of
CP/M 2.0 or newer version.

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)

Message Meaning

Requires CP/M 2.0 or new for operation
PIP. This version of PIP requires the
facilities of CP/M 2.0 or newer version.

START NOT FOUND
PIP. The string argument to an S
parameter cannot be found in the source
file.

SOURCE FILE INCOMPLETE
SYSGEN. SYSGEN cannot wuse vyour CP/M
source file.

SOURCE FILE NAME ERROR
ASM. When you assemble a file, you cannot
use the wildcard characters * and ? in the
filename. Only one file can be assembled
at a time.

SOURCE FILE READ ERROR

ASM. The assembler cannot understand the
information in the file containing the

assembly-language program. Portions of
another file might have been written over
your assembly-language file, or

information was not properly saved on the
disk. Use the TYPE command to locate the
error. Assembly-language files contain
the letters, symbols, and numbers that
appear on your keyboard. If your screen
displays unrecognizable output or behaves
strangely, you have found where computer
instructions have crept into your file.

SYNCHRONIZATION ERROR

MOVCPM. The MOVCPM utility is being used
with the wrong CP/M system.

CP/M Operating System Manual I CP/M Error Messages

Table I-1. (continued)

Message Meaning

"SYSTEM" FILE NOT ACCESSIBLE
You tried to access a file set to SYS with
the STAT command.

*x TOO MANY FILES =*x
STAT. There is not enough memory for STAT
to sort the files specified, or more than
512 files were specified.

UNEXPECTED END OF HEX FILE--{filespec}
PIP. An end-of-file was encountered prior
to a termination HEX record. The HEX file
without a termination record should be
corrected, probably by recreating the HEX
file.

Unrecognized Destination
PIP. Check command line for valid
destination.

Use: STAT d:=R0O
STAT. An invalid STAT drive command was
given. The only valid drive assignment in
STAT is STAT d:=RO.

VERIFY ERROR:--{filespec}
PIP. When copying with the V option, PIP
found a difference when rereading the data
just written and comparing it to the data
in its memory buffer. Usually this

indicates a failure of either the
destination disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSUB ACTIVE

SUBMIT. XSUB has been invoked.

CP/M Operating System Manual I CP/M Error Messages

Message

Table I-1. (continued)

Meaning

XSUB ALREADY PRESENT

Your input?

SUBMIT. XSUB is already active in memory.

If CP/M cannot find the command you
specified, it returns the command name you
entered followed by a question mark.
Check that you have typed the command line
correctly, or that the command you
requested exists as a .COM file on the
default or specified disk.

End of Appendix I

