
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M

Operating System

Manual

Copyright (c) 1982

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

COPYRIGHT

Copyright (c) 1976, 1977, 1978, 1979, 1982, 1983,
and 1984 by Digital Research Inc. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research Inc., Post Office Box
579, Pacific Grove, California, 93950.

Thus, readers are granted permission to include the
example programs, either in whole or in part, in
their own programs.

DISCLAIMER

Digital Research Inc. makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research Inc. reserves
the right to revise this publication and to make
changes from time to time in the content hereof
without obligation of Digital Research Inc. to
notify any person of such revision or changes.

TRADEMARKS

CP/M, CP/NET, and Digital Research and its logo are
registered trademarks of Digital Research. ASM,
DESPOOL, DDT, LINK-80, MAC, MP/M, PL/I-80 and SID
are trademarks of Digital Research. IBM is a
registered trademark of International Business
Machines. Intel is a registered trademark of Intel
Corporation. TI Silent 700 is a trademark of Texas
Instruments Incorporated. Zilog and Z80 are
registered trademarks of Zilog, Inc.

The CP/M Operating System Manual was prepared using
the Digital Research TEX Text Formatter and printed
in the United States of America.

* First Edition: 1976 *
* Second Edition: July 1982 *
* Third Edition: March 1983 *
* Fourth Edition: March 1984 *

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Table of Contents

1 CP/M Features and Facilities

 1.1 Introduction 1-1

 1.2 Functional Description 1-3

 1.2.1 General Command Structure 1-3
 1.2.2 File References 1-3

 1.3 Switching Disks 1-5
 1.4 Built-in Commands 1-6

 1.4.1 ERA Command 1-6
 1.4.2 DIR Command 1-7
 1.4.3 REN Command 1-8
 1.4.4 SAVE Command 1-8
 1.4.5 TYPE Command 1-9
 1.4.6 USER Command 1-9

 1.5 Line Editing and Output Control 1-10

 1.6 Transient Commands 1-11

 1.6.1 STAT Command 1-12
 1.6.2 ASM Command 1-18
 1.6.3 LOAD Command 1-19
 1.6.4 PIP . 1-20
 1.6.5 ED Command 1-29
 1.6.6 SYSGEN Command 1-31
 1.6.7 SUBMIT Command 1-33
 1.6.8 DUMP Command 1-35
 1.6.9 MOVCPM Command 1-35

 1.7 BDOS Error Messages 1-37

 1.8 CP/M Operation on the Model 800 1-38

2 The CP/M Editor

 2.1 Introduction to ED 2-1

 2.1.1 ED Operation 2-1
 2.1.2 Text Transfer Functions 2-3
 2.1.3 Memory Buffer Organization 2-4
 2.1.4 Line Numbers and ED Start-up 2-5
 2.1.5 Memory Buffer Operation 2-6
 2.1.6 Command Strings 2-7
 2.1.7 Text Search and Alteration 2-10
 2.1.8 Source Libraries 2-13
 2.1.9 Repetitive Command Execution 2-14

 iii

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Table of Contents

(continued)

 2.2 ED Error Conditions 2-14

 2.3 Control Characters and Commands 2-16

3 CP/M Assembler

 3.1 Introduction 3-1

 3.2 Program Format 3-3

 3.3 Forming the Operand 3-4

 3.3.1 Labels 3-4
 3.3.2 Numeric Constants 3-5
 3.3.3 Reserved Words 3-5
 3.3.4 String Constants 3-6
 3.3.5 Arithmetic and Logical Operators 3-7
 3.3.6 Precedence of Operators 3-8

 3.4 Assembler Directives 3-9

 3.4.1 The ORG Directive 3-10
 3.4.2 The END Directive 3-10
 3.4.3 The EQU Directive 3-11
 3.4.4 The SET Directive 3-11
 3.4.5 The IF and ENDIF Directives 3-12
 3.4.6 The DB Directive 3-13
 3.4.7 The DW Directive 3-14
 3.4.8 The DS Directive 3-14

 3.5 Operation Codes 3-15

 3.5.1 Jumps, Calls, and Returns 3-15
 3.5.2 Immediate Operand Instructions 3-17
 3.5.3 Increment and Decrement Instructions 3-17
 3.5.4 Data Movement Instructions 3-18
 3.5.5 Arithmetic Logic Unit Operations 3-19
 3.5.6 Control Instructions 3-21

 3.6 Error Messages 3-21

 3.7 A Sample Session 3-23

 iv

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Table of Contents

(continued)

4 CP/M Dynamic Debugging Tool

 4.1 Introduction 4-1

 4.2 DDT Commands 4-3

 4.2.1 The A (Assembly) Command 4-3
 4.2.2 The D (Display) Command 4-4
 4.2.3 The F (Fill) Command 4-5
 4.2.4 The G (Go) Command 4-5
 4.2.5 The I (Input) Command 4-6
 4.2.6 The L (List) Command 4-6
 4.2.7 The M (Move) Command 4-7
 4.2.8 The R (Read) Command 4-7
 4.2.9 The S (Set) Command 4-8
 4.2.1- The T (Trace) Command 4-8
 4.2.11 The U (Untrace) Command 4-9
 4.2.12 The X (Examine) Command 4-9

 4.3 Implementation Notes 4-10

 4.4 A Sample Program 4-11

5 CP/M 2 System Interface

 5.1 Introduction 5-1

 5.2 Operating System Call Conventions 5-3

 5.3 A Sample File-to-File Copy Program 5-35

 5.4 A Sample File Dump Utility 5-38

 5.5 A Sample Random Access Program 5-42

 5.6 System Function Summary 5-50

6 CP/M 2 Alteration

 6.1 Introduction 6-1

 6.2 First-level System Regeneration 6-2

 6.3 Second-level System Generation 6-5

 6.4 Sample GETSYS and PUTSYS Programs 6-9

 v

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Table of Contents

(continued)

 6.5 Disk Organization 6-11

 6.6 The BIOS Entry Points 6-13

 6.7 A Sample BIOS 6-21

 6.8 A Sample Cold Start Loader 6-21

 6.9 Reserved Locations in Page Zero 6-22

 6.10 Disk Parameter Tables 6-23

 6.11 The DISKDEF Macro Library 6-28

 6.12 Sector Blocking and Deblocking 6-32

 vi

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Appendixes

A Basic Input/Output System (BIOS) A-1

B A Skeletal CBIOS B-1

C A Skeletal GETSYS/PUTSYS Program C-1

D The Model 800 Cold Start Loader for CP/M 2 D-1

E A Skeletal Cold Start Loader E-1

F CP/M Disk Definition Library F-1

G Blocking and Deblocking Algorithms G-1

H Glossary . H-1

I CP/M Error Messages I-1

 vii

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Tables, Figures, and Listings

Tables

 1-1. Line-editing Control Characters 1-10
 1-2. CP/M Transient Commands 1-11
 1-3. Physical Devices 1-14
 1-4. PIP Parameters 1-24

 2-1. ED Text Transfer Commands 2-3
 2-2. Editing Commands 2-6
 2-3. Line-editing Controls 2-7
 2-4. Error Message Symbols 2-13
 2-5. ED Control Characters 2-14
 2-6. ED Commands 2-15

 3-1. Reserved Characters 3-6
 3-2. Arithmetic and Logical Operators 3-7
 3-3. Assembler Directives 3-9
 3-4. Jumps, Calls, and Returns 3-15
 3-5. Immediate Operand Instructions 3-16
 3-6. Increment and Decrement Instructions 3-17
 3-7. Data Movement Instructions 3-17
 3-8. Arithmetic Logic Unit Operations 3-18
 3-9. Error Codes 3-20
 3-10. Error Messages 3-21

 4-1. Line-editing Controls 4-2
 4-2. DDT Commands 4-2
 4-3. CPU Registers 4-9

 5-1. CP/M Filetypes 5-6
 5-2. File Control Block Fields 5-7
 5-3. Edit Control Characters 5-20

 6-1. Standard Memory Size Values 6-2
 6-2. Common Values for CP/M Systems 6-7
 6-3. CP/M Disk Sector Allocation 6-11
 6-4. IOBYTE Field Values 6-15
 6-5. BIOS Entry Points 6-16
 6-6. Reserved Locations in Page Zero 6-21
 6-7. Disk Parameter Headers 6-23
 6-8. BSH and BLM Values 6-25
 6-9. EXM Values 6-25
 6-10. BLS Tabluation 6-26

 I-1. CP/M Error Messages I-1

Figures

 2-1. Overall ED Operation 2-2
 2-2. Memory Buffer Organization 2-2

 viii

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Tables, Figures, and Listings

(continued)

Figures

 2-3. Logical Organization of Memory Buffer 2-4

 5-1. CP/M Memory Organization 5-1
 5-2. File Control Block Format 5-7

 6-1. IOBYTE Fields 6-15
 6-2. Disk Parameter Header Format 6-22
 6-3. Disk Parameter Header Table 6-23
 6-4. Disk Parameter Block Format 6-24
 6-5. AL0 and AL1 6-25

Listings

 6-1. GETSYS Program 6-9
 6-2. BIOS Entry Points 6-13

 ix

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Section 1

CP/M Features and Facilities

1.1 Introduction

 CP/M is a monitor control program for microcomputer system
development that uses floppy disks or Winchester hard disks for
backup storage. Using a computer system based on the Intel 8080
microcomputer, CP/M provides an environment for program
construction, storage, and editing, along with assembly and program
check-out facilities. CP/M can be easily altered to execute with
any computer configuration that uses a Zilog Z80 or an Intel 8080
Central Processing Unit (CPU) and has at least 20K bytes of main
memory with up to 16 disk drives. A detailed discussion of the
modifications required for any particular hardware environment is
given in Section 6. Although the standard Digital Research version
operates on a single-density Intel Model 800, microcomputer
development system several different hardware manufacturers support
their own input-output (I/O) drivers for CP/M.

 The CP/M monitor provides rapid access to programs through a
comprehensive file management package. The file subsystem supports
a named file structure, allowing dynamic allocation of file space as
well as sequential and random file access. Using this file system,
a large number of programs can be stored in both source and machine-
executable form.

 CP/M 2 is a high-performance, single console operating system
that uses table-driven techniques to allow field reconfiguration to
match a wide variety of disk capacities. All fundamental file
restrictions are removed, maintaining upward compatibility from
previous versions of release 1.

 Features of CP/M 2 include field specification of one to
sixteen logical drives, each containing up to eight megabytes. Any
particular file can reach the full drive size with the capability of
expanding to thirty-two megabytes in future releases. The directory
size can be field-configured to contain any reasonable number of
entries, and each file is optionally tagged with Read-Only and
system attributes. Users of CP/M 2 are physically separated by user
numbers, with facilities for file copy operations from one user area
to another. Powerful relative-record random access functions are
present in CP/M 2 that provide direct access to any of the 65536
records of an eight-megabyte file.

 CP/M also supports ED, a powerful context editor, ASM , an
Intel-compatible assembler, and DDT , debugger subsystems. Optional
software includes a powerful Intel-compatible macro assembler,
symbolic debugger, along with various high-level languages. When
coupled with CP/M’s Console Command Processor (CCP), the resulting
facilities equal or exceed similar large computer facilities.

 1-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.1 Introduction

 CP/M is logically divided into several distinct parts:

 o BIOS (Basic I/O System), hardware-dependent
 o BDOS (Basic Disk Operating System)
 o CCP (Console Command Processor)
 o TPA (Transient Program Area)

 The BIOS provides the primitive operations necessary to access
the disk drives and to interface standard peripherals: teletype,
CRT, paper tape reader/punch, and user-defined peripherals. You can
tailor peripherals for any particular hardware environment by
patching this portion of CP/M. The BDOS provides disk management by
controlling one or more disk drives containing independent file
directories. The BDOS implements disk allocation strategies that
provide fully dynamic file construction while minimizing head
movement across the disk during access. The BDOS has entry points
that include the following primitive operations, which the program
accesses:

 o SEARCH looks for a particular disk file by name.
 o OPEN opens a file for further operations.
 o CLOSE closes a file after processing.
 o RENAME changes the name of a particular file.
 o READ reads a record from a particular file.
 o WRITE writes a record to a particular file.
 o SELECT selects a particular disk drive for further operations.

 The CCP provides a symbolic interface between your console and
the remainder of the CP/M system. The CCP reads the console device
and processes commands, which include listing the file directory,
printing the contents of files, and controlling the operation of
transient programs, such as assemblers, editors, and debuggers. The
standard commands that are available in the CCP are listed in
Section 1.2.1.

 The last segment of CP/M is the area called the Transient
Program Area (TPA). The TPA holds programs that are loaded from the
disk under command of the CCP. During program editing, for example,
the TPA holds the CP/M text editor machine code and data areas.
Similarly, programs created under CP/M can be checked out by loading
and executing these programs in the TPA.

 Any or all of the CP/M component subsystems can be overlaid by
an executing program. That is, once a user’s program is loaded into
the TPA, the CCP, BDOS, and BIOS areas can be used as the program’s
data area. A bootstrap loader is programmatically accessible
whenever the BIOS portion is not overlaid; thus, the user program
need only branch to the bootstrap loader at the end of execution and
the complete CP/M monitor is reloaded from disk.

 The CP/M operating system is partitioned into distinct modules,
including the BIOS portion that defines the hardware environment in
which CP/M is executing. Thus, the standard system is easily
modified to any nonstandard environment by changing the peripheral
drivers to handle the custom system.

 1-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.2 Functional Description

1.2 Functional Description

 You interact with CP/M primarily through the CCP, which reads
and interprets commands entered through the console. In general,
the CCP addresses one of several disks that are on-line. The
standard system addresses up to sixteen different disk drives.
These disk drives are labeled A through P. A disk is logged-in if
the CCP is currently addressing the disk. To clearly indicate which
disk is the currently logged disk, the CCP always prompts the
operator with the disk name followed by the symbol >, indicating
that the CCP is ready for another command. Upon initial start-up,
the CP/M system is loaded from disk A, and the CCP displays the
following message:

 CP/M VER x.x

where x.x is the CP/M version number. All CP/M systems are
initially set to operate in a 20K memory space, but can be easily
reconfigured to fit any memory size on the host system (see Section
1.6.9). Following system sign-on, CP/M automatically logs in disk
A, prompts you with the symbol A>, indicating that CP/M is currently
addressing disk A, and waits for a command. The commands are
implemented at two levels: built-in commands and transient
commands.

1.2.1 General Command Structure

 Built-in commands are a part of the CCP program, while
transient commands are loaded into the TPA from disk and executed.
The following are built-in commands:

 o ERA erases specified files.
 o DIR lists filenames in the directory.
 o REN renames the specified file.
 o SAVE saves memory contents in a file.
 o TYPE types the contents of a file on the logged disk.

Most of the commands reference a particular file or group of files.
The form of a file reference is specified in Section 1.2.2.

1.2.2 File References

 A file reference identifies a particular file or group of files
on a particular disk attached to CP/M. These file references are
either unambiguous (ufn) or ambiguous (afn). An unambiguous file
reference uniquely identifies a single file, while an ambiguous file
reference is satisfied by a number of different files.

 File references consist of two parts: the primary filename and
the filetype. Although the filetype is optional, it usually is
generic. For example, the filetype ASM is used to denote that the
file is an assembly language source file, while the primary filename
distinguishes each particular source file. The two names are
separated by a period, as shown in the following example:

 1-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.2 Functional Description

 filename.typ

In this example, filename is the primary filename of eight
characters or less, and typ is the filetype of no more than three
characters. As mentioned above, the name

 filename

is also allowed and is equivalent to a filetype consisting of three
blanks. The characters used in specifying an unambiguous file
reference cannot contain any of the following special characters:

 < > . , ; : = ? * [] _ % | () / \

while all alphanumerics and remaining special characters are
allowed.

 An ambiguous file reference is used for directory search and
pattern matching. The form of an ambiguous file reference is
similar to an unambiguous reference, except the symbol ? can be
interspersed throughout the primary and secondary names. In various
commands throughout CP/M, the ? symbol matches any character of a
filename in the ? position. Thus, the ambiguous reference

 X?Z.C?M

matches the following unambiguous filenames

 XYZ.COM

and

 X3Z.CAM

The * wildcard character can also be used in an ambiguous file
reference. The * character replaces all or part of a filename or
filetype. Note that

 .

equals the ambiguous file reference

 ????????.???

while

 filename.*

and

 *.typ

are abbreviations for

 filename.???

 1-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.2 Functional Description

and

 ????????.typ

respectively. As an example,

 A>DIR *.*

is interpreted by the CCP as a command to list the names of all disk
files in the directory. The following example searches only for a
file by the name X.Y:

 A>DIR X,Y

Similarly, the command

 A>DIR X?Y.C?M

causes a search for all unambiguous filenames on the disk that
satisfy this ambiguous reference.

 The following file references are valid unambiguous file
references:

 X
 X.Y
 XYZ
 XYZ.COM
 GAMMA
 GAMMA.1

 As an added convenience, the programmer can generally specify
the disk drive name along with the filename. In this case, the
drive name is given as a letter A through P followed by a colon (:).
The specified drive is then logged-in before the file operation
occurs. Thus, the following are valid file references with disk
name prefixes:

 A:X.Y
 P:XYZ.COM
 B:XYZ
 B:X.A?M
 C:GAMMA
 C:*.ASM

All alphabetic lower-case letters in file and drive names are
translated to upper-case when they are processed by the CCP.

1.3 Switching Disks

 The operator can switch the currently logged disk by typing the
disk drive name, A through P, followed by a colon when the CCP is
waiting for console input. The following sequence of prompts and
commands can occur after the CP/M system is loaded from disk A:

 1-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.3 Switching Disks

 CP/M VER 2.2
 A>DIR List all files on disk A.
 A:SAMPLE ASM SAMPLE PRN
 A>B: Switch to disk B.
 B>DIR *.ASM List all ASM files on B.
 B:DUMP ASM FILES ASM
 b>A: Switch back to A.

1.4 Built-in Commands

 The file and device reference forms described can now be used
to fully specify the structure of the built-in commands. Assume the
following abbreviations in the description below:

 ufn unambiguous file reference
 afn ambiguous file reference

Recall that the CCP always translates lower-case characters to
upper-case characters internally. Thus, lower-case alphabetics are
treated as if they are upper-case in command names and file
references.

1.4.1 ERA Command

Syntax:

 ERA afn

 The ERA (erase) command removes files from the currently
logged-in disk, for example, the disk name currently prompted by
CP/M preceding the >. The files that are erased are those that
satisfy the ambiguous file reference afn. The following examples
illustrate the use of ERA:

 ERA X.Y The file named X.Y on the currently logged
 disk is removed from the disk directory and
 the space is returned.

 ERA X.* All files with primary name X are removed
 from the current disk.

 ERA *.ASM All files with secondary name ASM are
 removed from the current disk.

 ERA X?Y.C?M All files on the current disk that satisfy
 the ambiguous reference X?Y.C?M are
 deleted.

 1-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.4 Built-in Commands

 ERA *.* Erase all files on the current disk. In
 this case, the CCP prompts the console with
 the message

 ALL FILES (Y/N)?

 which requires a Y response before files
 are actually removed.

 ERA b:*.PRN All files on drive B that satisfy the
 ambiguous reference ????????.PRN are
 deleted, independently of the currently
 logged disk.

1.4.2 DIR Command

Syntax:

 DIR afn

 The DIR (directory) command causes the names of all files that
satisfy the ambiguous filename afn to be listed at the console
device. As a special case, the command

 DIR

lists the files on the currently logged disk (the command DIR is
equivalent to the command DIR *.*). The following are valid DIR
commands:

 DIR X.Y
 DIR X?Z.C?M
 DIR ??.Y

 Similar to other CCP commands, the afn can be preceded by a
drive name. The following DIR commands cause the selected drive to
be addressed before the directory search takes place:

 DIR B:
 DIR B:X.Y
 DIR B:*.A?M

 If no files on the selected disk satisfy the directory request,
the message NO FILE appears at the console.

 1-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.4 Built-in Commands

1.4.3 REN Command

Syntax:

 REN ufn1=ufn2

 The REN (rename) command allows you to change the names of
files on disk. The file satisfying ufn2 is changed to ufn1. The
currently logged disk is assumed to contain the file to rename
(ufn2). You can also type a left-directed arrow instead of the
equal sign if the console supports this graphic character. The
following are examples of the REN command:

 REN X.Y=Q.R The file Q.R is changed to X.Y.

 REN XYZ.COM=XYZ.XXX The file XYZ.XXX is changed to
 XYZ.COM.

 The operator precedes either ufn1 or ufn2 (or both) by an
optional drive address. If ufn1 is preceded by a drive name, then
ufn2 is assumed to exist on the same drive. Similarly, if ufn2 is
preceded by a drive name, then ufn1 is assumed to exist on the drive
as well. The same drive must be specified in both cases if both
ufn1 and ufn2 are preceded by drive names. The following REN
commands illustrate this format:

 REN A:X.ASM=Y.ASM The file Y.ASM is changed to X.ASM
 on drive A.

 REN B:ZAP.BAS=ZOT.BAS The file ZOT.BAS is changed to
 ZAP.BAS on drive B.

 REN B:A.ASM=B:A.BAK The file A.BAK is renamed to A.ASM
 on drive B.

 If ufn1 is already present, the REN command responds with the
error FILE EXISTS and not perform the change. If ufn2 does not
exist on the specified disk, the message NO FILE is printed at the
console.

1.4.4 SAVE Command

Syntax:

 SAVE n ufn

 The SAVE command places n pages (256-byte blocks) onto disk
from the TPA and names this file ufn. In the CP/M distribution
system, the TPA starts at 100H (hexadecimal) which is the second
page of memory. The SAVE command must specify 2 pages of memory if

 1-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.4 Built-in Commands

the user’s program occupies the area from 100H through 2FFH. The
machine code file can be subsequently loaded and executed. The
following are examples of the SAVE command:

 SAVE 3X.COM Copies 100H through 3FFH to X.COM.

 SAVE 40 Q Copies 100H through 28FFH to Q.
 Note that 28 is the page count in
 28FFH, and that 28H = 2*16+8=40
 decimal.

 SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the ufn portion of
the command, as shown in the following example:

 SAVE 10 B:ZOT.COM Copies 10 pages, 100H through 0AFFH,
 to the file ZOT.COM on drive B.

1.4.5 TYPE Command

Syntax:

 TYPE ufn

 The TYPE command displays the content of the ASCII source file
ufn on the currently logged disk at the console device. The
following are valid TYPE commands:

 TYPE X.Y
 TYPE X.PLM
 TYPE XXX

 The TYPE command expands tabs, CTRL-I characters, assuming tab
positions are set at every eighth column. The ufn can also
reference a drive name.

 TYPE B:X.PRN The file X.PRN from drive B is displayed.

1.4.6 USER Command

Syntax:

 USER n

 The USER command allows maintenance of separate files in the
same directory. In the syntax line, n is an integer value in the
range 0 to 15. On cold start, the operator is automatically logged
into user area number 0, which is compatible with standard CP/M 1
directories. You can issue the USER command at any time to move to

 1-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.4 Built-in Commands

another logical area within the same directory. Drives that are
logged-in while addressing one user number are automatically active
when the operator moves to another. A user number is simply a
prefix that accesses particular directory entries on the active
disks.

 The active user number is maintained until changed by a
subsequent USER command, or until a cold start when user 0 is again
assumed.

1.5 Line Editing and Output Control

 The CCP allows certain line-editing functions while typing
command lines. The CTRL-key sequences are obtained by pressing the
control and letter keys simultaneously. Further, CCP command lines
are generally up to 255 characters in length; they are not acted
upon until the carriage return key is pressed.

Table 1-1. Line-editing Control Characters

 Character Meaning

 CTRL-C Reboots CP/M system when pressed at start of
 line.

 CTRL-E Physical end of line; carriage is returned,
 but line is not sent until the carriage
 return key is pressed.

 CTRL-H Backspaces one character position.

 CTRL-J Terminates current input (line feed).

 CTRL-M Terminates current input (carriage return).

 CTRL-P Copies all subsequent console output to the
 currently assigned list device (see Section
 1.6.1). Output is sent to the list device
 and the console device until the next CTRL-P
 is pressed.

 CTRL-R Retypes current command line; types a clean
 line following character deletion with
 rubouts.

 CTRL-S Stops the console output temporarily.
 Program execution and output continue when
 you press any character at the console, for
 example another CTRL-S. This feature stops
 output on high speed consoles, such as CRTs,
 in order to view a segment of output before
 continuing.

 1-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.5 Line Editing and Output Control

Table 1-1. (continued)

 Character Meaning

 CTRL-U Deletes the entire line typed at the
 console.

 CTRL-X Same as CTRL-U.

 CTRL-Z Ends input from the console (used in PIP and
 ED).

 RUB/DEL Deletes and echoes the last character typed
 at the console.

1.6 Transient Commands

 Transient commands are loaded from the currently logged disk
and executed in the TPA. The transient commands for execution under
the CCP are below. Additional functions are easily defined by the
user (see Section 1.6.3).

Table 1-2. CP/M Transient Commands

 Command Function

 STAT Lists the number of bytes of storage remaining
 on the currently logged disk, provides
 statistical information about particular
 files, and displays or alters device
 assignment.

 ASM Loads the CP/M assembler and assembles the
 specified program from disk.

 LOAD Loads the file in Intel HEX machine code
 format and produces a file in machine
 executable form which can be loaded into the
 TPA. This loaded program becomes a new
 command under the CCP.

 DDT Loads the CP/M debugger into TPA and starts
 execution.

 PIP Loads the Peripheral Interchange Program for
 subsequent disk file and peripheral transfer
 operations.

 ED Loads and executes the CP/M text editor
 program.

 SYSGEN Creates a new CP/M system disk.

 1-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

Table 1-2. (continued)

 Command Function

 SUBMIT Submits a file of commands for batch
 processing.

 DUMP Dumps the contents of a file in hex.

 MOVCPM Regenerates the CP/M system for a particular
 memory size.

 Transient commands are specified in the same manner as built-in
commands, and additional commands are easily defined by the user.
For convenience, the transient command can be preceded by a drive
name which causes the transient to be loaded from the specified
drive into the TPA for execution. Thus, the command

 B:STAT

causes CP/M to temporarily log in drive B for the source of the STAT
transient, and then return to the original logged disk for
subsequent processing.

1.6.1 STAT Command

Syntax:

 STAT
 STAT "command line"

 The STAT command provides general statistical information about
file storage and device assignment. Special forms of the command
line allow the current device assignment to be examined and altered.
The various command lines that can be specified are shown with an
explanation of each form to the right.

 STAT If you type an empty command line, the STAT
 transient calculates the storage remaining
 on all active drives, and prints one of the
 following messages:

 d: R/W, SPACE: nnnK

 d: R/O, SPACE: nnnK

 for each active drive d:, where R/W
 indicates the drive can be read or written,
 and R/O indicates the drive is Read-Only (a
 drive becomes R/O by explicitly setting it
 to Read-Only, as shown below, or by
 inadvertently changing disks without

 1-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 performing a warm start). The space
 remaining on the disk in drive d: is given
 in kilobytes by nnn.

 STAT d: If a drive name is given, then the drive is
 selected before the storage is computed.
 Thus, the command STAT B: could be issued
 while logged into drive A, resulting in the
 message

 BYTES REMAINING ON B: nnnK

 STAT afn The command line can also specify a set of
 files to be scanned by STAT. The files
 that satisfy afn are listed in alphabetical
 order, with storage requirements for each
 file under the heading:

 RECS BYTES EXT D:FILENAME.TYP
 rrrr bbbK ee d:filename.typ

 where rrrr is the number of 128-byte
 records allocated to the file, bbb is the
 number of kilobytes allocated to the file
 (bbb=rrrr*128/1024), ee is the number of
 16K extensions (ee=bbb/16), d is the drive
 name containing the file (A...P), filename
 is the eight-character primary filename,
 and typ is the three-character filetype.
 After listing the individual files, the
 storage usage is summarized.

 STAT d:afn The drive name can be given ahead of the
 afn. The specified drive is first
 selected, and the form STAT afn is
 executed.

 STAT d:=R/O This form sets the drive given by d to
 Read-Only, remaining in effect until the
 next warm or cold start takes place. When
 a disk is Read-Only, the message

 BDOS ERR ON d: Read-Only

 appears if there is an attempt to write to
 the Read-Only disk. CP/M waits until a key
 is pressed before performing an automatic
 warm start, at which time the disk becomes
 R/W.

 1-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 The STAT command allows you to control the physical-to-logical
device assignment. See the IOBYTE function described in Sections 5
and 6. There are four logical peripheral devices that are, at any
particular instant, each assigned one of several physical peripheral
devices. The following is a list of the four logical devices:

 o CON: is the system console device, used by CCP for
 communication with the operator.

 o RDR: is the paper tape reader device.

 o PUN: is the paper tape punch device.

 o LST: is the output list device.

 The actual devices attached to any particular computer system
are driven by subroutines in the BIOS portion of CP/M. Thus, the
logical RDR: device, for example, could actually be a high speed
reader, teletype reader, or cassette tape. To allow some
flexibility in device naming and assignment, several physical
devices are defined in Table 1-3.

Table 1-3. Physical Devices

 Device Meaning

 TTY: Teletype device (slow speed console)

 CRT: Cathode ray tube device (high speed console)

 BAT: Batch processing (console is current RDR:,
 output goes to current LST: device)

 UC1: User-defined console

 PTR: Paper tape reader (high speed reader)

 UR1: User-defined reader #1

 UR2: User-defined reader #2

 PTP: Paper tape punch (high speed punch)

 UP1: User-defined punch #1

 UP2: User-defined punch #2

 LPT: Line printer

 UL1: User-defined list device #1

 1-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 It is emphasized that the physical device names might not
actually correspond to devices that the names imply. That is, you
can implement the PTP: device as a cassette write operation. The
exact correspondence and driving subroutine is defined in the BIOS
portion of CP/M. In the standard distribution version of CP/M,
these devices correspond to their names on the Model 800 development
system.

 The command,

 STAT VAL:

produces a summary of the available status commands, resulting in
the output:

 Temp R/O Disk d:$R/O
 Set Indicator: filename.typ $R/O $R/W $SYS $DIR
 Disk Status: DSK: d:DSK
 Iobyte Assign:

which gives an instant summary of the possible STAT commands and
shows the permissible logical-to-physical device assignments:

 CON: = TTY: CRT: BAT: UC1:
 RDR: = TTY: PTR: UR1: UR2:
 PUN: = TTY: PTP: UP1: UP2:
 LST: = TTY: CRT: LPT: UL1:

The logical device to the left takes any of the four physical
assignments shown to the right. The current logical-to-physical
mapping is displayed by typing the command:

 STAT DEV:

This command produces a list of each logical device to the left and
the current corresponding physical device to the right. For
example, the list might appear as follows:

 CON: = CRT:
 RDR: = UR1:
 PUN: = PTP:
 LST: = TTY:

The current logical-to-physical device assignment is changed by
typing a STAT command of the form:

 STAT ld1 = pd1, ld2 = pd2, ... , ldn = pdn

where ld1 through ldn are logical device names and pd1 through pdn
are compatible physical device names. For example, ldi and pdi
appear on the same line in the VAL: command shown above. The
following example shows valid STAT commands that change the current
logical-to-physical device assignments:

 1-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 STAT CON:=CRT:
 STAT PUN:=TTY:, LST:=LPT:, RDR:=TTY:

 The command form,

 STAT d:filename.typ $S

where d: is an optional drive name and filename.typ is an
unambiguous or ambiguous filename, produces the following output
display format:

 Size Recs Bytes Ext Acc

 48 48 6K 1 R/O A:ED.COM
 55 55 12K 1 R/O (A:PIP.COM)
 65536 128 16K 2 R/W A:X.DAT

where the $S parameter causes the Size field to be displayed.
Without the $S, the Size field is skipped, but the remaining fields
are displayed. The Size field lists the virtual file size in
records, while the Recs field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. The Bytes field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time; thus, the number of bytes
corresponds to the record count plus the remaining unused space in
the last allocated block for sequential files. Random access files
are given data areas only when written, so the Bytes field contains
the only accurate allocation figure. In the case of random access,
the Size field gives the logical end-of-file record position and the
Recs field counts the logical records of each extent. Each of these
extents, however, can contain unallocated holes even though they are
added into the record count.

 The Ext field counts the number of physical extents allocated
to the file. The Ext count corresponds to the number of directory
entries given to the file. Depending on allocation size, there can
be up to 128K bytes (8 logical extents) directly addressed by a
single directory entry. In a special case, there are actually 256K
bytes that can be directly addressed by a physical extent.

 The Acc field gives the R/O or R/W file indicator, which you
can change using the commands shown. The four command forms,

 STAT d:filename.typ $R/O
 STAT d:filename.typ $R/W
 STAT d:filename.typ $SYS
 STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator
places the file, or set of files, in a Read-Only status until
changed by a subsequent STAT command. The R/O status is recorded in
the directory with the file so that it remains R/O through

 1-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

intervening cold start operations. The R/W indicator places the
file in a permanent Read-Write status. The SYS indicator attaches
the system indicator to the file, while the DIR command removes the
system indicator. The filename.typ may be ambiguous or unambiguous,
but files whose attributes are changed are listed at the console
when the change occurs. The drive name denoted by d: is optional.

 When a file is marked R/O, subsequent attempts to erase or
write into the file produce the following BDOS message at your
screen:

 BDOS Err on d: File R/O

lists the drive characteristics of the disk named by d: that is in
the range A:, B:,...,P:. The drive characteristics are listed in
the following format:

 d: Drive Characteristics
 65536: 128 Byte Record Capacity
 8192: Kilobyte Drive Capacity
 128: 32 Byte Directory Entries
 0: Checked Directory Entries
 1024: Records/Extent
 128: Records/Block
 58: Sectors/Track
 2: Reserved Tracks

where d: is the selected drive, followed by the total record
capacity (65536 is an eight-megabyte drive), followed by the total
capacity listed in kilobytes. The directory size is listed next,
followed by the checked entries. The number of checked entries is
usually identical to the directory size for removable media, because
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, because the media are not changed without at least a
cold or warm start.

 The number of records per extent determines the addressing
capacity of each directory entry (1024 times 128 bytes, or 128K in
the previous example). The number of records per block shows the
basic allocation size (in the example, 128 records/block times 128
bytes per record, or 16K bytes per block). The listing is then
followed by the number of physical sectors per track and the number
of reserved tracks.

 For logical drives that share the same physical disk, the
number of reserved tracks can be quite large because this mechanism
is used to skip lower-numbered disk areas allocated to other logical
disks. The command form

 STAT DSK:

produces a drive characteristics table for all currently active
drives. The final STAT command form is

 1-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 STAT USR:

which produces a list of the user numbers that have files on the
currently addressed disk. The display format is

 Active User: 0
 Active Files: 0 1 3

where the first line lists the currently addressed user number, as
set by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In this case, the active user
number is 0 (default at cold start) with three user numbers that
have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging in with USER 1 or USER 3 commands, followed by a DIR command
at the CCP level.

1.6.2 ASM Command

Syntax:

 ASM ufn

 The ASM command loads and executes the CP/M 8080 assembler.
The ufn specifies a source file containing assembly language
statements, where the filetype is assumed to be ASM and is not
specified. The following ASM commands are valid:

 ASM X
 ASM GAMMA

The two-pass assembler is automatically executed. Assembly errors
that occur during the second pass are printed at the console.

 The assembler produces a file:

 X.PRN

where X is the primary name specified in the ASM command. The PRN
file contains a listing of the source program with embedded tab
characters if present in the source program, along with the machine
code generated for each statement and diagnostic error messages, if
any. The PRN file is listed at the console using the TYPE command,
or sent to a peripheral device using PIP (see Section 1.6.4). Note
that the PRN file contains the original source program, augmented by
miscellaneous assembly information in the leftmost 16 columns; for
example, program addresses and hexadecimal machine code. The PRN
file serves as a backup for the original source file. If the source
file is accidentally removed or destroyed, the PRN file can be
edited by removing the leftmost 16 characters of each line (see
Section 2). This is done by issuing a single editor macro command.
The resulting file is identical to the original source file and can
be renamed from PRN to ASM for subsequent editing and assembly. The
file

 1-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 X.HEX

is also produced, which contains 8080 machine language in Intel HEX
format suitable for subsequent loading and execution (see Section
1.6.3). For complete details of CP/M’s assembly language program,
see Section 3.

 The source file for assembly is taken from an alternate disk by
prefixing the assembly language filename by a disk drive name. The
command

 ASM B:ALPHA

loads the assembler from the currently logged drive and processes
the source program ALPHA.ASM on drive B. The HEX and PRN files are
also placed on drive B in this case.

1.6.3 LOAD Command

Syntax:

 LOAD ufn

 The LOAD command reads the file ufn, which is assumed to
contain HEX format machine code, and produces a memory image file
that can subsequently be executed. The filename ufn is assumed to
be of the form:

 X.HEX

and only the filename X need be specified in the command. The LOAD
command creates a file named

 X.COM

that marks it as containing machine executable code. The file is
actually loaded into memory and executed when the user types the
filename X immediately after the prompting character > printed by
the CCP.

 Generally, the CCP reads the filename X following the prompting
character and looks for a built-in function name. If no function
name is found, the CCP searches the system disk directory for a file
by the name

 X.COM

If found, the machine code is loaded into the TPA, and the program
executes. Thus, the user need only LOAD a hex file once; it can be
subsequently executed any number of times by typing the primary
name. This way, you can invent new commands in the CCP.
Initialized disks contain the transient commands as COM files, which
are optionally deleted. The operation takes place on an alternate
drive if the filename is prefixed by a drive name. Thus,

 1-19

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk
and operates on drive B after execution begins.

Note: the BETA.HEX file must contain valid Intel format hexadecimal
machine code records (as produced by the ASM program, for example)
that begin at 100H of the TPA. The addresses in the hex records
must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read.
Thus, LOAD must be used only for creating CP/M standard COM files
that operate in the TPA. Programs that occupy regions of memory
other than the TPA are loaded under DDT.

1.6.4 PIP

Syntax:

 PIP
 PIP destination=source#1, source#2, ..., source #n

 PIP is the CP/M Peripheral Interchange Program that implements
the basic media conversion operations necessary to load, print,
punch, copy, and combine disk files. The PIP program is initiated
by typing one of the following forms:

 PIP
 PIP command line

In both cases PIP is loaded into the TPA and executed. In the first
form, PIP reads command lines directly from the console, prompted
with the * character, until an empty command line is typed (for
example, a single carriage return is issued by the operator). Each
successive command line causes some media conversion to take place
according to the rules shown below.

 In the second form, the PIP command is equivalent to the first,
except that the single command line given with the PIP command is
automatically executed, and PIP terminates immediately with no
further prompting of the console for input command lines. The form
of each command line is

 destination = source#1, source#2, ..., source#n

where destination is the file or peripheral device to receive the
data, and source#1, ..., source#n is a series of one or more files
or devices that are copied from left to right to the destination.

 When multiple files are given in the command line (for example,
n>1), the individual files are assumed to contain ASCII characters,
with an assumed CP/M end-of-file character (CTRL-Z) at the end of
each file (see the O parameter to override this assumption). Lower-
case ASCII alphabetics are internally translated to upper-case to be

 1-20

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

consistent with CP/M file and device name conventions. Finally, the
total command line length cannot exceed 255 characters. CTRL-E can
be used to force a physical carriage return for lines that exceed
the console width.

 The destination and source elements are unambiguous references
to CP/M source files with or without a preceding disk drive name.
That is, any file can be referenced with a preceding drive name (A:
through P:) that defines the particular drive where the file can be
obtained or stored. When the drive name is not included, the
currently logged disk is assumed. The destination file can also
appear as one or more of the source files, in which case the source
file is not altered until the entire concatenation is complete. If
it already exists, the destination file is removed if the command
line is properly formed. It is not removed if an error condition
arises. The following command lines, with explanations to the
right, are valid as input to PIP:

 X=Y Copies to file X from file Y, where
 X and Y are unambiguous filenames;
 Y remains unchanged.

 X=Y,Z Concatenates files Y and z and
 copies to file X, with Y and Z
 unchanged.

 X.ASM=Y.ASM,Z.ASM Creates the file X.ASM from the
 concatenation of the Y and Z.ASM
 files.

 NEW.ZOT=B:OLD.ZAP Moves a copy of OLD.ZAPP from drive
 B to the currently logged disk;
 names the file NEW.ZOT.

 B:A.U=B:B.V,A:C.W,D.X Concatenates file B.V from drive B
 with C.W from drive a and D.X from
 the logged disk; creates the file
 A.U on drive b.

 For convenience, PIP allows abbreviated commands for
transferring files between disk drives. The abbreviated PIP forms
are

 PIP d:=afn
 PIP d

1
=d

2
:afn

 PIP ufn = d
2
:

 PIP d
1
:ufn = d

2
:

The first form copies all files from the currently logged disk that
satisfy the afn to the same files on drive d, where d = A...P. The
second form is equivalent to the first, where the source for the
copy is drive d

2
, where d

2
 = A...P. The third form is equivalent to

the command PIP d
1
:ufn=d

2
:ufn which copies the file given by ufn

 1-21

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

from drive d
2
 to the file ufn on drive d

1
:. The fourth form is

equivalent to the third, where the source disk is explicitly given
by d

2
:.

 The source and destination disks must be different in all of
these cases. If an afn is specified, PIP lists each ufn that
satisfies the afn as it is being copied. If a file exists by the
same name as the destination file, it is removed after successful
completion of the copy and replaced by the copied file.

 The following PIP commands give examples of valid disk-to-disk
copy operations:

 B:=*.COM Copies all files that have the secondary
 name COM to drive B from the current drive.

 A:=B:ZAP.* Copies all files that have the primary name
 ZAP to drive A from drive B.

 ZAP.ASM=B: Same as ZAP.ASM=B:ZAP.ASM

 B:ZOT.COM=A: Same as B:ZOT.COM=A:ZOT.COM

 B:=GAMMA.BAS Same as B:GAMMA.BAS=GAMMA.BAS

 B:=A:GAMMA.BAS Same as B:GAMMA.BAS=A:GAMMA.BAS

 PIP allows reference to physical and logical devices that are
attached to the CP/M system. The device names are the same as given
under the STAT command, along with a number of specially named
devices. The following is a list of logical devices given in the
STAT command

 CON: (console)
 RDR: (reader)
 PUN: (punch)
 LST: (list)

while the physical devices are

 TTY: (console), reader, punch, or list)
 CRT: (console, or list), UC1: (console)
 PTR: (reader), UR1: (reader), UR2: (reader)
 PTP: (punch), UP1: (punch), UP2: (punch)
 LPT: (list), UL1: (list)

The BAT: physical device is not included, because this assignment is
used only to indicate that the RDR: and LST: devices are used for
console input/output.

 The RDR, LST, PUN, and CON devices are all defined within the
BIOS portion of CP/M, and are easily altered for any particular I/O
system. The current physical device mapping is defined by IOBYTE;

 1-22

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

see Section 6 for a discussion of this function. The destination
device must be capable of receiving data, for example, data cannot
be sent to the punch, and the source devices must be capable of
generating data, for example, the LST: device cannot be read.

 The following list describes additional device names that can
be used in PIP commands.

 o NUL: sends 40 nulls (ASCII 0s) to the device. This can be
 issued at the end of punched output.

 o EOF: sends a CP/M end-of-file (ASCII CTRL-Z) to the destination
 device (sent automatically at the end of all ASCII data
 transfers through PIP).

 o INP: is a special PIP input source that can be patched into the
 PIP program. PIP gets the input data character-by-character,
 by CALLing location 103H, with data returned in location 109H
 (parity bit must be zero).

 o OUT: is a special PIP output destination that can be patched
 into the PIP program. PIP CALLs location 106H with data in
 register C for each character to transmit. Note that locations
 109H through 1FFH of the PIP memory image are not used and can
 be replaced by special purpose drivers using DDT (see Section
 4).

 o PRN: is the same as LST:, except that tabs are expanded at
 every eighth character position, lines are numbered, and page
 ejects are inserted every 60 lines with an initial eject (same
 as using PIP options [t8np]).

 File and device names can be interspersed in the PIP commands.
In each case, the specific device is read until end-of-file (CTRL-Z
for ASCII files, and end-of-data for non-ASCII disk files). Data
from each device or file are concatenated from left to right until
the last data source has been read.

 The destination device or file is written using the data from
the source files, and an end-of-file character, CTRL-Z, is appended
to the result for ASCII files. If the destination is a disk file, a
temporary file is created ($$$ secondary name) that is changed to
the actual filename only on successful completion of the copy.
Files with the extension COM are always assumed to be non-ASCII.

 The copy operation can be aborted at any time by pressing any
key on the keyboard. PIP responds with the message ABORTED to
indicate that the operation has not been completed. If any
operation is aborted, or if an error occurs during processing, PIP
removes any pending commands that were set up while using the SUBMIT
command.

 1-23

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 PIP performs a special function if the destination is a disk
file with type HEX (an Intel hex-formatted machine code file), and
the source is an external peripheral device, such as a paper tape
reader. In this case, the PIP program checks to ensure that the
source file contains a properly formed hex file, with legal
hexadecimal values and checksum records.

 When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. Usually,
you can open the reader and rerun a section of the tape (pull the
tape back about 20 inches). When the tape is ready for the reread,
a single carriage return is typed at the console, and PIP attempts
another read. If the tape position cannot be properly read,
continue the read by typing a return following the error message,
and enter the record manually with the ED program after the disk
file is constructed.

 PIP allows the end-of-file to be entered from the console if
the source file is an RDR: device. In this case, the PIP program
reads the device and monitors the keyboard. If CTRL-Z is typed at
the keyboard, the read operation is terminated normally.

 The following are valid PIP commands:

 PIP LST: = X.PRN

 Copies X.PRN to the LST device and
 terminates the PIP program.

 PIP

 Starts PIP for a sequence of commands. PIP
 prompts with *.

 *CON:=X.ASM,Y.ASM,Z.ASM

 Concatenates three ASM files and copies to
 the CON device.

 *X.HEX=CON:,Y.HEX,PTR:

 Creates a HEX file by reading the CON until
 a CTRL-Z is typed, followed by data from
 Y.HEX and PTR until a CTRL-Z is
 encountered.

 PIP PUN:=NUL:,X.ASM,EOF:,NUL:

 Sends 40 nulls to the punch device; copies
 the X.ASM file to the punch, followed by an
 end-of-file, CTRL-Z, and 40 more null
 characters.

 (carriage return)

 A single carriage return stops PIP.

 1-24

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 You can also specify one or more PIP parameters, enclosed in
left and right square brackets, separated by zero or more blanks.
Each parameter affects the copy operation, and the enclosed list of
parameters must immediately follow the affected file or device.
Generally, each parameter can be followed by an optional decimal
integer value (the S and Q parameters are exceptions). Table 1-4
describes valid PIP parameters.

Table 1-4. PIP Parameters

 Parameter Meaning

 B Blocks mode transfer. Data are buffered by
 PIP until an ASCII x-off character, CTRL-S,
 is received from the source device. This
 allows transfer of data to a disk file from a
 continuous reading device, such as a cassette
 reader. Upon receipt of the x-off, PIP
 clears the disk buffers and returns for more
 input data. The amount of data that can be
 buffered depends on the memory size of the
 host system. PIP issues an error message if
 the buffers overflow.

 Dn Deletes characters that extend past column n
 in the transfer of data to the destination
 from the character source. This parameter is
 generally used to truncate long lines that
 are sent to a narrow printer or console
 device.

 E Echoes all transfer operations to the console
 as they are being performed.

 F Filters form-feeds from the file. All
 embedded form-feeds are removed. The P
 parameter can be used simultaneously to
 insert new form-feeds.

 Gn Gets file from user number n (n in the range
 0-15).

 H Transfers HEX data. All data are checked for
 proper Intel hex file format. Nonessential
 characters between hex records are removed
 during the copy operation. The console is
 prompted for corrective action in case errors
 occur.

 I Ignores :00 records in the transfer of Intel
 hex format file. The I parameter
 automatically sets the H parameter.

 1-25

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

Table 1-4. (continued)

 Parameter Meaning

 L Translates upper-case alphabetics to lower-
 case.

 N Adds line numbers to each line transferred to
 the destination, starting at one and
 incrementing by 1. Leading zeroes are
 suppressed, and the number is followed by a
 colon. If N2 is specified, leading zeroes
 are included and a tab is inserted following
 the number. The tab is expanded if T is set.

 O Transfers non-ASCII object files. The normal
 CP/M end-of-file is ignored.

 Pn Includes page ejects at every n lines with an
 initial page eject. If n = 1 or is excluded
 altogether, page ejects occur every 60 lines.
 If the F parameter is used, form-feed
 suppression takes place before the new page
 ejects are inserted.

 Qs^Z Quits copying from the source device or file
 when the string s, terminated by CTRL-Z, is
 encountered.

 R Reads system files.

 Ss^Z Start copying from the source device when the
 string s, terminated by CTRL-Z, is
 encountered. The S and Q parameters can be
 used to abstract a particular section of a
 file, such as a subroutine. The start and
 quit strings are always included in the copy
 operation.

 If you specify a command line after the PIP
 command keyword, the CCP translates strings
 following the S and Q parameters to upper-
 case. If you do not specify a command line,
 PIP does not perform the automatic upper-case
 translation.

 Tn Expands tabs, CTRL-I characters, to every nth
 column during the transfer of characters to
 the destination from the source.

 U Translates lower-case alphabetics to upper-
 case during the copy operation.

 1-26

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

Table 1-4. (continued)

 Parameter Meaning

 V Verifies that data have been copied correctly
 by rereading after the write operation (the
 destination must be a disk file).

 W Writes over R/O files without console
 interrogation.

 Z Zeros the parity bit on input for each ASCII
 character.

 The following examples show valid PIP commands that specify
parameters in the file transfer.

 PIP X.ASM=B:[v]

 Copies X.ASM from drive B to the current
 drive and verifies that the data were
 properly copied.

 PIP LPT:=X.ASM[nt8u]

 Copies X.ASM to the LPT: device; numbers
 each line, expands tabs to every eighth
 column, and translates lower-case
 alphabetics to upper-case.

 PIP PUN:=X.HEX[i],Y.ZOT[h]

 First copies X.HEX to the PUN: device and
 ignores the trailing :00 record in X.HEX;
 continues the transfer of data by reading
 Y.ZOT, which contains HEX records,
 including any :00 records it contains.

 PIP X.LIB=Y.ASM[sSUBRI:^z qJMP L3^z]

 Copies from the file Y.ASM into the file
 X.LIB. The command starts the copy when
 the string SUBR1: has been found, and quits
 copying after the string JMP L3 is
 encountered.

 1-27

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 PIP PRN:=X.ASM[p50]

 Sends X.ASM to the LST: device with line
 numbers, expands tabs to every eighth
 column, and ejects pages at every 50th
 line. The assumed parameter list for a PRN
 file is nt8p60; p50 overrides the default
 value.

 Under normal operation, PIP does not overwrite a file that is
set to a permanent R/O status. If an attempt is made to overwrite
an R/O file, the following prompt appears:

 DESTINATION FILE IS R/O, DELETE (Y/N)?

If you type Y, the file is overwritten. Otherwise, the following
response appears:

 ** NOT DELETED **

The file transfer is skipped, and PIP continues with the next
operation in sequence. To avoid the prompt and response in the case
of R/O file overwrite, the command line can include the W parameter,
as shown in this example:

 PIP A:=B:*.COM[W]

The W parameter copies all nonsystem files to the A drive from the B
drive and overwrites any R/O files in the process. If the operation
involves several concatenated files, the W parameter need only be
included with the last file in the list, as in this example:

 PIP A.DAT=B.DAT,F:NEW.DAT,G:OLD.DAT[W]

 Files with the system attribute can be included in PIP
transfers if the R parameter is included; otherwise, system files
are not recognized. For example, the command line:

 PIP ED.COM=B:ED.COM[R]

reads the ED.COM file from the B drive, even if it has been marked
as an R/O and system file. The system file attributes are copied,
if present.

 Downward compatibility with previous versions of CP/M is only
maintained if the file does not exceed one megabyte, no file
attributes are set, and the file is created by user 0. If
compatibility is required with nonstandard, for example, double-
density versions of 1.4, it might be necessary to select 1.4
compatibility mode when constructing the internal disk parameter
block. See Section 6 and refer to Section 6.10, which describes
BIOS differences.

 1-28

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

Note: to copy files into another user area, PIP.COM must be located
in that user area. Use the following procedure to make a copy of
PIP.COM in another user area.

 USER 0 Log in user 0.

 DDT PIP.COM (note PIP size s) Load PIP to memory.

 GO Return to CCP.

 USER 3 Log in user 3.

 SAVEs PIP.COM

In this procedure, s is the integral number of memory pages, 256-
byte segments, occupied by PIP. The number s can be determined when
PIP.COM is loaded under DDT, by referring to the value under the
NEXT display. If, for example, the next available address is 1D00,
then PIP.COM requires 1C hexadecimal pages, or 1 times 16 + 12 = 28
pages, and the value of s is 28 in the subsequent save. Once PIP is
copied in this manner, it can be copied to another disk belonging to
the same user number through normal PIP transfers.

1.6.5 ED Command

Syntax:

 ED ufn

 The ED program is the CP/M system context editor that allows
creation and alteration of ASCII files in the CP/M environment.
Complete details of operation are given in Section 2. ED allows the
operator to create and operate upon source files that are organized
as a sequence of ASCII characters, separated by end-of-line
characters (a carriage return/line-feed sequence). There is no
practical restriction on line length (no single line can exceed the
size of the working memory) that is defined by the number of
characters typed between carriage returns.

 The ED program has a number of commands for character string
searching, replacement, and insertion that are useful for creating
and correcting programs or text files under CP/M. Although the CP/M
has a limited memory work space area (approximately 5000 characters
in a 20K CP/M system), the file size that can be edited is not
limited, since data are easily paged through this work area.

 If it does not exist, ED creates the specified source file and
opens the file for access. If the source file does exist, the
programmer appends data for editing (see the A command). The
appended data can then be displayed, altered, and written from the
work area back to the disk (see the W command). Particular points
in the program can be automatically paged and located by context,

 1-29

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

allowing easy access to particular portions of a large file (see the
N command).

 If you type the following command line:

 ED X.ASM

the ED program creates an intermediate work file with the name

 X.$$$

to hold the edited data during the ED run. Upon completion of ED,
the X.ASM file (original file) is renamed to X.BAK, and the edited
work file is renamed to X.ASM. Thus, the X.BAK file contains the
original unedited file, and the X.ASM file contains the newly edited
file. The operator can always return to the previous version of a
file by removing the most recent version and renaming the previous
version. If the current X.ASM file has been improperly edited, the
following sequence of commands reclaim the back-up file.

 DIR X.* Checks to see that BAK file is
 available.

 ERA X.ASM Erases most recent version.

 REN X.ASM=X.BAK Renames the BAK file to ASM.

You can abort the edit at any point (reboot, power failure, CTRL-C,
or CTRL-Q command) without destroying the original file. In this
case, the BAK file is not created and the original file is always
intact.

 The ED program allows the user to edit the source on one disk
and create the back-up file on another disk. This form of the ED
command is

 ED ufn d:

where ufn is the name of the file to edit on the currently logged
disk and d is the name of an alternate drive. The ED program reads
and processes the source file and writes the new file to drive d
using the name ufn. After processing, the original file becomes the
back-up file. If the operator is addressing disk A, the following
command is valid.

 ED X.ASM b:

This edits the file X.ASM on drive A, creating the new file X.$$$ on
drive B. After a successful edit, A:X.ASM is renamed to A:X.BAK,
and B:X.$$$ is renamed to B:X.ASM. For convenience, the currently
logged disk becomes drive B at the end of the edit. Note that if a
file named B:X.ASM exists before the editing begins, the following
message appears on the screen:

 1-30

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 FILE EXISTS

This message is a precaution against accidentally destroying a
source file. You should first erase the existing file and then
restart the edit operation.

 Similar to other transient commands, editing can take place on
a drive different from the currently logged disk by preceding the
source filename by a drive name. The following are examples of
valid edit requests:

 ED A:X.ASM Edits the file X.ASM on drive A, with new
 file and back-up on drive A.

 ED B:X.ASM A: Edits the file X.ASM on drive B to the
 temporary file X.$$$ on drive A. After
 editing, this command changes X.ASM on
 drive B to X.BAK and changes X.$$$ on
 drive A to X.ASM.

1.6.6 SYSGEN Command

Syntax:

 SYSGEN

 The SYSGEN transient command allows generation of an
initialized disk containing the CP/M operating system. The SYSGEN
program prompts the console for commands by interacting as shown.

 SYSGEN <cr>

 Initiates the SYSGEN program.

 SYSGEN VERSION x.x

 SYSGEN sign-on message.

 SOURCE DRIVE NAME
 (OR RETURN TO SKIP)

 Respond with the drive name (one of the
 letters A, B, C, or D) of the disk
 containing a CP/M system, usually A. If a
 copy of CP/M already exists in memory due
 to a MOVCPM command, press only a carriage
 return. Typing a drive name d causes the
 response:

 1-31

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 SOURCE ON d THEN TYPE RETURN

 Place a disk containing the CP/M operating
 system on drive d (d is one of A, B, C, or
 D). Answer by pressing a carriage return
 when ready.

 FUNCTION COMPLETE

 System is copied to memory. SYSGEN then
 prompts with the following:

 DESTINATION DRIVE NAME
 (OR RETURN TO REBOOT)

 If a disk is being initialized, place the
 new disk into a drive and answer with the
 drive name. Otherwise, press a carriage
 return and the system reboots from drive A.
 Typing drive name d causes SYSGEN to prompt
 with the following message:

 DESTINATION ON d
 THEN TYPE RETURN

 Place new disk into drive d; press return
 when ready.

 FUNCTION COMPLETE

 New disk is initialized in drive d.

The DESTINATION prompt is repeated until a single carriage return is
pressed at the console, so that more than one disk can be
initialized.

 Upon completion of a successful system generation, the new disk
contains the operating system, and only the built-in commands are
available. An IBM-compatible disk appears to CP/M as a disk with an
empty directory; therefore, the operator must copy the appropriate
COM files from an existing CP/M disk to the newly constructed disk
using the PIP transient.

 You can copy all files from an existing disk by typing the
following PIP command:

 PIP B: = A:*.*[v]

 1-32

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

This command copies all files from disk drive A to disk drive B and
verifies that each file has been copied correctly. The name of each
file is displayed at the console as the copy operation proceeds.

 Note that a SYSGEN does not destroy the files that already
exist on a disk; it only constructs a new operating system. If a
disk is being used only on drives B through P and will never be the
source of a bootstrap operation on drive A, the SYSGEN need not take
place.

1.6.7 SUBMIT Command

Syntax:

 SUBMIT ufn parm#1 ... parm#n

 The SUBMIT command allows CP/M commands to be batched for
automatic processing. The ufn given in the SUBMIT command must be
the filename of a file that exists on the currently logged disk,
with an assumed file type of SUB. The SUB file contains CP/M
prototype commands with possible parameter substitution. The actual
parameters parm#1 ... parm#n are substituted into the prototype
commands, and, if no errors occur, the file of substituted commands
are processed sequentially by CP/M.

 The prototype command file is created using the ED program,
with interspersed $ parameters of the form:

 $1 $2 $3 ...$n

corresponding to the number of actual parameters that will be
included when the file is submitted for execution. When the SUBMIT
transient is executed, the actual parameters parm#1 ... parm#n are
paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not
correspond, the SUBMIT function is aborted with an error message at
the console. The SUBMIT function creates a file of substituted
commands with the name

 $$$.SUB

on the logged disk. When the system reboots, at the termination of
the SUBMIT, this command file is read by the CCP as a source of
input rather than the console. If the SUBMIT function is performed
on any disk other than drive A, the commands are not processed until
the disk is inserted into drive A and the system reboots. You can
abort command processing at any time by pressing the rubout key when
the command is read and echoed. In this case, the $$$.SUB file is
removed and the subsequent commands come from the console. Command
processing is also aborted if the CCP detects an error in any of the
commands. Programs that execute under CP/M can abort processing of
command files when error conditions occur by erasing any existing
$$$.SUB file.

 1-33

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 To introduce dollar signs into a SUBMIT file, you can type a $$
which reduces to a single $ within the command file. A caret, ^,
precedes an alphabetic character s, which produces a single CTRL-X
character within the file.

 The last command in a SUB file can initiate another SUB file,
allowing chained batch commands:

 Suppose the file ASMBL.SUB exists on disk and contains the
prototype commands

 ASM $1
 DIR $1.*
 ERA *.BAK
 PIP $2:=$1.PRN
 ERA $1.PRN

then, you issue the following command:

 SUBMIT ASMBL X PRN

The SUBMIT program reads the ASMBL.SUB file, substituting X: for all
occurrences of $1 and PRN for all occurrences of $2. This results
in a $$$.SUB file containing the commands:

 ASM X
 DIR X.*
 ERA *.BAK
 PIP PRN:=X.PRN
 ERA X.PRN

which are executed in sequence by the CCP.

 The SUBMIT function can access a SUB file on an alternate drive
by preceding the filename by a drive name. Submitted files are only
acted upon when they appear on drive A. Thus, it is possible to
create a submitted file on drive B that is executed at a later time
when inserted in drive A.

 An additional utility program called XSUB extends the power of
the SUBMIT facility to include line input to programs as well as the
CCP. The XSUB command is included as the first line of the SUBMIT
file. When it is executed, XSUB self-relocates directly below the
CCP. All subsequent SUBMIT command lines are processed by XSUB so
that programs that read buffered console input, BDOS Function 10,
receive their input directly from the SUBMIT file. For example, the
file SAVER.SUB can contain the following SUBMIT lines:

 XSUB
 DDT
 |$1.COM
 R
 GO
 SAVE 1 $2.COM

 1-34

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

a subsequent SUBMIT command, such as

 A>SUBMIT SAVER PIP Y

substitutes X for $1 and Y for $2 in the command stream. The XSUB
program loads, followed by DDT, which is sent to the command lines
PIP.COM, R, and G0, thus returning to the CCP. The final command
SAVE 1 Y.COM is processed by the CCP.

 The XSUB program remains in memory and prints the message

 (xsub active)

on each warm start operation to indicate its presence. Subsequent
SUBMIT command streams do not require the XSUB, unless an
intervening cold start occurs. Note that XSUB must be loaded after
the optional CP/M DESPOOL utility, if both are to run
simultaneously.

1.6.8 DUMP Command

Syntax:

 DUMP ufn

 The DUMP program types the contents of the disk file (ufn) at
the console in hexadecimal form. The file contents are listed
sixteen bytes at a time, with the absolute byte address listed to
the left of each line in hexadecimal. Long typeouts can be aborted
by pressing the rubout key during printout. The source listing of
the DUMP program is given in Section 5 as an example of a program
written for the CP/M environment.

1.6.9 MOVCPM Command

Syntax:

 MOVCPM

 The MOVCPM program allows you to reconfigure the CP/M system
for any particular memory size. Two optional parameters can be used
to indicate the desired size of the new system and the disposition
of the new system at program termination. If the first parameter is
omitted or an * is given, the MOVCPM program reconfigures the system
to its maximum size, based upon the kilobytes of contiguous RAM in
the host system (starting at 0000H). If the second parameter is
omitted, the system is executed, but not permanently recorded; if *
is given, the system is left in memory, ready for a SYSGEN
operation. The MOVCPM program relocates a memory image of CP/M and
places this image in memory in preparation for a system generation
operation. The following is a list of MOVCPM command forms:

 1-35

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 MOVCPM Relocates and executes CP/M for management
 of the current memory configuration (memory
 is examined for contiguous RAM, starting at
 100H). On completion of the relocation, the
 new system is executed but not permanently
 recorded on the disk. The system that is
 constructed contains a BIOS for the Intel
 microcomputer development system 800.

 MOVCPM n Creates a relocated CP/M system for
 management of an n kilobyte system (n must
 be in the range of 20 to 64), and executes
 the system as described.

 MOVCPM * * Constructs a relocated memory image for the
 current memory configuration, but leaves the
 memory image in memory in preparation for a
 SYSGEN operation.

 MOVCPM n * Constructs a relocated memory image for an n
 kilobyte memory system, and leaves the
 memory image in preparation for a SYSGEN
 operation.

 For example, the command,

 MOVCPM * *

constructs a new version of the CP/M system and leaves it in memory,
ready for a SYSGEN operation. The message

 READY FOR ’SYSGEN’ OR
 ’SAVE 34 CPMxx.COM’

appears at the console upon completion, where xx is the current
memory size in kilobytes. You can then type the following sequence:

 SYSGEN This starts the system
 generation.

 SOURCE DRIVE NAME Respond with a carriage return
 (OR RETURN TO SKIP) to skip the CP/M read operation,
 because the system is already
 in memory as a result of the
 previous MOVCPM operation.

 DESTINATION DRIVE NAME Respond with B to write new
 (OR RETURN TO REBOOT) system to the disk in drive B.
 SYSGEN prompts with the
 following message:

 DESTINATION ON B, Place the new disk on drive B
 THEN TYPE RETURN and press the RETURN key when
 ready.

 1-36

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.6 Transient Commands

 If you respond with A rather than B above, the system is
written to drive A rather than B. SYSGEN continues to print this
prompt:

 DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until you respond with a single carriage return, which stops the
SYSGEN program with a system reboot.

 You can then go through the reboot process with the old or new
disk. Instead of performing the SYSGEN operation, you can type a
command of the form:

 SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where xx is the value
indicated in the SYSGEN message. The CP/M memory image on the
currently logged disk is in a form that can be patched. This is
necessary when operating in a nonstandard environment where the BIOS
must be altered for a particular peripheral device configuration, as
described in Section 6.

 The following are valid MOVCPM commands:

 MOVCPM 48 Constructs a 48K version of CP/M and starts
 execution.

 MOVCPM 48 * Constructs a 48K version of CP/M in
 preparation for permanent recording; the
 response is

 READY FOR ’SYSGEN’ OR
 ’SAVE 34 CPM48.COM’

 MOVCPM * * Constructs a maximum memory version of CP/M
 and starts execution.

 The newly created system is serialized with the number attached
to the original disk and is subject to the conditions of the Digital
Research Software Licensing Agreement.

1.7 BDOS Error Messages

 There are three error situations that the Basic Disk Operating
System intercepts during file processing. When one of these
conditions is detected, the BDOS prints the message:

 BDOS ERR ON d: error

 1-37

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.7 BDOS Error Messages

where d is the drive name and error is one of the three error
messages:

 BAD SECTOR
 SELECT
 READ ONLY

 The BAD SECTOR message indicates that the disk controller
electronics has detected an error condition in reading or writing
the disk. This condition is generally caused by a malfunctioning
disk controller or an extremely worn disk. If you find that CP/M
reports this error more than once a month, the state of the
controller electronics and the condition of the media should be
checked.

 You can also encounter this condition in reading files
generated by a controller produced by a different manufacturer.
Even though controllers claim to be IBM..-compatible, one often
finds small differences in recording formats. The Model 800
controller, for example, requires two bytes of one’s following the
data CRC byte, which is not required in the IBM format. As a
result, disks generated by the Intel microcomputer development
system can be read by almost all other IBM-compatible system, while
disk files generated on other manufacturers’ equipment produce the
BAD SECTOR message when read by the microcomputer development
system. To recover from this condition, press a CTRL-C to reboot
(the safest course), or a return, which ignores the bad sector in
the file operation.

Note: pressing a return might destroy disk integrity if the
operation is a directory write. Be sure you have adequate back-ups
in this case.

 The SELECT error occurs when there is an attempt to address a
drive beyond the range supported by the BIOS. In this case, the
value of d in the error message gives the selected drive. The
system reboots following any input from the console.

 The READ ONLY message occurs when there is an attempt to write
to a disk or file that has been designated as Read-Only in a STAT
command or has been set to Read-Only by the BDOS. Reboot CP/M by
using the warm start procedure, CTRL-C, or by performing a cold
start whenever the disks are changed. If a changed disk is to be
read but not written, BDOS allows the disk to be changed without the
warm or cold start, but internally marks the drive as Read-Only.
The status of the drive is subsequently changed to Read-Write if a
warm or cold start occurs. On issuing this message, CP/M waits for
input from the console. An automatic warm start takes place
following any input.

1.8 CP/M Operation on the Model 800

 1-38

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.8 Operation of CP/M on the Model 800

 This section gives operating procedures for using CP/M on the
Intel Model 800 microcomputer development system microcomputer
development system. Basic knowledge of the microcomputer
development system hardware and software systems is assumed.

 CP/M is initiated in essentially the same manner as the Intel
ISIS operating system. The disk drives are labeled 0 through 3 on
the microcomputer development system, corresponding to CP/M drives A
through D, respectively. The CP/M system disk is inserted into
drive 0, and the BOOT and RESET switches are pressed in sequence.
The interrupt 2 light should go on at this point. The space bar is
then pressed on the system console, and the light should go out. If
it does not, the user should check connections and baud rates. The
BOOT switch is turned off, and the CP/M sign-on message should
appear at the selected console device, followed by the A> system
prompt. You can then issue the various resident and transient
commands.

 The CP/M system can be restarted (warm start) at any time by
pushing the INT 0 switch on the front panel. The built-in Intel ROM
monitor can be initiated by pushing the INT 7 switch, which
generates an RST 7, except when operating under DDT, in which case
the DDT program gets control instead.

 Diskettes can be removed from the drives at any time, and the
system can be shut down during operation without affecting data
integrity. Do not remove a disk and replace it with another without
rebooting the system (cold or warm start) unless the inserted disk
is Read-Only.

 As a result of hardware hang-ups or malfunctions, CP/M might
print the following message:

 BDOS ERR ON d: BAD SECTOR

where d is the drive that has a permanent error. This error can
occur when drive doors are opened and closed randomly, followed by
disk operations, or can be caused by a disk, drive, or controller
failure. You can optionally elect to ignore the error by pressing a
single return at the console. The error might produce a bad data
record, requiring reinitialization of up to 128 bytes of data. You
can reboot the CP/M system and try the operation again.

 Termination of a CP/M session requires no special action,
except that it is necessary to remove the disks before turning the
power off to avoid random transients that often make their way to
the drive electronics.

 You should use IBM-compatible disks rather than disks that have
previously been used with any ISIS version. In particular, the ISIS
FORMAT operation produces nonstandard sector numbering throughout
the disk. This nonstandard numbering seriously degrades the
performance of CP/M, and causes CP/M to operate noticeably slower
than the distribution version. If it becomes necessary to reformat
a disk, which should not be the case for standard disks, a program

 1-39

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 1.8 Operation of CP/M on the Model 800

can be written under CP/M that causes the Model 800 controller to
reformat with sequential sector numbering (1-26) on each track.

 Generally, IBM-compatible 8-inch disks do not need to be
formatted. However, 5 1/4-inch disks need to be formatted.

End of Section 1

 1-40

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Section 2

The CP/M Editor

2.1 Introduction to Ed

 Ed is the context editor for CP/M, and is used to create and
alter CP/M source files. To start ED, type a command of the
following form:

 ED filename
or
 ED filename.typ

Generally, ED reads segments of the source file given by filename or
filename.typ into the central memory, where you edit the file and it
is subsequently written back to disk after alterations. If the
source file does not exist before editing, it is created by ED and
initialized to empty. The overall operation of Ed is shown in
Figure 2-1.

2.1.1 ED Operation

 Ed operates upon the source file, shown in Figure 2-1 by x.y,
and passes all text through a memory buffer where the text can be
viewed or altered. The number of lines that can be maintained in
the memory buffer varies with the line length, but has a total
capacity of about 5000 characters in a 20K CP/M system.

 Edited text material is written into a temporary work file
under your command. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining (unread)
text in the source file. The name of the original file is changed
from x.y to x.BAK so that the most recent edited source file can be
reclaimed if necessary. See the CP/M commands ERASE and RENAME.
The temporary file is then changed from x.$$$ to x.y, which becomes
the resulting edited file.

 The memory buffer is logically between the source file and
working file, as shown in Figure 2-2.

 2-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

Figure 2-1. Overall ED Operation

 Source File Memory Buffer Temporary File

 1 First Line 1 First Line 1 First Line
 2 Appended 2 Buffered 2 Processed
 3 Lines 3 Text 3 Text

 SP MP TP

 Unprocessed Next Free Next Free File
 Source Append Memory Write Space
 Lines Space

 SP = Source Pointer
 MP = Memory Pointer
 TP = Temporary Pointer

Figure 2-2. Memory Buffer Organization

 2-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

2.1.2 Text Transfer Functions

 Given that n is an integer value in the range 0 through 65535,
several single-letter ED commands transfer lines of text from the
source file through the memory buffer to the temporary (and
eventually final) file. Single letter commands are shown in upper-
case, but can be typed in either upper- or lower-case.

Table 2-1. ED Text Transfer Commands

 Command Result

 nA Appends the next n unprocessed source lines
 from the source file at SP to the end of the
 memory buffer at MP. Increment SP and MP by n.
 If upper-case translation is set (see the U
 command) and the A command is typed in upper-
 case, all input lines will automatically be
 translated to upper-case.

 nW Writes the first n lines of the memory buffer
 to the temporary file free space. Shift the
 remaining lines n+1 through MP to the top of
 the memory buffer. Increment TP by n.

 E Ends the edit. Copy all buffered text to
 temporary file and copy all unprocessed source
 lines to temporary file. Rename files.

 H Moves to head of new file by performing
 automatic E command. The temporary file
 becomes the new source file, the memory buffer
 is emptied, and a new temporary file is
 created. The effect is equivalent to issuing
 an E command, followed by a reinvocation of ED,
 using x.y as the file to edit.

 O Returns to original file. The memory buffer is
 emptied, the temporary file is deleted, and the
 SP is returned to position 1 of the source
 file. The effects of the previous editing
 commands are thus nullified.

 Q Quits edit with no file alterations, returns to
 CP/M.

 There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is allowed,
then 1 is assumed. Thus, the commands A and W append one line and
write one line, respectively. In addition, if a pound sign # is
given in the place of n, then the integer 65535 is assumed (the
largest value for n that is allowed). Because most source files can
be contained entirely in the memory buffer, the command #A is often

 2-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

issued at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer to
the temporary file.

 Two special forms of the A and W commands are provided as a
convenience. The command 0A fills the current memory buffer at
least half full, while 0W writes lines until the buffer is at least
half empty. An error is issued if the memory buffer size is
exceeded. You can then enter any command, such as W, that does not
increase memory requirements. The remainder of any partial line
read during the overflow will be brought into memory on the next
successful append.

2.1.3 Memory Buffer Organization

 The memory buffer can be considered a sequence of source lines
brought in with the A command from a source file. The memory buffer
has an imaginary character pointer (CP) that moves throughout the
memory buffer under command of the operator.

 The memory buffer appears logically as shown in Figure 2-3,
where the dashes represent characters of the source line of
indefinite length, terminated by carriage return (<cr>) and line-
feed (<lf>) characters, and CP represents the imaginary character
pointer. Note that the CP is always located ahead of the first
character of the first line, behind the last character of the last
line, or between two characters. The current line CL is the source
line that contains the CP.

 Memory Buffer

 first line -----------------------<cr><lf>

 -----------------------<cr><lf>

 current line CL ---------------------------<cr><lf>

 CP

 last line -----------------------<cr><lf>

 Figure 2-3. Logical Organization of Memory Buffer

 2-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

2.1.4 Line Numbers and ED Start-up

 ED produces absolute line number prefixes that are used to
reference a line or range of lines. The absolute line number is
displayed at the beginning of each line when ED is in insert mode
(see the I command in Section 2.1.5). Each line number takes the
form

 nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535.
If the memory buffer is empty or if the current line is at the end
of the memory buffer, nnnnn appears as 5 blanks.

 You can reference an absolute line number by preceding any
command by a number followed by a colon, in the same format as the
line number display. In this case, the ED program moves the current
line reference to the absolute line number, if the line exists in
the current memory buffer. The line denoted by the absolute line
number must be in the memory buffer (see the A command). Thus, the
command

 345:T

is interpreted as move to absolute 345, and type the line.
Absolute line numbers are produced only during the editing process
and are not recorded with the file. In particular, the line numbers
will change following a deleted or expanded section of text.

 You can also reference an absolute line number as a backward or
forward distance from the current line by preceding the absolute
number by a colon. Thus, the command

 :400T

is interpreted as type from the current line number through the line
whose absolute number is 400. Combining the two line reference
forms, the command

 345::400T

is interpreted as move to absolute line 345, then type through
absolute line 400. Absolute line references of this sort can
precede any of the standard ED commands.

 Line numbering is controlled by the V (Verify Line Numbers)
command. Line numbering can be turned off by typing the -V command.

 2-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

If the file to edit does not exist, ED displays the following
message:

 NEW FILE

To move text into the memory buffer, you must enter an i command
before typing input lines and terminate each line with a carriage
return. A single CTRL-Z character returns ED to command mode.

2.1.5 Memory Buffer Operation

 When ED begins, the memory buffer is empty. You can either
append lines from the source file with the A command, or enter the
lines directly from the console with the insert command. The insert
command takes the following form:

 I

ED then accepts any number of input lines. You must terminate each
line with a <cr> (the <lf> is supplied automatically). A single
CTRL-Z, denoted by a caret (^)Z, returns ED to command mode. The CP
is positioned after the last character entered. The following
sequence:

 I<cr>
 NOW IS THE<cr>
 TIME FOR<cr>
 ALL GOOD MEN<cr>
 ^Z

leaves the memory buffer as

 NOW IS THE<cr><lf>
 TIME FOR<cr><lf>
 ALL GOOD MEN<cr><lf>

 Generally, ED accepts command letters in upper- or lower-case.
If the command is upper-case, all input values associated with the
command are translated to upper-case. If the I command is typed,
all input lines are automatically translated internally to upper-
case. The lower-case form of the i command is most often used to
allow both upper- and lower-case letters to be entered.

 Various commands can be issued that control the CP or display
source text in the vicinity of the CP. The commands shown below
with a preceding n indicate that an optional unsigned value can be
specified. When preceded by +_, the command can be unsigned, or have
an optional preceding plus or minus sign. As before, the pound sign
is replaced by 65535. If an integer n is optional, but not
supplied, then n=1 is assumed. Finally, if a plus sign is optional,
but none is specified, then + is assumed.

 2-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

Table 2-2. Editing Commands

 Command Action

 +_B Move CP to beginning of memory buffer if + and
 to bottom if -.

 +_nC Move CP by +_n characters (moving ahead if +),
 counting the <cr><lf> as two characters.

 +_nD Delete n characters ahead of CP if plus and
 behind CP if minus.

 +_nK Kill (remove) +_n lines of source text using CP
 as the current reference. If CP is not at the
 beginning of the current line when K is issued,
 the characters before CP remain if + is
 specified, while the characters after CP remain
 if - is given in the command.

 +_nL If n = 0, move CP to the beginning of the
 current line, if it is not already there. If n
 =/ 0, first move the CP to the beginning of the
 current line and then move it to the beginning
 of the line that is n lines down (if +) or up
 (if -). The CP will stop at the top or bottom
 of the memory buffer if too large a value of n
 is specified.

 +_nT If n = 0, type the contents of the current line
 up to CP. If n = 1, type the contents of the
 current line from CP to the end of the line.
 If n>1, type the current line along with n - 1
 lines that follow, if + is specified.
 Similarly, if n>1 and - is given, type the
 previous n lines up to the CP. Any key can be
 depressed to abort long type-outs.

 +_n Equivalent to +_nLT, which moves up or down and
 types a single line.

2.1.6 Command Strings

 Any number of commands can be typed contiguously (up to the
capacity of the console buffer) and are executed only after you
press the <cr>. Table 2-3 summarizes the CP/M console line-editing
commands used to control the input command line.

 2-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

Table 2-3. Line-editing Controls

 Command Result

 CTRL-C Reboots the CP/M system when typed at the
 start of a line.

 CTRL-E Physical end of line: carriage is returned,
 but line is not sent until the carriage return
 key is depressed.

 CTRL-H Backspaces one character position.

 CTRL-J Terminates current input (line-feed).

 CTRL-M Terminates current input (carriage return).

 CTRL-R Retypes current command line: types a clean
 line character deletion with rubouts.

 CTRL-U Deletes the entire line typed at the console.

 CTRL-X Same as CTRL-U.

 CTRL-Z Ends input from the console (used in PIP and
 ED).

 rub/del Deletes and echos the last character typed at
 the console.

 Suppose the memory buffer contains the characters shown in the
previous section, with the CP following the last character of the
buffer. In the following example, the command strings on the left
produce the results shown to the right. Use lower-case command
letters to avoid automatic translation of strings to upper-case.

 Command String Effect

 B2T<cr> Move to beginning of the buffer and type
 two lines:

 NOW IS THE
 TIME FOR
 The result in the memory buffer is

 NOW IS THE<cr><lf>
 TIME FOR<cr><lf>
 ALL GOOD MEN<cr><lf>

 2-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

 Command String Effect

 5C0T<cr> Move CP five characters and type the
 beginning of the line NOW I. The result
 in the memory buffer is

 NOW I S THE<cr><lf>

 2L-T<cr> Move two lines down and type the previous
 line TIME FOR. The result in the memory
 buffer is

 NOW IS THE<cr><lf>
 TIME FOR<cr><lf>
 ALL GOOD MEN<cr><lf>

 -L#K<cr> Move up one line, delete 65535 lines that
 follow. The result in the memory buffer
 is

 NOW IS THE<cr><lf>

 I<cr> Insert two lines of text with automatic
 TIME TO<cr> translation to upper-case. The result in
 INSERT<cr> the memory buffer is
 ^Z

 NOW IS THE<cr><lf>
 TIME TO<cr><lf>
 INSERT<cr><lf>

 -2L#T<cr> Move up two lines and type 65535 lines
 ahead of CP NOW IS THE. The result in the
 memory buffer is

 NOW IS THE<cr><lf>
 TIME TO<cr><lf>
 INSERT<cr><lf>

 <cr> Move down one line and type one line
 INSERT. The result in the memory buffer
 is

 NOW IS THE<cr><lf>
 TIME TO<cr><lf>
 INSERT<cr><lf>

 2-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

2.1.7 Text Search and Alteration

 ED has a command that locates strings within the memory buffer.
The command takes the form

 nF s <cr>
or
 nF s ^Z

where s represents the string to match, followed by either a <cr> or
CTRL-Z, denoted by ̂ Z. ED starts at the current position of CP and
attempts to match the string. The match is attempted n times and,
if successful, the CP is moved directly after the string. If the n
matches are not successful, the CP is not moved from its initial
position. Search strings can include CTRL-L, which is replaced by
the pair of symbols <cr><lf>.

 The following commands illustrate the use of the F command:

 Command String Effect

 B#T<cr> Move to the beginning and type the entire
 buffer. The result in the memory buffer
 is

 NOW IS THE <cr><lf>
 TIME FOR<cr><lf>
 ALL GOOD MEN<cr><lf>

 FS T<cr> Find the end of the string S T. The
 result in the memory buffer is

 NOW IS T HE<cr><lf>

 FIs^Z0TT Find the next I and type to the CP; then
 type the remainder of the current line ME
 FOR. The result in the memory buffer is

 NOW IS THE<cr><lf>
 TI ME FOR<cr><lf>

 ALL GOOD MEN<cr><lf>

 An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make simple
textual changes. The form is

 | s ^Z
or
 | s<cr>

 2-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

where s is the string to insert. If the insertion string is
terminated by a CTRL-Z, the string is inserted directly following
the CP, and the CP is positioned directly after the string. The
action is the same if the command is followed by a <cr> except that
a <cr><lf> is automatically inserted into the text following the
string. The following command sequences are examples of the F and I
commands:

 Command String Effect

 BITHIS IS ^Z<cr>

 Insert THIS IS at the beginning of the
 text. The result in the memory buffer is

 THIS IS NOW THE<cr><lf>

 TIME FOR<cr><lf>
 ALL GOOD MEN<cr><lf>

 FTIME^Z-4DIPLACE^Z<cr>

 Find TIME and delete it; then insert
 PLACE. The result in the memory buffer is

 THIS IS NOW THE<cr><lf>
 PLACE FOR<cr><lf>

 ALL GOOD MEN<cr><lf>

 3FO^Z-3D5D1
 CHANGES^Z<cr> Find third occurrence of O (that is, the
 second O in GOOD), delete previous 3
 characters and the subsequent 5
 characters; then insert CHANGES. The
 result in the memory buffer is

 THIS IS NOW THE<cr><lf>
 PLACE FOR<cr><lf>
 ALL CHANGES <cr><lf>

 -8CISOURCE<cr>

 Move back 8 characters and insert the line
 SOURCE<cr><lf>. The result in the memory
 buffer is

 THIS IS NOW THE<cr><lf>
 PLACE FOR<cr><lf>
 ALL SOURCE<cr><lf>
 CHANGES<cr><lf>

 2-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

 ED also provides a single command that combines the F and I
commands to perform simple string substitutions. The command takes
the following form:

 nS s
1
^Zs

2
 <cr>

or
 nS s

1
^Zs

2
 ^Z

and has exactly the same effect as applying the following command
string a total of n times:

 F s
1
^Z-kDIs

2 <cr>
or
 F s

1
^Z-kDIs

2
 ^Z

where k is the length of the string. ED searches the memory buffer
starting at the current position of CP and successively substitutes
the second string for the first string until the end of buffer, or
until the substitution has been performed n times.

 As a convenience, a command similar to F is provided by ED that
automatically appends and writes lines as the search proceeds. The
form is

 n N s <cr>
or
 n N s ^Z

which searches the entire source file for the nth occurrence of the
strings (you should recall that F fails if the string cannot be
found in the current buffer). The operation of the N command is
precisely the same as F except in the case that the string cannot be
found within the current memory buffer. In this case, the entire
memory content is written (that is, an automatic #W is issued).
Input lines are then read until the buffer is at least half full, or
the entire source file is exhausted. The search continues in this
manner until the string has been found n times, or until the source
file has been completely transferred to the temporary file.

 A final line editing function, called the juxtaposition
command, takes the form

 n J s
1
^Zs

2
^Zs

3
 <cr>

or
 n J s

1
^Zs

2
^Zs

3
 ^Z

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the string s1.
If found, insert the string s2, and move CP to follow s2. Then
delete all characters following CP up to, but not including, the
string s

3
, leaving CP directly after s

2
. If s

3
 cannot be found,

then no deletion is made. If the current line is

 2-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

 NOW IS THE TIME<cr><lf>

the command

 JW ^ZWHAT^Z^1<cr>

results in

 NOW WHAT <cr lf>

You should recall that ^1 (CTRL-L) represents the pair <cr><lf> in
search and substitute strings.

 The number of characters ED allows in the F, S, N, and J
commands is limited to 100 symbols.

2.1.8 Source Libraries

 ED also allows the inclusion of source libraries during the
editing process with the R command. The form of this command is

 R filename ^Z
or
 R filename <cr>

where filename is the primary filename of a source file on the disk
with an assumed filetype of LIB. ED reads the specified file, and
places the characters into the memory buffer after CP, in a manner
similar to the I command. Thus, if the command

 RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB until
the end-of-file and automatically inserts the characters into the
memory buffer.

 ED also includes a block move facility implemented through the
X (Transfer) command. The form

 nX

transfers the next n lines from the current line to a temporary file
called

 X$$$$$$.LIB

which is active only during the editing process. You can reposition
the current line reference to any portion of the source file and
transfer lines to the temporary file. The transferred lines
accumulate one after another in this file and can be retrieved by
simply typing

 R

 2-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.1 Introduction to ED

which is the trivial case of the library read command. In this
case, the entire transferred set of lines is read into the memory
buffer. Note that the X command does not remove the transferred
lines from the memory buffer, although a K command can be used
directly after the X, and the R command does not empty the
transferred LIB file. That is, given that a set of lines has been
transferred with the X command, they can be reread any number of
times back into the source file. The command

 0X

is provided to empty the transferred line file.

 Note that upon normal completion of the ED program through Q or
E, the temporary LIB file is removed. If ED is aborted with a CTRL-
C, the LIB file will exist if lines have been transferred, but will
generally be empty (a subsequent ED invocation will erase the
temporary file).

2.1.9 Repetitive Command Execution

 The macro command M allows you to group ED commands together
for repeated evaluation. The M command takes the following form:

 n M CS <cr>
or
 n M CS ^Z

where CS represents a string of ED commands, not including another M
command. ED executes the command string n times if n>1. If n=0 or
1, the command string is executed repetitively until an error
condition is encountered (for example, the end of the memory buffer
is reached with an F command).

 As an example, the following macro changes all occurrences of
GAMMA to DELTA within the current buffer, and types each line that
is changed:

 MFGAMMA^Z-5DIDELTA^Z0TT<cr>

or equivalently

 MSGAMMA^ZDELTA^Z0TT<cr>

2.2 ED Error Conditions

 On error conditions, ED prints the message BREAK X AT C where X
is one of the error indicators shown in Table 2-4.

 2-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.2 ED Error Conditions

Table 2-4. Error Message Symbols

 Symbol Meaning

 ? Unrecognized command.

 > Memory buffer full (use one of the commands D, K,
 N, S, or W to remove characters); F, N, or S
 strings too long.

 # Cannot apply command the number of times
 specified (for example, in F command).

 O Cannot open LIB file in R command.

If there is a disk error, CP/M displays the following message:

 BDOS ERR on d: BAD SECTOR

You can choose to ignore the error by pressing RETURN at the console
(in this case, the memory buffer data should be examined to see if
they were incorrectly read), or you can reset the system with a
CTRL-C and reclaim the back-up file if it exists. The file can be
reclaimed by first typing the contents of the BAK file to ensure
that it contains the proper information. For example, type the
following:

 TYPE x.BAK

where x is the file being edited. Then remove the primary file

 ERA x.y

and rename the BAK file

 REN x.y=x.BAK

The file can then be reedited, starting with the previous version.

 ED also takes file attributes into account. If you attempt to
edit a Read-Only file, the message

 ** FILE IS READ/ONLY **

appears at the console. The file can be loaded and examined, but
cannot be altered. You must end the edit session and use STAT to
change the file attribute to R/W. If the edited file has the system
attribute set, the following message:

 ’SYSTEM’ FILE NOT ACCESSIBLE

is displayed and the edit session is aborted. Again, the STAT
program can be used to change the system attribute, if desired.

 2-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.3 Control Characters and Commands

2.3 Control Characters and Commands

 Table 2-5 summarizes the control characters and commands
available in ED.

Table 2-5. ED Control Characters

 Control Function
 Character

 CTRL-C System reboot

 CTRL-E Physical <cr><lf> (not actually entered in
 command)

 CTRL-H Backspace

 CTRL-J Logical tab (cols 1, 9, 16, ...)

 CTRL-L Logical <cr><lf> in search and substitute
 strings

 CTRL-R Repeat line

 CTRL-U Line delete

 CTRL-X Line delete

 CTRL-Z String terminator

 rub/del Character delete

 Table 2-6 summarizes the commands used in ED.

Table 2-6. ED Commands

 Command Function

 nA Append lines

 +_B Begin or bottom of buffer

 +_nC Move character positions

 +_nD Delete characters

 E End edit and close files (normal end)

 nF Find string

 2-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.3 Control Characters and Commands

Table 2-6. (continued)

 Command Function

 H End edit, close and reopen files

 I Insert characters, use i if both upper and
 lower-case characters are to be entered.

 nJ Place strings in juxtaposition

 +_nK Kill lines

 +_nL Move down/up lines

 nM Macro definition

 nN Find next occurrence with autoscan

 O Return to original file

 +_nP Move and print pages

 Q Quit with no file changes

 R Read library file

 nS Substitute strings

 +_nT Type lines

 +_U Translate lower- to upper-case if U, no
 translation if -U

 +_V Verify line numbers, or show remaining
 free character space

 0V A special case of the V command, OV,
 prints the memory buffer statistics in the
 form

 free/total

 where free is the number of free bytes in
 the memory buffer (in decimal) and total
 is the size of the memory buffer

 nW Write lines

 nZ Wait (sleep) for approximately n seconds

 +_n Move and type (+_nLT).

 2-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 2.3 Control Characters and Commands

 Because of common typographical errors, ED requires several
potentially disastrous commands to be typed as single letters,
rather than in composite commands. The following commands:

 o E(end)
 o H(head)
 o O(original)
 o Q(quit)

must be typed as single letter commands.

 The commands I, J, M, N, R, and S should be typed as i, j, m,
n, r, and s if both upper- and lower-case characters are used in the
operation, otherwise all characters are converted to upper-case.
When a command is entered in upper-case, ED automatically converts
the associated string to upper-case, and vice versa.

End of Section 2

 2-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Section 3

CP/M Assembler

3.1 Introduction

 The CP/M assembler reads assembly-language source files from
the disk and produces 8080 machine language in Intel hex format. To
start the CP/M assembler, type a command in one of the following
forms:

 ASM filename
 ASM filename.parms

In both cases, the assembler assumes there is a file on the disk
with the name:

 filename.ASM

which contains an 8080 assembly-language source file. The first and
second forms shown above differ only in that the second form allows
parameters to be passed to the assembler to control source file
access and hex and print file destinations.

 In either case, the CP/M assembler loads and prints the
message:

 CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first
command, the assembler reads the source file with assumed filetype
ASM and creates two output files

 filename.HEX
 filename.PRN

 The HEX file contains the machine code corresponding to the
original program in Intel hex format, and the PRN file contains an
annotated listing showing generated machine code, error flags, and
source lines. If errors occur during translation, they are listed
in the PRN file and at the console.

 The form ASM filename parms is used to redirect input and
output files from their defaults. In this case, the parms portion
of the command is a three-letter group that specifies the origin of
the source file, the destination of the hex file, and the
destination of the print file. The form is

 3-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.1 Introduction

 filename.p1p2p3

where p1, p2, and p3 are single letters. P1 can be

 A,B, ...,P

which designates the disk name that contains the source file. P2
can be

 A,B, ...,P

which designates the disk name that will receive the hex file; or,
P2 can be

 Z

which skips the generation of the hex file.

 P3 can be

 A,B, ...,P

which designates the disk name that will receive the print file. P3
can also be specified as

 X

which places the listing at the console; or

 Z

which skips generation of the print file. Thus, the command

 ASM X.AAA

indicates that the source, X.HEX, and print, X.PRN, files are also
to be created on disk A. This form of the command is implied if the
assembler is run from disk A. Given that you are currently
addressing disk A, the above command is the same as

 ASM X

The command

 ASM X.ABX

indicates that the source file is to be taken from disk A, the hex
file is to be placed on disk B, and the listing file is to be sent
to the console. The command

 ASM X.BZZ

takes the source file from disk B and skips the generation of the
hex and print files. This command is useful for fast execution of
the assembler to check program syntax.

 3-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.1 Introduction

 The source program format is compatible with the Intel 8080
assembler. Macros are not implemented in ASM; see the optional MAC
macro assembler. There are certain extensions in the CP/M assembler
that make it somewhat easier to use. These extensions are described
below.

3.2 Program Format

 An assembly-language program acceptable as input to the
assembler consists of a sequence of statements of the form

 line# label operation operand ;comment

where any or all of the fields may be present in a particular
instance. Each assembly-language statement is terminated with a
carriage return and line-feed (the line-feed is inserted
automatically by the ED program), or with the character !, which is
treated as an end-of-line by the assembler. Thus, multiple
assembly-language statements can be written on the same physical
line if separated by exclamation point symbols.

 The line# is an optional decimal integer value representing the
source program line number, and ASM ignores this field if present.

 The label field takes either of the following forms:

 identifier
 identifier:

The label field is optional, except where noted in particular
statement types. The identifier is a sequence of alphanumeric
characters where the first character is alphabetic. Identifiers can
be freely used by the programmer to label elements such as program
steps and assembler directives, but cannot exceed 16 characters in
length. All characters are significant in an identifier, except for
the embedded dollar symbol $, which can be used to improve
readability of the name. Further, all lower-case alphabetics are
treated as upper-case. The following are all valid instances of
labels:

 x xy long$name

 x: yxl: longer$named$data:

 X1Y2 X1x2 x234$5678$9012$3456:

 The operation field contains either an assembler directive or
pseudo operation, or an 8080 machine operation code. The pseudo
operations and machine operation codes are described in Section 3.3.

 3-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.2 Program Format

 Generally, the operand field of the statement contains an
expression formed out of constants and labels, along with arithmetic
and logical operations on these elements. Again, the complete
details of properly formed expressions are given in Section 3.3.

 The comment field contains arbitrary characters following the
semicolon symbol until the next real or logical end-of-line. These
characters are read, listed, and otherwise ignored by the assembler.
The CP/M assembler also treats statements that begin with an * in
column one as comment statements that are listed and ignored in the
assembly process.

 The assembly-language program is formulated as a sequence of
statements of the above form, terminated by an optional END
statement. All statements following the END are ignored by the
assembler.

3.3 Forming the Operand

 To describe the operation codes and pseudo operations
completely, it is necessary first to present the form of the operand
field, since it is used in nearly all statements. Expressions in
the operand field consist of simple operands, labels, constants, and
reserved words, combined in properly formed subexpressions by
arithmetic and logical operators. The expression computation is
carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly.
Further, the number of significant digits in the result must not
exceed the intended use. If an expression is to be used in a byte
move immediate instruction, the most significant 8 bits of the
expression must be zero. The restriction on the expression
significance is given with the individual instructions.

3.3.1 Labels

 As discussed above, a label is an identifier that occurs on a
particular statement. In general, the label is given a value
determined by the type of statement that it precedes. If the label
occurs on a statement that generates machine code or reserves memory
space (for example, a MOV instruction or a DS pseudo operation), the
label is given the value of the program address that it labels. If
the label precedes an EQU or SET, the label is given the value that
results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

 When a label appears in the operand field, its value is
substituted by the assembler. This value can then be combined with
other operands and operators to form the operand field for a
particular instruction.

 3-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.3 Forming the Operand

3.3.2 Numeric Constants

 A numeric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a trailing
radix indicator. The following are radix indicators:

 o B is a binary constant (base 2).
 o O is a octal constant (base 8).
 o Q is a octal constant (base 8).
 o D is a decimal constant (base 10).
 o H is a hexadecimal constant (base 16).

 Q is an alternate radix indicator for octal numbers because the
letter O is easily confused with the digit 0. Any numeric constant
that does not terminate with a radix indicator is a decimal
constant.

 A constant is composed as a sequence of digits, followed by an
optional radix indicator, where the digits are in the appropriate
range for the radix. Binary constants must be composed of 0 and 1
digits, octal constants can contain digits in the range 0-7, while
decimal constants contain decimal digits. Hexadecimal constants
contain decimal digits as well as hexadecimal digits A(10D), B(11D),
C(12D), D(13D), E(14D), and F(15D). Note that the leading digit of
a hexadecimal constant must be a decimal digit to avoid confusing a
hexadecimal constant with an identifier. A leading 0 will always
suffice. A constant composed in this manner must evaluate to a
binary number that can be contained within a 16-bit counter,
otherwise it is truncated on the right by the assembler.

 Similar to identifiers, embedded $ signs are allowed within
constants to improve their readability. Finally, the radix
indicator is translated to upper-case if a lower-case letter is
encountered. The following are all valid instances of numeric
constants:

 1234 1234D 1100B 1111$0000$1111$0000B

 1234H OFFEH 3377O 33$77$22Q

 3377o Ofe3h 1234d Offffh

3.3.3 Reserved Words

 There are several reserved character sequences that have
predefined meanings in the operand field of a statement. The names
of 8080 registers are given below. When they are encountered, they
produce the values shown to the right.

 3-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.3 Forming the Operand

 Table 3-1. Reserved Characters

 Character Value

 A 7
 B 0
 C 1
 D 2
 E 3
 H 4
 L 5
 M 6
 SP 6
 PSW 6

 Again, lower-case names have the same values as their upper-
case equivalents. Machine instructions can also be used in the
operand field; they evaluate to their internal codes. In the case of
instructions that require operands, where the specific operand
becomes a part of the binary bit pattern of the instruction, for
example, MOV A,B, the value of the instruction, in this case MOV, is
the bit pattern of the instruction with zeros in the optional
fields, for example, MOV produces 40H.

 When the symbol $ occurs in the operand field, not embedded
within identifiers and numeric constants, its value becomes the
address of the next instruction to generate, not including the
instruction contained within the current logical line.

3.3.4 String Constants

 String constants represent sequences of ASCII characters and
are represented by enclosing the characters within apostrophe
symbols. All strings must be fully contained within the current
physical line (thus allowing exclamation point symbols within
strings) and must not exceed 64 characters in length. The
apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes ’’),
which becomes a single apostrophe when read by the assembler. In
most cases, the string length is restricted to either one or two
characters (the DB pseudo operation is an exception), in which case
the string becomes an 8- or 16-bit value, respectively. Two-
character strings become a 16-bit constant, with the second
character as the low-order byte, and the first character as the
high-order byte.

 The value of a character is its corresponding ASCII code.
There is no case translation within strings; both upper- and lower-
case characters can be represented. You should note that only
graphic printing ASCII characters are allowed within strings.

 3-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.3 Forming the Operand

 Valid strings: How assembler reads strings:

 ’A’ ’AB’ ’ab’ ’c’ A AB ab c
 ’’ ’a’’’ ’’’’ ’’’’ a’ ’ ’
 ’Walla Walla Wash.’ Walla Walla Wash.
 ’She said ’’Hello’’ to me.’ She said ’’Hello’’ to me
 ’I said ’’Hello’’ to her.’ I said ’’Hello’’ to her

3.3.5 Arithmetic and Logical Operators

 The operands described in Section 3.3 can be combined in normal
algebraic notation using any combination of properly formed
operands, operators, and parenthesized expressions. The operators
recognized in the operand field are described in Table 3-2.

Table 3-2. Arithmetic and Logical Operators

 Operators Meaning

 a + b unsigned arithmetic sum of a and b

 a - b unsigned arithmetic difference between a
 and b

 + b unary plus (produces b)

 - b unary minus (identical to 0 - b)

 a * b unsigned magnitude multiplication of a and
 b

 a / b unsigned magnitude division of a by b

 a MOD b remainder after a / b.

 NOT b logical inverse of b (all 0s become 1s, 1s
 become 0s), where b is considered a 16-bit
 value

 a AND b bit-by-bit logical and of a and b

 a OR b bit-by-bit logical or of a and b

 a XOR b bit-by-bit logical exclusive or of a and b

 a SHL b the value that results from shifting a to
 the left by an amount b, with zero fill

 a SHR b the value that results from shifting a to
 the right by an amount b, with zero fill

 3-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.3 Forming the Operand

 In each case, a and b represent simple operands (labels,
numeric constants, reserved words, and one- or two-character
strings) or fully enclosed parenthesized subexpressions, like those
shown in the following examples:

 10+20 10h+37Q LI/3 (L2+4) SHR 3

 (’a’ and 5fh) + ’0’ (’B’+B) OR (PSW+M)

 (1+(2+c)) shr (A-(B+1))

 Note that all computations are performed at assembly time as
16-bit unsigned operations. Thus, -1 is computed as 0-1, which
results in the value 0ffffh (that is, all 1s). The resulting
expression must fit the operation code in which it is used. For
example, if the expression is used in an ADI (add immediate)
instruction, the high-order 8 bits of the expression must be zero.
As a result, the operation ADI-1 produces an error message (-1
becomes 0ffffh, which cannot be represented as an 8-bit value),
while ADI(-1) AND 0FFH is accepted by the assembler because the AND
operation zeros the high-order bits of the expression.

3.3.6 Precedence of Operators

 As a convenience to the programmer, ASM assumes that operators
have a relative precedence of application that allows the programmer
to write expressions without nested levels of parentheses. The
resulting expression has assumed parentheses that are defined by the
relative precedence. The order of application of operators in
unparenthesized expressions is listed below. Operators listed first
have highest precedence (they are applied first in an
unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal
precedence, and are applied from left to right as they are
encountered in an expression.

 * / MOD SHL SHR

 - +

 NOT

 AND

 OR XOR

 Thus, the expressions shown to the left below are interpreted
by the assembler as the fully parenthesized expressions shown to the
right.

 3-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.3 Forming the Operand

 a*b+c (a*b)+c

 a+b*c a+(b*c)

 a MOD b*c SHL d ((a MOD b)*c) SHL d

 a OR b AND NOT c+d SHL e a OR (b AND (NOT (c+(d SHL e))))

 Balanced, parenthesized subexpressions can always be used to
override the assumed parentheses; thus, the last expression above
could be rewritten to force application of operators in a different
order, as shown:

 (a OR b) AND (NOT c)+ d SHL e

This results in these assumed parentheses:

 (a OR b) AND ((NOT c) + (d SHL e))

 An unparenthesized expression is well-formed only if the
expression that results from inserting the assumed parentheses is
well-formed.

3.4 Assembler Directives

 Assembler directives are used to set labels to specific values
during the assembly, perform conditional assembly, define storage
areas, and specify starting addresses in the program. Each
assembler directive is denoted by a pseudo operation that appears in
the operation field of the line. The acceptable pseudo operations
are shown in Table 3-3.

 Table 3-3. Assembler Directives

 Directive Meaning

 ORG set the program or data origin

 END end program, optional start address

 EQU numeric equate

 SET numeric set

 IF begin conditional assembly

 ENDIF end of conditional assembly

 DB define data bytes

 DW define data words

 DS define data storage area

 3-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Guide 3.4 Assembler Directives

3.4.1 The ORG Directive

 The ORG statement takes the form:

 label ORG expression

where label is an optional program identifier and expression is a
16-bit expression, consisting of operands that are defined before
the ORG statement. The assembler begins machine code generation at
the location specified in the expression. There can be any number
of ORG statements within a particular program, and there are no
checks to ensure that the programmer is not defining overlapping
memory areas. Note that most programs written for the CP/M system
begin with an ORG statement of the form:

 ORG 100H

which causes machine code generation to begin at the base of the
CP/M transient program area. If a label is specified in the ORG
statement, the label is given the value of the expression. This
label can then be used in the operand field of other statements to
represent this expression.

3.4.2 The END Directive

 The END statement is optional in an assembly-language program,
but if it is present it must be the last statement. All subsequent
statements are ignored in the assembly. The END statement takes the
following two forms:

 label END

 label END expression

where the label is again optional. If the first form is used, the
assembly process stops, and the default starting address of the
program is taken as 0000. Otherwise, the expression is evaluated,
and becomes the program starting address. This starting address is
included in the last record of the Intel-formatted machine code hex
file that results from the assembly. Thus, most CP/M assembly-
language programs end with the statement:

 END 100H

resulting in the default starting address of 100H (beginning of the
transient program area).

 3-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Guide 3.4 Assembler Directives

3.4.3 The EQU Directive

 The EQU (equate) statement is used to set up synonyms for
particular numeric values. The EQU statement takes the form:

 label EQU expression

where the label must be present and must not label any other
statement. The assembler evaluates the expression and assigns this
value to the identifier given in the label field. The identifier is
usually a name that describes the value in a more human-oriented
manner. Further, this name is used throughout the program to place
parameters on certain functions. Suppose data received from a
teletype appears on a particular input port, and data is sent to the
teletype through the next output port in sequence. For example, you
can use this series of equate statements to define these ports for a
particular hardware environment:

 TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY

 TTYIN EQU TTYBASE ;TTY DATA IN

 TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

 At a later point in the program, the statements that access the
teletype can appear as follows:

 IN TTYIN ;READ TTY DATA TO REG-A

 ...

 OUT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports are
used. Further, if the hardware environment is redefined to start
the teletype communications ports at 7FH instead of 10H, the first
statement need only be changed to

 TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statements.

3.4.4 The SET Directive

 The SET statement is similar to the EQU, taking the form:

 label SET expression

except that the label can occur on other SET statements within the
program. The expression is evaluated and becomes the current value

 3-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Guide 3.4 Assembler Directives

associated with the label. Thus, the EQU statement defines a label
with a single value, while the SET statement defines a value that is
valid from the current SET statement to the point where the label
occurs on the next SET statement. The use of the SET is similar to
the EQU statement, but is used most often in controlling conditional
assembly.

3.4.5 The IF and ENDIF Directives

 The IF and ENDIF statements define a range of assembly-language
statements that are to be included or excluded during the assembly
process. These statements take on the form:

 IF expression

 statement#1

 statement#2

 ...

 statement#n

 ENDIF

 When encountering the IF statement, the assembler evaluates the
expression following the IF. All operands in the expression must be
defined ahead of the IF statement. If the expression evaluates to a
nonzero value, then statement#1 through statement#n are assembled.
If the expression evaluates to zero, the statements are listed but
not assembled. Conditional assembly is often used to write a single
generic program that includes a number of possible run-time
environments, with only a few specific portions of the program
selected for any particular assembly. The following program
segments, for example, might be part of a program that communicates
with either a teletype or a CRT console (but not both) by selecting
a particular value for TTY before the assembly begins.

 3-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Guide 3.4 Assembler Directives

 TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
 FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE
 ;
 TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
 ;
 TTYBASE EQU 10H ;BASE OF TTY I/O PORTS
 CRTBASE EQU 20H ;BASE OF CRT I/O PORTS
 IF TTY ;ASSEMBLE RELATIVE TO
 ;TTYBASE
 CONIN EQU TTYBASE ;CONSOLE INPUT
 CONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT
 ENDIF

 ; IF NOT TTY ;ASSEMBLE RELATIVE TO
 ;CRTBASE
 CONIN EQU CRTBASE ;CONSOLE INPUT
 CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT

 ENDIF
 ...
 IN CONIN ;READ CONSOLE DATA
 ...
 OUT CONTOUT ;WRITE CONSOLE DATA

In this case, the program assembles for an environment where a
teletype is connected, based at port 10H. The statement defining
TTY can be changed to

 TTY EQU FALSE

and, in this case, the program assembles for a CRT based at port
20H.

3.4.6 The DB Directive

 The DB directive allows the programmer to define initialized
storage areas in single-precision byte format. The DB statement
takes the form:

 label DB e#1, e#2, ..., e#n

where e#1 through e#n are either expressions that evaluate to 8-bit
values (the high-order bit must be zero) or are ASCII strings of
length no greater than 64 characters. There is no practical
restriction on the number of expressions included on a single source
line. The expressions are evaluated and placed sequentially into
the machine code file following the last program address generated
by the assembler. String characters are similarly placed into
memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions.

 3-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Guide 3.4 Assembler Directives

Note: ASCII characters are always placed in memory with the parity
bit reset (0). Also, there is no translation from lower- to upper-
case within strings. The optional label can be used to reference
the data area throughout the remainder of the program. The
following are examples of valid DB statements:

 data: DB 0,1,2,3,4,5
 DB data and 0ffh,5,377Q,1+2+3+4

 sign-on: DB ’please type your name’,cr,lf,0
 DB ’AB’ SHR 8, ’C’, ’DE’ AND 7FH

3.4.7 The DW Directive

 The DW statement is similar to the DB statement except double-
precision two-byte words of storage are initialized. The DW
statement takes the form:

 label DW e#1, e#2, ..., e#n

where e#1 through e#n are expressions that evaluate to 16-bit
results. Note that ASCII strings of one or two characters are
allowed, but strings longer than two characters are disallowed. In
all cases, the data storage is consistent with the 8080 processor;
the least significant byte of the expression is stored first in
memory, followed by the most significant byte. The following are
examples of DW statements:

 doub: DW 0ffefh,doub+4,signon-$,255+255
 DW ’a’, 5, ’ab’, ’CD’, 6 shl 8 or llb.

3.4.8 The DS Directive

 The DS statement is used to reserve an area of uninitialized
memory, and takes the form:

 label DS expression

where the label is optional. The assembler begins subsequent code
generation after the area reserved by the DS. Thus, the DS
statement given above has exactly the same effect as the following
statement:

 label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
 ORG $+expression ;MOVE PAST RESERVED AREA

 3-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.5 Operation Codes

3.5 Operation Codes

 Assembly-language operation codes form the principal part of
assembly-language programs and form the operation field of the
instruction. In general, ASM accepts all the standard mnemonics for
the Intel 8080 microcomputer, which are given in detail in the Intel
8080 Assembly Language Programming Manual. Labels are optional on
each input line. The individual operators are listed briefly in the
following sections for completeness, although the Intel manuals
should be referenced for exact operator details. In Tables 3-4
through 3-8, bit values have the following meaning:

 o e3 represents a 3-bit value in the range 0-7 that can be one of
 the predefined registers A, B, C, D, E, H, L, M, SP, or PSW.

 o e8 represents an 8-bit value in the range 0-255.

 o e16 represents a 16-bit value in the range 0-65535.

 These expressions can be formed from an arbitrary combination
of operands and operators. In some cases, the operands are
restricted to particular values within the allowable range, such as
the PUSH instruction. These cases are noted as they are
encountered.

 In the sections that follow, each operation code is listed in
its most general form, along with a specific example, a short
explanation, and special restrictions.

3.5.1 Jumps, Calls, and Returns

 The Jump, Call, and Return instructions allow several different
forms that test the condition flags set in the 8080 microcomputer
CPU. The forms are shown in Table 3-4.

Table 3-4. Jumps, Calls, and Returns

 Form Bit Example Meaning
 Value

 JMP e16 JMP L1 Jump unconditionally to label

 JNZ e16 JNZ L2 Jump on nonzero condition to label

 JZ e16 JZ 100H Jump on zero condition to label

 JNC e16 JNC L1+4 Jump no carry to label

 JC e16 JC L3 Jump on carry to label

 JPO e16 JPO $+8 Jump on parity odd to label

 3-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.5 Operation Codes

Table 3-4. (continued)

 Form Bit Example Meaning
 Value

 JPE e16 JPE L4 Jump on even parity to label

 JP e16 JP GAMMA Jump on positive result to label

 JM e16 JM al Jump on minus to label

 CALL e16 CALL S1 Call subroutine unconditionally

 CNZ e16 CNZ S2 Call subroutine on nonzero
 condition

 CZ e16 CZ 100H Call subroutine on zero condition

 CNC e16 CNC S1+4 Call subroutine if no carry set

 CC e16 CC S3 Call subroutine if carry set

 CPO e16 CPO $+8 Call subroutine if parity odd

 CPE e16 CPE $4 Call subroutine if parity even

 CP e16 CP GAMMA Call subroutine if positive result

 CM e16 CM b1$c2 Call subroutine if minus flag

 RST e3 RST 0 Programmed restart, equivalent to
 CALL 8*e3, except one byte call

 RET Return from subroutine

 RNZ Return if nonzero flag set

 RZ Return if zero flag set

 RNC Return if no carry

 RC Return if carry flag set

 RPO Return if parity is odd

 RPE Return if parity is even

 RP Return if positive result

 RM Return if minus flag is set

 3-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.5 Operation Codes

3.5.2 Immediate Operand Instructions

 Several instructions are available that load single- or double-
precision registers or single-precision memory cells with constant
values, along with instructions that perform immediate arithmetic or
logical operations on the accumulator (register A). Table 3-5
describes the immediate operand instructions.

Table 3-5. Immediate Operand Instructions

 Form with Example Meaning
 Bit Values

 MVI e3,e8 MVI B,255 Move immediate data to
 register A, B, C, D, E, H,
 L, or M (memory)

 ADI e8 ADI 1 Add immediate operand to A
 without carry

 ACI e8 ACI 0FFH Add immediate operand to A
 with carry

 SUI e8 SUI L + 3 Subtract from A without
 borrow (carry)

 SBI e8 SBI L AND 11B Subtract from A with borrow
 (carry)

 ANI e8 ANI $ AND 7FH Logical and A with
 immediate data

 XRI e8 XRI 1111$0000B Exclusive or A with
 immediate data

 ORI e8 ORI L AND 1+1 Logical or A with immediate
 data

 CPI e8 CPI ’a’ Compare A with immediate
 data, same as SUI except
 register A not changed.

 LXI e3,e16 LXI B,100H Load extended immediate to
 register pair. e3 must be
 equivalent to B, D, H, or
 SP.

3.5.3 Increment and Decrement Instructions

 The 8080 provides instructions for incrementing or decrementing
single- and double-precision registers. The instructions are
described in Table 3-6.

 3-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.5 Operation Codes

Table 3-6. Increment and Decrement Instructions

 Form with Example Meaning
 Bit Value

 INR e3 INR E Single-precision increment
 register. e3 produces one
 of A, B, C, D, E, H, L, M.

 DCR e3 DCR A Single-precision decrement
 register. e3 produces one
 of A, B, C, D, E, H, L, M.

 INX e3 INX SP Double-precision increment
 register pair. e3 must be
 equivalent to B, D, H, or
 SP.

 DCX e3 DCX B Double-precision decrement
 register pair. e3 must be
 equivalent to B, D, H, or
 SP.

3.5.4 Data Movement Instructions

 Instructions that move data from memory to the CPU and from CPU
to memory are given in the following table.

Table 3-7. Data Movement Instructions

 Form with Example Meaning
 Bit Value

 MOV e3,e3 MOV A,B Move data to leftmost
 element from rightmost
 element. e3 produces on
 of A, B, C, D, E, H, L, or
 M. MOV M,M is disallowed.

 LDAX e3 LDAX B Load register A from
 computed address. e3 must
 produce either B or D.

 STAX e3 STAX D Store register A to
 computed address. e3 must
 produce either B or D.

 LHLD e16 LHLD L1 Load HL direct from
 location e16. Double-
 precision load to H and L.

 3-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.5 Operation Codes

Table 3-7. (continued)

 Form with Example Meaning
 Bit Value

 SHLD e16 SHLD L5+x Store HL direct to
 location e16. Double-
 precision store from H and
 L to memory.

 LDA e16 LDA Gamma Load register A from
 address e16.

 STA e16 STA X3-5 Store register A into
 memory at e16.

 POP e3 POP PSW Load register pair from
 stack, set SP. e3 must
 produce one of B, D, H, or
 PSW.

 PUSH e3 PUSH B Store register pair into
 stack, set SP. e3 must
 produce on of B, D, H, or
 PSW.

 IN e8 IN 0 Load register A with data
 from port e8.

 OUT e8 OUT 255 Send data from register A
 to port e8.

 XTHL Exchange data from top of
 stack with HL.

 PCHL Fill program counter with
 data from HL.

 SPHL Fill stack pointer with
 data from HL.

 XCHG Exchange DE pair with HL
 pair.

3.5.5 Arithmetic Logic Unit Operations

 Instructions that act upon the single-precision accumulator to
perform arithmetic and logic operations are given in the following
table.

 3-19

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.5 Operation Codes

Table 3-8. Arithmetic Logic Unit Operations

 Form with Example Meaning
 Bit Value

 ADD e3 ADD B Add register given by e3 to
 accumulator without carry.
 e3 must produce one of A,
 B, C, D, E, H, or L.

 ADC e3 ADC L Add register to A with
 carry, e3 as above.

 SUB e3 SUB H Subtract reg e3 from A
 without carry, e3 is
 defined as above.

 SBB e3 SBB 2 Subtract register e3 from A
 with carry, e3 defined as
 above.

 ANA e3 ANA 1+1 Logical and reg with A, e3
 as above.

 XRA e3 XRA A Exclusive or with A, e3 as
 above.

 ORA e3 ORA B Logical or with A, e3
 defined as above.

 CMP e3 CMP H Compare register with A, e3
 as above.

 DAA Decimal adjust register A
 based upon last arithmetic
 logic unit operation.

 CMA Complement the bits in
 register A.

 STC Set the carry flag to 1.

 CMC Complement the carry flag.

 RLC Rotate bits left, (re)set
 carry as a side effect.
 High-order A bit becomes
 carry.

 RRC Rotate bits right, (re)set
 carry as side effect.
 Low-order A bit becomes
 carry.

 3-20

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.5 Operation Codes

Table 3-8. (continued)

 Form with Example Meaning
 Bit Value

 RAL Rotate carry/A register to
 left. Carry is involved
 in the rotate.

 RAR Rotate carry/A register to
 right. Carry is involved
 in the rotate.

 DAD e3 DAD B Double-precision add
 register pair e3 to HL.
 e3 must produce B, D, H,
 or SP.

3.5.6 Control Instructions

 The four remaining instructions, categorized as control
instructions, are the following:

 o HLT halts the 8080 processor.
 o DI disables the interrupt system.
 o EI enables the interrupt system.
 o NOP means no operation.

3.6 Error Messages

 When errors occur within the assembly-language program, they
are listed as single-character flags in the leftmost position of the
source listing. The line in error is also echoed at the console so
that the source listing need not be examined to determine if errors
are present. The error codes are listed in the following table.

Table 3-9. Error Codes

 Error Code Meaning

 D Data error: element in data statement cannot
 be placed in the specified data area.

 E Expression error: expression is ill-formed
 and cannot be computed at assembly time.

 L Label error: label cannot appear in this
 context; might be duplicate label.

 N Not implemented: features that will appear in
 future ASM versions. For example, macros are
 recognized, but flagged in this version.

 3-21

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.6 Error Messages

Table 3-9. (continued)

 Error Code Meaning

 O Overflow: expression is too complicated (too
 many pending operators) to be computed and
 should be simplified.

 P Phase error: label does not have the same
 value on two subsequent passes through the
 program.

 R Register error: the value specified as a
 register is not compatible with the operation
 code.

 S Syntax error: statement is not properly
 formed.

 V Value error: operand encountered in
 expression is improperly formed.

 Table 3-10 lists the error messages that are due to terminal
error conditions.

Table 3-10. Error Messages

 Message Meaning

 NO SOURCE FILE PRESENT

 The file specified in the ASM command does
 not exist on disk.

 NO DIRECTORY SPACE

 The disk directory is full; erase files
 that are not needed and retry.

 SOURCE FILE NAME ERROR

 Improperly formed ASM filename, for
 example, it is specified with ? fields.

 SOURCE FILE READ ERROR

 Source file cannot be read properly by the
 assembler; execute a TYPE to determine the
 point of error.

 3-22

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.6 Error Messages

Table 3-10. (continued)

 Message Meaning

 OUTPUT FILE WRITE ERROR

 Output files cannot be written properly;
 most likely cause is a full disk, erase and
 retry.

 CANNOT CLOSE FILE

 Output file cannot be closed; check to see
 if disk is write protected.

3.7 A Sample Session

 The following sample session shows interaction with the
assembler and debugger in the development of a simple assembly-
language program. The arrow represents a carriage return keystroke.

A>ASM SORT Assemble SORT.ASM

CP/M ASSEMBLER - VER 1.0

0015C Next free address
003H USE FACTOR Percent of table used 00 to ff (hexadecimal)
END OF ASSEMBLY

A>DIR SORT.*

SORT ASM Source file
SORT BAK Back-up from last edit
SORT PRN Print file (contains tab characters)
SORT HEX Machine code file

A>TYPE SORT.PRN
 Source line

 ; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE
 ; START AT THE BEGINNING OF THE TRANSIENT
 PROGRAM AREA

Machine code location
0100 ORG 100H

Generated machine code
0100 214601 SORT: LXI H,SW ;ADDRESS SWITCH TOGGLE
0103 3601 MVI M,1 ;SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H,I ;ADDRESS INDEX
0108 3600 MVI M,0 ;I=0

 3-23

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.7 A Sample Session

 ;
 ; COMPARE I WITH ARRAY SIZE
010A 7E COMPL: MOV A,M ;A REGISTER = I
010B FE09 CPI N-1 ;CY SET IF I<(N-1)
010D D21901 JNC CONT ;CONTINUE IF I<=(N-2)
 ;
 ; END OF ONE PASS THROUGH DATA
0110 214601 LXI H,SW ;CHECK FOR ZERO SWITCHES
0113 7EB7C200001 MOV A, M! ORA A! JNZ SORT ;END OF SORT IF SW=0
 ;
0118 FF RST 7 ;GO TO THE DEBUGGER INSTEAD OF REB
 ;
 ; CONTINUE THIS PASS
Truncated ; ADDRESSING I, SO LOAD AV(I) INTO REGISTERS
0119
 5F16002148CONT: MOV E, A! MVI D, 0! LXI H, AV! DAD D! DAD D
0121 4E792346 MOV C, M! MOV A, C! INX H! MOV B, M
 ; LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B
 ;
 ; MOV H AND L TO ADDRESS AV(I+1)
0125 23 INX H
 ;
 ; COMPARE VALUE WITH REGS CONTAINING AV (I)
0126 965778239E SUB M! MOV D, A! MOV A, B! INX H! SBB M ;SUBTRACT
 ;
 ; BORROW SET IF AV(I+1)>AV(I)
012B DA3F01 JC INCI ;SKIP IF IN PROPER ORDER
 ;
 ; CHECK FOR EQUAL VALUES
012E B2CA3F01 ORA D! JZ INCI ;SKIP IF AV(I) = AV(I+1)
0132 56702B5E MOV D, M! MOV M, B! DCX H! MOV E, M
0136 712B722B73 MOV M, C! DCX H! MOV M, D! DCX H! MOV M, E
 ;
 ; INCREMENT SWITCH COUNT
013B 21460134 LXI H,SW! INR M
 ;
 ; INCREMENT I
013F 21470134C3INCI:LXI H,I! INR M! JMP COMP
 ;
 ; DATA DEFINITION SECTION
0146 00 SW: DB 0 ;RESERVE SPACE FOR SWITCH COUNT
0147 I: DS 1 ;SPACE FOR INDEX
0148 050064001EAV: DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767
000A = N EQU($-AV)/2 ;COMPUTE N INSTEAD OF PRE
015C END
A>TYPE SORT.HEX Equate value

:10010000214601360121470136007EFE09D2190140
:100110002146017EB7C20001FF5F16002148011988 Machine code in
:10012000194E79234623965778239EDA3F01B2CAA7 HEX format

:100130003F0156702B5E712B722B732146013421C7
:07014000470134C30A01006E Machine code in
:10014800050064001E00320014000700E8032C01BB HEX format
:0401580064000180BE
:0000000000

 3-24

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.7 A Sample Session

A>DDT SORT.HEX Start debug run

16K DDT VER 1.0
NEXT PC
015C 0000 Default address (no address on END statement)
-XP

P=0000 100 Change PC to 100

-UFFFF Untrace for 65535 steps
 Abort with rubout
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,0146*0100
-T10 Trace 10

16
 steps

C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, M
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=010D JNC 0119
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=0110 LXI H, 0146
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=0113 MOV A, M
C1Z0M1E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0115 JNZ 0100
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
C0Z0M0E0I0 A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, M*010B
-A10D Stopped at 10BH

010D JC 119 Change to a jump on carry
0110

-XP

P=010B 100 Reset program counter back to beginning of program

-T10 Trace execution for 10H steps

 Altered instruction
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=0100 LXI H,0146
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H,0147
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M,00
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=010A MOV A,M
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=010D JC 0119
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=0119 MOV E,A
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=011A MVI D,00
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0147 S=0100 P=011C LXI H,0148
C1Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
C0Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=0120 DAD D
C0Z0M1E0I0 A=00 B=0000 D=0000 H=0148 S=0100 P=0121 MOV C,M

 3-25

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.7 A Sample Session

C0Z0M1E0I0 A=00 B=0005 D=0000 H=0148 S=0100 P=0122 MOV A,C
C0Z0M1E0I0 A=05 B=0005 D=0000 H=0148 S=0100 P=0123 INX H
C0Z0M1E0I0 A=05 B=0005 D=0000 H=0149 S=0100 P=0124 MOV B,M*0125
-L100 Automatic breakpoint

 0100 LXI H,0146
 0103 MVI M,01
 0105 LXI H,0147
 0108 MVI M,00
 010A MOV A,M List some code
 010B CPI 09 from 100H
 010D JC 0119
 0110 LXI H,0146
 0113 MOV A,M
 0114 ORA A
 0115 JNZ 0100
 -L

 0118 RST 07
 0119 MOV E,A List more
 011A MVI D,00
 011C LXI H,0148
-Abort list with rubout
-G,11B Start program from current PC (0125H)
 and run in real time to 11BH

*0127 Stopped with an external interrupt 7 from front panel
-T4 (program was looping indefinitely)
 Look at looping program in trace mode

C0Z0M0E0I0 A=38 B=0064 D=0006 H=0156 S=0100 P=0127 MOV D,A
C0Z0M0E0I0 A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MOV A,B
C0Z0M0E0I0 A=00 B=0064 D=3806 H=0156 S=0100 P=0129 INX H
C0Z0M0E0I0 A=00 B=0064 D=3806 H=0157 S=0100 P=012A SBB M*012B
-D148
 Data are sorted, but program does not stop.
0148 05 00 07 00 14 00 1E 00........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D.,........

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

-G0 Return to CP/M

A>DDT SORT.HEX Reload the memory image

16K DDT VER 1.0
NEXT PC
015C 0000
-XP

P=0000 100 Set PC to beginning of program

-L10D List bad OPCODE

 3-26

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.7 A Sample Session

 010D JNC 0119
 0110 LXI H,0146
-Abort list with rubout
-A10D Assemble new OPCODE

010D JC 119

0110

-L100 List starting section of program

 0100 LXI H,0146
 0103 MVI M,01
 0105 LXI H,0147
 0108 MVI M,00
-Abort list with rubout
-A103 Change switch initialization to 00

0103 MVI M,0

0105

-^C Return to CP/M with CTRL-C (G0 works as well)

SAVE 1 SORT.COM Save 1 page (256 bytes, from 100H to 1ffH) on
 disk in case there is need to reload later
A>DDT SORT.COM Restart DDT with saved memory image

16K DDT VER 1.0
NEXT PC
0200 0100 COM file always starts with address 100H
-G Run the program from PC=100H

*0118 Programmed stop (RST 7) encountered
-D148

 Data properly sorted
0148 05 00 07 00 14 00 1E 00........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D.........

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

-G0 Return to CP/M

A>ED SORT.ASM Make changes to original program

*N,0^Z0TT Find next ,0
 MVI M,0 ;I = 0

*- Up one line in text
 LXI H,I ;ADDRESS INDEX

 3-27

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 3.7 A Sample Session

*- Up another line
 MVI M,1 ;SET TO 1 FOR FIRST ITERATION

*KT Kill line and type next line
 LXI H,I ;ADDRESS INDEX

*I Insert new line
 MVI M,0 ;ZERO SW

*T
 LXI H,I ;ADDRESS INDEX

*NJNC^Z0T
 JNC*T
 CONT ;CONTINUE IF I<=(N-2)

*-2DIC^Z0LT
 JC CONT ;CONTINUE IF I<=(N-2)

*E Source from disk A
 HEX to disk A
A>ASM SORT.AAZ Skip PRN file

CP/M ASSEMBLER - VER 1.0

015C Next address to assemble
003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEX Test program changes

16K DDT VER 1.0
NEXT PC
015C 0000
-G100

*0118
-D148
 Data sorted
0148 05 00 07 00 14 00 1E 00........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D..........
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00................

-Abort with rubout

-G0 Return to CP/M--program checks OK.

End of Section 3

 3-28

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

 Section 4

 CP/M Dynamic Debugging Tool

4.1 Introduction

 The DDT program allows dynamic interactive testing and
debugging of programs generated in the CP/M environment. Invoke the
debugger with a command of one of the following forms:

 DDT
 DDT filename.HEX
 DDT filename.COM

where filename is the name of the program to be loaded and tested.
In both cases, the DDT program is brought into main memory in place
of the Console Command Processor (CCP) and resides directly below
the Basic Disk Operating System (BDOS) portion of CP/M. Refer to
Section 5 for standard memory organization. The BDOS starting
address, located in the address field of the JMP instruction at
location 5H, is altered to reflect the reduced Transient Program
Area (TPA) size.

 The second and third forms of the DDT command perform the same
actions as the first, except there is a subsequent automatic load of
the specified HEX or COM file. The action is identical to the
following sequence of commands:

 DDT
 Ifilename.HEX or Ifilename.COM
 R

where the I and R commands set up and read the specified program to
test. See the explanation of the I and R commands below for exact
details.

 Upon initiation, DDT prints a sign-on message in the form:

 DDT VER m.m

where m.m is the revision number.

 Following the sign-on message, DDT prompts you with the hyphen
character, -, and waits for input commands from the console. You
can type any of several single-character commands, followed by a
carriage return to execute the command. Each line of input can be
line-edited using the following standard CP/M controls:

 4-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.1 Introduction

Table 4-1. Line-editing Controls

 Control Result

 rubout removes the last character typed

 CTRL-U removes the entire line, ready for retyping

 CTRL-C reboots system

 Any command can be up to 32 characters in length. An automatic
carriage return is inserted as character 33, where the first
character determines the command type. Table 4-2 describes DDT
commands.

 Table 4-2. DDT Commands

 Command Result
 Character

 A enters assembly-language mnemonics with
 operands.

 D displays memory in hexadecimal and ASCII.

 F fills memory with constant data.

 G begins execution with optional breakpoints.

 I sets up a standard input File Control
 Block.

 L lists memory using assembler mnemonics.

 M moves a memory segment from source to
 destination.

 R reads a program for subsequent testing.

 S substitutes memory values.

 T traces program execution.

 U untraced program monitoring.

 X examines and optionally alters the CPU
 state.

The command character, in some cases, is followed by zero, one, two,
or three hexadecimal values, which are separated by commas or single
blank characters. All DDT numeric output is in hexadecimal form.
The commands are not execution until the carriage return is typed at
the end of the command.

 4-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.1 Introduction

 At any point in the debug run, you can stop execution of DDT by
using either a CTRL-C or G0 (jump to location 0000H) and save the
current memory image by using a SAVE command of the form:

 SAVE n filename. COM

where n is the number of pages (256 byte blocks) to be saved on
disk. The number of blocks is determined by taking the high-order
byte of the address in the TPA and converting this number to
decimal. For example, if the highest address in the TPA is 134H,
the number of pages is 12H or 18 in decimal. You could type a CTRL-
C during the debug run, returning to the CCP level, followed by

 SAVE 18 X.COM

The memory image is saved as X.COM on the disk and can be directly
executed by typing the name X. If further testing is required, the
memory image can be recalled by typing

 DDT X.COM

which reloads the previously saved program from location 100H
through page 18, 23FFH. The CPU state is not a part of the COM
file; thus, the program must be restarted from the beginning to test
it properly.

4.2 DDT Commands

 The individual commands are detailed below. In each case, the
operator must wait for the hyphen prompt character before entering
the command. If control is passed to a program under test, and the
program has not reached a breakpoint, control can be returned to DDT
by executing a RST 7 from the front panel. In the explanation of
each command, the command letter is shown in some cases with numbers
separated by commas, the the numbers are represented by lower-case
letters. These numbers are always assumed to be in a hexadecimal
radix and from one to four digits in length. Longer numbers are
automatically truncated on the right.

 Many of the commands operate upon a CPU state that corresponds
to the program under test. The CPU state holds the registers of the
program being debugged and initially contains zeros for all
registers and flags except for the program counter, P, and stack
pointer, S, which default to 100H. The program counter is
subsequently set to the starting address given in the last record of
a HEX file if a file of this form is loaded, see the I and R
commands.

4.2.1 The A (Assembly) Command

 DDT allows in-line assembly language to be inserted into the
current memory image using the A command, which takes the form:

 4-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.2 DDT Commands

 As

where s is the hexadecimal starting address for the in-line
assembly. DDT prompts the console with the address of the next
instruction to fill and reads the console, looking for assembly-
language mnemonics followed by register references and operands in
absolute hexadecimal form. See the Intel 8080 Assembly Language
Reference Card for a list of mnemonics. Each successive load
address is printed before reading the console. The A command
terminates when the first empty line is input from the console.

 Upon completion of assembly language input, you can review the
memory segment using the DDT disassembler (see the L command).

 Note that the assembler/disassembler portion of DDT can be
overlaid by the transient program being tested, in which case the
DDT program responds with an error condition when the A and L
commands are used.

4.2.2 The D (Display) Command

 The D command allows you to view the contents of memory in
hexadecimal and ASCII formats. The D command takes the forms:

 D
 Ds
 Ds,f

 In the first form, memory is displayed from the current display
address, initially 100H, and continues for 16 display lines. Each
display line takes the followng form:

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal and bb represents
data present in memory starting at aaaa. The ASCII characters
starting at aaaa are to the right (represented by the sequence of
character c) where nongraphic characters are printed as a period.
You should note that both upper- and lower-case alphabetics are
displayed, and will appear as upper-case symbols on a console device
that supports only upper-case. Each display line gives the values
of 16 bytes of data, with the first line truncated so that the next
line begins at an address that is a multiple of 16.

 The second form of the D command is similar to the first,
except that the display address is first set to address s.

 The third form causes the display to continue from address s
through address f. In all cases, the display address is set to the
first address not displayed in this command, so that a continuing
display can be accomplished by issuing successive D commands with no
explicit addresses.

 4-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.2 DDT Commands

 Excessively long displays can be aborted by pressing the return
key.

4.2.3 The F (Fill) Command

 The F command takes the form:

 Fs,f,c,

where s is the starting address, f is the final address, and c is a
hexadecimal byte constant. DDT stores the constant c at address s,
increments the value of s and test against f. If s exceeds f, the
operation terminates, otherwise the operation is repeated. Thus,
the fill command can be used to set a memory block to a specific
constant value.

4.2.4 The G (Go) Command

 A program is executed using the G command, with up to two
optional breakpoint addresses. The G command takes the forms:

 G
 Gs
 Gs,b
 Gs,b,c
 G,b
 G,b,c

 The first form executes the program at the current value of the
program counter in the current machine state, with no breakpoints
set. The only way to regain control in DDT is through a RST 7
execution. The current program counter can be viewed by typing an X
or XP command.

 The second form is similar to the first, except that the
program counter in the current machine state is set to address s
before execution begins.

 The third form is the same as the second, except that program
execution stops when address b is encountered (b must be in the area
of the program under test). The instruction at location b is not
executed when the breakpoint is encountered.

 The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c.
Encountering either breakpoint causes execution to stop, and both
breakpoints are cleared. The last two forms take the program
counter from the current machine state and set one and two
breakpoints, respectively.

 4-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.2 DDT Commands

 Execution continues from the starting address in real-time to
the next breakpoint. There is no intervention between the starting
address and the break address by DDT. If the program under test
does not reach a breakpoint, control cannot return to DDT without
executing a RST 7 instruction. Upon encountering a breakpoint, DDT
stops execution and types

 *d

where d is the stop address. The machine state can be examined at
this point using the X (Examine) command. You must specify
breakpoints that differ from the program counter address at the
beginning of the G command. Thus, if the current program counter is
1234H, then the following commands:

 G,1234
 G400,400

both produce an immediate breakpoint without executing any
instructions.

4.2.5 The I (Input) Command

 The I command allows you to insert a filename into the default
File Control Block (FCB) at 5CH. The FCB created by CP/M for
transient programs is placed at this location (see Section 5). The
default FCB can be used by the program under test as if it had been
passed by the CP/M Console Processor. Note that this filename is
also used by DDT for reading additional HEX and COM files. The I
command takes the forms:

 Ifilename
 Ifilename.typ

 If the second form is used and the filetype is either HEX or
COM, subsequent R commands can be used to read the pure binary or
hex format machine code. Section 4.2.8 gives further details.

4.2.6 The L (List) Command

 The L command is used to list assembly-language mnemonics in a
particular program region. The L command takes the forms:

 L
 Ls
 Ls,f

 The first form lists twelve lines of disassembled machine code
from the current list address. The second form sets the list
address to s and then lists twelve lines of code. The last form
lists disassembled code from s through address f. In all three
cases, the list address is set to the next unlisted location in
preparation for a subsequent L command. Upon encountering an

 4-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.2 DDT Commands

execution breakpoint, the list address is set to the current value
of the program counter (G and T commands). Again, long typeouts can
be aborted by pressing RETURN during the list process.

4.2.7 The M (Move) Command

 The M command allows block movement of program or data areas
from one location to another in memory. The M command takes the
form:

 Ms,f,d

where s is the start address of the move, f is the final address,
and d is the destination address. Data is first removed from s to
d, and both addresses are incremented. If s exceeds f, the move
operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

 The R command is used in conjunction with the I command to read
COM and HEX files from the disk into the transient program area in
preparation for the debug run. The R command takes the forms:

 R
 RB

where b is an optional bias address that is added to each program or
data address as it is loaded. The load operation must not overwrite
any of the system parameters from 000H through 0FFH (that is, the
first page of memory). If b is omitted, then b=0000 is assumed.
The R command requires a previous I command, specifying the name of
a HEX or COM file. The load address for each record is obtained
from each individual HEX record, while an assumed load address of
100H is used for COM files. Note that any number of R commands can
be issued following the I command to reread the program under test,
assuming the tested program does not destroy the default area at
5CH. Any file specified with the filetype COM is assumed to contain
machine code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code in
Intel hex format (produced, for example, with the ASM command).

 Recall that the command,

 DDT filename.filetype

which initiates the DDT program, equals to the following commands:

 DDT
 -Ifilename.filetype
 -R

 4-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.2 DDT Commands

 Whenever the R command is issued, DDT responds with either the
error indicator ? (file cannot be opened, or a checksum error
occurred in a HEX file) or with a load message. The load message
takes the form:

 NEXT PC
 nnnn pppp

where nnnn is the next address following the loaded program and pppp
is the assumed program counter (100H for COM files, or taken from
the last record if a HEX file is specified).

4.2.9 The S (Set) Command

 The S command allows memory locations to be examined and
optionally altered. The S command takes the form:

 Ss

where s is the hexadecimal starting address for examination and
alteration of memory. DDT responds with a numeric prompt, giving
the memory location, along with the data currently held in memory.
If you type a carriage return, the data is not altered. If a byte
value is typed, the value is stored at the prompted address. In
either case, DDT continues to prompt with successive addresses and
values until you type either a period or an invalid input value is
detected.

4.2.10 The T (Trace) Command

 The T command allows selective tracing of program execution for
1 to 65535 program steps. The T command takes the forms:

 T
 Tn

 In the first form, the CPU state is displayed and the next
program step is executed. The program terminates immediately, with
the termination address displayed as

 *hhhh

where hhhh is the next address to execute. The display address
(used in the D command) is set to the value of H and L, and the list
address (used in the L command) is set to hhhh. The CPU state at
program termination can then be examined using the X command.

 The second form of the T command is similar to the first,
except that execution is traced for n steps (n is a hexadecimal
value) before a program breakpoint occurs. A breakpoint can be
forced in the trace mode by typing a rubout character. The CPU
state is displayed before each program step is taken in trace mode.
The format of the display is the same as described in the X command.

 4-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.2 DDT Commands

 You should note that program tracing is discontinued at the
CP/M interface and resumes after return from CP/M to the program
under test. Thus, CP/M functions that access I/O devices, such as
the disk drive, run in real-time, avoiding I/O timing problems.
Programs running in trace mode execute approximately 500 times
slower than real-time because DDT gets control after each user
instruction is executed. Interrupt processing routines can be
traced, but commands that use the breakpoint facility (G, T, and U)
accomplish the break using an RST 7 instruction, which means that
the tested program cannot use this interrupt location. Further, the
trace mode always runs the tested program with interrupts enabled,
which may cause problems if asynchronous interrupts are received
during tracing.

 To get control back to DDT during trace, press RETURN rather
than executing an RST 7. This ensures that the trace for current
instruction is completed before interruption.

4.2.11 The U (Untrace) Command

 The U command is identical to the T command, except that
intermediate program steps are not displayed. The untrace mode
allows from 1 to 65535, (0FFFFH) steps to be executed in monitored
mode and is used principally to retain control of an executing
program while it reaches steady state conditions. All conditions of
the T command apply to the U command.

4.2.12 The X (Examine) Command

 The X command allows selective display and alteration of the
current CPU state for the program under test. The X command takes
the forms:

 X
 Xr

where r is one of the 8080 CPU registers listed in the following
table.

 Table 4-3. CPU Registers

 Register Meaning Value

 C Carry flag (0/1)
 Z Zero flag (0/1)
 M Minus flag (0/1)
 E Even parity flag (0/1)
 I Interdigit carry (0/1)
 A Accumulator (0-FF)
 B BC register pair (0-FFFF)
 D DE register pair (0-FFFF)

 4-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.2 DDT Commands

 Table 4-3. (continued)

 Register Meaning Value

 H HL register pair (0-FFFF)
 S Stack pointer (0-FFFF)
 P Program counter (0-FFFF)

In the first case, the CPU register state is displayed in the
format:

 CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a
double-byte quantity corresponding to the register pair. The inst
field contains the disassembled instruction, that occurs at the
location addressed by the CPU state’s program counter.

 The second form allows display and optional alteration of
register values, where r is one of the registers given above (C, Z,
M, E, I, A, B, D, H, S, or P). In each case, the flag or register
value is first displayed at the console. The DDT program then
accepts input from the console. If a carriage return is typed, the
flag or register value is not altered. If a value in the proper
range is typed, the flag or register value is altered. You should
note that BC, DE, and HL are displayed as register pairs. Thus, you
must type the entire register pair when B, C, or the BC pair is
altered.

4.3 Implementation Notes

 The organization of DDT allows certain nonessential portions to
be overlaid to gain a larger transient program area for debugging
large programs. The DDT program consists of two parts: the DDT
nucleus and the assembler/disassembler module. The DDT nucleus is
loaded over the CCP and, although loaded with the DDT nucleus, the
assembler/disassembler is overlayable unless used to assemble or
disassemble.

 In particular, the BDOS address at location 6H (address field
of the JMP instruction at location 5H) is modified by DDT to address
the base location of the DDT nucleus, which, in turn, contains a JMP
instruction to the BDOS. Thus, programs that use this address field
to size memory see the logical end of memory at the base of the DDT
nucleus rather than the base of the BDOS.

 The assembler/disassembler module resides directly below the
DDT nucleus in the transient program area. If the A, L, T, or X
commands are used during the debugging process, the DDT program
again alters the address field at 6H to include this module, further
reducing the logical end of memory. If a program loads beyond the
beginning of the assembler/disassembler module, the A and L commands
are lost (their use produces a ? in response) and the trace and

 4-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.3 Implementation Notes

display (T and X) commands list the inst field of the display in
hexadecimal, rather than as a decoded instruction.

4.4 A Sample Program

 The following example shows an edit, assemble, and debug for a
simple program that reads a set of data values and determines the
largest value in the set. The largest value is taken from the
vector and stored into LARGE at the termination of the program.

A>ED SCAN.ASM Create source program;
 " " represents carriage return.
*I
 ORG 1-00H ;START OF TRANSIENT
 ;AREA
 MVI B, LEN ;LENGTH OF VECTOR TO SCAN
 MVI C, 0 ;LARGER_RST VALUE SO FAR
LOOP LXI H, VECT ;BASE OF VECTOR
LOOP: MOV A, M ;GET VALUE
 SUB C ;LARGER VALUE IN C?
 JNC NFOUND ;JUMP IF LARGER VALUE NOT
 ;FOUND
; NEW LARGEST VALUE, STORE IT TO C
 MOV C, A
NFOUND INX H ;TO NEXT ELEMENT
 DCR B ;MORE TO SCAN?
 JNZ LOOP ;FOR ANOTHER
;
; END OF SCAN, STORE C
 MOV A, C ;GET LARGEST VALUE
 STA LARGE
 JMP 0 ;REBOOT
;
; TEST DATA
VECT: DB 2,0,4,3,5,6,1,5
LEN EQU $-VECT ;LENGTH
LARGE: DS 1 ;LARGEST VALUE ON EXIT
 END

 4-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

^-Z
*B0P
 ORG 100H ;START OF TRANSIENT AREA
 MVI B,LEN ;LENGTH OF VECTOR TO SCAN
 MVI C,0 ;LARGEST VALUE SO FAR
 LXI H,VECT ;BASE OF VECTOR
LOOP: MOV A,M ;GET VALUE
 SUB C ;LARGER VALUE IN C?
 JNC NFOUND ;JUMP IF LARGER VALUE NOT
 ;FOUND
; NEW LARGEST VALUE, STORE IT TO C
 MOV C,A
NFOUND: INX H ;TO NEXT ELEMENT
 DCR B ;MORE TO SCAN?
 JNZ LOOP ;FOR ANOTHER
; END OF SCAN, STORE C
 MOV A,C ;GET LARGEST VALUE
 STA LARGE
 JMP 0 ;REBOOT
;
; TEST DATA

VECT: DB 2,0,4,3,5,6,1,5
LEN EQU $-VECT ;LENGTH
LARGE: DS 1 ;LARGEST VALUE ON EXIT
 END
*E <--End of edit

A>ASM SCAN Start Assembler

CP/M ASSEMBLER - VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY Assembly complete; lock at program listing

A>TYPE SCAN.PRN
 Code address Source program
 0100 ORG 100H ;START OF TRANSIENT AREA
 0100 0608 MVI B,LEN ;LENGTH OF VECTOR TO SCAN
 0102 0E00 Machine code MVI C,0 ;LARGEST VALUE SO FAR
 0104 211901 LXI H,VECT. ;BASE OF VECTOR
 0107 7E LOOP: MOV A,M ;GET VALUE
 0108 91 SUB C ;LARGER VALUE IN C?
 0109 D20D01 JNC NFOUND ;JUMP IF LARGER VALUE NOT
 ;FOUND
 ; NEW LARGEST VALUE, STORE IT TO C
 010C 4F MOV C,A

 4-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

 010D 23 NFOUND: INX H ;TO NEXT ELEMENT
 010E 05 DCR B ;MORE TO SCAN?
 010F C20701 JNZ LOOP ;FOR ANOTHER
 ;
 ; END OF SCAN, STORE C
 0112 79 MOV A,C ;GET LARGEST VALUE
 0113 322101 STA LARGE

 0116 C30000 JMP 0 ;REBOOT
 Code--data listing;
 truncated ; TEST DATA
 0119 0200040305 VECT: DB 2,0,4,3,5,6,1,5
 0008 = Value of LEN EQU $-VECT ;LENGTH
 0121 equate LARGE: DS 1 ;LARGEST VALUE ON EXIT
 0122 END

A>DDT SCAN.HEX Start debugger using hex format machine code

DDT VER 1.0
NEXT PC Next instruction
0121 0000 to execute at
-X Last load address + 1 PC=0

C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 S=0100 P=0000 OUT 7F
-XP Examine registers before debug run

P=0000 100 Change PC to 100

-X Look at registers again

C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-L100
 PC changed Next instruction
 to execute at PC=100
 0100 MVI B,08
 0102 MVI C,00
 0104 LXI H,0119
 0107 MOV A,M
 0108 SUB C Disassembled machine
 0109 JNC 010D code at 100H
 010C MOV C,A (see source listing
 010D INX H for comparison)
 010E DCR B
 010F JNZ 0107
 0112 MOV A,C
-L

 4-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

 0113 STA 0121
 0116 JMP 0000
 0119 STAX B
 011A NOP A little more machine
 011B INR B code. Note that pro-
 011C INX B gram ends at location
 011D DCR B 116 with a JMP to
 011E MVI B,01 0000. Remainder of
 0120 DCR B listing is assembly of
 0121 LXI D,2200 data.
 0124 LXI H,0200
-A116 Enter in-line assembly mode to change the JMP to 0000 into a RST 7,
 which will cause the program under test to return to DDT if 116H is
 ever executed.
0116 RST 7

0117 (Single carriage return stops assemble mode)

-L113 List code at 113H to check that RST 7 was properly inserted

 0113 STA 0121
 0116 RST 07 in place of JMP
 0117 NOP
 0118 NOP
 0119 STAX B
 011A NOP
 011B INR B
 011C INX B
-

-X Look at registers

C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-T
 Execute Program for one stop. Initial CPU state, before is executed

C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08*0102
 Automatic breakpoint

 Trace one step again (note O8H in B)
C0Z0M0E0I0 A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00*0104
-T
 Trace again (Register C is cleared)
C0Z0M0E0I0 A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119*0107
-T3 Trace three steps
C0Z0M0E0I0 A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
C0Z0M0E0I0 A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D*010D
-D119
 Display memory starting at 119H. Automatic breakpoint at 10DH

0119 02 00 04 03 05 06 01.Program data Lower-case x
0120 05 11 00 22 21 00 02 7E EB 77 13 23 EB 0B 78 B1 ..."!.. . W .#..X.
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 ...’ ...).........
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Data are displayed
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 in ASCI with a "."
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 in the position of
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 nongraphic........
01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 characters........
01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
-X
 Current CPU state
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
-T5
 Trace 5 steps from current CPU state
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
C0Z0M0E0I1 A=02 B=0800 D=0000 H=011A S=0100 P=010E DCR B
C0Z0M0E0I1 A=02 B=0700 D=0000 H=011A S=0100 P=010F JNZ 0107
C0Z0M0E0I1 A=02 B=0700 D=0000 H=011A S=0100 P=0107 MOV A,M
C0Z0M0E0I1 A=00 B=0700 D=0000 H=011A S=0100 P=0108 SUB C*0109

U5
 Automatic breakpoint
 Trace without listing intermediate states
C0Z1M0E1I1 A=00 B=0700 D=0000 H=011A S=0100 P=0109 JNC 010D*0108
-X
 CPU state at end of U5
C0Z0M0E1I1 A=04 B=0600 D=0000 H=011B S=0100 P=0108 SUB C
-G Run program from current PC until completion (in real-time)

*0116 breakpoint at 116H, caused by executing RST 7 in machine code.

-X
 CPU state at end of program
C0Z1M0E1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0116 RST 07
-XP
 Examine and change program counter

P=0116 100

-X

C0Z1M0E1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0100 MVI B,08
-T10

 First data element
 Current largest value
 Subtract for comparison C
 Trace 10 (hexadecimal) steps
C0Z1M0E1I1 A=00 B=0800 D=0000 H=0121 S=0100 P=0100 MVI B,08
C0Z1M0E1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0102 MVI C,00
C0Z1M0E1I1 A=00 B=0800 D=0000 H=0121 S=0100 P=0104 LXI H,0119
C0Z1M0E1I1 A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
C0Z1M0E1I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
C0Z0M0E0I1 A=02 B=0800 D=0000 H=011A S=0100 P=010E DCR B

 4-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

C0Z0M0E0I1 A=02 B=0700 D=0000 H=011A S=0100 P=010F JNZ 0107
C0Z0M0E0I1 A=02 B=0700 D=0000 H=011A S=0100 P=0107 MOV A,M
C0Z0M0E0I1 A=00 B=0700 D=0000 H=011A S=0100 P=0108 SUB C
C0Z1M0E1I1 A=00 B=0700 D=0000 H=011A S=0100 P=0109 JNC 010D
C0Z1M0E1I1 A=00 B=0700 D=0000 H=011A S=0100 P=010D INX H
C0Z1M0E1I1 A=00 B=0700 D=0000 H=011B S=0100 P=010E DCR B
C0Z0M0E1I1 A=00 B=0600 D=0000 H=011B S=0100 P=010F JNZ 0107
C0Z0M0E1I1 A=00 B=0600 D=0000 H=011B S=0100 P=0107 MOV A,M*0108
-A109
 Insert a "hot patch" into Program should have moved the
 the machine code value from A into C since A>C.
0109 JC 10D to change the Since this code was not executed,
 JNC to JC it appears that the JNC should
010C have been a JC instruction

 Stop DDT so that a version of
-G0 the patched program can be saved

A>SAVE 1 SCAN.COM Program resides on first
 page, so save 1 page.
A>DDT SCAN.COM
 Restart DDT with the save memory
DDT VER 1.0 image to continue testing
NEXT PC
0200 0100

-L100 List some code

 0100 MVI B,08
 0102 MVI C,00
 0104 LXI H,0119
 0107 MOV A,M
 0108 SUB C
 0109 JC 010D Previous patch is present in X.COM
 010C MOV C,A
 010D INX H
 010E DCR B
 010F JNZ 0107
 0112 MOV A,C
 -XP

P=0100

-T10
 Trace to see how patched version operates Data is moved from A to C
C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
C0Z0M0E0I0 A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00
C0Z0M0E0I0 A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119
C0Z0M0E0I0 A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
C0Z0M0E0I0 A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JC 010D
C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=010C MOV C,A
C0Z0M0E0I1 A=02 B=0802 D=0000 H=0119 S=0100 P=010D INX H
C0Z0M0E0I1 A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B
C0Z0M0E0I1 A=02 B=0702 D=0000 H=011A S=0100 P=010F JNZ 0107

 4-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

C0Z0M0E0I1 A=02 B=0702 D=0000 H=011A S=0100 P=0107 MOV A,M
C0Z0M0E0I1 A=00 B=0702 D=0000 H=011A S=0100 P=0108 SUB C
C1Z0M1E0I0 A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D
C1Z0M1E0I0 A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H
C1Z0M1E0I0 A=FE B=0702 D=0000 H=011B S=0100 P=010E DCR B
C1Z0M0E1I1 A=FE B=0602 D=0000 H=011B S=0100 P=010F JNZ 0107*0107
-X Breakpoint after 16 steps

C1Z0M0E1I1 A=FE B=0602 D=0000 H=011B S=0100 P=0107 MOV A,M
-G,108 Run from current PC and breakpoint at 108H

*0108
-X
 Next data item
C1Z0M0E1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C
-T
 Single step for a few cycles
C1Z0M0E1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C*0109
-T

C0Z0M0E0I1 A=02 B=0602 D=0000 H=011B S=0100 P=0109 JC 010D*010C
-X

C0Z0M0E0I1 A=02 B=0602 D=0000 H=011B S=0100 P=010C MOV C,A
-G Run to completion

*0116
-X

C0Z1M0E1I1 A=03 B=0003 D=0000 H=0121 S=0100 P=0116 RST 07
-S121 Look at the value of "LARGE"

 0121 03 Wrong value!

 0122 00

 0123 22

 0124 21

 0125 00

 0126 02

 0127 7E _. End of the S command

-L100

 0100 MVI B,08
 0102 MVI C,00
 0104 LXI H,0119
 0107 MOV A,M
 0108 SUB C
 0109 JC 010D
 010C MOV C,A

 4-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

 010D INX H
 010E DCR B
 010F JNZ 0107
 0112 MOV A,C
-L Review the code

 0113 STA 0121
 0116 RST 07
 0117 NOP
 0118 NOP
 0119 STAX B
 011A NOP
 011B INR B
 011C INX B
 011D DCR B
 011E MVI B,01
 0120 DCR B
-XP

P=0116 100 Reset the PC

-T
 Single step, and watch data values
C0Z1M0E1I1 A=03 B=0003 D=0000 H=0121 S=0100 P=0100 MVI B,08*0102
-T

C0Z1M0E1I1 A=03 B=0803 D=0000 H=0121 S=0100 P=0102 MVI C,00*0104
-T
 Count set Largest set
C0Z1M0E1I1 A=03 B=0800 D=0000 H=0121 S=0100 P=0104 LXI H,0119*0107
-T
 Base address of data set
C0Z1M0E1I1 A=03 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M*0108
-T
 First data item brought to A
C0Z1M0E1I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C*0109
-T

C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JC 010D*010C
-T

C0Z0M0E0I1 A=02 B=0800 D=0000 H=0119 S=0100 P=010C MOV C,A*010D
-T
 First data item moved to C correctly
C0Z0M0E0I1 A=02 B=0802 D=0000 H=0119 S=0100 P=010D INX H*010E
-T

C0Z0M0E0I1 A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B*010F
-T

C0Z0M0E0I1 A=02 B=0702 D=0000 H=011A S=0100 P=010F JNZ 0107*0107
-T

C0Z0M0E0I1 A=02 B=0702 D=0000 H=011A S=0100 P=0107 MOV A,M*0108
-T

 4-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

 Second data item brought to A
C0Z0M0E0I1 A=00 B=0702 D=0000 H=011A S=0100 P=0108 SUB C*0109
-T
 Subtract destroys data value that was loaded!
C1Z0M1E0I0 A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D*010D
-T

C1Z0M1E0I0 A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H*010E
-L100

 0100 MVI B,08
 0102 MVI C,00
 0104 LXI H,0119
 0107 MOV A,M
 0108 SUB C This should have been a CMP so that register A
 0109 JC 010D would not be destroyed.
 010C MOV C,A
 010D INX H
 010E DCR B
 010F JNZ 0107
 0112 MOV A,C
 -A108

0108 CMP C Hot patch at 108H changes SUB to CMP

0109

-G0 Stop DDT for SAVE

A>SAVE 1 SCAN.COM Save memory image

A>DDT SCAN.COM Restart DDT

DDT VER 1.0
NEXT PC
0200 0100
-XP

P=0100

-L116

 0116 RST 07
 0117 NOP
 0118 NOP Look at code to see if it was properly loaded
 0119 STAX B (long typeout aborted with rubout)
 011A NOP
 -

-G,116 Run from 100H to completion

*0116
-XC Look at carry (accidental typo)
C1
-X Look at CPU state

 4-19

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

C1Z1M0E1I1 A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07
-S121 Look at "large"--it appears to be correct.

0121 06

0122 00

0123 22

-G0 Stop DDT

A>ED SCAN.ASM Re-edit the source program, and make both changes

*NSUB
*0LT
 CTRL-Z SUB C ;LARGER VALUE IN C?
*SSUB|̂ZCMP|̂Z0LT
 CMP D ;LARGER VALUE IN C?
*
 JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
*SNC|̂ZC|̂Z0LT
 JC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
*E
 Reassemble, selecting source from disk A
A>ASM SCAN.AAZ <--- Hex to disk A
 Print to Z (selects no print file)
CP/M ASSEMBLER VER 1.0

0122
002H USE FACTOR
END OF ASSEMBLY

A>DDT SCAN.HEX Rerun debugger to check changes

DDT VER 1.0
NEXT PC
0121 0000
-L116

 0116 JMP 0000 Check to ensure end is still at 116H

 0119 STAX B

 011A NOP
 011B INR B

 -(rubout)

-G100,116 Go from beginning with breakpoint at end

*0116 Breakpoint reached
-D121 Look at "LARGE"
 Correct value computed
0121 06 00 22 21 00 02 7E EB 77 13 23 EB 0B 78 B1 .. ’!... W .#..X.
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 .’...)........

 4-20

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 4.4 A Sample Program

0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

-(rubout) Aborts long typeout

G0 Stop DDT, debug session complete.

End of Section 4

 4-21

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Section 5

CP/M 2 System Interface

5.1 Introduction

 This chapter describes CP/M (release 2) system organization
including the structure of memory and system entry points. This
section provides the information you need to write programs that
operate under CP/M and that use the peripheral and disk I/O
facilities of the system.

 CP/M is logically divided into four parts, called the Basic
Input/Output System (BIOS), the Basic Disk Operating System (BDOS),
the Console Command Processor (CCP), and the Transient Program Area
(TPA). The BIOS is a hardware-dependent module that defines the
exact low level interface with a particular computer system that is
necessary for peripheral device I/O. Although a standard BIOS is
supplied by Digital Research, explicit instructions are provided for
field reconfiguration of the BIOS to match nearly any hardware
environment, see Section 6.

 The BIOS and BDOS are logically combined into a single module
with a common entry point and referred to as the FDOS. The CCP is a
distinct program that uses the FDOS to provide a human-oriented
interface with the information that is cataloged on the back-up
storage device. The TPA is an area of memory, not used by the FDOS
and CCP, where various nonresident operating system commands and
user programs are executed. The lower portion of memory is reserved
for system information and is detailed in later sections. Memory
organization of the CP/M system is shown in Figure 5-1.

 High
 Memory FDOS (BDOS+BIOS)
 FBASE:

 CCP
 CBASE:

 TPA
 TBASE:

 System Parameters
 BOOT:

Figure 5-1. CP/M Memory Organization

 5-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.1 Introduction

 The exact memory addresses corresponding to BOOT, TBASE, CBASE,
and FBASE vary from version to version and are described fully in
Section 6. All standard CP/M versions assume BOOT=0000H, which is
the base of random access memory. The machine code found at
location BOOT performs a system warm start, which loads and
initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location
BOOT to return control to CP/M at the command level. Further, the
standard versions assume TBASE=BOOT+0100H, which is normally
location 0100H. The principal entry point to the FDOS is at
location BOOT+0005H (normally 0005H) where a jump to FBASE is found.
The address field at BOOT+0006H (normally 0006H) contains the value
of FBASE and can be used to determine the size of available memory,
assuming that the CCP is being overlaid by a transient program.

 Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command line takes one of the
following forms:

 command
 command file1
 command file1 file2

where command is either a built-in function, such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise,
the CCP searches the currently addressed disk for a file by the name

 command.COM

 If the file is found, it is assumed to be a memory image of a
program that executes in the TPA and thus implicity originates at
TBASE in memory. The CCP loads the COM file from the disk into
memory starting at TBASE and can extend up to CBASE.

 If the command is followed by one or two file specifications,
the CCP prepares one or two File Control Block (FCB) names in the
system parameter area. These optional FCBs are in the form
necessary to access files through the FDOS and are described in
Section 5.2.

 The transient program receives control from the CCP and begins
execution, using the I/O facilities of the FDOS. The transient
program is called from the CCP. Thus, it can simply return to the
CCP upon completion of its processing, or can jump to BOOT to pass
control back to CP/M. In the first case, the transient program must
not use memory above CBASE, while in the latter case, memory up
through FBASE-1 can be used.

 The transient program can use the CP/M I/O facilities to
communicate with the operator’s console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing
a function number and an information address to CP/M through the
FDOS entry point at BOOT+0005H. In the case of a disk read, for

 5-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.1 Introduction

example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the
disk read was unsuccessful.

5.2 Operating System Call Conventions

 This section provides detailed information for performing
direct operating system calls from user programs. Many of the
functions listed below, however, are accessed more simply through
the I/O macro library provided with the MAC macro assembler and
listed in the Digital Research manual entitled, Programmer’s
Utilities Guide for the CP/M Family of Operating Systems.

 CP/M facilities that are available for access by transient
programs fall into two general categories: simple device I/O and
disk file I/O. The simple device operations are

 o read a console character
 o write a console character
 o read a sequential character
 o write a sequential character
 o get or set I/O status
 o print console buffer
 o interrogate console ready

 The following FDOS operations perform disk I/O:

 o disk system reset
 o drive selection
 o file creation
 o file close
 o directory search
 o file delete
 o file rename
 o random or sequential read
 o random or sequential write
 o interrogate available disks
 o interrogate selected disk
 o set DMA address
 o set/reset file indicators.

 As mentioned above, access to the FDOS functions is
accomplished by passing a function number and information address
through the primary point at location BOOT+0005H. In general, the
function number is passed in register C with the information address
in the double byte pair DE. Single byte values are returned in
register A, with double byte values returned in HL, a zero value is
returned when the function number is out of range. For reasons of
compatibility, register A = L and register B = H upon return in all
cases. Note that the register passing conventions of CP/M agree
with those of the Intel PL/M systems programming language. CP/M
functions and their numbers are listed below.

 5-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 O System Reset 19 Delete File
 1 Console Input 20 Read Sequential
 2 Console Output 21 Write Sequential
 3 Reader Input 22 Make File
 4 Punch Output 23 Rename File
 5 List Output 24 Return Login Vector
 6 Direct Console I/O 25 Return Current Disk
 7 Get I/O Byte 26 Set DMA Address
 8 Set I/O Byte 27 Get Addr(Alloc)
 9 Print String 28 Write Protect Disk
 10 Read Console Buffer 29 Get R/0 Vector
 11 Get Console Status 30 Set File Attributes
 12 Return Version Number 31 Get Addr(Disk Parms)
 13 Reset Disk System 32 Set/Get User Code
 14 Select Disk 33 Read Random
 15 Open File 34 Write Random
 16 Close File 35 Compute File Size
 17 Search for First 36 Set Random Record
 18 Search for Next 37 Reset Drive
 40 Write Random with Zero Fill

 Functions 28 and 32 should be avoided in application programs
to maintain upward compatibility with CP/M.

 Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight-level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (most
transients return to the CCP through a jump to location 0000H) it is
large enough to make CP/M system calls because the FDOS switches to
a local stack at system entry. For example, the assembly-language
program segment below reads characters continuously until an
asterisk is encountered, at which time control returns to the CCP,
assuming a standard CP/M system with BOOT = 0000H.

 BDOS EQU 0005H ;STANDARD CP/M ENTRY
 CONIN EQU 1 ;CONSOLE INPUT FUNCTION
 ;
 ORG 0100H ;BASE OF TPA
 NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
 CALL BDOS ;RETURN CHARACTER IN <A>
 CPI ’*’ ;END OF PROCESSING?
 JNZ NEXTC ;LOOP IF NOT
 RET ;RETURN TO CCP
 END

 CP/M implements a named file structure on each disk, providing
a logical organization that allows any particular file to contain
any number of records from completely empty to the full capacity of
the drive. Each drive is logically distinct with a disk directory
and file data area. The disk filenames are in three parts: the
drive select code, the filename (consisting of one to eight nonblank

 5-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

characters), and the filetype (consisting of zero to three nonblank
characters). The filetype names the generic category of a
particular file, while the filename distinguishes individual files
in each category. The filetypes listed in Table 5-1 name a few
generic categories that have been established, although they are
somewhat arbitrary.

 Table 5-1. CP/M Filetypes

 Filetype Meaning

 ASM Assembler Source
 PRN Printer Listing
 HEX Hex Machine Code
 BAS Basic Source File
 INT Intermediate Code
 COM Command File
 PLI PL/I Source File
 REL Relocatable Module
 TEX TEX Formatter Source
 BAK ED Source Backup
 SYM SID Symbol File
 $$$ Temporary File

 Source files are treated as a sequence of ASCII characters,
where each line of the source file is followed by a carriage return,
and line-feed sequence (0DH followed by 0AH). Thus, one 128-byte
CP/M record can contain several lines of source text. The end of an
ASCII file is denoted by a CTRL-Z character (1AH) or a real end-of-
file returned by the CP/M read operation. CTRL-Z characters
embedded within machine code files (for example, COM files) are
ignored and the end-of-file condition returned by CP/M is used to
terminate read operations.

 Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they
may not be physically contiguous in the disk data area. Internally,
all files are divided into 16K byte segments called logical extents,
so that counters are easily maintained as 8-bit values. The
division into extents is discussed in the paragraphs that follow:
however, they are not particularly significant for the programmer,
because each extent is automatically accessed in both sequential and
random access modes.

 In the file operations starting with Function 15, DE usually
addresses a FCB. Transient programs often use the default FCB area
reserved by CP/M at location BOOT+005CH (normally 005CH) for simple
file operations. The basic unit of file information is a 128-byte
record used for all file operations. Thus, a default location for
disk I/O is provided by CP/M at location BOOT+0080H (normally 0080H)
which is the initial default DMA address. See Function 26.

 5-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 All directory operations take place in a reserved area that
does not affect write buffers as was the case in release 1, with the
exception of Search First and Search Next, where compatibility is
required.

 The FCB data area consists of a sequence of 33 bytes for
sequential access and a series of 36 bytes in the case when the file
is accessed randomly. The default FCB, normally located at 005CH,
can be used for random access files, because the three bytes
starting at BOOT+007DH are available for this purpose. Figure 5-2
shows the FCB format with the following fields.

 dr f1 f2 / / f8 t1 t2 t3 ex s1 s2 rc d0 / / dn cr r0 r1 r2
 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

 Figure 5-2. File Control Block Format

The following table lists and describes each of the fields in the
File Control Block figure.

 Table 5-2. File Control Block Fields

 Field Definition

 dr drive code (0-16)
 0 = use default drive for file
 1 = auto disk select drive A,
 2 = auto disk select drive B,
 .
 .
 .
 16= auto disk select drive P.

 f1...f8 contain the filename in ASCII
 upper-case, with high bit = 0

 t1, t2, t3 contain the filetype in ASCII
 upper-case, with high bit = 0
 t1’, t2’, and t3’ denote the
 bit of these positions,
 t1’ = 1 =>Read-Only file,
 t2’ = 1 =>SYS file, no DIR list

 ex contains the current extent
 number, normally set to 00 by
 the user, but in range 0-31
 during file I/O

 5-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 Table 5-2. (continued)

 Field Definition

 s1 reserved for internal system use

 s2 reserved for internal system use,
 set to zero on call to OPEN, MAKE,
 SEARCH

 rc record count for extent ex;
 takes on values from 0-127

 d0...dn filled in by CP/M; reserved for
 system use

 cr current record to read or write in
 a sequential file operation;
 normally set to zero by user

 r0, r1, r2 optional random record number in
 the range 0-65535, with overflow
 to r2, r0, r1 constitute a 16-bit
 value with low byte r0, and high
 byte r1

 Each file being accessed through CP/M must have a corresponding
FCB, which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer’s responsibility to fill the lower 16 bytes of the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set
to the ASCII character values for the filename and filetype, while
all other fields are zero.

 FCBs are stored in a directory area of the disk, and are
brought into central memory before the programmer proceeds with file
operations (see the OPEN and MAKE functions). The memory copy of
the FCB is updated as file operations take place and later recorded
permanently on disk at the termination of the file operation, (see
the CLOSE command).

 The CCP constructs the first 16 bytes of two optional FCBs for
a transient by scanning the remainder of the line following the
transient name, denoted by file1 and file2 in the prototype command
line described above, with unspecified fields set to ASCII blanks.
The first FCB is constructed at location BOOT+005CH and can be used
as is for subsequent file operations. The second FCB occupies the
d0...dn portion of the first FCB and must be moved to another area
of memory before use. If, for example, the following command line
is typed:

 PROGNAME B:X.ZOT Y.ZAP

 5-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive code 2, filename X, and filetype
ZOT. The second drive code takes the default value 0, which is
placed at BOOT-006CH, with the filename Y placed into location
BOOT+006DH and filetype ZAP located 8 bytes later at BOOT+0075H.
All remaining fields through cr are set to zero. Note again that it
is the programmer’s responsibility to move this second filename and
filetype to another area, usually a separate file control block,
before opening the file that begins at BOOT+005CH, because the open
operation overwrites the second name and type.

 If no filenames are specified in the original command, the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In
all cases, the CCP translates lower-case alphabetics to upper-case
to be consistent with the CP/M file naming conventions.

 As an added convenience, the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator following the program name. The first position contains
the number of characters, with the characters themselves following
the character count. Given the above command line, the area
beginning at BOOT+0080H is initialized as follows:

 BOOT+0080H:

 +00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +A +B +C +D +E
 E ’’ ’B’ ’:’ ’X’ ’.’ ’Z’ ’O’ ’T’ ’’ ’Y’ ’.’ ’Z’ ’A’ ’P’

where the characters are translated to upper-case ASCII with
uninitialized memory following the last valid character. Again, it
is the responsibility of the programmer to extract the information
from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

 Individual functions are described in detail in the pages that
follow.

 5-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 0: SYSTEM RESET

 Entry Parameters:
 Register C: 00H

 The System Reset function returns control to the CP/M operating
system at the CCP level. The CCP reinitializes the disk subsystem
by selecting and logging-in disk drive A. This function has exactly
the same effect as a jump to location BOOT.

 FUNCTION 1: CONSOLE INPUT

 Entry Parameters:
 Register C: 01H

 Returned Value:
 Register A: ASCII Character

 The Console Input function reads the next console character to
register A. Graphic characters, along with carriage return, line-
feed, and back space (CTRL-H) are echoed to the console. Tab
characters, CTRL-I, move the cursor to the next tab stop. A check
is made for start/stop scroll, CTRL-S, and start/stop printer echo,
CTRL-P. The FDOS does not return to the calling program until a
character has been typed, thus suspending execution if a character
is not ready.

 5-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 2: CONSOLE OUTPUT

 Entry Parameters
 Register C: 02H
 Register E: ASCII Character

 The ASCII character from register E is sent to the console
device. As in Function 1, tabs are expanded and checks are made for
start/stop scroll and printer echo.

 FUNCTION 3: READER INPUT

 Entry Parameters:
 Register C: 03H

 Returned Value:
 Register A: ASCII Character

 The Reader Input function reads the next character from the
logical reader into register A. See the IOBYTE definition in
Chapter 6. Control does not return until the character has been
read.

 5-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 4: PUNCH OUTPUT

 Entry Parameters:
 Register C: 04H
 register E: ASCII Character

 The Punch Output function sends the character from register E
to the logical punch device.

 FUNCTION 5: LIST OUTPUT

 Entry Parameters:
 Register C: 05H
 Register E: ASCII Character

 The List Output function sends the ASCII character in register
E to the logical listing device.

 5-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 6: DIRECT CONSOLE I/O

 Entry Parameters:
 Register C: 06H
 Register E: 0FFH (input) or
 char (output)

 Returned Value:
 Register A: char or status

 Direct Console I/O is supported under CP/M for those
specialized applications where basic console input and output are
required. Use of this function should, in general, be avoided since
it bypasses all of the CP/M normal control character functions (for
example, CTRL-S and CTRL-P). Programs that perform direct I/O
through the BIOS under previous releases of CP/M, however, should be
changed to use direct I/O under BDOS so that they can be fully
supported under future releases of MP/M and CP/M.

 Upon entry to Function 6, register E either contains
hexadecimal FF, denoting a console input request, or an ASCII
character. If the input value is FF, Function 6 returns A = 00 if
no character is ready, otherwise A contains the next console input
character.

 If the input value in E is not FF, Function 6 assumes that E
contains a valid ASCII character that is sent to the console.

 Function 6 must not be used in conjunction with other console
I/O functions.

 FUNCTION 7: GET I/O BYTE

 Entry Parameters:
 Register C: 07H

 Returned Value:
 Register A: I/O Byte Value

 The Get I/O Byte function returns the current value of IOBYTE
in register A. See Chapter 6 for IOBYTE definition.

 5-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 8: SET I/O BYTE

 Entry Parameters:
 Register C: 08H
 Register E: I/O Byte Value

 The SET I/O Byte function changes the IOBYTE value to that
given in register E.

 FUNCTION 9: PRINT STRING

 Entry Parameters:
 Register C: 09H
 Registers DE: String Address

 The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a $
is encountered in the string. Tabs are expanded as in Function 2,
and checks are made for start/stop scroll and printer echo.

 5-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 10: READ CONSOLE BUFFER

 Entry Parameters:
 Register C: 0AH
 Registers DE: Buffer Address

 Returned Value:
 Console Characters in Buffer

 The Read Buffer functions reads a line of edited console input
into a buffer addressed by registers DE. Console input is
terminated when either input buffer overflows or a carriage return
or line-feed is typed. The Read Buffer takes the form:

 DE:+0 +1 +2 +3 +4 +5 +6 +7 +8 . . .+n

 mx nc c1 c2 c3 c4 c5 c6 c7 ... ??

where mx is the maximum number of characters that the buffer will
hold, 1 to 255, and nc is the number of characters read (set by FDOS
upon return) followed by the characters read from the console. If
nc < mx, then uninitialized positions follow the last character,
denoted by ?? in the above figure. A number of control functions,
summarized in Table 5-3, are recognized during line editing.

 Table 5-3. Edit Control Characters

 Character Edit Control Function

 rub/del removes and echoes the last character

 CTRL-C reboots when at the beginning of line

 CTRL-E causes physical end of line

 CTRL-H backspaces one character position

 CTRL-J (line feed) terminates input line

 CTRL-M (return) terminates input line

 CTRL-R retypes the current line after new line

 CTRL-U removes current line

 CTRL-X same as CTRL-U

 5-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

The user should also note that certain functions that return the
carriage to the leftmost position (for example, CTRL-X) do so only
to the column position where the prompt ended. In earlier releases,
the carriage returned to the extreme left margin. This convention
makes operator data input and line correction more legible.

 5-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 11: GET CONSOLE STATUS

 Entry Parameters:
 Register C: 0BH

 Returned Value:
 Register A: Console Status

 The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value 0FFH
is returned in register A. Otherwise a 00H value is returned.

 FUNCTION 12: RETURN VERSION NUMBER

 Entry Parameters:
 Register C: 0CH

 Returned Value:
 Registers HL: Version Number

 Function 12 provides information that allows version
independent programming. A two-byte value is returned, with H = 00
designating the CP/M release (H = 01 for MP/M) and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21,22, through 2F. Using Function 12, for example, the user
can write application programs that provide both sequential and
random access functions.

 5-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 13: RESET DISK SYSTEM

 Entry Parameters:
 Register C: 0DH

 The Reset Disk function is used to programmatically restore the
file system to a reset state where all disks are set to Read-Write.
See functions 28 and 29, only disk drive A is selected, and the
default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program that requires a disk
change without a system reboot.

 FUNCTION 14: SELECT DISK

 Entry Parameters:
 Register C: 0EH
 Register E: Selected Disk

 The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with
E = O for drive A, 1 for drive B, and so on through 15,
corresponding to drive P in a full 16 drive system. The drive is
placed in an on-line status, which activates its directory until the
next cold start, warm start, or disk system reset operation. If the
disk medium is changed while it is on-line, the drive automatically
goes to a Read-Only status in a standard CP/M environment, see
Function 28. FCBs that specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16 ignore the selected default drive and
directly reference drives A through P.

 5-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 15: OPEN FILE

 Entry Parameters:
 Register C: 0FH
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 The Open File operation is used to activate a file that
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte s1 is
automatically zeroed) where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no
question marks are included, and bytes ex and s2 of the FCB are
zero.

 If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of FCB, thus allowing
access to the files through subsequent read and write operations.
The user should note that an existing file must not be accessed
until a successful open operation is completed. Upon return, the
open function returns a directory code with the value 0 through 3 if
the open was successful or 0FFH (255 decimal) if the file cannot be
found. If question marks occur in the FCB, the first matching FCB
is activated. Note that the current record, (cr) must be zeroed by
the program if the file is to be accessed sequentially from the
first record.

 5-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 16: CLOSE FILE

 Entry Parameters:
 Register C: 10H
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 The Close File function performs the inverse of the Open File
function. Given that the FCB addressed by DE has been previously
activated through an open or make function, the close function
permanently records the new FCB in the reference disk directory see
functions 15 and 22. The FCB matching process for the close is
identical to the open function. The directory code returned for a
successful close operation is 0, 1, 2, or 3, while a 0FFH (255
decimal) is returned if the filename cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, the close operation
is necessary to record the new directory information permanently.

 5-19

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 17: SEARCH FOR FIRST

 Entry Parameters:
 Register C: 11H
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 Search First scans the directory for a match with the file
given by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found; otherwise, 0, 1, 2, or 3 is
returned indicating the file is present. When the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A *32 (that
is, rotate the A register left 5 bits, or ADD A five times).
Although not normally required for application programs, the
directory information can be extracted from the buffer at this
position.

 An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from f1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
dr field contains an ASCII question mark, the auto disk select
function is disabled and the default disk is searched, with the
search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but it allows complete flexibility to
scan all current directory values. If the dr field is not a
question mark, the s2 byte is automatically zeroed.

 5-20

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 18: SEARCH FOR NEXT

 Entry Parameters:
 Register C: 12H

 Returned Value:
 Register A: Directory Code

 The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to Function 17, Function 18 returns the
decimal value 255 in A when no more directory items match.

 FUNCTION 19: DELETE FILE

 Entry Parameters:
 Register C: 13H
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 The Delete File function removes files that match the FCB
addressed by DE. The filename and type may contain ambiguous
references (that is, question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions.

 Function 19 returns a decimal 255 if the referenced file or
files cannot be found; otherwise, a value in the range 0 to 3
returned.

 5-21

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 20: READ SEQUENTIAL

 Entry Parameters:
 Register C: 14H
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 Given that the FCB addressed by DE has been activated through
an Open or Make function, the Read Sequential function reads the
next 128-byte record from the file into memory at the current DMA
address. The record is read from position cr of the extent, and the
cr field is automatically incremented to the next record position.
If the cr field overflows, the next logical extent is automatically
opened and the cr field is reset to zero in preparation for the next
read operation. The value 00H is returned in the A register if the
read operation was successful, while a nonzero value is returned if
no data exist at the next record position (for example, end-of-file
occurs).

 FUNCTION 21: WRITE SEQUENTAIL

 Entry Parameters:
 Register C: 15H
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 Given that the FCB addressed by DE has been activated through
an Open or Make function, the Write Sequential function writes the
128-byte data record at the current DMA address to the file named by
the FCB. The record is placed at position cr of the file, and the
cr field is automatically incremented to the next record position.
If the cr field overflows, the next logical extent is automatically
opened and the cr field is reset to zero in preparation for the next
write operation. Write operations can take place into an existing
file, in which case, newly written records overlay those that
already exist in the file. Register A = 00H upon return from a
successful write operation, while a nonzero value indicates an
unsuccessful write caused by a full disk.

 5-22

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 22: MAKE FILE

 Entry Parameters:
 Register C: 16H
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 The Make File operation is similar to the Open File operation
except that the FCB must name a file that does not exist in the
currently referenced disk directory (that is, the one named
explicitly by a nonzero dr code or the default disk if dr is zero).
The FDOS creates the file and initializes both the directory and
main memory value to an empty file. The programmer must ensure that
no duplicate filenames occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A = 0, 1, 2, or 3 if the operation was successful and 0FFH
(255 decimal) if no more directory space is available. The Make
function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

 FUNCTION 23: RENAME FILE

 Entry Parameters:
 Register C: 17H
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file
named in the second 16 bytes. The drive code dr at postion 0 is
used to select the drive, while the drive code for the new filename
at position 16 of the FCB is assumed to be zero. Upon return,
register A is set to a value between 0 and 3 if the rename was
successful and 0FFH (255 decimal) if the first filename could not be
found in the directory scan.

 5-23

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 24: RETURN LOG-IN VECTOR

 Entry Parameters:
 Register C: 18H

 Returned Value:
 Registers HL: Log-in Vector

 The log-in vector value returned by CP/M is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A and the high-order bit of H corresponds to the sixteenth
drive, labeled P. A 0 bit indicates that the drive is not on-line,
while a 1 bit marks a drive that is actively on-line as a result of
an explicit disk drive selection or an implicit drive select caused
by a file operation that specified a nonzero dr field. The user
should note that compatibility is maintained with earlier releases,
because registers A and L contain the same values upon return.

 FUNCTION 25: RETURN CURRENT DISK

 Entry Parameters:
 Register C: 19H

 Returned Value:
 Register A: Current Disk

 Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15
corresponding to drives A through P.

 5-24

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 26: SET DMA ADDRESS

 Entry Parameters:
 Register C: 1AH
 Registers DE: DMA Address

 DMA is an acronym for Direct Memory Address, which is often
used in connection with disk controllers that directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
(that is, the data is transferred through programmed I/O
operations), the DMA address has, in CP/M, come to mean the address
at which the 128-byte data record resides before a disk write and
after a disk read. Upon cold start, warm start, or disk system
reset, the DMA address is automatically set to BOOT+0080H. The Set
DMA function can be used to change this default value to address
another area of memory where the data records reside. Thus, the DMA
address becomes the value specified by DE until it is changed by a
subsequent Set DMA function, cold start, warm start, or disk system
reset.

 FUNCTION 27: GET ADDR (ALLOC)

 Entry Parameters:
 Register C: 1BH

 Returned Value:
 Registers HL: ALLOC Address

 An allocation vector is maintained in main memory for each on-
line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
base address of the allocation vector for the currently selected
disk drive. However, the allocation information might be invalid if
the selected disk has been marked Read-Only. Although this function
is not normally used by application programs, additional details of
the allocation vector are found in Chapter 6.

 5-25

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 28: WRITE PROTECT DISK

 Entry Parameters:
 Register C: 1CH

 The Write Protect Disk function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk before the next cold or warm start operation produces the
message:

 BDOS ERR on d:R/O

 FUNCTION 29: GET READ-ONLY VECTOR

 Entry Parameters:
 Register C: 1DH

 Returned Value:
 Registers HL: R/O Vector Value

 Function 29 returns a bit vector in register pair HL, which
indicates drives that have the temporary Read-Only bit set. As in
Function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/O bit is set
either by an explicit call to Function 28 or by the automatic
software mechanisms within CP/M that detect changed disks.

 5-26

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 30: SET FILE ATTRIBUTES

 Entry Parameters:
 Register C: 1EH
 Registers DE: FCB Address

 Returned Value:
 Register A: Directory Code

 The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (t1’ and t2’) can be set
or reset. The DE pair addresses an unambiguous filename with the
appropriate attributes set or reset. Function 30 searches for a
match and changes the matched directory entry to contain the
selected indicators. Indicators f1’ through f4’ are not currently
used, but may be useful for applications programs, since they are
not involved in the matching process during file open and close
operations. Indicators f5’ through f8’ and t3’ are reserved for
future system expansion.

 FUNCTION 31: GET ADDR (DISK PARMS)

 Entry Parameters:
 Register C: 1FH

 Returned Value:
 Registers HL: DPB Address

 The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can
be used for either of two purposes. First, the disk parameter
values can be extracted for display and space computation purposes,
or transient programs can dynamically change the values of current
disk parameters when the disk environment changes, if required.
Normally, application programs will not require this facility.

 5-27

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 32: SET/GET USER CODE

 Entry Parameters:
 Register C: 20H
 Register E: OFFH (get) or
 User Code (set)

 Returned Value:
 Register A: Current Code or
 (no value)

 An application program can change or interrogate the currently
active user number by calling Function 32. If register E = 0FFH,
the value of the current user number is returned in register A,
where the value is in the range of 0 to 15. If register E is not
0FFH, the current user number is changed to the value of E, modulo
16.

 5-28

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 33: READ RANDOM

 Entry Parameters:
 Register C: 21H

 Returned Value:
 Register A: Return Code

 The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the 3-byte field following the FCB (byte positions
r0 at 33, r1 at 34, and r2 at 35). The user should note that the
sequence of 24 bits is stored with least significant byte first
(r0), middle byte next (r1), and high byte last (r2). CP/M does not
reference byte r2, except in computing the size of a file (Function
35). Byte r2 must be zero, however, since a nonzero value indicates
overflow past the end of file.

 Thus, the r0, r1 byte pair is treated as a double-byte, or word
value, that contains the record to read. This value ranges from 0
to 65535, providing access to any particular record of the 8-
megabyte file. To process a file using random access, the base
extent (extent 0) must first be opened. Although the base extent
might or might not contain any allocated data, this ensures that the
file is properly recorded in the directory and is visible in DIR
requests. The selected record number is then stored in the random
record field (r0, r1), and the BDOS is called to read the record.

 Upon return from the call, register A either contains an error
code, as listed below, or the value 00, indicating the operation was
successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

 Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. However, note that, in this case, the last
randomly read record will be reread as one switches from random mode
to sequential read and the last record will be rewritten as one
switches to a sequential write operation. The user can simply
advance the random record position following each random read or
write to obtain the effect of sequential I/O operation.

 5-29

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 Error codes returned in register A following a random read are
listed below.

 01 reading unwritten data

 02 (not returned in random mode)

 03 cannot close current extent

 04 seek to unwritten extent

 05 (not returned in read mode)

 06 seek past physical end of disk

 Error codes 01 and 04 occur when a random read operation
accesses a data block that has not been previously written or an
extent that has not been created, which are equivalent conditions.
Error code 03 does not normally occur under proper system operation.
If it does, it can be cleared by simply rereading or reopening
extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is nonzero under the current
2.0 release. Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete.

 5-30

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 34: WRITE RANDOM

 Entry Parameters:
 Register C: 22H
 Registers DE: FCB Address

 Returned Value:
 Register A: Return Code

 The Write Random operation is initiated similarly to the Read
Random call, except that data is written to the disk from the
current DMA address. Further, if the disk extent or data block that
is the target of the write has not yet been allocated, the
allocation is performed before the write operation continues. As in
the Read Random operation, the random record number is not changed
as a result of the write. The logical extent number and current
record positions of the FCB are set to correspond to the random
record that is being written. Again, sequential read or write
operations can begin following a random write, with the notation
that the currently addressed record is either read or rewritten
again as the sequential operation begins. You can also simply
advance the random record position following each write to get the
effect of a sequential write operation. Note that reading or
writing the last record of an extent in random mode does not cause
an automatic extent switch as it does in sequential mode.

 The error codes returned by a random write are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created as a result of
directory overflow.

 5-31

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 35: COMPUTE FILE SIZE

 Entry Parameters:
 Register C: 23H
 Registers DE: FCB Address

 Returned Value:
 Random Record Field Set

 When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, r1, and r2 are
present). The FCB contains an unambiguous filename that is used in
the directory scan. Upon return, the random record bytes contain
the virtual file size, which is, in effect, the record address of
the record following the end of the file. Following a call to
Function 35, if the high record byte r2 is 01, the file contains the
maximum record count 65536. Otherwise, bytes r0 and r1 constitute a
16-bit value as before (r0 is the least significant byte), which is
the file size.

 Data can be appended to the end of an existing file by simply
calling Function 35 to set the random record position to the end of
file and then performing a sequence of random writes starting at the
preset record address.

 The virtual size of a file corresponds to the physical size
when the file is written sequentially. If the file was created in
random mode and holes exist in the allocation, the file might
contain fewer records than the size indicates. For example, if only
the last record of an 8-megabyte file is written in random mode
(that is, record number 65535), the virtual size is 65536 records,
although only one block of data is actually allocated.

 5-32

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 36: SET RANDOM RECORD

 Entry Parameters:
 Register C: 24H
 Registers DE: FCB Address

 Returned Value:
 Random Record Field Set

 The Set Random Record function causes the BDOS automatically to
produce the random record position from a file that has been read or
written sequentially to a particular point. The function can be
useful in two ways.

 First, it is often necessary initially to read and scan a
sequential file to extract the positions of various key fields. As
each key is encountered, Function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into
a table with the key for later retrieval. After scanning the entire
file and tabulating the keys and their record numbers, the user can
move instantly to a particular keyed record by performing a random
read, using the corresponding random record number that was saved
earlier. The scheme is easily generalized for variable record
lengths, because the program need only store the buffer-relative
byte position along with the key and record number to find the exact
starting position of the keyed data at a later time.

 A second use of Function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, Function 36
is called, which sets the record number, and subsequent random read
and write operations continue from the selected point in the file.

 5-33

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.2 Call Conventions

 FUNCTION 37: RESET DRIVE

 Entry Parameters:
 Register C: 25H
 Registers DE: Drive Vector

 Returned Value:
 Register A: 00H

 The Reset Drive function allows resetting of specified drives.
The passed parameter is a 16-bit vector of drives to be reset; the
least significant bit is drive A:.

 To maintain compatibility with MP/M, CP/M returns a zero value.

 FUNCTION 40: WRITE RANDOM WITH ZERO FILL

 Entry Parameters:
 Register C: 28H
 Registers DE: FCB Address

 Returned Value:
 Register A: Return Code

 The Write With Zero Fill operation is similar to Function 34,
with the exception that a previously unallocated block is filled
with zeros before the data is written.

 5-34

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.3 A Sample Copy Program

5.3 A Sample File-to-File Copy Program

 The following program provides a relatively simple example of
file operations. The program source file is created as COPY.ASM
using the CP/M ED program and then assembled using ASM or MAC,
resulting in a HEX file. The LOAD program is used to produce a
COPY.COM file that executes directly under the CCP. The program
begins by setting the stack pointer to a local area and proceeds to
move the second name from the default area at 006CH to a 33-byte
File Control Block called DFCB. The DFCB is then prepared for file
operations by clearing the current record field. At this point,
the source and destination FCBs are ready for processing, because
the SFCB at 005CH is properly set up by the CCP upon entry to the
COPY program. That is, the first name is placed into the default
FCB, with the proper fields zeroed, including the current record
field at 007CH. The program continues by opening the source file,
deleting any existing destination file, and creating the destination
file. If all this is successful, the program loops at the label
COPY until each record is read from the source file and placed into
the destination file. Upon completion of the data transfer, the
destination file is closed and the program returns to the CCP
command level by jumping to BOOT.

 ; sample file-to-file copy program
 ;
 ; at the ccp level, the command
 ;
 ; copy a:x.y b:u.v
 ;
 ; copies the file named x.y from drive
 ; a to a file named u.v. on drive b.
 ;
0000 = boot equ 0000h ;system reboot
0005 = bdos equ 0005h ;bdos entry point
005c = fcbl equ 005ch ;first file name
005c = sfcb equ fcbl ;source fcb
006c = fcb2 equ 006ch ;second file name
0080 = dbuff equ 0080h ;default buffer
0100 = tpa equ 0100h ;beginning of tpa
 ;
0009 = printf equ 9 ;print buffer func#
000f = openf equ 15 ;open file func#
0010 = closef equ 16 ;close file func#
0013 = deletef equ 19 ;delete file func#
0014 = readf equ 20 ;sequential read
0015 = writef equ 21 ;sequential write
0016 = makef equ 22 ;make file func#
 ;
0100 org tpa ;beginning of tpa
0100 311b02 lxi sp,stack ;local stack
 ;
 ; move second file name to dfcb
0103 0e10 mvi c,16 ;half an fcb

 5-35

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.3 A Sample Copy Program

0105 116c00 lxi d,fcb2 ;source of move
0108 21da01 lxi h,dfcb ;destination fcb
010b 1a mfcb: Idax d ;source fcb
010c 13 inx d ;ready next
010d 77 mov m,a ;dest fcb
010e 23 inx h ;ready next
010f 0d dcr c ;count 16...0
0110 c10b01 jnz mfcb ;loop 16 times
 ;
 ; name has been removed, zero cr
0113 af xra a ;a = 00h
0114 32fa01 sta dfcbcr ;current rec = 0
 ;
 ; source and destination fcb’s ready
 ;
0117 115c00 lxi d,sfcb ;source file
011a cd6901 call open ;error if 255
011d 118701 lxi d,nofile ;ready message
0120 3c inr a ;255 becomes 0
0121 cc6101 cz finis ;done if no file
 ;
 ; source file open, prep destination
0124 11da01 lxi d,dfcb ;destination
0127 cd7301 call delete ;remove if present
 ;
012a 11da01 lxi d,dfcb ;destination
012d cd8201 call make ;create the file
0130 119601 lxi d,nodir ;ready message
0133 3c inr a ;255 becomes 0
0134 cc6101 cz finis ;done if no dir space
 ;
 ; source file open, dest file open
 ; copy until end of file on source
 ;
0137 115c00 copy: lxi d,sfcb ;source
013a cd7801 call read ;read next record
013d b7 ora a ;end of file?
013e c25101 jnz eofile ;skip write if so
 ;
 ; not end of file, write the record
0141 11da01 lix d,dfcb ;destination
0144 cd7d01 call write ;write record
0147 11a901 lxi d,space ;ready message
014a b7 ora a ;00 if write ok
014b c46101 cnz finis ;end if so
014e c33701 jmp copy ;loop until eof
 ;
 eofile: ;end of file, close destination
0151 11da01 lxi d,dfcb ;destination
0154 cd6e01 call close ;255 if error
0157 21bb01 lxi h,wrprot ;ready message
015a 3c inr a ;255 becomes 00
015b cc6101 cz finis ;shouldn’t happen
 ;
 ; copy operation complete, end

 5-36

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.3 A Sample Copy Program

015e 11cc01 lxi d,normal ;ready message
 ;
 finis ;write message given by de, reboot
0161 0e09 mvi c,printf
0163 cd0500 call bdos ;write message
0166 c30000 jmp boot ;reboot system
 ;
 ; system interface subroutines
 ; (all return directly from bdos)
 ;
0169 0e0f open: mvi c,openf
016b c30500 jmp bdos
 ;
016e 0e10 close: mvi c,closef
0170 c30500 jmp bdos
 ;
0173 0e13 delete mvi c,deletef
0175 c30500 jmp bdos
 ;
0178 0e14 read: mvi c,readf
017a c30500 jmp bdos
 ;
017d 0e15 write: mvi c,writef
017f c30500 jmp bdos
 ;
0182 0e16 make: mvi c,makef
0184 c30500 jmp bdos
 ;
 ; console messages
0187 6e6f20f nofile: db ’no source file$’
0196 6e6f209 nodir: db ’no directory space$’
01a9 6f7574f space: db ’out of dat space$’
01bb 7772695 wrprot: db ’write protected?$’
01cc 636f700 normal: db ’copy complete$’
 ;
 ; data areas
01da dfcb: ds 33 ;destination fcb
01fa dfcbcr equ dfcb+32 ;current record
 ;
01fb ds 32 ;16 level stack
 stack:
021b end

 Note that there are several simplifications in this particular
program. First, there are no checks for invalid filenames that
could contain ambiguous references. This situation could be
detected by scanning the 32-byte default area starting at location
005CH for ASCII question marks. A check should also be make to
ensure that the filenames have been included (check locations 005DH
and 006DH for nonblank ASCII characters). Finally, a check should
be made to ensure that the source and destination filenames are
different. An improvement in speed could be obtained by buffering
more data on each read operation. One could, for example, determine

 5-37

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.3 A Sample Copy Program

the size of memory by fetching FBASE from location 0006H and using
the entire remaining portion of memory for a data buffer. In this
case, the programmer simply resets the DMA address to the next
successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning of the
buffer and incremented by 128 bytes to the end as each record is
transferred to the destination file.

5.4 A Sample File Dump Utility

 The following file dump program is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP’s stack upon
entry, resets the stack to a local area, and restores the CCP’s
stack before returning directly to the CCP. Thus, the dump program
does not perform and warm start at the end of processing.

x.in 5
 ;DUMP program reads input file and displays
 hex data
 ;
0100 org 100h
0005 = bdos equ 0005h = ;bdos entry point
0001 = cons equ 1 ;read console
0002 = typef equ 2 ;type function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key function
 ;(true if char
000f = openf equ 15 ;file open
0014 = readf equ 20 ;read function
 ;
005c = fcb equ 5ch ;file control block
 ;address
0080 = buff equ 80h ;input disk buffer
 ;address
 ;
 ; non graphic characters
000d = cr equ 0dh ;carriage return
000a = If equ 0ah ;line feed
 ;
 ; file control block definitions
005c = fcbdn equ fcb+0 ;disk name
005d = fcbfn equ fcb+1 ;file name
0065 = fcbft equ fcb+9 ;disk file type (3
 ;characters)
0068 = fcbrl equ fcb+12 ;file’s current reel
 ;number
006b = fcbrc equ fcb+15 ;file’s record count (0 to
 ;128)128)
007c = fcbcr’ equ fcb+32 ;current (next) record

 5-38

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.4 A Sample File Dump Utility

 ;number (0
007d = fcbin equ fcb+33 ;fcb length
 ;
 ; set up stack
0100 210000 lxi h,0
0103 39 dad sp
 ; entry stack pointer in hl from the ccp
0104 221502 shld oldsp
 ; set sp to local stack area (restored at
 ; finis)
0107 315702 lxi sp,stktop
 ; read and print successive buffers
010a cdc101 call setup ;set up input file
010d feff cpi 255 ;255 if file not present
010f c21b01 jnz openok ;skip if open is ok
 ;
 ; file not there, give error message and
 ; return
0112 11f301 lxi d,opnmsg
0115 cd9c01 call err
0118 c35101 jmp finis ;to return
 ;
 openok: ;open operation ok, set buffer index to
 ;end
011b 3e80 mvi a,80h
011d 321302 sta ibp ;set buffer pointer to 80h
 ; hl contains next address to print
0120 210000 lxi h,0 ;start with 0000
 ;
 gloop:
0123 e5 push h ;save line position
0124 cda201 call gnb
0127 e1 pop h ;recall line position
0138 da5101 jc finis ;carry set by gnb if end
 ;file
012b 47 mov b,a
 ; print hex values
 ; check for line fold
012c 7d
 mov a,l
012d e60f ani 0fh ;check low 4 bits
012f c24401 jnz nonum
 ; print line number
0132 cd7201 call crlf
 ;
 ; check for break key
0135 cd5901 call break
 ; accum lsb = 1 if character ready
0138 0f rrc ;into carry
0139 da5101 jc finis ;don’t print any more
 ;
013c 7c mov a,h
013d cd8f01 call phex
0140 7d mov a,l
0141 cd8f01 call phex

 5-39

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.4 A Sample File Dump Utility

 nonum
0144 23 inx h ;to next line number
0145 3e20 mvi a,’’
0147 cd6501 call pchar
014a 78 mov a,b
014b cd8f01 call phex
014e c32301 jmp gloop
 ;
 finis
 ; end of dump, return to cco
 ; (note that a jmp to 0000h reboots)
0151 cd7201 call crif
0154 2a1502 lhld oldsp
0157 f9 sphl
 ; stack pointer contains ccp’s stack
 ; location
0158 c9 ret ;to the ccp
 ;
 ;
 ; subroutines
 ;
 break: ;check break key (actually any key will
 ;do)
0159 e5d5c5 push h! push d! push b; environment
 ;saved
015c 0e0b mvi c,brkf
015e cd0500 call bdos
0161 c1d1e1 pop b! pop d! pop h; environment
 restored
0164 c9 ret
 ;
 pchar: ;print a character
0165 e5d5c5 push h! push d! push b; saved
0168 0e02 mvi c, typef
016a 5f mov e,a
016b cd0500 call bdos
016e c1d1e1 pop b! pop d! pop h; restored
0171 c9 ret
 ;
 crlf
0172 3e0d mvi a,cr
0174 cd6501 call pchar
0177 3e0a mvi a,lf
0179 cd6501 call pchar
017c c9 ret
 ;
 ;
 pnib: ;print nibble in reg a
017d e60f ani ofh ;low 4 bits
017f fe0a cpi 10
0181 d28901 jnc p10
 ; less than or equal to 9
0184 c630 adi ’0’
0186 c38b01 jmp prn
 ;

 5-40

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.4 A Sample File Dump Utility

 ; greater or equal to 10
0189 c637 p10: adi ’a’ - 10
018b cd6501 prn: call pchar
018e c9 ret
 ;
 phex ;print hex char in reg a
018f f5 pushpsw
0190 0f rrc
0191 0f rrc
0192 0f rrc
0193 0f rrc
0194 cd7d01 call pnib ;print nibble
0197 f1 pop psw
0198 cd7d01 call pnip
019b c9 ret
 ;
 err: ;print error message
 ; d,e addresses message ending with "$"
019c 0e09 mvi c,printf ;print buffer
 ;function
019e cd0500 call bdos
01a1 c9 ret
 ;
 ;
 gnb: ;get next byte
01a2 3a1302 lda ibp
01a5 fe80 cpi 80h
01a7 c2b301 jnz g0
 ; read another buffer
 ;
 ;
 01aa cdce01 call diskr
01ad b7 ora a ;zero value if read ok
01ae cab301 jz g0 ;for another byte
 ; end of data, return with carry set for eof
01b1 37 stc
01b2 c9 ret
 ;
 g0: ;read the byte at buff+reg a
01b3 5f mov e,a ;Is byte of buffer index
01b4 1600 mvi d,0 ;double precision
 ;index to de
01b6 3c inr a ;index=index+1
01b7 321302 sta ibp ;back to memory
 ; pointer is incremented
 ; save the current file address
01ba 218000 lxi h,buff
01bd 19 dad d
 ; absolute character address is in hl
01be 7e mov a,m
 ; byte is in the accumulator
01bf b7 ora a ;reset carry bit
01c0 c9 ret
 ;
 setup: ;set up file

 5-41

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.4 A Sample File Dump Utility

 ; open the file for input
01c1 af xra a ;zero to accum
01c2 327c00 sta fcbcr ;clear current record
 ;
01c5 115c00 lxi d,fcb
01c8 0e0f mvi c,openf
01ca cd0500 call bdos
 ; 255 in accum if open error
01cd c9 ret
 ;
 diskr: ;read disk file record
01ce e5d5c5 push h! push d! push b
01d1 115c00 lxi d,fcb
01d4 0e14 mvi c,readf
01d6 cd0500 call bdos
01d9 c1d1e1 pop b! pop d! pop h
01dc c9 ret
 ;
 ; fixed message area
01dd 46494c0 signon: db ’file dump version 2.0$’
01f3 0d0a4e0 opnmsg: db cr,lf,’no input file present on
 disk$’

 ; variable area
0213 ibp: ds 2 ;input buffer pointer
0215 oldsp: ds 2 ;entry sp value from ccp
 ;
 ; stack area
0217 ; ds 64 ;reserve 32 level stack
 stktop:
 ;
0257 end

5.5 A Sample Random Access Program

 This chapter concludes with an extensive example of random
access operation. The program listed below performs the simple
function of reading or writing random records upon command from the
terminal. When a program has been created, assembled, and placed
into a file labeled RANDOM.COM, the CCP level command

 RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT and, if found, proceeds to prompt the console for input. If
not found, the file is created before the prompt is given. Each
prompt takes the form

 next command?

and is followed by operator input, followed by a carriage return.
The input commands take the form

 5-42

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.5 Sample Random Access Program

 nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is
issued, the RANDOM program issues the prompt

 type data:

The operator then responds by typing up to 127 characters, followed
by a carriage return. RANDOM then writes the character string into
the X.DAT file at record n. If the R command is issued, RANDOM
reads record number n and displays the string value at the console,
If the Q command is issued, the X.DAT file is closed, and the
program returns to the CCP. In the interest of brevity, the only
error message is

 error, try again.

 The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at
the label ready where the individual commands are interpreted. The
DFBC at 005CH and the default buffer at 0080H are used in all disk
operations. The utility subroutines then follow, which contain the
principal input line processor, called readc. This particular
program shows the elements of random access processing, and can be
used as the basis for further program development.

 Sample Random Access Program for CP/M 2.0

0100 org 100h ;base of tpa
 ;
0000 = reboot equ 0000h ;system reboot
0005 = bdos equ 0005h ;bdos entry point
 ;
0001 = coninp equ 1 ;console input function
0002 = conout equ 2 ;console output function
0009 = pstring equ 9 ;print string until ’$’
000a = rstring equ 10 ;read console buffer
000c = version equ 12 ;return version number
000f = openf equ 15 ;file open function
0010 = closef equ 16 ;close function
0016 = makef equ 22 ;make file function
0021 = readr equ 33 ;read random
0022 = writer equ 34 ;write random
 ;
005c = fcb equ 005ch ;default file control
 ;block
007d = ranrec equ fcb+33 ;random record position
007f = ranovf equ fcb+35 ;high order (overflow)
 ;byte
0080 = buff equ 0080h ;buffer address
 ;

 5-43

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.5 Sample Random Access Program

000d = cr equ 0dh ;carriage return
000a = lf equ 0ah ;line feed
 ;

 Load SP, Set-Up File for Random Access

0100 31bc00 lxi sp,stack
 ;
 ; version 2.0
0103 0e0c mvi c,version
0105 cd0500 call bdos
0108 fe20 cpi 20h ;version 2.0 or better?
010a d21600 jnc versok
 ; bad version, message and go back
010d 111b00 lxi d,badver
0110 cdda00 call print
0113 c30000 jmp reboot
 ;
 versok:
 ; correct versionm for random access
0116 0e0f mvi c,openf ;open default fcb
0118 115c00 lxi d,fcb
011b cd 0500 call bdos
011e 3c inr a ;err 255 becomes zero
011f c23700 jnz ready
 ;
 ; connot open file, so create it
0122 0e16 mvi c,makef
0124 115c00 lxi d,fcb
0127 cd0500 call bdos
012a 3c inr a ;err 255 becomes zero
012b c23700 jnz ready
 ;
 ; cannot create file, directory full
012e 113a00 lxi d,nospace
0131 cdda00 call print
0134 c30000 jmp reboot ;back to ccp

 Loop Back to Ready After Each Command

 ;
 ready:
 ; file is ready for processing
 ;
0137 cde500 call readcom ;read next command
013a 227d00 shld ranrec ;store input record#
013d 217f00 lxi h,ranovf
0140 3600 mvi m,0 ;clear high byte if set
0142 fe51 cpi ’Q’ ;quit?
0144 c25600 jnz notq
 ;
 ; quit processing, close file
0147 0e10 mvi c,closef

 5-44

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.5 Sample Random Access Program

0149 115c00 lxi d,fcb
014c cd0500 call bdos
014f 3c inr a ;err 255 becomes 0
0150 cab900 jz error ;error message, retry
0153 c30000 jmp reboot ;back to ccp
 ;

 End of Quit Command, Process Write

 notq:
 ; not the quit command, random write?
0156 fe57 cpi ’W’
0158 c28900 jnz notw
 ;
 ; this is a random write, fill buffer untill cr
015b 114d00 lxi d,datmsg
015e cdda00 call print ;data prompt
0161 0e7f mvi c,127 ;up to 127 characters
0163 218000 lxi h,buff ;destination
 rloop: ;read next character to buff
0166 c5 push b ;save counter
0167 e5 push h ;next destination
0168 cdc200 call getchr ;character to a
016b e1 pop h ;restore counter
016c c1 pop b ;restore next to fill
016d fe0d cpi cr ;end of line?
016f ca7800 jz erloop
 ; not end, store character
0172 77 mov m,a
0173 23 inx h ;next to fill
0174 0d dcr c ;counter goes down
0175 c26600 jnz rloop ;end of buffer?
 erloop:
 ; end of read loop, store 00
0178 3600 mvi m,0
 ;
 ; write the record to selected record number
017a 0e22 mvi c,writer
017c 115c00 lxi d,fcb
017c cd0500 call bdos
0182 b7 ora a ;erro code zero?
0183 c2b900 jnz error ;message if not
0186 c33700 jmp ready ;for another record
 ;

 End of Write Command, Process Read

 notw:
 ; not a write command, read record?
0189 fe52 cpi ’R’
018b c2b900 jnz error ;skip if not
 ;
 ; read random record

 5-45

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.5 Sample Random Access Program

018e 0e21 mvi c,readr
0190 115c00 lxi d,fcb
0193 cd0500 call bdos
0196 b7 ora a ;return code 00?
0197 c2b900 jnz error
 ;
 ; read was successful, write to console
019a cdcf00 call crlf ;new line
019d 0e80 mvi c,128 ;max 128 characters
019f 218000 lxi h,buff ;next to get
 wloop:
01a2 7e mov a,m ;next character
01a3 23 inx h ;next to get
01a4 e67f ani 7fh ;mask parity
01a6 ca3700 jz ready ;for another command
 ;if 00
01a9 c5 push b ;save counter
01aa e5 push h ;save next to get
01ab fe20 cpi ’’ ;graphic?
01ad d4c800 cnc putchr ;skip output if not
01b0 e1 pop h
01b1 c1 pop b
01b2 0d dcr c ;count=count-1
01b3 c2a200 jnz wloop
01b6 c33700 jmp ready

 5-46

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.5 Sample Random Access Program

 End of Read Command, All Errors End Up Here

 ;
 error:
01b9 115900 lxi d,errmsg
01bc cdda00 call print
01bf c33700 jmp ready
 ;

 Utility Subroutines for Console I/O

 getchr:
 ;read next console character to a
01c2 0e01 mvi c,coninp
01c4 cd0500 call bdos
01c7 c9 ret
 ;
 putchr:
 ;write character from a to console
01c8 0e02 mvi c,conout
01ca 5f mov e,a ;character to send
01cb cd0500 call bdos ;send character
01ce c9 ret
 ;
 crlf:
 ;send carriage return line feed
01cf 3e0d mvi a,cr ;carriage return
01d1 cdc800 call putchr
01d4 3e0a mvi a,lf ;line feed
01d6 cdc800 call putchr
01d9 c9 ret
 ;
 print:
 ;print the buffer addressed by de untill $
01da d5 push d
01db cdcf00 call crlf
01de d1 pop d ;new line
01df 0e09 mvi c,pstring
01e0 cd0500 call bdos ;print the string
01e4 c9 ret
 ;
 readcom:
 ;read the next command line to the conbuf
01e5 116b00 lxi d,prompt
01e8 cdda00 call print ;command?
01eb 0e0a mvi c,rstring
01ed 117a00 lxi d,conbuf
01f0 cd0500 call bdos ;read command line
 ; command line is present, scan it
01f3 210000 lxi h,0 ;start with 0000
01f6 117c00 lxi d,conlin ;command line
01f9 1a readc: ldax d ;next command
 ;character
01fa 13 inx d ;to next command

 5-47

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.5 Sample Random Access Program

 ;position
01fb b7 ora a ;cannot be end of
 ;command
01fc c8 rz
 ; not zero, numeric?
01fd d630 sui ’0’
01ff fe0a cpi 10 ;carry if numeric
0201 d21300 jnc endrd
 ; add-in next digit
0204 29 dad h ;*2
0205 4d mov c,l
0206 44 mov b,h ;bc = value * 2
0207 29 dad h ;*4
0208 29 dad h ;*8
0209 09 dad b ;*2 + *8 = *10
020a 85 add l ;*digit
020b 6f mov l,a
020c d2f900 jnc readc ;for another char
020f24 inr h ;overflow
0210 c3f900 jmp readc ;for another char
 endrd:
 ; end of read, restore value in a
0213 c630 adi ’0’ ;command
0215 fe61 cpi ’a’ ;translate case?
0217 d8 rc
 ; lower case, mask lower case bits
0218 e65f ani 101$1111b
021a c9 ret
 ;

 String Data Area for Console Messages

 badver:
021b 536f79 db ’sorry, you need cp/m version 2$’
 nospace:
023a 4e6f29 db ’no directory space$’
 datmsg:
024d 547970 db ’type data: $’
 errmsg:
0259 457272 db ’error, try again.$’
 prompt:
026b 4e6570 db ’next command? $’
 ;

 Fixed and Variable Data Area

027a 21 conbuf: db conlen ;length of console buffer
027b consiz: ds 1 ;resulting size after read
027c conlin: ds 32 ;length 32 buffer
0021 = conlen equ $-consiz
 ;
029c ds 32 ;16 level stack
 stack:
02bc end

 5-48

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.5 Sample Random Access Program

 Major improvements could be made to this particular program to
enhance its operation. In fact, with some work, this program could
evolve into a simple data base management system. One could, for
example, assume a standard record size of 128 bytes, consisting to
arbitrary fields within the record. A program, called GETKEY, could
be developed that first reads a sequential file and extracts a
specific field defined by the operator. For example, the command

 GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the LAST-NAME field from each record, starting in position 10 and
ending at character 20. GETKEY builds a table in memory consisting
of each particular LASTNAME field, along with its 16-bit record
number location within the file. The GETKEY program then sorts this
list and writes a new file, called LASTNAME.KEY, which is an
alphabetical list of LASTNAME fields with their corresponding record
numbers. This list is called an inverted index in information
retrieval parlance.

 If the programmer were to rename the program shown above as
QUERY and modify it so that it reads a sorted key file into memory,
the command line might appear as

 QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string that is a particular key to find in the NAMES.DAT data base.
Because the LASTNAME.KEY list is sorted, one can find a particular
entry rapidly by performing a binary search, similar to looking up a
name in the telephone book. Starting at both ends of the list, one
examines the entry halfway in between and, if not matched, splits
either the upper half or the lower half for the next search. You
will quickly reach the item you are looking for and find the
corresponding record number. You should fetch and display this
record at the console, just as was done in the program shown above.

 With some more work, you can allow a fixed grouping size that
differs from the 128-byte record shown above. This is accomplished
by keeping track of the record number and the byte offset within the
record. Knowing the group size, you randomly access the record
containing the proper group, offset to the beginning of the group
within the record read sequentially until the group size has been
exhausted.

 Finally, you can improve QUERY considerably by allowing boolean
expressions, which compute the set of records that satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL and an
AGE lower than 45. Display all the records that fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access key files from the disk as well.

 5-49

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.6 System Function Summary

5.6 System Function Summary

Function Function Input Output
Number Name

Decimal Hex

 0 0 System Reset C = 00H none
 1 1 Console Input C = 01H A = ASCII char
 2 2 Console Output E = char none
 3 3 Reader Input A = ASCII char
 4 4 Punch Output E = char none
 5 5 List Output E = char none
 6 6 Direct Console I/O C = 06H A = char or status

 E = 0FFH (input) or (no value)
 0FEH (status) or
 char (output)
 7 7 Get I/O Byte none A = I/O byte
 Value
 8 8 Set I/O Byte E = I/O Byte none
 9 9 Print String DE = Buffer Address none
10 A Read Console Buffer DE = Buffer Console
 Characters
 in Buffer
11 B Get Console Status none A = 00/non zero
12 C Return Version Number none HL: Version
 Number
13 D Reset Disk System none none
14 E Select Disk E = Disk Number none
15 F Open File DE = FCB Address FF if not found
16 10 Close File DE = FCB Address FF if not found
17 11 Search For First DE = FCB Address A = Directory
 Code
18 12 Search For Next none A = Directory
 Code
19 13 Delete File DE = FCB Address A = none
20 14 Read Sequential DE = FCB Address A = Error Code
21 15 Write Sequential DE = FCB Address A = Error Code
22 16 Make File DE = FCB Address A = FF if no DIR
 Space
23 17 Rename File DE = FCB Address A = FF in not
 found
24 18 Return Login Vector none HL = Login
 Vector*
25 19 Return Current Disk none A = Current Disk
 Number
26 1A Set DMA Address DE = DMA Address none
27 1B Get ADDR (ALLOC) none HL = ALLOC
 Address*
28 1C Write Protect Disk none none
29 1D Get Read/only Vector none HL = R/O
 Vector Value*
30 1E Set File Attributes DE = FCB Address A = none
31 1F Get ADDR (Disk Parms) none HL = DPB

 5-50

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 5.6 System Function Summary

 Address
32 20 Set/Get User Code E = 0FFH for Get User Number
 E = 00 to 0FH for Set
33 21 Read Random DE = FCB Address A = Error Code
34 22 Write Random DE = FCB Address A = Error Code
35 23 Compute File Size DE = FCB Address r0, r1, r2
36 24 Set Random Record DE = FCB Address r0, r1, r2
37 25 Reset Drive DE = Drive Vector A = 0
38 26 Access Drive not supported
39 27 Free Drive not supported
40 28 Write Random with Fill DE = FCB A = Error Code

*Note that A = L, and B = H upon return.

End of Section 5

 5-51

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Section 6

CP/M 2 Alteration

6.1 Introduction

 The standard CP/M system assumes operation on an Intel Model
800 microcomputer development system , but is designed so you can
alter a specific set of subroutines that define the hardware
operating environment.

 Although standard CP/M 2 is configured for single-density
floppy disks, field-alteration features allow adaptation to a wide
variety of disk subsystems from single-drive minidisks to high-
capacity, hard disk systems. To simplify the following adaptation
process, it is assumed that CP/M 2 is first configured for single-
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
might want to review the system generation process and skip to later
sections that discuss system alteration for nonstandard disk
systems.

 To achieve device independence, CP/M is separated into three
distinct modules:

 o BIOS is the Basic I/O System, which is environment dependent.

 o BDOS is the Basic Disk Operating System, which is not dependent
 upon the hardware configuration.

 o CCP is the Console Command Processor, which uses the BDOS.

 Of these modules, only the BIOS is dependent upon the
particular hardware. You can patch the distribution version of CP/M
to provide a new BIOS that provides a customized interface between
the remaining CP/M modules and the hardware system. This document
provides a step-by-step procedure for patching a new BIOS into CP/M.

 All disk-dependent portions of CP/M 2 are placed into a BIOS, a
resident disk parameter block, which is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros
use this information to generate the appropriate tables and table
references for use during CP/M 2 operation. Deblocking information
is provided, which aids in assembly or disassembly of sector sizes
that are multiples of the fundamental 128-byte data unit, and the
system alteration manual includes general purpose subroutines that
use the deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table-drive data
access algorithms, makes CP/M 2 a universal data management system.

 6-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.1 Introduction

 File expansion is achieved by providing up to 512 logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2 is structured, however, so that as much as 128K bytes of data are
addressed by a single physical extent, corresponding to a single
directory entry, maintaining compatibility with previous versions
while taking advantage of directory space.

 If CP/M is being tailored to a computer system for the first
time, the new BIOS requires some simple software development and
testing. The standard BIOS is listed in Appendix A and can be used
as a model for the customized package. A skeletal version of the
BIOS given in Appendix B can serve as the basis for a modified BIOS.

 In addition to the BIOS, you must write a simple memory loader,
called GETSYS, which brings the operating system into memory. To
patch the new BIOS into CP/M, you must write the reverse of GETSYS,
called PUTSYS, which places an altered version of CP/M back onto the
disk. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk write commands. Sample skeletal GETSYS and
PUTSYS programs are described in Section 6.4 and listed in Appendix
C.

 To make the CP/M system load automatically, you must also
supply a cold start loader, similar to the one provided with CP/M,
listed in Appendixes A and D. A skeletal form of a cold start
loader is given in Appendix E, which serves as a model for the
loader.

6.2 First-level System Regeneration

 The procedure to patch the CP/M system is given below. Address
references in each step are shown with H denoting the hexadecimal
radix, and are given for a 20K CP/M system. For larger CP/M
systems, a bias is added to each address that is shown with a +b
following it, where b is equal to the memory size-20K. Values for b
in various standard memory sizes are listed in Table 6-1.

 Table 6-1. Standard Memory Size Values

 Memory Size Value

 24K: b = 24K - 20K = 4K = 1000H

 32K: b = 32K - 20K = 12K = 3000H

 40K: b = 40K - 20K = 20K = 5000H

 48K: b = 48K - 20K = 28K = 7000H

 56K: b = 56K - 20K = 36K = 9000H

 62K: b = 62K - 20K = 42K = A800H

 64K: b = 64K - 20K = 44K = B000H

 6-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.2 First-level Regeneration

 Note that the standard distribution version of CP/M is set for
operation within a 20K CP/M system. Therefore, you must first bring
up the 20K CP/M system, then configure it for actual memory size
(see Section 6.3).

 Follow these steps to patch your CP/M system:

 1) Read Section 6.4 and write a GETSYS program that reads the
 first two tracks of a disk into memory. The program from
 the disk must be loaded starting at location 3380H. GETSYS
 is coded to start at location 100H (base of the TPA) as
 shown in Appendix C.

 2) Test the GETSYS program by reading a blank disk into memory,
 and check to see that the data has been read properly and
 that the disk has not been altered in any way by the GETSYS
 program.

 3) Run the GETSYS program using an initialized CP/M disk to see
 if GETSYS loads CP/M starting at 3380H (the operating
 system actually starts 128 bytes later at 3400H).

 4) Read Section 6.4 and write the PUTSYS program. This writes
 memory starting at 3380H back onto the first two tracks of
 the disk. The PUTSYS program should be located at 200H, as
 shown in Appendix C.

 5) Test the PUTSYS program using a blank, uninitialized disk by
 writing a portion of memory to the first two tracks; clear
 memory and read it back using GETSYS. Test PUTSYS
 completely, because this program will be used to alter CP/M
 on disk.

 6) Study Sections 6.5, 6.6, and 6.7 along with the distribution
 version of the BIOS given in Appendix A and write a simple
 version that performs a similar function for the customized
 environment. Use the program given in Appendix B as a
 model. Call this new BIOS by name CBIOS (customized BIOS).
 Implement only the primitive disk operations on a single
 drive and simple console input/output functions in this
 phase.

 7) Test CBIOS completely to ensure that it properly performs
 console character I/O and disk reads and writes. Be
 careful to ensure that no disk write operations occur
 during read operations and check that the proper track and
 sectors are addressed on all reads and writes. Failure to
 make these checks might cause destruction of the
 initialized CP/M system after it is patched.

 8) Referring to Table 6-3 in Section 6.5, note that the BIOS is
 placed between locations 4A00H and 4FFFH. Read the CP/M
 system using GETSYS and replace the BIOS segment by the
 CBIOS developed in step 6 and tested in step 7. This
 replacement is done in memory.

 6-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.2 First-level Regeneration

 9) Use PUTSYS to place the patched memory image of CP/M onto
 the first two tracks of a blank disk for testing.

 10) Use GETSYS to bring the copied memory image from the test
 disk back into memory at 3380H and check to ensure that it
 has loaded back properly (clear memory, if possible, before
 the load). Upon successful load, branch to the cold start
 code at location 4A00H. The cold start routine initializes
 page zero, then jumps to the CCP at location 3400H, which
 calls the BDOS, which calls the CBIOS. The CCP asks the
 CBIOS to read sixteen sectors on track 2, and CP/M types
 A>, the system prompt.

 If difficulties are encountered, use whatever debug
 facilities are available to trace and breakpoint the CBIOS.

 11) Upon completion of step 10, CP/M has prompted the console
 for a command input. To test the disk write operation,
 type

 SAVE 1 X.COM

 All commands must be followed by a carriage return. CP/M
 responds with another prompt after several disk accesses:

 A>

 If it does not, debug the disk write functions and retry.

 12) Test the directory command by typing

 DIR

 CP/M responds with

 A:X COM

 13) Test the erase command by typing

 ERA X.COM

 CP/M responds with the A prompt. This is now an
 operational system that only requires a bootstrap loader to
 function completely.

 14) Write a bootstrap loader that is similar to GETSYS and place
 it on track 0, sector 1, using PUTSYS (again using the test
 disk, not the distribution disk). See Sections 6.5 and 6.8
 for more information on the bootstrap operation.

 15) Retest the new test disk with the bootstrap loader installed
 by executing steps 11, 12, and 13. Upon completion of
 these tests, type a CTRL-C. The system executes a warm
 start, which reboots the system, and types the A prompt.

 6-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.2 First-level Regeneration

 16) At this point, there is probably a good version of the
 customized CP/M system on the test disk. Use GETSYS to
 load CP/M from the test disk. Remove the test disk, place
 the distribution disk, or a legal copy, into the drive, and
 use PUTSYS to replace the distribution version with the
 customized version. Do not make this replacement if you
 are unsure of the patch because this step destroys the
 system that was obtained from Digital Research.

 17) Load the modified CP/M system and test it by typing

 DIR

 CP/M responds with a list of files that are provided on the
 initialized disk. The file DDT.COM is the memory image for
 the debugger. Note that from now on, you must always
 reboot the CP/M system (CTRL-C is sufficient) when the disk
 is removed and replaced by another disk, unless the new
 disk is to be Read-Only.

 18) Load and test the debugger by typing

 DDT

 See Chapter 4 for operating procedures.

 19) Before making further CBIOS modifications, practice using
 the editor (see Chapter 2), and assembler (see Chapter 3).
 Recode and test the GETSYS, PUTSYS, and CBIOS programs
 using ED, ASM, and DDT. Code and test a COPY program that
 does a sector-to-sector copy from one disk to another to
 obtain back-up copies of the original disk. Read the CP/M
 Licensing Agreement specifying legal responsibilities when
 copying the CP/M system. Place the following copyright
 notice:

 Copyright (c), 1983
 Digital Research

 on each copy that is made with the COPY program.

 20) Modify the CBIOS to include the extra functions for punches,
 readers, and sign-on messages, and add the facilities for
 additional disk drives, if desired. These changes can be
 made with the GETSYS and PUTSYS programs or by referring to
 the regeneration process in Section 6.3.

 You should now have a good copy of the customized CP/M system.
Although the CBIOS portion of CP/M belongs to the user, the modified
version cannot be legally copied.

 It should be noted that the system remains file-compatible with
all other CP/M systems (assuming media compatibility) which allows
transfer of nonproprietary software between CP/M users.

 6-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.3 Second-level System Generation

6.3 Second-level System Generation

 Once the system is running, the next step is to configure CP/M
for the desired memory size. Usually, a memory image is first
produced with the MOVCPM program (system relocator) and then placed
into a named disk file. The disk file can then be loaded, examined,
patched, and replaced using the debugger and the system generation
program (refer to Chapter 1).

 The CBIOS and BOOT are modified using ED and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain
the code for CBIOS and BOOT in Intel hex format.

 To get the memory image of CP/M into the TPA configured for the
desired memory size, type the command:

 MOVCPM xx*

where xx is the memory size in decimal K bytes, for example, 32 for
32K. The response is as follows:

 CONSTRUCTING xxK CP/M VERS 2.0

 READY FOR "SYSGEN" OR

 "SAVE 34 CPMxx.COM"

 An image of CP/M in the TPA is configured for the requested
memory size. The memory image is at location 0900H through 227FH,
that is, the BOOT is at 0900H, the CCP is at 980H, the BDOS starts
at 1180H, and the BIOS is at 1F80H. Note that the memory image has
the standard Model 800 BIOS and BOOT on it. It is now necessary to
save the memory image in a file so that you can patch the CBIOS and
CBOOT into it:

 SAVE 34 CPMxx.COM

 The memory image created by the MOVCPM program is offset by a
negative bias so that it loads into the free area of the TPA, and
thus does not interfere with the operation of CP/M in higher memory.
This memory image can be subsequently loaded under DDT and examined
or changed in preparation for a new generation of the system. DDT
is loaded with the memory image by typing:

 DDT CPMxx.COM Loads DDT, then reads the CP/M image.

DDT should respond with the following:

 NEXT PC
 2300 0100
 - The DDT prompt

You can then give the display and disassembly commands to examine
portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you

 6-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.3 Second-level System Generation

must apply the negative bias to the CP/M address to find the actual
address. Track 00, sector 01, is loaded to location 900H (the user
should find the cold start loader at 900H to 97FH); track 00, sector
02, is loaded into 980H (this is the base of the CCP); and so on
through the entire CP/M system load. In a 20K system, for example,
the CCP resides at the CP/M address 3400H, but is placed into memory
at 980H by the SYSGEN program. Thus, the negative bias, denoted by
n, satisfies

 3400H + n = 980H, or n =980H - 3400H

Assuming two’s complement arithmetic, n = D580H, which can be
checked by

 3400H + D580H = 10980H = 0980H (ignoring high-order
 overflow).

 Note that for larger systems, n satisfies

 (3400H+b) + n = 980H, or
 n = 980H - (3400H + b), or
 n = D580H - b

The value of n for common CP/M systems is given below.

 Table 6-2. Common Values for CP/M Systems

 Memory Size BIAS b Negative Offset n

 20K 0000H D580H - 0000H = D580H
 24K 1000H D580H - 1000H = C580H
 32K 3000H D580H - 3000H = A580H
 40K 5000H D580H - 5000H = 8580H
 48K 7000H D580H - 7000H = 6580H
 56K 9000H D580H - 9000H = 4580H
 62K A800H D580H - A800H = 2D80H
 64K B000H D580H - B000H = 2580H

 If you want to locate the address x within the memory image
loaded under DDT in a 20K system, first type

 Hx,n Hexadecimal sum and difference

and DDT responds with the value of x+n (sum) and x-n (difference).
The first number printed by DDT is the actual memory address in the
image where the data or code is located. For example, the following
DDT command:

 H3400,D580

produces 980H as the sum, which is where the CCP is located in the
memory image under DDT.

 6-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.3 Second-level System Generation

 Type the L command to disassemble portions of the BIOS located
at (4A00H+b)-n, which, when one uses the H command, produces an
actual address of 1F80H. The disassembly command would thus be as
follows:

 L1F80

It is now necessary to patch in the CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is n, then to calculate the bias (m), type the command:

 H900,n Subtract load address from target address.

 The second number typed by DDT in response to the command is
the desired bias (m). For example, if the BOOT executes at 0080H,
the command

 H900,80

produces

 0980 0880 Sum and difference in hex.

Therefore, the bias m would be 0880H. To read-in the BOOT, give the
command:

 ICBOOT.HEX Input file CBOOT.HEX

Then

 Rm Read CBOOT with a bias of m (=900H-n).

Examine the CBOOT with

 L900

You are now ready to replace the CBIOS by examining the area at
1F80H, where the original version of the CBIOS resides, and then
typing

 ICBIOS.HEX Ready the hex file for loading.

 Assume that the CBIOS is being integrated into a 20K CP/M
system and thus originates at location 4A00H. To locate the CBIOS
properly in the memory image under DDT, you must apply the negative
bias n for a 20K system when loading the hex file. This is
accomplished by typing

 RD580 Read the file with bias D580H.

Upon completion of the read, reexamine the area where the CBIOS has
been loaded (use an L1F80 command) to ensure that it is properly
loaded. When you are satisfied that the change has been made,
return from DDT using a CTRL-C or, G0 command.

 6-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.3 Second-level System Generation

 SYSGEN is used to replace the patched memory image back onto a
disk (you use a test disk until sure of the patch) as shown in the
following interaction:

 SYSGEN Start the SYSGEN program.

 SYSGEN VERSION 2.0 Sign-on message from SYSGEN.

 SOURCE DRIVE NAME Respond with a carriage return
 (OR RETURN TO SKIP) to skip the CP/M read operation
 because the system is already
 in memory.

 DESTINATION DRIVE NAME Respond with B to write the new
 (OR RETURN TO REBOOT) system to the disk in drive B.

 DESTINATION ON B, Place a scratch disk in drive
 THEN TYPE RETURN B, then press RETURN.

 FUNCTION COMPLETE
 DESTINATION DRIVE NAME
 (OR RETURN TO REBOOT)

 Place the scratch disk in drive A, then perform a cold start to
bring up the newly-configured CP/M system.

 The new CP/M system is then tested and the Digital Research
copyright notice is placed on the disk, as specified in the
Licensing Agreement:

 Copyright (c), 1979
 Digital Research

6.4 Sample GETSYS and PUTSYS Programs

 The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Sections 6.1 and 6.2. To read and
write the specific sectors, you must insert the READSEC and WRITESEC
subroutines.

 6-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.4 Sample GETSYS and PUTSYS

; GETSYS PROGRAM -- READ TRACKS 0 AND 1 TO MEMORY AT 3380H
; REGISTER USE

; A (SCRATCH REGISTER)

; B TRACK COUNT (0, 1)

; C SECTOR COUNT (1,2,...,26)

; DE (SCRATCH REGISTER PAIR)

; HL LOAD ADDRESS

; SP SET TO STACK ADDRESS

;
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH
 ;AREA
 LXI H,3380H ;SET BASE LOAD ADDRESS
 MVI B,0 ;START WITH TRACK 0
RDTRK: ;READ NEXT TRACK (INITIALLY 0)
 MVI C,1 ;READ STARTING WITH SECTOR 1

RDSEC: ;READ NEXT SECTOR
 CALL READSEC ;USER-SUPPLIED SUBROUTINE
 LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2
 ;PAGE
 DAD D ;HL = HL + 128
 INR C ;SECTOR = SECTOR + 1
 MOV A,C ;CHECK FOR END OF TRACK
 CPI 27
 JC RDSEC ;CARRY GENERATED IF SECTOR <27

;
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
 INR B
 MOV A,B ;TEST FOR LAST TRACK
 CPI 2
 JC RDTRK ;CARRY GENERATED IF TRACK <2

;
; USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:
; ENTER WITH TRACK NUMBER IN REGISTER B,
 SECTOR NUMBER IN REGISTER C, AND

; ADDRESS TO FILL IN HL

;
 PUSH B ;SAVE B AND C REGISTERS
 PUSH H ;SAVE HL REGISTERS

 Listing 6-1. GETSYS Program

 6-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.4 Sample GETSYS and PUTSYS

 ...
 perform disk read at this point, branch to
 label START if an error occurs
 ...
 POP H ;RECOVER HL
 POP B ;RECOVER B AND C REGISTERS
 RET ;BACK TO MAIN PROGRAM

 END START

 Listing 6-1. (continued)

 This program is assembled and listed in Appendix B for
reference purposes, with an assumed origin of 100H. The hexadecimal
operation codes that are listed on the left might be useful if the
program has to be entered through the panel switches.

 The PUTSYS program can be constructed from GETSYS by changing
only a few operations in the GETSYS program given above, as shown in
Appendix C. The register pair HL becomes the dump address, next
address to write, and operations on these registers do not change
within the program. The READSEC subroutine is replaced by a
WRITESEC subroutine, which performs the opposite function; data from
address HL is written to the track given by register B and sector
given by register C. It is often useful to combine GETSYS and
PUTSYS into a single program during the test and development phase,
as shown in Appendix C.

6.5 Disk Organization

 The sector allocation for the standard distribution version of
CP/M is given here for reference purposes. The first sector
contains an optional software boot section (see the table on the
following page. Disk controllers are often set up to bring track
0, sector 1, into memory at a specific location, often location
0000H. The program in this sector, called BOOT, has the
responsibility of bringing the remaining sectors into memory
starting at location 3400H+b. If the controller does not have a
built-in sector load, the program in track 0, sector 1 can be
ignored. In this case, load the program from track 0, sector 2, to
location 3400H+b.

 As an example, the Intel Model 800 hardware cold start loader
brings track 0, sector 1, into absolute address 3000H. Upon loading
this sector, control transfers to location 3000H, where the
bootstrap operation commences by loading the remainder of track 0
and all of track 1 into memory, starting at 3400H+b. Note that this
bootstrap loader is of little use in a non-microcomputer development
system environment, although it is useful to examine it because some
of the boot actions will have to be duplicated in the user’s cold
start loader.

 6-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.5 Disk Organization

 Table 6-3. CP/M Disk Sector Allocation

Track # Sector Page# Memory Address CP/M Module name

 00 01 (boot address) Cold Start Loader
 00 02 00 3400H+b CCP
 ’ 03 ’ 3480H+b ’
 ’ 04 01 3500H+b ’
 ’ 05 ’ 3580H+b ’
 ’ 06 02 3600H+b ’
 ’ 07 ’ 3680H+b ’
 ’ 08 03 3700H+b ’
 ’ 09 ’ 3780H+b ’
 ’ 10 04 3800H+b ’
 ’ 11 ’ 3880H+b ’
 ’ 12 05 3900H+b ’
 ’ 13 ’ 3980H+b ’
 ’ 14 06 3A00H+b ’
 ’ 15 ’ 3A80H+b ’
 ’ 16 07 3B00H+b ’
 00 17 ’ 3B80H+b CCP
 00 18 08 3C00H+b BDOS
 ’ 19 ’ 3C80H+b ’
 ’ 20 09 3D00H+b ’
 ’ 21 ’ 3D80H+b ’
 ’ 22 10 3E00H+b ’
 ’ 23 ’ 3E80H+b ’
 ’ 24 11 3F00H+b ’
 ’ 25 ’ 3F80H+b ’
 ’ 26 12 4000H+b ’
 01 01 ’ 4080H+b ’
 ’ 02 13 4100H+b ’
 ’ 03 ’ 4180H+B ’
 ’ 04 14 4200H+b ’
 ’ 05 ’ 4280H+b ’
 ’ 06 15 4300H+b ’
 ’ 07 ’ 4380H+b ’
 ’ 08 16 4400H+b ’
 ’ 09 ’ 4480H+b ’
 ’ 10 17 4500H+b ’
 ’ 11 ’ 4580H+b ’
 ’ 12 18 4600H+b ’
 ’ 13 ’ 4680H+b ’
 ’ 14 19 4700H+b ’
 ’ 15 ’ 4780H+b ’
 ’ 16 20 4800H+b ’
 ’ 17 ’ 4880H+b ’
 ’ 18 21 4900H+b ’
 01 19 ’ 4900H+b BDOS
 07 20 22 4A00H+b BIOS
 ’ 21 ’ 4A80H+b ’
 ’ 22 23 4B00H+b ’
 ’ 23 ’ 4B80H+b ’
 ’ 24 24 4C00H+b ’
 01 25 ’ 4C80H+b BIOS
 01 26 25 4D00H+b BIOS
02-76 01-26 (directory and data)

 6-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

6.6 The BIOS Entry Points

 The entry points into the BIOS from the cold start loader and
BDOS are detailed below. Entry to the BIOS is through a jump vector
located at 4A00H+b, as shown below. See Appendixes A and B. The
jump vector is a sequence of 17 jump instructions that send program
control to the individual BIOS subroutines. The BIOS subroutines
might be empty for certain functions (they might contain a single
RET operation) during reconfiguration of CP/M, but the entries must
be present in the jump vector.

 The jump vector at 4A00H+b takes the form shown below, where
the individual jump addresses are given to the left:

 4A00H+b JMP BOOT ;ARRIVE HERE FROM COLD
 START LOAD

 4A03H+b JMP WBOOT ;ARRIVE HERE FOR WARM START

 4A06H+b JMP CONST ;CHECK FOR CONSOLE CHAR
 READY

 4A09H+b JMP CONIN ;READ CONSOLE CHARACTER IN

 4A0CH+b JMP CONOUT ;WRITE CONSOLE CHARACTER
 OUT

 4A0FH+b JMP LIST ;WRITE LISTING CHARACTER OUT

 4A12H+b JMP PUNCH ;WRITE CHARACTER TO PUNCH
 DEVICE

 4A15H+b JMP READER ;READ READER DEVICE

 4A18H+b JMP HOME ;MOVE TO TRACK 00 ON
 SELECTED DISK

 4A1BH+b JMP SELDSK ;SELECT DISK DRIVE

 4A1EH+b JMP SETTRK ;SET TRACK NUMBER

 4A21H+b JMP SETSEC ;SET SECTOR NUMBER

 4A24H+b JMP SETDMA ;SET DMA ADDRESS

 4A27H+b JMP READ ;READ SELECTED SECTOR

 4A2AH+b JMP WRITE ;WRITE SELECTED SECTOR

 4A2DH+b JMP LISTST ;RETURN LIST STATUS

 4A30H+b JMP SECTRAN ;SECTOR TRANSLATE
 SUBROUTINE

 Listing 6-2. BIOS Entry Points

 6-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 Each jump address corresponds to a particular subroutine that
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system reinitialization,
which results from calls on BOOT and WBOOT; simple character I/O,
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST; and disk I/O, performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

 All simple character I/O operations are assumed to be performed
in ASCII, upper- and lower-case, with high-order (parity bit) set to
zero. An end-of-file condition for an input device is given by an
ASCII CTRL-Z (1AH). Peripheral devices are seen by CP/M as logical
devices and are assigned to physical devices within the BIOS.

 To operate, the BDOS needs only the CONST, CONIN, and CONOUT
subroutines. LIST, PUNCH, and READER can be used by PIP, but not
the BDOS. Further, the LISTST entry is currently used only by
DESPOOL, the print spooling utility. Thus, the initial version of
CBIOS can have empty subroutines for the remaining ASCII devices.

 The following list describes the characteristics of each
device.

 o CONSOLE is the principal interactive console that communicates
 with the operator and it is accessed through CONST, CONIN, and
 CONOUT. Typically, the CONSOLE is a device such as a CRT or
 teletype.

 o LIST is the principal listing device. If it exists on the
 user’s system, it is usually a hard-copy device, such as a
 printer or teletype.

 o PUNCH is the principal tape punching device. If it exists, it
 is normally a high-speed paper tape punch or teletype.

 o READER is the principal tape reading device, such as a simple
 optical reader or teletype.

 A single peripheral can be assigned as the LIST, PUNCH, and
READER device simultaneously. If no peripheral device is assigned
as the LIST, PUNCH, or READER device, the CBIOS gives an appropriate
error message so that the system does not hang if the device is
accessed by PIP or some other user program. Alternately, the PUNCH
and LIST routines can just simply return, and the READER routine can
return with a 1AH (CTRL-Z) in register A to indicate immediate end-
of-file.

 For added flexibility, you can optionally implement the IOBYTE
function, which allows reassignment of physical devices. The IOBYTE
function creates a mapping of logical-to-physical devices that can
be altered during CP/M processing, see the STAT command in Section
1.6.1.

 6-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 The definition of the IOBYTE function corresponds to the Intel
standard as follows: a single location in memory, currently
location 0003H, is maintained, called IOBYTE, which defines the
logical-to-physical device mapping that is in effect at a particular
time. The mapping is performed by splitting the IOBYTE into four
distinct fields of two bits each, called the CONSOLE, READER, PUNCH,
and LIST fields, as shown in the following figure.

 most significant least significant

 IOBYTE AT 003H LIST PUNCH READER CONSOLE

 bits 6,7 bits 4,5 bits 2,3 bits 0,1

 Figure 6-1. IOBYTE Fields

 The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. Table 6-4
gives the values that can be assigned to each field.

 Table 6-4. IOBYTE Field Values

 Value Meaning

 CONSOLE field (bits 0,1)

 0 console is assigned to the console printer
 device (TTY:)
 1 console is assigned to the CRT device (CRT:)
 2 batch mode: use the READER as the CONSOLE input,
 and the LIST device as the CONSOLE output (BAT:)
 3 user-defined console device (UC1:)

 READER field (bits 2,3)

 0 READER is the teletype device (TTY:)
 1 READER is the high speed reader device (PTR:)
 2 user-defined reader #1 (UR1:)
 3 user-defined reader #2 (UR2:)

 PUNCH field (bits 4,5)

 0 PUNCH is the teletype device (TTY:)
 1 PUNCH is the high speed punch device (PTP:)
 2 user-defined punch #1 (UP1:)
 3 user-defined punch #2 (UP2:)

 LIST field (bits 6,7)

 0 LIST is the teletype device (TTY:)
 1 LIST is the CRT device (CRT:)
 2 LIST is the line printer device (LPT:)
 3 user-defined list device (UL1:)

 6-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 The implementation of the IOBYTE is optional and effects only
the organization of the CBIOS. No CP/M systems use the IOBYTE
(although they tolerate the existence of the IOBYTE at location
0003H) except for PIP, which allows access to the physical devices,
and STAT, which allows logical-physical assignments to be make or
displayed. For more information see Section 1. In any case the
IOBYTE implementation should be omitted until the basic CBIOS is
fully implemented and tested; then you should add the IOBYTE to
increase the facilities.

 Disk I/O is always performed through a sequence of calls on the
various disk access subroutines that set up the disk number to
access, the track and sector on a particular disk, and the Direct
Memory Access (DMA) address involved in the I/O operation. After
all these parameters have been set up, a call is made to the READ or
WRITE function to perform the actual I/O operation.

 There is often a single call to SELDSK to select a disk drive,
followed by a number of read or write operations to the selected
disk before selecting another drive for subsequent operations.
Similarly, there might be a single call to set the DMA address,
followed by several calls that read or write from the selected DMA
address before the DMA address is changed. The track and sector
subroutines are always called before the READ or WRITE operations
are performed.

 The READ and WRITE routines should perform several retries (10
is standard) before reporting the error condition to the BDOS. If
the error condition is returned to the BDOS, it reports the error to
the user. The HOME subroutine might or might not actually perform
the track 00 seek, depending upon controller characteristics; the
important point is that track 00 has been selected for the next
operation and is often treated in exactly the same manner as SETTRK
with a parameter of 00.

 The following table describes the exact responsibilities of
each BIOS entry point subroutine.

 Table 6-5. BIOS Entry Points

 Entry Point Function

 BOOT The BOOT entry point gets control from the cold
 start loader and is responsible for basic
 system initialization, including sending a
 sign-on message, which can be omitted in the
 first version. If the IOBYTE function is
 implemented, it must be set at this point. The
 various system parameters that are set by the
 WBOOT entry point must be initialized, and
 control is transferred to the CCP at 3400+b for
 further processing. Note that register C must
 be set to zero to select drive A.

 6-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 Table 6-5. (continued)

 Entry Point Function

 WBOOT The WBOOT entry point gets control when a warm
 start occurs. A warm start is performed
 whenever a user program branches to location
 0000H, or when the CPU is reset from the front
 panel. The CP/M system must be loaded from the
 first two tracks of drive A up to, but not
 including, the BIOS, or CBIOS, if the user has
 completed the patch. System parameters must be
 initialized as follows:

 location 0,1,2 Set to JMP WBOOT for warm
 starts (000H: JMP 4A03H+b)

 location 3 Set initial value of IOBYTE,
 if implemented in the CBIOS

 location 4 High nibble = current user no;
 low nibble = current drive

 location 5,6,7 Set to JMP BDOS, which is the
 primary entry point to CP/M
 for transient programs.
 (0005H: JMP 3C06H+b)

 Refer to Section 6.9 for complete details of
 page zero use. Upon completion of the
 initialization, the WBOOT program must branch
 to the CCP at 3400H+b to restart the system.
 Upon entry to the CCP, register C is set to the
 drive to select after system initialization.
 The WBOOT routine should read location 4 in
 memory, verify that is a legal drive, and pass
 it to the CCP in register C.

 CONST You should sample the status of the currently
 assigned console device and return 0FFH in
 register A if a character is ready to read and
 00H in register A if no console characters are
 ready.

 CONIN The next console character is read into
 register A, and the parity bit is set, high-
 order bit, to zero. If no console character is
 ready, wait until a character is typed before
 returning.

 6-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 Table 6-5. (continued)

 Entry Point Function

 CONOUT The character is sent from register C to the
 console output device. The character is in
 ASCII, with high-order parity bit set to zero.
 You might want to include a time-out on a line-
 feed or carriage return, if the console device
 requires some time interval at the end of the
 line (such as a TI Silent 700 terminal). You
 can filter out control characters that cause
 the console device to react in a strange way
 (CTRL-Z causes the Lear-Seigler terminal to
 clear the screen, for example).

 LIST The character is sent from register C to the
 currently assigned listing device. The
 character is in ASCII with zero parity bit.

 PUNCH The character is sent from register C to the
 currently assigned punch device. The character
 is in ASCII with zero parity.

 READER The next character is read from the currently
 assigned reader device into register A with
 zero parity (high-order bit must be zero); an
 end-of-file condition is reported by returning
 an ASCII CTRL-Z(1AH).

 HOME The disk head of the currently selected disk
 (initially disk A) is moved to the track 00
 position. If the controller allows access to
 the track 0 flag from the drive, the head is
 stepped until the track 0 flag is detected. If
 the controller does not support this feature,
 the HOME call is translated into a call to
 SETTRK with a parameter of 0.

 SELDSK The disk drive given by register C is selected
 for further operations, where register C
 contains 0 for drive A, 1 for drive B, and so
 on up to 15 for drive P (the standard CP/M
 distribution version supports four drives). On
 each disk select, SELDSK must return in HL the
 base address of a 16-byte area, called the Disk
 Parameter Header, described in Section 6.10.
 For standard floppy disk drives, the contents
 of the header and associated tables do not
 change; thus, the program segment included in
 the sample CBIOS performs this operation
 automatically.

 6-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 Table 6-5. (continued)

 Entry Point Function

 If there is an attempt to select a nonexistent
 drive, SELDSK returns HL=0000H as an error
 indicator. Although SELDSK must return the
 header address on each call, it is advisable to
 postpone the physical disk select operation
 until an I/O function (seek, read, or write) is
 actually performed, because disk selects often
 occur without utimately performing any disk
 I/O, and many controllers unload the head of
 the current disk before selecting the new
 drive. This causes an excessive amount of
 noise and disk wear. The least significant bit
 of register E is zero if this is the first
 occurrence of the drive select since the last
 cold or warm start.

 SETTRK Register BC contains the track number for
 subsequent disk accesses on the currently
 selected drive. The sector number in BC is the
 same as the number returned from the SECTRAN
 entry point. You can choose to seek the
 selected track at this time or delay the seek
 until the next read or write actually occurs.
 Register BC can take on values in the range 0-
 76 corresponding to valid track numbers for
 standard floppy disk drives and 0-65535 for
 nonstandard disk subsystems.

 SETSEC Register BC contains the sector number, 1
 through 26, for subsequent disk accesses on the
 currently selected drive. The sector number in
 BC is the same as the number returned from the
 SECTRAN entry point. You can choose to send
 this information to the controller at this
 point or delay sector selection until a read or
 write operation occurs.

 SETDMA Register BC contains the DMA (Disk Memory
 Access) address for subsequent read or write
 operations. For example, if B = 00H and C =
 80H when SETDMA is called, all subsequent read
 operations read their data into 80H through
 0FFH and all subsequent write operations get
 their data from 80H through 0FFH, until the
 next call to SETDMA occurs. The initial DMA
 address is assumed to be 80H. The controller
 need not actually support Direct Memory Access.
 If, for example, all data transfers are through
 I/O ports, the CBIOS that is constructed uses
 the 128-byte area starting at the selected DMA
 address for the memory buffer during the
 subsequent read or write operations.

 6-19

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 Table 6-5. (continued)

 Entry Point Function

 READ Assuming the drive has been selected, the track
 has been set, and the DMA address has been
 specified, the READ subroutine attempts to read
 one sector based upon these parameters and
 returns the following error codes in register
 A:

 0 no errors occurred

 1 nonrecoverable error condition occurred

 Currently, CP/M responds only to a zero or
 nonzero value as the return code. That is, if
 the value in register A is 0, CP/M assumes that
 the disk operation was completed properly. IF
 an error occurs the CBIOS should attempt at
 least 10 retries to see if the error is
 recoverable. When an error is reported the
 BDOS prints the message BDOS ERR ONx: BAD
 SECTOR. The operator then has the option of
 pressing a carriage return to ignore the error,
 or CTRL-C to abort.

 WRITE Data is written from the currently selected DMA
 address to the currently selected drive, track,
 and sector. For floppy disks, the data should
 be marked as nondeleted data to maintain
 compatibility with other CP/M systems. The
 error codes given in the READ command are
 returned in register A, with error recovery
 attempts as described above.

 LISTST You return the ready status of the list device
 used by the DESPOOL program to improve console
 response during its operation. The value 00 is
 returned in A if the list device is not ready
 to accept a character and 0FFH if a character
 can be sent to the printer. A 00 value should
 be returned if LIST status is not implemented.

 6-20

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.6 BIOS Entry Points

 Table 6-5. (continued)

 Entry Point Function

 SECTRAN Logical-to-physical sector translation is
 performed to improve the overall response of
 CP/M. Standard CP/M systems are shipped with a
 skew factor of 6, where six physical sectors
 are skipped between each logical read
 operation. This skew factor allows enough time
 between sectors for most programs to load their
 buffers without missing the next sector. In
 particular computer systems that use fast
 processors, memory, and disk subsystems, the
 skew factor might be changed to improve overall
 response. However, the user should maintain a
 single-density IBM-compatible version of CP/M
 for information transfer into and out of the
 computer system, using a skew factor of 6.

 In general, SECTRAN receives a logical sector
 number relative to zero in BC and a translate
 table address in DE. The sector number is used
 as an index into the translate table, with the
 resulting physical sector number in HL. For
 standard systems, the table and indexing code
 is provided in the CBIOS and need not be
 changed.

6.7 A Sample BIOS

 The program shown in Appendix B can serve as a basis for your
first BIOS. The simplest functions are assumed in this BIOS, so
that you can enter it through a front panel, if absolutely
necessary. You must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage
is reserved for user-supplied code in these regions. The scratch
area reserved in page zero (see Section 6.9) for the BIOS is used in
this program, so that it could be implemented in ROM, if desired.

 Once operational, this skeletal version can be enhanced to
print the initial sign-on message and perform better error recovery.
The subroutines for LIST, PUNCH, and READER can be filled out and
the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader

 The program shown in Appendix E can serve as a basis for a cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location 0000.
Space is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes.

 6-21

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.8 A Sample Cold Start Loader

 Eventually, you might want to get this loader onto the first
disk sector (track 0, sector 1) and cause the controller to load it
into memory automatically upon system start up. Alternatively, the
cold start loader can be placed into ROM, and above the CP/M system.
In this case, it is necessary to originate the program at a higher
address and key in a jump instruction at system start up that
branches to the loader. Subsequent warm starts do not require this
key-in operation, because the entry point WBOOT gets control, thus
bringing the system in from disk automatically. The skeletal cold
start loader has minimal error recovery, which might be enhanced in
later versions.

6.9 Reserved Locations in Page Zero

 Main memory page zero, between locations 00H and 0FFH, contains
several segments of code and data that are used during CP/M
processing. The code and data areas are given in the following
table.

 Table 6-6. Reserved Locations in Page Zero

 Locations Contents

 000H-0002H Contains a jump instruction to the warm
 start entry location 4A03H+b. This
 allows a simple programmed restart (JMP
 0000H) or manual restart from the front
 panel.

 0003H-0003H Contains the Intel standard IOBYTE is
 optionally included in the user’s CBIOS
 (refer to Section 6.6).

 0004H-0004H Current default drive number
 (0=A,...,15=P).

 0005H-0007H Contains a jump instruction to the BDOS
 and serves two purposes: JMP 0005H
 provides the primary entry point to the
 BDOS, as described in Chapter 5, and
 LHLD 0006H brings the address field of
 the instruction to the HL register
 pair. This value is the lowest address
 in memory used by CP/M, assuming the
 CCP is being overlaid. The DDT program
 changes the address field to reflect
 the reduced memory size in debug mode.

 0008H-0027H Interrupt locations 1 through 5 not
 used.

 0030H-0037H Interrupt location 6 (not currently
 used) is reserved.

 6-22

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.9 Reserved Locations in Page Zero

 Table 6-6. (continued)

 Locations Contents

 0038H-003AH Restart 7; contains a jump instruction
 into the DDT or SID program when
 running in debug mode for programmed
 breakpoints, but is not otherwise used
 by CP/M.

 003BH-003FH Not currently used; reserved.

 0040H-004FH A 16-byte area reserved for scratch by
 CBIOS, but is not used for any purpose
 in the distribution version of CP/M.

 0050H-005BH Not currently used; reserved.

 005CH-007CH Default File Control Block produced for
 a transient program by the CCP.

 007DH-007FH Optional default random record position.

 0080H-00FFH Default 128-byte disk buffer, also
 filled with the command line when a
 transient is loaded under the CCP.

 This information is set up for normal operation under the CP/M
system, but can be overwritten by a transient program if the BDOS
facilities are not required by the transient.

 If, for example, a particular program performs only simple I/O
and must begin execution at location 0, it can first be loaded into
the TPA, using normal CP/M facilities, with a small memory move
program that gets control when loaded. The memory move program must
get control from location 0100H, which is the assumed beginning of
all transient programs. The move program can then proceed to the
entire memory image down to location 0 and pass control to the
starting address of the memory load.

 If the BIOS is overwritten or if location 0, containing the
warm start entry point, is overwritten, the operator must bring the
CP/M system back into memory with a cold start sequence.

6.10 Disk Parameter Tables

 Tables are included in the BIOS that describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix
B, or automatically generated using the DISKDEF macro library, as
shown in Appendix F. The purpose here is to describe the elements
of these tables.

 6-23

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.10 Disk Parameter Tables

 In general, each disk drive has an associated (16-byte) disk
parameter header that contains information about the disk drive and
provides a scratch pad area for certain BDOS operations. The format
of the disk parameter header for each drive is shown in Figure 6-2,
where each element is a word (16-bit) value.

XLT 0000 0000 0000 DIRBUF DPB CSV ALV
16b 16b 16b 16b 16b 16b 16b 16b

 Figure 6-2. Disk Parameter Header Format

 The meaning of each Disk Parameter Header (DPH) element is
detailed in Table 6-7.

 Table 6-7. Disk Parameter Headers

 Disk Parameter Meaning
 Header

 XLT Address of the logical-to-physical
 translation vector, if used for this
 particular drive, or the value 0000H if no
 sector translation takes place (that is,
 the physical and logical sector numbers
 are the same). Disk drives with identical
 sector skew factors share the same
 translate tables.

 0000 Scratch pad values for use within the
 BDOS, initial value is unimportant.

 DIRBUF Address of a 128-byte scratch pad area for
 directory operations within BDOS. All
 DPHs address the same scratch pad area.

 DPB Address of a disk parameter block for this
 drive. Drives with identical disk
 characteristics address the same disk
 parameter block.

 CSV Address of a scratch pad area used for
 software check for changed disks. This
 address is different for each DPH.

 ALV Address of a scratch pad area used by the
 BDOS to keep disk storage allocation
 information. This address is different
 for each DPH.

 6-24

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.10 Disk Parameter Tables

 Given n disk drives, the DPHs are arranged in a table whose
first row of 16 bytes corresponds to drive 0, with the last row
corresponding to drive n-1. In the following figure the lable
DPBASE defines the base address of the DPH table.

 DPBASE:

 00 XLT 00 0000 0000 0000 DIRBUF DBP 00 CSV 00 ALV 00

 01 XLT 01 0000 0000 0000 DIRBUF DBP 01 CSV 01 ALV 01
 .
 .
 .
 n-1 XLTn-1 0000 0000 0000 DIRBUF DBTn-1 CSVn-1 ALVn-1

 Figure 6-3. Disk Parameter Header Table

 A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence
of operations returns the table address, with a 0000H returned if
the selected drive does not exist.

 NDISKS EQU 4 ;NUMBER OF DISK DRIVES

 SELDSK: ;SELECT DISK GIVEN BY BC
 LSI H,0000H ;ERROR CODE
 MOV A,C ;DRIVE OK?
 CPI NDISKS ;CY IF SO
 RNC ;RET IF ERROR
 ;NO ERROR, CONTINUE
 MOV L,C ;LOW(DISK)
 MOV H,B ;HIGH(DISK)
 DAD H ;*2
 DAD H ;*4
 DAD H ;*8
 DAD H ;*16
 LXI D,DPBASE;FIRST DPH
 DAD D ;DPH(DISK)
 RET

 The translation vectors, XLT 00 through XLTn-1, are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count 1. The Disk
Parameter Block (DPB) for each drive is more complex. As shown in
Figure 6-4, particular DPB, that is addressed by one or more DPHs,
takes the general form:

 6-25

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.10 Disk Parameter Tables

 SPT BSH BLM EXM DSM DRM AL0 AL1 CKS 0FF
 16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

 Figure 6-4. Disk Parameter Block Format

where each is a byte or word value, as shown by the 8b or 16b
indicator below the field.

 The following field abbreviations are used in Figure 6-4:

 o SPT is the total number of sectors per track.

 o BSH is the data allocation block shift factor, determined by
 the data block allocation size.

 o BLM is the data allocation block mask (2[BSH-1]).

 o EXM is the extent mask, determined by the data block allocation
 size and the number of disk blocks.

 o DSM determines the total storage capacity of the disk drive.

 o DRM determines the total number of directory entries that can
 be stored on this drive. AL0, AL1 determine reserved directory
 blocks.

 o CKS is the size of the directory check vector.

 o 0FF is the number of reserved tracks at the beginning of the
 (logical) disk.

The values of BSH and BLM determine the data allocation size BLS,
which is not an entry in the DPB. Given that the designer has
selected a value for BLS, the values of BSH and BLM are shown Table
6-8.

 Table 6-8. BSH and BLM Values

 BLS BSH BLM

 1024 3 7
 2048 4 15
 4096 5 31
 8192 6 63
 16,384 7 127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in Table 6-9.

 6-26

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.10 Disk Parameter Tables

 Table 6-9. EXM Values

 BLS EXM values

 DSM<256 DSM>255

 1024 0 N/A
 2048 1 0
 4096 3 1
 8192 7 3
 16,384 15 7

 The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product (DSM+1)
is the total number of bytes held by the drive and must be within
the capacity of the physical disk, not counting the reserved
operating system tracks.

 The DRM entry is the one less than the total number of
directory entries that can take on a 16-bit value. The values of
AL0 and AL1, however, are determined by DRM. The values AL0 and AL1
can together be considered a string of 16-bits, as shown in Figure
6-5.

 AL0 AL1

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

 Figure 6-5. AL0 and AL1

 Position 00 corresponds to the high-order bit of the byte
labeled AL0 and 15 corresponds to the low-order bit of the byte
labeled AL1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry
occupies 32 bytes, resulting in the following tabulation:

 Table 6-10. BLS Tabulation

 BLS Directory Entries

 1024 32 times # bits
 2048 64 times # bits
 4096 128 times # bits
 8192 256 times # bits
 16,384 512 times # bits

 6-27

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.10 Disk Parameter Tables

 Thus, if DRM = 127 (128 directory entries) and BLS = 1024,
there are 32 directory entries per block, requiring 4 reserved
blocks. In this case, the 4 high-order bits of AL0 are set,
resulting in the values AL0 = 0F0H and AL1 = 00H.

 The CKS value is determined as follows: if the disk drive
media is removable, then CKS = (DRM+1)/4, where DRM is the last
directory entry number. If the media are fixed, then set CKS = 0
(no directory records are checked in this case).

 Finally, the 0FF field determines the number of tracks that are
skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called and can be used as a
mechanism for skipping reserved operating system tracks or for
partitioning a large disk into smaller segmented sections.

 To complete the discussion of the DPB, several DPHs can address
the same DPB if their drive characteristics are identical. Further,
the DPB can be dynamically changed when a new drive is addressed by
simply changing the pointer in the DPH; because the BDOS copies the
DPB values to a local area whenever the SELDSK function is invoked.

 Returning back to DPH for a particular drive, the two address
values CSV and ALV remain. Both addresses reference an area of
uninitialized memory following the BIOS. The areas must be unique
for each drive, and the size of each area is determined by the
values in the DPB.

 The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this
particular drive, If CKS = (DRM+1)/4, you must reserve (DRM+1)/4
bytes for directory check use. If CKS = 0, no storage is reserved.

 The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk and
is computed as (DSM/8)+1.

 The CBIOS shown in Appendix B demonstrates an instance of these
tables for standard 8-inch, single-density drives. It might be
useful to examine this program and compare the tabular values with
the definitions given above.

6.11 The DISKDEF Macro Library

 A macro library called DISKDEF (shown in Appendix F), greatly
simplifies the table construction process. You must have access to
the MAC macro assembler, of course, to use the DISKDEF facility,
while the macro library is included with all CP.M 2 distribution
disks.

 6-28

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

 A BIOS disk definition consists of the following sequence of
macro statements:

 MACLIB DISKDEF

 DISKS n
 DISKDEF 0,...
 DISKDEF 1,...

 DISKDEF n-1

 ENDEF

where the MACLIB statement loads the DISKDEF.LIB file, on the same
disk as the BIOS, into MAC’s internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
the user’s system, where n is an integer in the range 1 to 16. A
series of DISKDEF macro calls then follow that define the
characteristics of each logical disk, 0 through n-1, corresponding
to logical drives A through P. The DISKS and DISKDEF macros
generate the in-line fixed data tables described in the previous
section and thus must be placed in a nonexecutable portion of the
BIOS, typically directly following the BIOS jump vector.

 The remaining portion of the BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas that are located in memory above
the BIOS.

 The DISKDEF macro call takes the form:

 DISKDEF dn,fsc,lsc,[skf],bls dks,dir,cks,ofs,[0]

where

 o dn is the logical disk number, 0 to n-1.
 o fsc is the first physical sector number (0 or 1).
 o lsc is the last sector number.
 o skf is the optional sector skew factor.
 o bls is the data allocation block size.
 o dks is the number of blocks on the disk.
 o dir is the number of directory entries.
 o cks is the number of checked directory entries.
 o ofs is the track offset to logical track 00.
 o [0] is an optional 1.4 compatibility flag.

 The value dn is the drive number being defined with this
DISKDEF macro invocation. The fsc parameter accounts for differing
sector numbering systems and is usually 0 to 1. The lsc is the last
numbered sector on a track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation
table according to the skew.

 6-29

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

 If the number of sectors is less than 256, a single-byte table
is created, otherwise each translation table element occupies two
bytes. No translation table is created if the skf parameter is
omitted, or equal to 0.

 The bls parameter specifies the number of bytes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases with larger data block
sizes because there are fewer directory references, and logically
connected data records are physically close on the disk. Further,
each directory entry addresses more data and the BIOS-resident RAM
space is reduced.

 The dks parameter specifies the total disk size in bls units.
That is, if the bls = 2048 and dks = 1000, the total disk capacity
is 2,048,000 bytes. If dks is greater than 255, the block size
parameter bls must be greater than 1024. The value of dir is the
total number of directory entries that might exceed 255, if desired.

 The cks parameter determines the number of directory items to
check on each directory scan and is used internally to detect
changed disks during system operation, where an intervening cold or
warm start has not occurred. When this situation is detected, CP/M
automatically marks the disk Read-Only so that data is not
subsequently destroyed.

 As stated in the previous section, the value of cks = dir when
the medium is easily changed, as is the case with a floppy disk
subsystem. If the disk is permanently mounted, the value of cks is
typically 0, because the probability of changing disks without a
restart is low.

 The ofs value determines the number of tracks to skip when this
particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 that have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

 For convenience and economy of table space, the special form:

 DISKDEF i,j

gives disk i the same characteristics as a previously defined drive
j. A standard four-drive, single-density system, which is
compatible with version 1.4, is defined using the following macro
invocations:

 DISKS 4
 DISKDEF 0,1,26,6,1024,243,64,2
 DISKDEF 1,0

 6-30

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

 DISKDEF 2,0
 DISKDEF 3,0

 ENDEF

with all disks having the same parameter values of 26 sectors per
track, numbered 1 through 26, with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of
243K-byte disk capacity, 64 checked directory entries, and two
operating system tracks.

 The DISKS macro generates n DPHs, starting at the DPH table
address DPBASE generated by the macro. Each disk header block
contains sixteen bytes, as described above, and correspond one-for-
one to each of the defined drives. In the four-drive standard
system, for example, the DISKS macro generates a table of the form:

 DPBASE EQU$
 DPE0: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
 DPE1: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
 DPE2: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
 DPE3: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the DPH are described in detail in the previous
section. The check and allocation vector addresses are generated by
the ENDEF macro in the ram area following the BIOS code and tables.

 Note that if the skf (skew factor) parameter is omitted, or
equal to 0, the translation table is omitted and a 0000H value is
inserted in the XLT position of the DPH for the disk. In a
subsequent call to perform the logical-to-physical translation,
SECTRAN receives a translation table address of DE = 0000H and
simply returns the original logical sector from BC in the HL
register pair.

 A translate table is constructed when the skf parameter is
present, and the (nonzero) table address is placed into the
corresponding DPHs. The following for example, is constructed when
the standard skew factor skf = 6 is specified in the DISKDEF macro
call:

 XLT0: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
 DB 2,8,14,20,26,6,12,18,24,4,10,16,22

 Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
that is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area
is determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce the
following EQU statement:

 6-31

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.11 The DISKDEF Macro Library

 4C72 = BEGDAT EQU $
 (data areas)

 4DB0 = ENDDAT EQU $

 013C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H,
ends at 4DB0H-1, and occupies 013CH bytes. You must ensure that
these addresses are free for use after the system is loaded.

 After modification, you can use the STAT program to check drive
characteristics, because STAT uses the disk parameter block to
decode the drive information. A STAT command of the form:

 STAT d:DSK:

decodes the disk parameter block for drive d (d=A,...,P) and
displays the following values:

 r: 128-byte record capacity
 k: kilobyte drive capacity
 d: 32-byte directory entries
 c: checked directory entries
 e: records/extent
 b: records/block
 s: sectors/track
 t: reserved tracks

 Three examples of DISKDEF macro invocations are shown below
with corresponding STAT parameter values. The last example produces
a full 8-megabyte system.

 DISKDEF 0,1,58,,2048,256,128,128,2
 r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

 DISKDEF 0,1,58,,2048,1024,300,0,2
 r=16348, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

 DISKDEF 0,1,58,,16348,512,128,128,2
 r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

6.12 Sector Blocking and Deblocking

 Upon each call to BIOS WRITE entry point, the CP/M BDOS
includes information that allows effective sector blocking and
deblocking where the host disk subsystem has a sector size that is a
multiple of the basic 128-byte unit. The purpose here is to present
a general-purpose algorithm that can be included within the BIOS and
that uses the BDOS information to perform the operations
automatically.

 6-32

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.12 Blocking and Deblocking

 On each call to WRITE, the BDOS provides the following
information in register C:

 0 = (normal sector write)
 1 = (write to directory sector)
 2 = (write to the first sector
 of a new data block)

 Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update; when
the write is to other than the first sector of an unallocated block;
or when the write is not into the directory area. Condition 1
occurs when a write into the directory area is performed. Condition
2 occurs when the first record (only) of a newly allocated data
block is written. In most cases, application programs read or write
multiple 128-byte sectors in sequence; thus, there is little
overhead involved in either operation when blocking and deblocking
records, because preread operations can be avoided when writing
records.

 Appendix G lists the blocking and deblocking algorithms in
skeletal form; this file is included on your CP/M disk. Generally,
the algorithms map all CP/M sector read operations onto the host
disk through an intermediate buffer that is the size of the host
disk sector. Throughout the program, values and variables that
relate to the CP/M sector involved in a seek operation are prefixed
by sek, while those related to the host disk system are prefixed by
hst. The equate statements beginning on line 29 of Appendix G
define the mapping between CP/M and the host system, and must be
changed if other than the sample host system is involved.

 The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically select the host disk at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial function of
returning the physical sector number.

 The principal entry points are READ and WRITE, starting on
lines 110 and 125, respectively. These subroutines take the place
of your previous READ and WRITE operations.

 The actual physical read or write takes place at either
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number, which may require translation to physical
sector number. You must insert code at this point that performs the
full sector read or write into or out of the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

 6-33

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual 6.12 Blocking and Deblocking

 This particular algorithm was tested using an 80-megabyte hard
disk unit that was originally configured for 128-byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512-byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall
response. In this situation, there is no apparent overhead involved
in deblocking sectors, with the advantage that user programs still
maintain 128-byte sectors. This is primarily because of the
information provided by the BDOS, which eliminates the necessity for
preread operations.

End of Section 6

 6-34

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Appendix A

 The Microcomputer Development System Basic Input/Output System (BIOS)

 1 ; mds-800 i/o drivers for cp/m 2.2
 2 ; (four drive single density version)
 3 ;
 4 ; version 2.2 february, 1980
 5 ;
 6 0016 = vers equ 22 ;version 2.2
 7 ;
 8 ; copyright (c) 1980
 9 ; digital research
 10 ; box 579, pacific grove
 11 ; california, 93950
 12 ;
 13 ;
 14 ffff = true equ 0fffh ;value of "true"
 15 0000 = false equ not true ;"false"
 16 0000 = test equ false ;true if test bios
 17 ;
 18 if test
 19 bias equ 03400h ;base of ccp in test system
 20 endif
 21 if not test
 22 0000 = bias equ 0000h ;generate relocatable cp/m system
 23 endif
 24 ;
 25 1600 = patch equ 1600h
 26 ;
 27 1600 org patch
 28 0000 = cpmb equ $-patch ;base of cpm console processor
 29 0806 = bdos equ 806h+cpmb ;basic dos (resident portion)
 30 1600 = cpml equ $-cpmb ;length (in bytes) of cpm system
 31 002c = nsects equ cpml/128 ;number of sectors to load
 32 0002 = offset equ 2 ;number of disk tracks used by cp/m
 33 0004 = cdisk equ 0004h ;address of last logged disk on warm start
 34 0080 = buff equ 0080h ;default buffer address

 A-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 35 000a = retry equ 10 ;max retries on disk i/o before error
 36 ;
 37 ; perform following functions
 38 ; boot cold start
 39 ; wboot warm start (save i/o byte)
 40 ; (boot and wboot are the same for mds)
 41 ; const console status
 42 ; reg-a = 00 if no character ready
 43 ; reg-a = ff if character ready
 44 ; conin console character in (result in reg-a)
 45 ; conout console character out (char in reg-c)
 46 ; list list out (char in reg-c)
 47 ; punch punch out (char in reg-c)
 48 ; reader paper tape reader in (result to reg-a)
 49 ; home move to track 00
 50 ;
 51 ; (the following calls set-up the io parameter block for the
 52 ; mds, which is used to perform subsequent reads and writes)
 53 ; seldsk select disk given by reg-c (0, 1, 2...)
 54 ; settrk set track address (0,...76) for subsequent read-write
 55 ; setsec set sector address (1,...,26) for subsequent read-write
 56 ; setdma set subsequent dma address (initially 80h)
 57 ;
 58 ; (read and write assume previous calls to set up the io parameters)
 59 ; read read track/sector to preset dma address
 60 ; write track/sector from preset dma address
 61 ;
 62 ; jump vector for individual routines
 63 1600 c3b316 jmp boot
 64 1603 c3c316 wboote: jmp wboot
 65 1606 c36117 jmp const
 66 1609 c36417 jmp conin
 67 160c c36a17 jmp conout
 68 160f c36d17 jmp list
 69 1612 c37217 jmp punch
 70 1615 c37517 jmp reader
 71 1618 c37817 jmp home
 72 161b c37d17 jmp seldsk
 73 161e c3a717 jmp settrk
 74 1621 c3ac17 jmp setsec

 A-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 75 1624 c3bb17 jmp setdma
 76 1627 c3c117 jmp read
 77 162a c3ca17 jmp write
 78 162d c37017 jmp listst ;list status
 79 1630 c3b117 jmp sectran
 80 ;
 81 maclib diskdef ;load the disk definition library
 82 disks 4 ;four disks
 83 1633+= dpbase equ $;base of disk parameter blocks
 84 1633+82160000 dpe0: dw xlt0, 0000h ;translate table
 85 1637+00000000 dw 0000h, 0000h ;scratch area
 86 163b+6e187316 dw dirbuf, dpb0 ;dir buff, parm block
 87 163f+0d19ee18 dw csv0, alv0 ;check, alloc vectors
 88 1643+82160000 dpe1: dw xlt1, 0000h ;translate table
 89 1647+00000000 dw 0000h, 0000h ;scratch area
 90 164b+6e187316 dw dirbuf, dpb1 ;dir buff, parm block
 91 164f+3c191d19 dw csv1, alv1 ;check, alloc vectors
 92 1653+82160000 dpe2: dw xlt2, 0000h ;translate table
 93 1657+00000000 dw 0000h, 0000h ;scratch area
 94 165b+6e187316 dw dirbuf, dpb2 ;dir buff, parm block
 95 165f+6b194c19 dw csv2, alv2 ;check, alloc vectors
 96 1663+82160000 dpe3: dw xlt3, 0000h ;translate table
 97 1667+00000000 dw 0000h, 0000h ;scratch area
 98 166b+6e187316 dw dirbuf, dpb3 ;check, alloc block
 99 166f+9a197b19 dw csv3, alv3 ;dir buff, parm vectors
100 diskdef 0, 1, 26, 6, 1024, 243, 64, 64, offset
101 1673+= dpb0 equ $;disk parm block
102 1673+1a00 dw 26 ;sec per track
103 1675+03 db 3 ;block shift
104 1676+07 db 7 ;block mask
105 1677+00 db 0 ;extnt mask
106 1678+f200 dw 242 ;disk size-1
107 167a+3f00 dw 63 ;directory max
108 167c+c0 db 192 ;alloc0
109 167d+00 db 0 ;alloc1
110 167e+1000 dw 16 ;check size
111 1680+0200 dw 2 ;offset
112 1682+= xlt0 equ $;translate table
113 1682+01 db 1
114 1683+07 db 7

 A-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

115 1684+0d db 13
116 1685+13 db 19
117 1686+19 db 25
118 1687+05 db 5
119 1688+0b db 11
120 1689+11 db 17
121 168a+17 db 23
122 168b+03 db 3
123 168c+09 db 9
124 168d+0f db 15
125 168e+15 db 21
126 168f+02 db 2
127 1690+08 db 8
128 1691+0e db 14
129 1692+14 db 20
130 1693+1a db 26
131 1694+06 db 6
132 1695+0c db 12
133 1696+12 db 18
134 1697+18 db 24
135 1698+04 db 4
136 1699+0a db 10
137 169a+10 db 16
138 169b+16 db 22
139 diskdef 1,0
140 1673+ = dpb1 equ dpb0 ;equivalent parameters
141 001f+ = als1 equ als0 ;same allocation vector size
142 0010+ = css1 equ css0 ;same checksum vector size
143 1682+ = xlt1 equ xlt0 ;same translate table
144 diskdef 2, 0
145 1673+ = dpb2 equ dpb0 ;equivalent parameters
146 001f+ = als2 equ als0 ;same allocation vector size
147 0010+ = css2 equ css0 ;same checksum vector size
148 1682+ = xlt2 equ xlt0 ;same translate table
149 diskdef 3, 0
150 1673+ = dpb3 equ dpb0 ;equivalent parameters
151 001f+ = als3 equ als0 ;same allocation vector size
152 0010+ = css3 equ css0 ;same checksum vector size
153 1682+ = xlt3 equ xlt0 ;same translate table
154 ; endef occurs at end of assembly

 A-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

155 ;
156 ; end of controller--independent code, the remaining subroutines
157 ; are tailored to the particular operating environment, and must
158 ; be altered for any system which differs from the intel mds.
159 ;
160 ; the following code assumes the mds monitor exists at 0f800h
161 ; and uses the i/o subroutines within the monitor
162 ;
163 ; we also assume the mds system has four disk drives
164 00fd = revrt equ 0fdh ;interrupt revert port
165 00fc = intc equ 0fch ;interrupt mask port
166 00f3 = icon equ 0f3h ;interrupt control port
167 007E = inte equ 0111$1110b ;enable rst 0 (warm boot), rst 7 (monitor)
168 ;
169 ; mds monitor equates
170 f800 = mon80 equ 0f800h ;mds monitor
171 ff0f = rmon80 equ 0ff0fh ;restart mon80 (boot error)
172 f803 = ci equ 0f803h ;console character to reg-a
173 f806 = ri equ 0f806h ;reader in to reg-a
174 f809 = co equ 0f809h ;console char from c to console out
175 f80c = po equ 0f80ch ;punch char from c to punch device
176 f80f = lo equ 0f80fh ;list from c to list device
177 f812 = csts equ 0f812h ;console status 00/ff to register a
178 ;
179 ; disk ports and commands
180 0078 = base equ 78h ;base of disk command io ports
181 0078 = dstat equ base ;disk status (input)
182 0079 = rtype equ base+1 ;result type (input)
183 007b = rbyte equ base+3 ;result byte (input)
184 ;
185 0079 = ilow equ base+1 ;iopb low address (output)
186 007a = ihigh equ base+2 ;iopb high address (output)
187 ;
188 0004 = readf equ 4h ;read function
189 0006 = writf equ 6h ;write function
190 0003 = recal equ 3h ;recalibrate drive
191 0004 = iordy equ 4h ;i/o finished mask
192 000d = cr equ 0dh ;carriage return
193 000a = lf equ 0ah ;line-feed
194 ;

 A-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

195 signon: ;signon message: xxk cp/m vers y.y
196 169c 0d0a0a db cr, lf, lf
197 if test
198 db ’32’ ;32k example bios
199 endif
200 if not test
201 169f 3030 db ’00’ ;memory size filled by relocator
202 endif
203 16a1 6b2043502f db ’k cp/m vers ’
204 16ad 322e32 db ver/10+’0’, ’,’ vers mod 10+’0’
205 16b0 0d0a00 db cr, lf, 0
206 ;
207 boot: ;print signon message and go to ccp
208 ; (note: mds boot initialized iobyte at 0003h)
209 16b3 310001 lxi sp, buff+80h
210 16b6 219c16 lxi h, signon
211 16b9 cdd317 call prmsg ;print message
212 16bc af xra a ;clear accumulator
213 16bd 320400 sta cdisk ;set initially to disk a
214 16c0 c30f17 jmp gocpm ;go to cp/m
215 ;
216 ;
217 wboot:; loader on track 0, sector 1, which will be skipped for warm
218 ; read cp/m from disk--assuming there is a 128 byte cold start
219 ; start
220 ;
221 16c3 318000 lxi sp, buff ;using dma--thus 80 thru ff available for stack
222 ;
223 16c6 0e0a mvi c, retry ;max retries
224 16c8 c5 push b
225 wboot0: ;enter here on error retries
226 16c9 010000 lxi b, cpmb ;set dma address to start of disk system
227 16cc cdbb17 call setdma
228 16cf 0e00 mvi c, 0 ;boot from drive 0
229 16d1 cd7d17 call seldsk
230 16d4 0e00 mvi c, 0
231 16d6 cda717 call settrk ;start with track 0
232 16d9 0e02 mvi c, 2 ;start reading sector 2
233 16db cdac17 call setsec
234 ;

 A-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

235 ; read sectors, count nsects to zero
236 16de c1 pop b ;10-error count
237 16df 062c mvi b, nsects
238 rdsec: ;read next sector
239 16e1 c5 push b ;save sector count
240 16e2 cdc117 call read
241 16e5 c24917 jnz booterr ;retry if errors occur
242 16e8 2a6c18 lhld iod ;increment dma address
243 16eb 118000 lxi d, 128 ;sector size
244 16ee 19 dad d ;incremented dma address in hl
245 16ef 44 mov b, h
246 16f0 4d mov c, l ;ready for call to set dma
247 16f1 cdbb17 call setdma
248 16f4 3a6b18 lda ios ;sector number just read
249 16f7 fe1a cpi 26 ;read last sector?
250 16f9 da0517 jc rd1
251 ; must be sector 26, zero and go to next track
252 16fc 3a6a18 lda iot ;get track to register a
253 16ff 3c inr a
254 1700 4f mov c, a ;read for call
255 1701 cda717 call settrk
256 1704 af xra a ;clear sector number
257 1705 3c rd1: inr a ;to next sector
258 1706 4f mov c, a ;ready for call
259 1707 cdac17 call setsec
260 170a c1 pop b ;recall sector count
261 170b 05 dcr b ;done?
262 170c c2e116 jnz rdsec
263 ;
264 ; done with the load, reset default buffer address
265 gocpm: ;(enter here from cold start boot)
266 ; enable rst0 and rst7
267 170f f3 di
268 1710 3e12 mvi a, 12h ;initialize command
269 1712 d3fd out revrt
270 1714 af xra a
271 1715 d3fc out intc ;cleared
272 1717 3e7e mvi a, inte ;rst0 and rst7 bits on
273 1719 d3fc out intc
274 171b af xra a

 A-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

275 171c d3f3 out icon ;interrupt control
276 ;
277 ; set default buffer address to 80h
278 171e 018000 lxi b, buff
279 1721 cdbb17 call setdma
280 ;
281 ; reset monitor entry points
282 1724 3ec3 mvi a, jmp
283 1726 320000 sta 0
284 1729 210316 lxi h, wboote
285 172c 220100 shld 1 ;jump wboot at location 00
286 172f 320500 sta 5
287 1732 210608 lxi h, bdos
288 1735 220600 shld 6 ;jmp bdos at location 5
289 if not test
290 1738 323800 sta 7*8 ;jmp to mon80 (may have changed by ddt)
291 173b 2100f8 lxi h, mon80
292 173e 223900 shld 7*8+1
293 endif
294 ; leave iobyte set
295 ; previously selected disk was b, send parameter to cpm
296 1741 3a0400 lda cdisk ;last logged disk number
297 1744 4f mov c, a ;send to ccp to log it in
298 1745 fb ei
299 1746 c30000 jmp cpmb
300 ;
301 ; error condition occurred, print message and retry
302 booterr:
303 1749 c1 pop b ;recall counts
304 174a 0d dcr c
305 174b ca5217 jz booter0
306 ; try again
307 174e c5 push b
308 174f c3c916 jmp wboot0
309 ;
310 booter0:
311 ; otherwise too many retries
312 1752 215b17 lxi h, bootmsg
313 1755 cdd317 call prmsg
314 1758 c30fff jmp rmon80 ;mds hardware monitor

 A-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

315 ;
316 bootmsg:
317 175b 3f626f6f74 db ’?boot’, 0
318 ;
319 ;
320 const: console status to reg-a
321 ; (exactly the same as mds call)
322 1761 c312f8 jmp csts
323 ;
324 conin: ;console character to reg-a
325 1764 cd03f8 call ci
326 1767 e67f ani 7fh ;remove parity bit
327 1769 c9 ret
328 ;
329 conout: ;console character from c to console out
330 176a c309f8 jmp co
331 ;
332 list: ;list device out
333 ; (exactly the same as mds call)
334 176d c30ff8 jmp lo
335 ;
336 listst:
337 ;return list status
338 1770 af xra a
339 1771 c9 ret ;always not ready
340 ;
341 punch: ;punch device out
342 ; (exactly the same as mds call)
343 1772 c30cf8 jmp po
344 ;
345 reader: ;reader character in to reg-a
346 ; (exactly the same as mds call)
347 1775 c306f8 jmp ri
348 ;
349 home: ;move to home position
350 ; treat as track 00 seek
351 1778 0e00 mvi c, 0
352 177a c3a717 jmp settrk
353 ;
354 seldsk: ;select disk given by register c

 A-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

355 177d 210000 lxi h, 0000h ;return 0000 if error
356 1780 79 mov a, c
357 1781 fe04 cpi ndisks ;too large?
358 1783 d0 rnc ;leave hl = 0000
359 ;
360 1784 e602 ani 10b ;00 00 for drive 0, 1 and 10 10 for drive 2, 3
361 1786 326618 sta dbank ;to select drive bank
362 1789 79 mov a, c ;00, 01, 10, 11
363 178a e601 ani 1b ;mds has 0, 1 at 78, 2, 3 at 88
364 178c b7 ora a ;result 00?
365 178d ca9217 jz setdrive
366 1790 3e30 mvi a, 00110000b ;selects drive 1 in bank
367 setdrive:
368 1792 47 mov b, a ;save the function
369 1793 216818 lxi h, iof ;io function
370 1796 7e mov a, m
371 1797 e6cf ani 11001111b ;mask out disk number
372 1799 b0 ora b ;mask in new disk number
373 179a 77 mov m, a ;save it in iopb
374 179b 69 mov l, c
375 179c 2600 mvi h, 0 ;hl=disk number
376 179e 29 dad h ;*2
377 179f 29 dad h ;*4
378 17a0 29 dad h ;*8
379 17a1 29 dad h ;*16
380 17a2 113316 lxi d, dpbase
381 17a5 19 dad d ;hl=disk header table address
382 17a6 c9 ret
383 ;
384 ;
385 settrk: ;set track address given by c
386 17a7 216a18 lxi h, iot
387 17aa 71 mov m, c
388 17ab c9 ret
389 ;
390 setsec: ;set sector number given by c
391 17ac 216b18 lxi h, ios
392 17af 71 mov m, c
393 17b0 c9 ret
394 sectran:

 A-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

395 ;translate sector bc using table at de
396 17b1 0600 mvi b, 0 ;double-precision sector number in bc
397 17b3 eb xchg ;translate table address to hl
398 17b4 09 dad b ;translate (sector) address
399 17b5 7e mov a, m ;translated sector number to a
400 17b6 326b18 sta ios
401 17b9 6f mov l, a ;return sector number in l
402 17ba c9 ret
403 ;
404 setdma: ;set dma address given by regs b, c
405 17bb 69 mov l, c
406 17bc 60 mov h, b
407 17bd 226c18 shld iod
408 17c0 c9 ret
409 ;
410 read: ;read next disk record (assuming disk/trk/sec/dma set)
411 17c1 0e04 mvi c, readf ;set to read function
412 17c3 cde017 call setfunc
413 17c6 cdf017 call waitio ;perform read function
414 17c9 c9 ret ;may have error set in reg-a
415 ;
416 ;
417 write: ;disk write function
418 17ca 0e06 mvi c, writf
419 17cc cde017 call setfunc ;set to write function
420 17cf cdf017 call waitio
421 17d2 c9 ret ;may have error set
422 ;
423 ;
424 ; utility subroutines
425 prmsg: ;print message at h, l to 0
426 17d3 7e mov a, m
427 17d4 b7 ora a zero?
428 17d5 c8 rz
429 ; more to print
430 17d6 e5 push h
431 17d7 4f mov c,a
432 17d8 cd6a17 call conout
433 17db e1 pop h
434 17dc 23 inx h

 A-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

435 17dd c3d317 jmp prmsg
436 ;
437 setfunc:
438 ; set function for next i/o (command in reg-c)
439 17e0 216818 lxi h, iof ;io function address
440 17e3 7e mov a, m ;get it to accumulator for masking
441 17e4 e6f8 ani 11111000b ;remove previous command
442 17e6 b1 ora c ;set to new command
443 17e7 77 mov m, a ;replaced in iopb
444 ; the mds-800 controller requires disk bank bit in sector byte
445 ; mask the bit from the current i/o function
446 17e8 e620 ani 00100000b ;mask the disk select bit
447 17ea 216b18 lxi h, ios ;address the sector select byte
448 17ed b6 ora m ;select proper disk bank
449 17ee 77 mov m, a ;set disk select bit on/off
450 17ef c9 ret
451 ;
452 waitio:
453 17f0 0e0a mvi c, retry ;max retries before perm error
454 rewait:
455 ; start the i/o function and wait for completion
456 17f2 cd3f18 call intype ;in rtype
457 17f5 cd4c18 call inbyte ;clears the controller
458 ;
459 17f8 3a6618 lda dbank ;set bank flags
460 17fb b7 ora a ;zero if drive 0, 1 and nz if 2, 3
461 17fc 3e67 mvi a, iopb and offh ;low address for iopb
462 17fe 0618 mvi b, iopb shr 8 ;high address for iopb
463 1800 c20b18 jnz iodr1 ;drive bank 1?
464 1803 d379 out ilow ;low address to controller
465 1805 78 mov a, b
466 1806 d37a out ihigh ;high address
467 1808 c31018 jmp waito ;to wait for complete
468 ;
469 iodr1: ;drive bank 1
470 180b d389 out ilow+10h ;88 for drive bank 10
471 180d 78 mov a, b
472 180e d38a out ihigh+10h
473 ;
474 1810 cd5918 waito: call instat ;wait for completion

 A-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

475 1813 e604 ani iordy ;ready?
476 1815 ca1018 jz waito
477 ;
478 ; check io completion ok
479 1818 cd3f18 call intype ;must be io complete (00) unlinked
480 ; 00 unlinked i/o complete, 01 linked i/o complete (not used)
481 ; io disk status changed 11 (not used)
482 181b fe02 cpi 10b ;ready status change?
483 181d ca3218 jz wready
484 ;
485 ; must be 00 in the accumulator
486 1820 b7 ora a
487 1821 c23818 jnz werror ;some other condition, retry
488 ;
489 ; check i/o error bits
490 1824 cd4c18 call inbyte
491 1827 17 ral
492 1828 da3218 jc wready ;unit not ready
493 182b 1f rar
494 182c e6fe ani 11111110b ;any other errors? (deleted data ok)
495 182e c23818 jnz werror
496 ;
497 ; read or write is ok, accumulator contains zero
498 1831 c9 ret
499 ;
500 wready: ;not ready, treat as error for now
501 1832 cd4c18 call inbyte ;clear result byte
502 1835 c33818 jmp trycount
503 ;
504 werror: ;return hardware malfunction (crc, track, seek, etc.)
505 ; the mds controller has returned a bit in each position
506 ; of the accumulator, corresponding to the conditions:
507 ; 0 -deleted data (accepted as ok above)
508 ; 1 -crc error
509 ; 2 -seek error
510 ; 3 -address error (hardware malfunction)
511 ; 4 -data over/under flow (hardware malfunction)
512 ; 5 -write protect (treated as not ready)
513 ; 6 -write error (hardware malfunction)
514 ; j -not ready

 A-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

515 ; (accumulator bits are numbered 7 6 5 4 3 2 1 0)
516 ;
517 ; it may be useful to filter out the various conditions,
518 ; but we will get a permanent error message if it is not
519 ; recoverable. in any case, the not ready condition is
520 ; treated as a separated condition for later improvement
521 trycount:
522 ; register c contains retry count, decrement ’til zero
523 1838 0d dcr c
524 1839 c2f217 jnz rewait ;for another try
525 ;
526 ; cannot recover from error
527 183c 3e01 mvi a, 1 ;error code
528 183e c9 ret
529 ;
530 ; intype, inbyte, instat read drive bank 00 or 10
531 183f 3a6618 intype: lda dbank
532 1842 b7 ora a
533 1843 c24918 jnz intyp1 ;skip to bank 10
534 1846 db79 in rtype
535 1848 c9 ret
536 1849 db89 intyp1: in rtype+10h ;78 for 0, 1 88 for 2, 3
537 184b c9 ret
538 ;
539 184c 3a6618 inbyte: lda dbank
540 184f b7 ora a
541 1850 c25618 jnz inbyt1
542 1853 db7b in rbyte
543 1855 c9 ret
544 1856 db8b inbyt1: in rbyte+10h
545 1858 c9 ret
546 ;
547 1859 3a6618 instat: lda dbank
548 185c b7 ora a
549 185d c26318 jnz insta1
550 1860 db78 in dstat
551 1862 c9 ret
552 1863 db88 insta1: in dstat+10h
553 1865 c9 ret
554 ;

 A-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

555 ;
556 ;
557 ; data areas (must be in ram)
558 1866 00 dbank: db 0 ;disk bank 00 if drive 0, 1
559 ; 10 if drive 2, 3
560 iopb: ;io parameter block
561 1867 80 db 80h ;normal i/o operation
562 1868 04 iof: db readf ;io function, initial read
563 1869 01 ion: db 1 ;number of sectors to read
564 186a 02 iot: db offset ;track number
565 186b 01 ios: db 1 ;sector number
566 186c 8000 iod: dw buff ;io address
567 ;
568 ;
569 ; define ram areas for bdos operation
570 endef
571 186e+= begdat equ $
572 186e+ dirbuf: ds 128 ;directory access buffer
573 18ee+ alv0: ds 31
574 190d+ csv0: ds 16
575 191d+ alv1: ds 31
576 193c+ csv1: ds 16
577 194c+ alv2: ds 31
578 196b+ csv2: ds 16
579 197b+ alv3: ds 31
580 199a+ csv3: ds 16
581 19aa+= enddat equ $
582 013c+= datsiz equ $-begdat
583 19aa end

als1 001f 141#
als2 001f 146#
als3 001f 151#
alv0 18ee 87 573#
alv1 191d 91 575#
alv2 194c 95 577#
alv3 197b 99 579#
base 0078 180# 181 182 183 185 186
bdos 0806 29# 287

 A-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

begdat 186e 571# 582
bias 0000 19# 22#
boot 16b3 63 207#
booter0 1752 305 310#
booterr 1749 241 302#
bootmsg 175b 312 316#
buff 0080 34# 209 221 278 566
cdisk 0004 33# 213 296
ci f803 172# 325
co f809 174# 330
conin 1764 66 324#
conout 176a 67 329# 432
const 1761 65 320#
cpmb 0000 28# 29 30 226 299
cpml 1600 30# 31
cr 000d 192# 196 205
css1 0010 142#
css2 0010 147#
css3 0010 152#
csts f812 177# 322
csv0 190d 87 574#
csv1 193c 91 576#
csv2 196b 95 578#
csv3 199a 99 580#
datsiz 013c 582#
dbank 1866 361 459 531 539 539 547 558#
dirbuf 186e 86 90 94 98 572#
dpb0 1673 86 101# 140 145 150
dpb1 1673 90 140#
dpb2 1673 94 145#
dpb3 1673 98 150#
dpbase 1633 83# 380
dpe0 1633 84#
dpe1 1643 88#
dpe2 1653 92#
dpe3 1663 96#
dstat 0078 181# 550 552
enddat 19aa 581#
false 0000 15# 16
gocpm 170f 214 265#

 A-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

home 1778 71 349#
icon 00fe 166# 275
ihigh 007a 186# 466 472
ilow 0079 185# 464 470
inbyt1 1856 541 544#
inbyte 184c 457 490 501 539#
insta1 1863 549 552#
instat 1859 474 547#
intc 00fc 165# 271 273
inte 007e 167# 272
intyp1 1849 533 536#
intype 183f 456 479 531#
iod 186c 242 407 566#
iodr1 180b 463 469#
iof 1868 369 439 562#
ion 1869 563#
iopb 1867 461 462 560#
iordy 0004 191# 475
ios 186b 248 391 400 447 565#
iot 186a 252 386 564#
lf 000a 193# 196 196 205
list 176d 68 332#
listst 1770 78 336#
lo f80f 176# 334
mon80 f800 170# 291
nsects 002c 31# 237
offset 0002 32# 100 564
patch 1600 25# 27 28
po f80c 175# 343
prmsg 17d3 211 313 425# 435
punch 1772 69 341#
rbyte 007b 183# 542 544
rd1 1705 250 257#
rdsec 16e1 238# 262
read 17c1 76 240 410#
reader 1775 70 345#
readf 0004 188# 411 562
recal 0003 190#
retry 000a 35# 223 453
revrt 00fd 164# 269

 A-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

rewait 17f2 454# 524
ri f806 173# 347
rmon80 ff0f 171# 314
rtype 0079 182# 534 536
sectran 17b1 79 394#
seldsk 177d 72 229 354#
setdma 17bb 75 227 247 279 404#
setdrive 1792 365 367#
setfunc 17e0 412 419 437#
setsec 17ac 74 233 259 390#
settrk 17a7 73 231 255 352 385#
signon 169c 195# 210
test 0000 16# 18 21 197 200 289
true ffff 14# 15
trycount 1838 502 521#
vers 0016 6# 204 204
waito 1810 467 474# 476
waitio 17f0 413 420 452#
wboot 16c3 64 217#
wboot0 16c9 225# 308
wboote 1603 64# 284
werror 1838 487 495 504#
wready 1832 483 492 500#
write 17ca 77 417#
writf 0006 189# 418
xlt0 1682 84 112# 143 148 153
xlt1 1682 88 143#
xlt2 1682 92 148#
xlt3 1682 96 153#

 A-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Appendix B

 A Skeletal CBIOS

 1 ; skeletal cbios for first level of cp/m 2.0 alteration
 2 ;
 3 0014 = msize equ 20 ;cp/m version memory size in kilobytes
 4 ;
 5 ; "bias" is address offset from 3400h for memory systems
 6 ; than 16k (referred to as "b" throughout the text)
 7 ;
 8 0000 = bias equ (msize-20)*1024
 9 3400 = ccp equ 3400h+bias ;base of ccp
 10 3c06 = bdos equ ccp+806h ;base of bdos
 11 4a00 = bios equ ccp+1600h ;base of bios
 12 0004 = cdisk equ 0004h ;current disk number 0=a,..., 15=p
 13 0003 = iobyte equ 0003h ;intel i/o byte
 14 ;
 15 4a00 org bios ;origin of this program
 16 002c = nsects equ ($-ccp)/128 ;warm start sector count
 17 ;
 18 ; jump vector for individual subroutines
 19 4a00 c39c4a jmp boot ;cold start
 20 4a03 c3a64a wboote: jmp wboot ;warm start
 21 4a06 c3114b jmp const ;console status
 22 4a09 c3244b jmp conin ;console character in
 23 4a0c c3374b jmp conout ;console character out
 24 4a0f c3494b jmp list ;list character out
 25 4a12 c34d4b jmp punch ;punch character out
 26 4a15 c34f4b jmp reader ;reader character out
 27 4a18 c3544b jmp home ;move head to home position
 28 4a1b c35a4b jmp seldsk ;select disk
 29 4a1e c37d4b jmp settrk ;set track number
 30 4a21 c3924b jmp setsec ;set sector number
 31 4a24 c3ad4b jmp setdma ;set dma address
 32 4a27 c3c34b jmp read ;read disk
 33 4a2a c3d64b jmp write ;write disk

 B-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 34 4a2d c34b4b jmp listst ;return list status
 35 4a30 c3a74b jmp sectran ;sector translate
 36 ;
 37 ; fixed data tables for four-drive standard
 38 ; ibm-compatible 8" disks
 39 ; disk parameter header for disk 00
 40 4a33 734a0000 dpbase: dw trans, 0000h
 41 4a37 00000000 dw 0000h, 0000h
 42 4a3b f04c8d4a dw dirbf, dpblk
 43 4a3f ec4d704d dw chk00, all00
 44 ; disk parameter header for disk 01
 45 4a43 734a0000 dw trans, 0000h
 46 4a47 00000000 dw 0000h, 0000h
 47 4a4b f04c8d4a dw dirbf, dpblk
 48 4a4f fc4d8f4d dw chk01, all01
 49 ; disk parameter header for disk 02
 50 4a53 734a0000 dw trans, 0000h
 51 4a57 00000000 dw 0000h, 0000h
 52 4a5b f04c8d4a dw dirbf, dpblk
 53 4a5f 0c4eae4d dw chk02, all02
 54 ; disk parameter header for disk 03
 55 4a63 734a0000 dw trans, 0000h
 56 4a67 00000000 dw 0000h, 0000h
 57 4a6b f04c8d4a dw dirbf, dpblk
 58 4a6f 1c4ecd4d dw chk03, all03
 59 ;
 60 ; sector translate vector
 61 4a73 01070d13 trans: db 1, 7, 13, 19 ;sectors 1, 2, 3, 4
 62 4a77 19050b11 db 25, 5, 11, 17 ;sectors 5, 6, 7, 8
 63 4a7b 1703090f db 23, 3, 9, 15 ;sectors 9, 10, 11, 12
 64 4a7f 1502080e db 21, 2, 8, 14 ;sectors 13, 14, 15, 16
 65 4a83 141a060c db 20, 26, 6, 12 ;sectors 17, 18, 19, 20
 66 4a87 1218040a db 18, 24, 4, 10 ;sectors 21, 22, 23, 24
 67 4a8b 1016 db 16, 22 ;sectors 25, 26
 68 ;
 69 dpblk: ;disk parameter block, common to all disks
 70 4a8d 1a00 dw 26 ;sectors per track
 71 4a8f 03 db 3 ;block shift factor
 72 4a90 07 db 7 ;block mask
 73 4a91 00 db 0 ;null mask

 B-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 74 4a92 f200 dw 242 ;disk size-1
 75 4a94 3f00 dw 63 ;directory max
 76 4a96 c0 db 192 ;alloc 0
 77 4a97 00 db 0 ;alloc 1
 78 4a98 1000 dw 16 ;check size
 79 4a9a 0200 dw 2 ;track offset
 80 ;
 81 ; end of fixed tables
 82 ;
 83 ; individual subroutines to perform each function
 84 boot: ;simplest case is to just perform parameter initialization
 85 4a9c af xra a ;zero in the accum
 86 4a9d 320300 sta iobyte ;clear the iobyte
 87 4aa0 320400 sta cdisk ;select disk zero
 88 4aa3 c3ef4a jmp gocpm ;initialize and go to cp/m
 89 ;
 90 wboot: ;simplest case is to read the disk until all sectors loaded
 91 4aa6 318000 lxi sp, 80h ;use space below buffer for stack
 92 4aa9 0e00 mvi c, 0 ;select disk 0
 93 4aab cd5a4b call seldsk
 94 4aae cd544b call home ;go to track 00
 95 ;
 96 4ab1 062c mvi b, nsects ;b counts # of sectors to load
 97 4ab3 0e00 mvi c, 0 ;c has the current track number
 98 4ab5 1602 mvi d, 2 ;d has the next sector to read
 99 ; note that we begin by reading track 0, sector 2 since sector 1
100 ; contains the cold start loader, which is skipped in a warm start
101 4ab7 210034 lxi h, ccp ;base of cp/m (initial load point)
102 load1: ;load one more sector
103 4aba c5 push b ;save sector count, current track
104 4abb d5 push d ;save next sector to read
105 4abc e5 push h ;save dma address
106 4abd 4a mov c, d ;get sector address to register c
107 4abe cd924b call setsec ;set sector address from register c
108 4ac1 c1 pop b ;recall dma address to b, c
109 4ac2 c5 push b ;replace on stack for later recall
110 4ac3 cdad4b call setdma ;set dma address from b, c
111 ;
112 ; drive set to 0, track set, sector set, dma address set
113 4ac6 cdc34b call read

 B-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

114 4ac9 fe00 cpi 00h ;any errors?
115 4acb c2a64a jnz wboot ;retry the entire boot if an error occurs
116 ;
117 ; no error, move to next sector
118 4ace e1 pop h ;recall dma address
119 4acf 118000 lxi d, 128 ;dma=dma+128
120 4ad2 19 dad d ;new dma address is in h, l
121 4ad3 d1 pop d ;recall sector address
122 4ad4 c1 pop b ;recall number of sectors remaining, and current trk
123 4ad5 05 dcr b ;sectors=sectors-1
124 4ad6 caef4a jz gocpm ;transfer to cp/m if all have been loaded
125 ;
126 ; more sectors remain to load, check for track change
127 4ad9 14 inr d
128 4ada 7a mov a,d ;sector=27?, if so, change tracks
129 4adb fe1b cpi 27
130 4add daba4a jc load1 ;carry generated if sector<27
131 ;
132 ; end of current track, go to next track
133 4ae0 1601 mvi d, 1 ;begin with first sector of next track
134 4ae2 0c inr c ;track=track+1
135 ;
136 ; save register state, and change tracks
137 4ae3 c5 push b
138 4ae4 d5 push d
139 4ae5 e5 push h
140 4ae6 cd7d4b call settrk ;track address set from register c
141 4ae9 e1 pop h
142 4aea d1 pop d
143 4aeb c1 pop b
144 4aec c3ba4a jmp load1 ;for another sector
145 ;
146 ; end of load operation, set parameters and go to cp/m
147 gocpm:
148 4aef 3ec3 mvi a, 0c3h ;c3 is a jmp instruction
149 4af1 320000 sta 0 ;for jmp to wboot
150 4af4 21034a lxi h, wboote ;wboot entry point
151 4af7 220100 shld 1 ;set address field for jmp at 0
152 ;
153 4afa 320500 sta 5 ;for jmp to bdos

 B-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

154 4afd 21063c lxi h, bdos ;bdos entry point
155 4b00 220600 shld 6 ;address field of jump at 5 to bdos
156 ;
157 4b03 018000 lxi b, 80h ;default dma address is 80h
158 4b06 cdad4b call setdma
159 ;
160 4b09 fb ei ;enable the interrupt system
161 4b0a 3a0400 lda cdisk ;get current disk number
162 4b0d 4f mov c, a ;send to the ccp
163 4b0e c30034 jmp ccp ;go to cp/m for further processing
164 ;
165 ;
166 ; simple i/o handlers (must be filled in by user)
167 ; in each case, the entry point is provided, with space reserved
168 ; to insert your own code
169 ;
170 const: ;console status, return 0ffh if character ready, 00h if not
171 4b11 ds 10h ;space for status subroutine
172 4b21 3e00 mvi a, 00h
173 4b23 c9 ret
174 ;
175 conin: ;console character into register a
176 4b24 ds 10h ;space for input routine
177 4b34 e67f ani 7fh ;strip parity bit
178 4b36 c9 ret
179 ;
180 conout: ;console character output from register c
181 4b37 79 mov a, c ;get to accumulator
182 4b38 ds 10h ;space for output routine
183 4b48 c9 ret
184 ;
185 list: ;list character from register c
186 4b49 79 mov a, c ;character to register a
187 4b4a c9 ret ;null subroutine
188 ;
189 listst: ;return list status (0 if not ready, 1 if ready)
190 4b4b af xra a ;0 is always ok to return
191 4b4c c9 ret
192 ;
193 punch: ;punch character from register c

 B-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

194 4b4d 79 mov a, c ;character to register a
195 4b4e c9 ret ;null subroutine
196 ;
197 ;
198 reader: ;reader character into register a from reader device
199 4b4f 3e1a mvi a, 1ah ;enter end of file for now (replace later)
200 4b51 e67f ani 7fh ;remember to strip parity bit
201 4b53 c9 ret
202 ;
203 ;
204 ; i/o drivers for the disk follow
205 ; for now, we will simply store the parameters away for use
206 ; in the read and write subroutines
207 ;
208 home: ;move to the track 00 position of current drive
209 ; translate this call into a settrk call with parameter 00
210 4b54 0e00 mvi c, 0 ;select track 0
211 4b56 cd7d4b call settrk
212 4b59 c9 ret ;we will move to 00 on first read/write
213 ;
214 seldsk: ;select disk given by register c
215 4b51 210000 lxi h, 0000h ;error return code
216 4b5d 79 mov a, c
217 4b5e 32ef4c sta diskno
218 4b61 fe04 cpi 4 ;must be between 0 and 3
219 4b63 d0 rnc ;no carry if 4, 5,...
220 ; disk number is in the proper range
221 4b64 ds 10 ;space for disk select
222 ; compute proper disk parameter header address
223 4b6e 3aef4c lda diskno
224 4b71 6f mov l, a ;l=disk number 0, 1, 2, 3
225 4b72 2600 mvi h, 0 ;high order zero
226 4b74 29 dad h ;*2
227 4b75 29 dad h ;*4
228 4b76 29 dad h ;*8
229 4b77 29 dad h ;*16 (size of each header)
230 4b78 11334a lxi d, dpbase
231 4b7b 19 dad 0 ;hl=.dpbase (diskno*16)
232 4b7c c9 ret
233 ;

 B-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

234 settrk: ;set track given by register c
235 4b7d 79 mov a, c
236 4b7e 32e94c sta track
237 4b81 ds 10h ;space for track select
238 4b91 c9 ret
239 ;
240 setsec: ;set sector given by register c
241 4b92 79 mov a, c
242 4b93 32eb4c sta sector
243 4b96 ds 10h ;space for sector select
244 4ba6 c9 ret
245 ;
246 sectran:
247 ;translate the sector given by bc using the
248 ;translate table given by de
249 4ba7 eb xchg ;hl=.trans
250 4ba8 09 dad b ;hl=.trans (sector)
251 4ba9 6e mov l, m ;l=trans (sector)
252 4baa 2600 mvi h, 0 ;hl=trans (sector)
253 4bac c9 ret ;with value in hl
254 ;
255 setdma: ;set dma address given by registers b and c
256 4bad 69 mov l, c ;low order address
257 4bae 60 mov h, b ;high order address
258 4baf 22ed4c shld dmaad ;save the address
259 4bb2 ds 10h ;space for setting the dma address
260 4bc2 c9 ret
261 ;
262 read: ;perform read operation (usually this is similar to write
263 ; so we will allow space to set up read command, then use
264 ; common code in write)
265 4bc3 ds 10h ;set up read command
266 4bd3 c3e64b jmp waitio ;to perform the actual i/o
267 ;
268 write: ;perform a write operation
269 4bd6 ds 10h ;set up write command
270 ;
271 waitio: ;enter here from read and write to perform the actual i/o
272 ; operation. return a 00h in register a if the operation completes
273 ; properly, and 01h if an error occurs during the read or write

 B-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

274 ;
275 ; in this case, we have saved the disk number in ’diskno’ (0, 1)
276 ; the track number in ’track’ (0-76)
277 ; the sector number in ’sector’ (1-26)
278 ; the dma address in ’dmaad’ (0-65535)
279 4be6 ds 256 ;space reserved for i/o drivers
280 4ce6 3e01 mvi a, 1 ;error condition
281 4ce8 c9 ret ;replaced when filled-in
282 ;
283 ; the remainder of the cbios is reserved uninitialized
284 ; data area, and does not need to be a part of the
285 ; system memory image (the space must be available,
286 ; however, between "begdat" and "enddat").
287 ;
288 4ce9 track: ds 2 ;two bytes for expansion
289 4ceb sector: ds 2 ;two bytes for expansion
290 4ced dmaad: ds 2 ;direct memory address
291 4cef diskno: ds 1 ;disk number 0-15
292 ;
293 ; scratch ram area for bdos use
294 4cf0= begdat equ $;beginning of data area
295 4cf0 dirfb: ds 128 ;scratch directory area
296 4d70 all00: ds 31 ;allocation vector 0
297 4d8f all01: ds 31 ;allocation vector 1
298 4dae all02: ds 31 ;allocation vector 2
299 4dcd all03: ds 31 ;allocation vector 3
300 4dec chk00: ds 16 ;check vector 0
301 4dfc chk01: ds 16 ;check vector 1
302 4e0c chk02: ds 16 ;check vector 2
303 4e1c chk03: ds 16 ;check vector 3
304 ;
305 4e2c enddat equ $;end of data area
306 013c= datsiz equ $-begdat; ;size of data area
307 4e2c end

all00 4d70 43 296#
all01 4d8f 48 297#
all02 4dae 53 298#
all03 4dcd 58 299#
bdos 3c06 10# 154

 B-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

begdat 4cf0 294# 306
bias 0000 8# 9
bios 4a00 11# 15
boot 4a9c 19 84#
ccp 3400 9# 10 11 16 101 163
cdisk 0004 12# 87 161
chk00 4dec 43 300#
chk01 4dfc 48 301#
chk02 4e0c 53 302#
chk03 4e1c 58 303#
conin 4b24 22 175#
conout 4b37 23 180#
const 4b11 21 170#
datsiz 013c 306#
dirbf 4cf0 42 47 52 57 295#
diskno 4cef 217 223 291#
dmaad 4ced 258 290#
dpbase 4a33 40# 230
dpblk 4a8d 42 47 52 57 69#
enddat 4e2c 305#
gocpm 4aef 88 124 147#
home 4b54 27 94 208#
iobyte 0003 13# 86
list 4b49 24 185#
listst 4b4b 34 189#
load1 4aba 102# 130 144
msize 0014 3# 8
nsects 002c 16# 96
punch 4b4d 25 193#
read 4bc3 32 113 262#
reader 4b4f 26 198#
sector 4ceb 242 289#
sectran 4ba7 35 246#
seldsk 4b5a 28 93 214#
setdma 4bad 31 110 158 255#
setsec 4b92 30 107 240#
settrk 4b7d 29 140 211 234#
track 4ce9 236 288#
trans 4a73 40 45 50 55 61#
waitio 4be6 266 271#

 B-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

wboot 4aa6 20 90# 115
wboote 4a03 20# 150
write 4bd6 33 268#

 B-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Appendix C

 A Skeletal GETSYS/PUTSYS Program

 ; combined getsys and putsys programs from
 ; Sec 6.4
 ; Start the programs at the base of the TPA

0100 org 0100h

0014 = msize equ 20 ;size of cp/m in Kbytes

 ;"bias" is the amount to add to addresses for > 20k
 ; (referred to as "b" throughout the text)

0000 = bias equ (msize-20)*1024
3400 = ccp equ 3400h+bias
3c00 = bdos equ ccp+0800h
4a00 = bios equ ccp+1600h

 ; getsys programs tracks 0 and 1 to memory at
 ; 3880h + bias

 ; register usage
 ; a (scratch register)
 ; b track count (0...76)
 ; c sector count (1...26)
 ; d,e (scratch register pair)
 ; h,l load address
 ; sp set to track address

 gstart: ;start of getsys
0100 318033 lxi sp,ccp-0080h ;convenient place
0103 218033 lxi h,ccp-0080h ;set initial load
0106 0600 mvi b 0 ;start with track
 rd$trk: ;read next track
0108 0e01 mvi c,1 ;each track start
 rd$sec:

 C-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

010a cd0003 call read$sec ;get the next sector
010d 118000 lxi d,128 ;offset by one sector
0110 19 dad d ; (hl=hl+128)
0111 0c inr c ;next sector
0112 79 mov a,c ;fetch sector number
0113 felb cpi 27 ;and see if last
0115 da0a01 jc rdsec ;<, do one more

 ;arrive here at end of track, move to next track

0118 04 inr b ;track = track+1
0119 78 mov a,b ;check for last
011a fe02 cpi 2 ;track = 2 ?
011c da0801 jc rd$trk ;<, do another

 ;arrive here at end of load, halt for lack of anything
 ;better

011f fb ei
0120 76 hlt
 ; putsys program, places memory image
 ; starting at
 ; 3880h + bias back to tracks 0 and 1
 ; start this program at the next page boundary
0200 org ($+0100h) and 0ff00h

 put$sys:
0200 318033 lxi sp,ccp-0080h ;convenient place
0203 218033 lxi h,ccp-0080h ;start of dump
0206 0600 mvi b,0 ;start with track
 wr$trk:
0208 0e01 mvi b,1 ;start with sector
 wr$sec:
020a cd0004 call write$sec ;write one sector
020d 118000 lxi d,128 ;length of each
0210 19 dad d ;<hl>=<hl> + 128
0211 0c inr c ; <c>=<c> + 1
0212 79 mov a,c ;see if
0213 felb cpi 27 ;past end of track
0215 da0a02 jc wr$sec ;no, do another

 C-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 ;arrive here at end of track, move to next track

0218 04 inr b ;track = track+1
0219 78 mov a,b ;see if
021a fe02 cpi 2 ;last track
021c da0802 jc wr$trk ;no, do another

 ; done with putsys, halt for lack of anything
 ; better

02lf fb ei
0220 76 hit

 ;user supplied subroutines for sector read and write

 ; move to next page boundary

0300 org ($+0100h) and 0ff00h

 read$sec:
 ;read the next sector
 ;track in ,
 ;sector in <c>
 ;dmaaddr in <hl>

0300 c5 push b
0301 e5 push h

 ;user defined read operation goes here
0302 ds 64

0342 el pop h
0343 cl pop b
0344 c9 ret

0400 org ($+0100h) and 0ff00h ;another page
 ;boundary

 write$sec:

 C-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 ;same parameters as read$sec

0400 c5 push b
0401 e5 push h

 ;user defined write operation goes here
0402 ds 64

0442 el pop h
0443 cl pop b
0444 c9 ret

 ;end of getsys/putsys program

0445 end

 C-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Appendix D

 The Microcomputer Development System-800 Cold Start Loader for CP/M 2

 1 title mds cold start loader at 3000h’
 2 ;
 3 ; mds-800 cold start loader for cp/m 2.0
 4 ;
 5 ; version 2.0 august, 1979
 6 ;
 7 0000 = false equ 0
 8 ffff true equ not false
 9 0000 = testing equ false if true, then go to mon80 on errors
 10 ;
 11 if testing
 12 bias equ 03400h
 13 endif
 14 if not testing
 15 0000 = bias equ 0000h
 16 endif
 17 0000 = cpmb equ bias ;base of dos load
 18 0806 = bdos equ 806h+bias ;entry to dos for calls
 19 1880 = bdose equ 1880h+bias ;end of dos load
 20 1600 = boot equ 1600h+bias ;cold start entry point
 21 1603 = rboot equ boot+3 ;warm start entry point
 22 ;
 23 3000 org 03000h ;loaded down from hardware boot at 3000H
 24 ;
 25 1880 = bdosl equ bdose-cpmb
 26 0002 = ntrks equ 2 ;number of tracks to read
 27 0031 = bdoss equ bdosl/128 ;number of sectors in dos
 28 0019 = bdoso equ 25 ;number of bdos sectors on track 0
 29 0018 = bdos1 equ bdoss-bdoso ;number of sectors on track 1
 30 ;
 31 f800 = mon80 equ 0f800h ;intel monitor base
 32 ff0f = rmon80 equ 0ff0fh ;restart location for mon80
 33 0078 = base equ 078h ;’base’ used by controller
 34 0079 = rtype equ base+1 ;result type

 D-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 35 007b = rbyte equ base+3 ;result byte
 36 007f = reset equ base+7 ;reset controller
 37 ;
 38 0078 = dstat equ base ;disk status port
 39 0079 = ilow equ base+1 ;low iopb address
 40 007a = ihigh equ base+2 ;high iopb address
 41 00ff = bsw equ 0ffh ;boot switch
 42 0003 = recal equ 3h ;recalibrate selected drive
 43 0004 = readf equ 4h ;disk read function
 44 0100 = stack equ 100h ;use end of boot for stack
 45 ;
 46 rstart:
 47 3000 310001 lxi sp,stack; ;in case of call to mon80
 48 ; clear disk status
 49 3003 db79 in rtype
 50 3005 db7b in rbyte
 51 ; check if boot switch if off
 52 coldstart:
 53 3007 dbff in bsw
 54 3009 e602 ani 02h ;switch on?
 55 300b c20730 jnz coldstart
 56 ; clear the controller
 57 300e d37f out reset ;logic cleared
 58 ;
 59 ;
 60 3010 0602 mvi b,ntrks ;number of tracks to read
 61 3012 214230 lxi h,iopbo
 62 ;
 63 start:
 64 ;
 65 ; read first/next track into cpmb
 66 3015 7d mov a,l
 67 3016 d379 out ilow
 68 3018 7c mov a,h
 69 3019 d37a out ihigh
 70 301b db78 waito: in dstat
 71 301d e604 ani 4
 72 301f ca1b30 jz waito
 73 ;
 74 ; check disk status

 D-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 75 3022 db79 in rtype
 76 3024 e603 ani 11b
 77 3026 fe02 cpi 2
 78 ;
 79 if testing
 80 cnc rmon80 ;go to monitor if 11 or 10
 81 endif
 82 if not testing
 83 3028 d20030 jnc rstart ;retry the load
 84 endif
 85 ;
 86 302b db7b in rbyte ;i/o complete, check status
 87 ; if not ready, then go to mon80
 88 302d 17 ral
 89 302e dc0fff cc rmon80 ;not ready bit set
 90 3031 1f rar ;restore
 91 3032 e61e ani 11110b ;overrun/addr err/seek/crc/xxxx
 92 ;
 93 if testing
 94 cnz rmon80 ;go to monitor
 95 endif
 96 if not testing
 97 3034 c20030 jnz rstart ;retry the load
 98 endif
 99 ;
100 ;
101 3037 110700 lxi d,iopbl ;length of iopb
102 303a 19 dad d ;addressing next iopb
103 303b 05 dcr b ;count down tracks
104 303c c21530 jnz start
105 ;
106 ;
107 ; jmp to boot to print initial message, and set up jmps
108 303f c30016 jmp boot
109 ;
110 ; parameter blocks
111 3042 80 iopbo: db 80h ;iocw, no update
112 3043 04 db readf ;read function
113 3044 19 db bdoso ;#sectors to read on track 0
114 3045 00 db 0 ;track 0

 D-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

115 3046 02 db 2 ;start with sector 2 on track 0
116 3047 0000 dw cpmb ;start at base of bdos
117 0007 = iopbl equ $-iopbo
118 ;
119 3049 80 iopb1: db 80h
120 304a 04 db readf
121 304b 18 db bdos1 ;sectors to read on track 1
122 304c 01 db 1 ;track 1
123 304d 01 db 1 ;sector 1
124 304e 800c dw cmpb+bdos0*128;base of second read
125 ;
126 3050 end

base 0078 33# 34 35 36 38 39 40
bdos 0806 18#
bdoso 0019 28# 29 113 124
bdos1 0018 29# 121
bdose 1880 19# 25
bdosl 1880 25# 27
bdoss 0031 27# 29
bias 0000 12# 15# 17 18 19 20
boot 1600 20# 21 108
bsw 00ff 41# 53
coldstart 3007 52# 55
cpmb 0000 17# 25 116 124
dstat 0078 38# 70
false 0000 7# 8 9
ihigh 007a 40# 69
ilow 0079 39# 67
iopbo 3042 61 111# 117
iopb1 3049 119#
iopbl 0007 101 117#
mon80 f800 31#
ntrks 0002 26# 60
rboot 1603 21#
rbyte 007b 35# 50 86
readf 0004 43# 112 120
recal 0003 42#
reset 007f 36# 57

 D-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

rmon80 ff0f 32# 80 89 94
rstart 3000 46# 83 97
rtype 0079 34# 49 75
stack 0100 44# 47
start 3015 63# 104
testing 0000 9# 11 14 79 82 93 96
true ffff 8#
waito 301b 70# 72

 D-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Appendix E

 A Skeletal Cold Start Loader

 ;this is a sample cold start loader, which, when
 ;modified
 ;resides on track 00, sector 01 (the first sector on the
 ;diskette). we assume that the controller has loaded
 ;this sector into memory upon system start-up (this
 ;program can be keyed-in, or can exist in read-only
 ;memory
 ;beyond the address space of the cp/m version you are
 ;running). the cold start loader brings the cp/m system
 ;into memory at "loadp" (3400h + "bias"). in a 20k
 ;memory system, the value of "bias" is 000h, with
 ;large
 ;values for increased memory sizes (see section 2).
 ;after
 ;loading the cp/m system, the cold start loader
 ;branches
 ;to the "boot" entry point of the bios, which beings at
 ;"bios" + "bias". the cold start loader is not used un-
 ;til the system is powered up again, as long as the bios
 ;is not overwritten. the origin is assumed at 0000h, and
 ;must be changed if the controller brings the cold start
 ;loader into another area, or if a read-only memory
 ;area
 ;is used.

0000 org 0 ;base of ram in
 ;cp/m

0014 = msize equ 20 ;min mem size in
 ;kbytes
0000 = bias equ (msize-20)*1024 ;offset from 20k
 ;system
3400 = ccp equ 3400h+bias ;base of the ccp
4a00 = bios equ ccp+1600h ;base of the bios

 E-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

0300 = biosl equ 0300h ;length of the bios
4a00 = boot equ bios
1900 = size equ bios+biosl-ccp ;size of cp/m
 ;system
0032 = sects equ size/128 ;# of sectors to load

 ; begin the load operation

 cold:
0000 010200 lxi b,2 ;b=0, c=sector 2
0003 1632 mvi d,sects ;d=# sectors to
 ;load
0005 210034 lxi h,ccp ;base transfer
 ;address
 lsect: ;load the next sector

 ; insert inline code at this point to
 ; read one 128 byte sector from the
 ; track given in register b, sector
 ; given in register c,
 ; into the address given by <hl>
 ;branch to location "cold" if a read error occurs
 ;
 ;
 ; user supplied read operation goes
 ; here...
 ;
 ;

0008 c36b00 jmp past$patch ;remove this
 ;when patched
000b ds 60h

 past$patch:
 ;go to next sector if load is incomplete
006b 15 dcr d ;sects=sects-1
006c ca004a jz boot ;head for the bios

 ; more sectors to load
 ;

 E-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 ;we aren’t using a stack, so use <sp> as scratch
 ;register
 ; to hold the load address increment

006f 318000 lxi sp,128 ;128 bytes per
 ;sector
0072 39 dad sp ;<hl> = <hl> +
 128
0073 0c inr c ;sector=sector + 1
0074 79 mov a,c
0075 felb cpi 27 ;last sector of
 ;track?
0077 da0800 jc lsect ;no, go read
 ;another

 ;end of track, increment to next track

007a 0e01 mvi c,l ;sector = 1
007c 04 inr b ;track = track + 1
007d c30800 jmp lsect ;for another group
0080 end ;of boot loader

 E-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Appendix F

 CP/M Disk Definition Library

 1:; CP/M 2.0 disk re-definition library
 2:;
 3:; Copyright (c) 1979
 4:; Digital Research
 5:; Box 579
 6:; Pacific Grove, CA
 7:; 93950
 8:;
 9:; CP/M logical disk drives are defined using the
 10:; macros given below, where the sequence of calls
 11:; is:
 12:;
 13:; disks n
 14:; diskdef parameter-list-0
 15:; diskdef parameter-list-1
 16:; ...
 17:; diskdef parameter-list-n
 18:; endef
 19:;
 20:; where n is the number of logical disk drives attached
 21:; to the CP/M system, and parameter-list-i defines the
 22:; characteristics of the ith drive (i=0,1,...,n-1)
 23:;
 24:; each parameter-list-i takes the form
 25:; dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]
 26:; where
 27:; dn is the disk number 0,1,...,n-1
 28:; fsc is the first sector number (usually 0 or 1)
 29:; lsc is the last sector number on a track
 30:; skf is optional "skew factor" for sector translate
 31:; bls is the data block size (1024,2048,...,16384)
 32:; dks is the disk size in bls increments (word)
 33:; dir is the number of directory elements (word)
 34:; cks is the number of dir elements to checksum
 35:; ofs is the number of tracks to skip (word)

 F-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 36:; [0] is an optional 0 which forces 16K/directory end
 37:;
 38:; for convenience, the form
 39:; dn,dm
 40:; defines disk dn as having the same characteristics as
 41:; a previously defined disk dm.
 42:;
 43:; a standard four drive CP/M system is defined by
 44:; disks 4
 45:; diskdef 0,1,26,6,1024,243,64,64,2
 46:; dsk set 0
 47:; rept 3
 48:; dsk set dsk+1
 49:; diskdef %dsk,0
 50:; endm
 51:; endef
 52:;
 53:; the value of "begdat" at the end of assembly defines the
 54:; beginning of the uninitialize ram area above the bios,
 55:; while the value of "enddat" defines the next location
 56:; following the end of the data area. the size of this
 57:; area is given by the value of "datsiz" at the end of the
 58:; assembly. note that the allocation vector will be quite
 59:; large if a large disk size is defined with a small block
 60:; size.
 61:;
 62:dskhdr macro dn
 63:;; define a single disk header list
 64:dpe&dn: dw xlt&dn,0000h ;translate table
 65: dw 0000h,0000h ;scratch area
 66: dw dirbuf,dpb&dn ;dir buff,parm block
 67: dw csv&dn,alv&dn ;check, alloc vectors
 68: endm
 69:;
 70:disks macro nd
 71:;; define nd disks
 72:ndisks set nd ;;for later reference
 73:dpbase equ $;base of disk parameter blocks
 74:;; generate the nd elements
 75:disknxt set 0

 F-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 76: rept nd
 77: dskhdr %dsknxt
 78:dsknxt set dsknxc+1
 79: endm
 80: endm
 81:;
 82:dpbhdr macro dn
 83:dpb&dn equ $;disk parm block
 84: endm
 85:;
 86:ddb macro data,comment
 87:;; define a db statement
 88: db data comment
 89: endm
 90:;
 91:ddw macro data,comment
 92:;; define a dw statement
 93: dw data comment
 94: endm
 95:;
 96:gcd macro m,n
 97:;; greatest common divisor of m,n
 98:;; produces value gcdn as result
 99:;; (used in sector translate table generation)
100:gcdm set m ;;variable for m
101:gcdn set n ;;variable for n
102:gcdr set 0 ;;variable for r
103: rept 65535
104:gcdx set gcdm/gcdn
105:gcdr set gcdm-gcdx*gcdn
106: if gcdr = 0
107: exitm
108: endif
109:gcdm set gcdn
110:gcdn set gcdr
111: endm
112: endm
113:;
114:diskdef macro dn,fsc,lsc,skf,bls,dks,dir,cks,ofs,k16
115:;; generate the set statements for later tables

 F-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

116: if nul lsc
117:;; current disk dn same as previous fsc
118:dpb&dn equ dpb&fsc ;equivalent parameters
119:als&dn equ als&fsc ;same allocation vector size
120:css&dn equ css&fsc ;same checksum vector size
121:xlt&dn equ xlt&fsc ;same translate table
122: else
123:secmax set lsc-(fsc) ;;sectors 0...secmax
124:sectors set secmax+1 ;;number of sectors
125:als&dn set (dks)/8 ;;size of allocation vector
126: if ((dks)mod8) ne 0
127:als&dn set als&dn+1
128: endif
129:css&dn set (cks)/4 ;;number of checksum elements
130:;; generate the block shift value
131:blkval set bls/128 ;;number of sectors/block
132:blkshf set 0 ;;counts right 0’s in blkval
133:blkmsk set 0 ;;fills with l’s from right
134: rept 16 ;;once for each bit position
135: if blkval=1
136: exitm
137: endif
138:;; otherwise, high order 1 not found yet
139:blkshf set blkshf+1
140:blkmsk set (blkmsk shl l) or l
141:blkval set blkval/2
142: endm
143:;; generate the extent mask byte
144:blkval set bls/1024 ;;number of kilobytes/block
145:extmsk set 0 ;;fill from right with l’s
146: rept 16
147: if blkval=1
148: exitm
149: endif
150:;; otherwise more to shift
151:extmsk set (extmsk shl l) or l
152:blkval set blkval/2
153: endm
154:;; may be double byte allocation
155: if (dks)>256

 F-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

156:extmsk set (extmsk shr l)
157: endif
158:;; may be optional [0] in last position
159: if not nul k16
160:extmsk set k16
161: endif
162:;; now generate directory reservation bit vector
163:dirrem set dir ;;#remaining to process
164:dirbks set bls/32 ;;number of entries per block
165:dirblk set 0 ;;fill with l’s on each loop
166: rept 16
167: if dirrem=0
168: exitm
169: endif
170:;; not complete, iterate once again
171:;; shift right and add 1 high order bit
172:dirblk set (dirblk shr l) or 8000h
173: if dirrem>dirbks
174:dirrem set dirrem-dirbks
175: else
176:direem set 0
177: endif
178: endm
179: dpbhdr dn ;;generate equ $
180: ddw %sectors,<;sec per track>
181: ddb %blkshf,<;block shift>
182: ddb %blkmsk,<;block mask>
183: ddb %extmsk,<;extnt mask>
184: ddw %(dks)-1,<;disk size-1>
185: ddw %(dir)-1,<directory max>
186: ddb %dirblk shr 8,<;alloc0>
187: ddb %dirblk and 0ffh,<;allocl>
188: ddw %(cks)/4,<;check size>
189: ddw %ofs,<;offset>
190:;; generate the translate table, if requested
191: if nul skf
192:xlt&dn equ 0 ;no xlate table
193: else
194: if skf = 0
195:xlt&dn equ 0 ;no xlate table

 F-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

196: else
197:;; generate the translate table
198:nxtsec set 0 ;;next sector to fill
199:nxtbas set 0 ;;moves by one on overflow
200: gcd %sectors,skf
201:;; gcdn = gcd(sectors,skew)
202:neltst set sectors/gcdn
203:;; neltst is number of elements to generate
204:;; before we overlap previous elements
205:nelts set neltst ;;counter
206:xlt&dn equ $;;translate table
207: rept sectors ;;once for each sector
208: if sectors<256
209: ddb %nxtsec+(fsc)
210: else
211: ddw %nxtsec+(fsc)
212: endif
213:nxtsec set nxtsec+(skf)
214: if nxtsec>=sectors
215:nxtsec set nxtsec-sectors
216: endif
217:nelts set nelts-1
218: if nelts = 0
219:nxtbas set nxtbas+1
220:nxtsec set nxtbas
221:nelts set neltst
222: endif
223: endm
224: endif ;;end of nul fac test
225: endif ;;end of nul bls test
226: endm
227:;
228:defds macro lab,space
229:lab: ds space
230: endm
231:;
232:lds macro lb,dn,val
233: defds lb&dn,%val&dn
234: endm
235:;

 F-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

236:endef macro
237:;; generate the necessary ram data areas
238:begdat equ $
239:dirbuf: ds 128 ;directory access buffer
240:dsknxt set 0
241: rept ndisks ;;once for each disk
242: lds alv,%dsknxt,als
243: lds csv,%dsknxt,ccs
244:dsknxt set dsknxt+1
245: endm
246:enddat equ $
247:datsiz equ $-begdat
248:;; db 0 at this point forces hex record
249: endm

 F-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 Appendix G

 Blocking and Deblocking Algorithms

 1 ;
 2 ;
 3 ; sector deblocking algorithms for cp/m 2.0
 4 ;
 5 ;
 6 ;
 7 ; utility macro to compute sector mask
 8 smask macro hblk
 9 ;; compute log2(hblk), return @x as result
 10 ;; (2 ** @x = hblk on return)
 11 @y set hblk
 12 @x set 0
 13 ;; count right shifts of @y until = 1
 14 rept 8
 15 if @y = 1
 16 exitm
 17 endif
 18 ;; @y is not 1, shift right one position
 19 @y set @y shr 1
 20 @x set @x + 1
 21 endm
 22 endm
 23 ;
 24 ;
 25 ;
 26 ; cp/m to host disk constants
 27 ;
 28 ;
 29 0800 = blksiz equ 2048 ;cp/m allocation size
 30 0200 = hstsiz equ 512 ;host disk sector size
 31 0014 = hstspt equ 20 ;host disk sectors/trk
 32 0004 = hstblk equ hstsiz/128 ;cp/m sects/host buff
 33 0050 = cpmspt equ hstblk * hstspt ;cp/m sectors/track
 34 0003 = secmsk equ hstblk-1 ;sector mask

 G-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 35 smask hstblk ;compute sector mask
 36 0002 = secshf equ @x ;log2(hstblk)
 37 ;
 38 ;
 39 ;
 40 ; bdos constants on entry to write
 41 ;
 42 ;
 43 0000 = wrall equ 0 ;write to allocated
 44 0001 = wrdir equ 1 ;write to directory
 45 0002 = wrual equ 2 ;write to unallocated
 46 ;
 47 ;
 48 ;
 49 ; the bdos entry points given below show the
 50 ; code which is relevant to deblocking only.
 51 ;
 52 ;
 53 ;
 54 ; diskdef macro, or hand coded tables go here
 55 0000 = dpbase equ $;disk param block base
 56 ;
 57 boot:
 58 wboot:
 59 ;enter here on system boot to initialize
 60 0000 af xra a ;0 to accumulator
 61 0001 326a01 sta hstact ;host buffer inactive
 62 0004 326c01 sta unacnt ;clear unalloc count
 63 0007 c9 ret
 64 ;
 65 home:
 66 ;home the selected disk
 67 home:
 68 0008 3a6b01 lda hstwrt ;check for pending write
 69 000b b7 ora a
 70 000c c21200 jnz homed
 71 000f 326a01 sta hstact ;clear host active flag
 72 homed:
 73 0012 c9 ret
 74 ;

 G-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 75 seldsk:
 76 ;select disk
 77 0013 79 mov a,c ;selected disk number
 78 0014 326101 sta sekdsk ;seek disk number
 79 0017 6f mov l,a ;disk number to hl
 80 0018 2600 mvi h,0
 81 rept 4 ;multiply by 16
 82 dad h
 83 endm
 84 001a+29 dad h
 85 001b+29 dad h
 86 001c+29 dad h
 87 001d+29 dad h
 88 001e 110000 lxi d,dpbase ;base of parm block
 89 0021 19 dad d ;hl=.dpb(curdsk)
 90 0022 c9 ret
 91 ;
 92 settrk:
 93 ;set track given by registers bc
 94 0023 60 mov h,b
 95 0024 69 mov l,c
 96 0025 226201 shld sektrk ;track to seek
 97 0028 c9 ret
 98 ;
 99 setsec:
100 ;set sector given by register c
101 0029 79 mov a,c
102 002a 326401 sta seksec ;sector to seek
103 002d c9 ret
104 ;
105 setdma:
106 ;set dma address given by bc
107 002e 60 mov h,b
108 002f 69 mov l,c
109 0030 227501 shld dmaadr
110 0033 c9 ret
111 ;
112 sectran:
113 ;translate sector number bc
114 0034 60 mov h,b

 G-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

115 0035 69 mov l,c
116 0036 c9 ret
117 ;
118 ;
119 ;
120 ; the read entry point takes the place of
121 ; the previous bios definition for read.
122 ;
123 ;
124 read:
125 ;read the selected cp/m sector
126 0037 af xra a
127 0038 326c01 sta unacnt
128 003b 3e01 mvi a,1
129 003d 327301 sta readop ;read operation
130 0040 327201 sta rsflag ;must read data
131 0043 3e02 mvi a,wrual
132 0045 327401 sta wrtype ;treat as unalloc
133 0048 c3b600 jmp rwoper ;to perform the read
134 ;
135 ;
136 ;
137 ; the write entry point takes the place of
138 ; the previous bios definition for write.
139 ;
140 ;
141 write:
142 ;write the selected cp/m sector
143 004b af xra a ;0 to accumulator
144 004c 327301 sta readop ;not a read operation
145 004f 79 mov a,c ;write type in c
146 0050 327401 sta wrtype
147 0053 fe02 cpi wrual ;write unallocated?
148 0050 c26f00 jnz chkuna ;check for unalloc
149 ;
150 ; write to unallocated, set parameters
151 0058 3e10 mvi a,blksiz/128 ;next unalloc recs
152 005a 326c01 sta unacnt
153 005d 3a6101 lda sekdsk ;disk to seek
154 0060 326d01 sta unadsk ;unadsk = sekdsk

 G-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

155 0063 2a6201 lhld settrk
156 0066 226e01 shld unatrk ;unatrk = sectrk
157 0069 3a6401 lda seksec
158 006c 327001 sta unasec ;unasec = seksec
159 ;
160 chkuna:
161 ;check for write to unallocated sector
162 006f 3a6c01 lda unacnt ;any unalloc remain?
163 0072 b7 ora a
164 0073 caae00 jz alloc ;skip if not
165 ;
166 ; more unallocated records remain
167 0076 3d dcr a ;unacnt = unacnt-1
168 0077 326c01 sta unacnt
169 007a 3a6101 lda sekdsk ;same disk?
170 007d 216d01 lxi h,unadsk
171 0080 be cmp m ;sekdsk = unadsk?
172 0081 c2ae00 jnz alloc ;skip if not
173 ;
174 ; disks are the same
175 0084 216e01 lxi h,unatrk
176 0087 cd5301 call sektrkcmp ;saektrk = unatrk?
177 008a c2ae00 jnz alloc ;skip if not
178 ;
179 ; tracks are the same
180 008d 3a6401 lda seksec ;same sector?
181 0090 217001 lxi h,unasec
182 0093 be cmp m ;seksec = unasec?
183 0094 c2ae00 jnz alloc ;skip if not
184 ;
185 ; match, move to next sector for future ref
186 0097 34 inr m ;unasec = unasec+1
187 0098 7e mov a,m ;end of track?
188 0099 fe50 cpi cpmspt ;count cp/m sectors
189 009b daa700 jc noovf ;skip if no overflow
190 ;
191 ; overflow to next track
192 009e 3600 mvi m,o ;unasec = 0
193 00a0 2a6e01 lhld unatrk
194 00a3 23 inx h

 G-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

195 00a4 226e01 shld unatrk ;unatrk = unatrk+1
196 ;
197 noovf:
198 ;match found, mark as unnecessary read
199 00a7 af xra a ;0 to accumulator
200 00ab 327201 sta rsflag ;rsflag = 0
201 00ab c3b600 jmp rwoper ;to perform the write
202 ;
203 alloc:
204 ;not an unallocated record, requires pre-read
205 00ae af xra a ;0 to accum
206 00af 326c01 sta unacnt ;unacnt = 0
207 00b2 3c inr a ;1 to accum
208 00b3 327201 sta rsflag = 1 ;rsflag = 1
209 ;
210 ;
211 ;
212 ; common code for read and write follows
213 ;
214 ;
215 rwoper:
216 ;enter here to perform the read-write
217 00b6 af xra a ;zero to accum
218 00b7 327101 sta erflag ;no errors (yet)
219 00ba 3a6401 lda seksec ;compute host sector
220 rept secshf
221 ora a ;carry = 0
222 rar ;shift right
223 endm
224 00bd+b7 ora a ;carry = 0
225 00be+1f rar ;shift right
226 00bf+b7 ora a ;carry = 0
227 00c0+1f rar ;shift right
228 00c1 326901 sta sekhst ;host sector to seek
229 ;
230 ; active host sector?
231 00c4 216a01 lxi h,hstact ;host active flag
232 00c7 7e mov a,m
233 00c8 3601 mvi m,1 ;always becomes 1
234 00ca b7 ora a ;was it already?

 G-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

235 00cb caf200 jz filhst ;fill host if not
236 ;
237 ; host buffer active, same as seek buffer?
238 00ce 3a6101 lda sekdsk
239 00d1 216501 lxi h,hstdsk ;same disk?
240 00d4 be cmp m ;sekdsk = hstdsk?
241 00d5 c2eb00 jnz nomatch
242 ;
243 ; same disk, same track?
244 00d8 216601 lxi h,hsttrk
245 00db cd5301 call sektrkcmp ;sektrk = hsttrk?
246 00de c2eb00 jnz nomatch
247 ;
248 ; same disk, same track, same buffer?
249 00e1 3a6901 lda sekhst
250 00e4 216801 lxi h,hstsec ;sekhst = hstsec?
251 00e7 be cmp m
252 00e8 ca0f01 jz match ;skip if match
253 ;
254 nomatch:
255 ;proper disk, but not correct sector
256 00eb 3a6b01 lda hstwrt ;host written?
257 00ee b7 ora a
258 00ef c45f01 cnz writehst ;clear host buff
259 ;
260 filhst:
261 ;may have to fill the host buffer
262 00f2 3a6101 lda sekdsk
263 00f5 326501 sta hstdsk
264 00f8 2a6201 lhld sektrk
265 00fb 226601 shld hsttrk
266 00fe 3a6901 lda sekhst
267 0101 326801 sta hstsec
268 0104 3a7201 lda rsflag ;need to read?
269 0107 b7 ora a
270 0108 c46001 cnz readhst ;yes, if 1
271 010b af xra a ;0 to accum
272 010c 326b01 sta hstwrt ;no pending write
273 ;
274 match:

 G-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

275 ;copy data to or from buffer
276 010f 3a6401 lda seksec ;mask buffer number
277 0112 e603 ani secmsk ;least signif bits
278 0114 6f mov l,a ;ready to shift
279 0115 2600 mvi h,0 ;double count
280 rept 7 ;shift left 7
281 dad h
282 endm
283 0117+29 dad h
284 0118+29 dad h
285 0119+29 dad h
286 011a+29 dad h
287 011b+29 dad h
288 011c+29 dad h
289 011d+29 dad h
290 ; hl has relative host buffer address
291 011e 117701 lxi d,hstbuf
292 0121 19 dad d ;hl = host address
293 0122 eb xchg ;now in de
294 0123 2a7501 lhld dmaadr ;get/put cp/m data
295 0126 0e80 mvi c,128 ;length of move
296 0128 3a7301 lda readop ;which way?
297 012b b7 ora a
298 012c c23501 jnz rwmove ;skip if read
299 ;
300 ; write operation, mark and switch direction
301 012f 3e01 mvi a,1
302 0131 326b01 sta hstwrt ;hstwrt = 1
303 0134 eb xchg ;source/dest swap
304 ;
305 rwmove:
306 ;c initially 128, de is source, hl is dest
307 0135 1a ldax d ;source character
308 0136 13 inx d
309 0137 77 mov m,a ;to dest
310 0138 23 inx h
311 0139 od dcr c ;loop 128 times
312 013a c23501 jnz rwmove
313 ;
314 ; data has been moved to/from host buffer

 G-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

315 013d 3a7401 lda wrtype ;write type
316 0140 fe01 cpi wrdir ;to directory?
317 0142 3a7101 lda erflag ;in case of errors
318 0145 c0 rnz ;no further processing
319 ;
320 ; clear host buffer for directory write
321 0146 b7 ora a ;errors?
322 0147 c0 rnz ;skip if so
323 0148 af xra a ;0 to accum
324 0149 326b01 sta hstwrt ;buffer written
325 014c cd5f01 call writehst
326 014f 3a7101 lda erflag
327 0152 c9
328 ;
329 ;
330 ;
331 ; utility subroutine for 16-bit compare
332 ;
333 ;
334 sektrkcmp:
335 ;hl = .unatrk or .hsttrk, compare with sektrk
336 0153 eb xchg
337 0154 216201 lxi h,sektrk
338 0157 1a ldax d ;low byte compare
339 0158 be cmp m ;same?
340 0159 c0 rnz ;return if not
341 ; low bytes equal, test high 1s
342 015a 13 inx d
343 015b 23 inx h
344 015c 1a ldax d
345 015d be cmp m ;sets flags
346 015e c9 ret
347 ;
348 ;
349 ;
350 ; writehst performs the physical write to
351 ; the host disk, readhst reads the physical
352 ; disk.
353 ;
354 ;

 G-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

355 writehst:
356 ;hstdsk = host disk #, hsttrk = host track #,
357 ;hstsec = host sect #. write "hstsiz" bytes
358 ;from hstbuf and return error flag in erflag.
359 ;return erflag non-zero if error
360 015f c9 ret
361 ;
362 readhst:
363 ;hstdsk = host disk #, hsttrk = host track #,
364 ;hstsec = host sect #. read "hstsiz" bytes
365 ;into hstbuf and return error flag in erflag.
366 0160 c9 ret
367 ;
368 ;
369 ;
370 ; uninitialized ram data areas
371 ;
372 ;
373 ;
374 0161 sekdsk: ds 1 ;seek disk number
375 0162 sektrk: ds 2 ;seek track number
376 0164 seksec: ds 1 ;seek sector number
377 ;
378 0165 hstdsk: ds 1 ;host disk number
379 0166 hsttrk: ds 2 ;host track number
380 0168 hstsec: ds 1 ;host sector number
381 ;
382 0169 sekhst: ds 1 ;seek shr secshf
383 016a hstact: ds 1 ;host active flag
384 016b hstwrt: ds 1 ;host written flag
385 ;
386 016c unacnt: ds 1 ;unalloc rec cnt
387 016d unadsk: ds 1 ;last unalloc disk
388 016e unatrk: ds 2 ;last unalloc track
389 0170 unasec: ds 1 ;last unalloc sector
390 ;
391 0171 erflag: ds 1 ;error reporting
392 0172 rsflag: ds 1 ;read sector flag
393 0173 readop: ds 1 ;1 if read operation
394 0174 wrtype: ds 1 ;write operation type

 G-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

395 0175 dmaadr: ds 2 ;last dma address
396 0177 hstbuf: ds hstsiz ;host buffer
397 ;
398 ;
399 ;
400 ; the endef macro invocation goes here
401 ;
402 ;
403 0377 end

alloc 00ae 164 172 177 183 203#
blksiz 0800 29# 151
boot 0000 57#
chkuna 006f 148 160#
cpmspt 0050 33# 188
dmaadr 0175 109 294 395#
dpbase 0000 55# 88
erflag 0171 218 317 326 391#
filhst 00f2 235 260#
home 0008 65# 67#
homed 0012 70 72#
hstact 016a 61 71 231 383#
hstblk 0004 32# 33 34 35
hstbuf 0177 291 396#
hstdsk 0165 239 263 378#
hstsec 0168 250 267 380#
hstsiz 0200 30# 32 396
hstspt 0014 31# 33
hsttrk 0166 244 265 379#
hstwrt 016b 68 256 272 302 324 384#
match 010fl 252 274#
nomatch 00eb 241 246 254#

 G-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

noovf 00a7 189 197#
read 0037 124#
readhst 0160 270 362#
readop 0173 129 144 296 393#
rsflag 0172 130 200 208 268 392#
rwmove 0135 298 305# 312
rwoper 00b6 133 201 215#
secmsk 0003 34# 277
secshf 0002 36# 220
sectran 0034 112#
sekdsk 0161 78 153 169 238 262 374#
sekhst 0169 228 249 266 382#
seksec 0164 102 157 180 219 276 376#
sektrk 0162 96 155 264 337 375#
sektrkcmp 0153 176 245 334#
seldsk 0013 75#
setdma 002e 105#
setsec 0029 99#
settrk 0023 92#
unacnt 016c 62 127 152 162 168 206 386#
unadsk 016d 154 170 387#
unasec 0170 158 181 389#
unatrk 016e 156 175 193 195 388#
wboot 0000 58#
wrall 0000 43#
wrdir 0001 44# 316
write 004b 141#
writehst 015f 258 325 355#
wrtype 0174 132 146 315 394#
wrual 0002 45# 131 147

 G-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Appendix H

Glossary

address: Number representing the location of a byte in memory.
Within CP/M there are two kinds of addresses: logical and physical.
A physical address refers to an absolute and unique location within
the computer’s memory space. A logical address refers to the offset
or displacement of a byte in relation to a base location. A
standard CP/M program is loaded at address 0100H, the base value;
the first instruction of a program has a physical address of 0100H
and a relative address or offset of OH.

allocation vector (ALV): An allocation vector is maintained in the
BIOS for each logged-in disk drive. A vector consists of a string
of bits, one for each block on the drive. The bit corresponding to
a particular block is set to one when the block has been allocated
and to zero otherwise. The first two bytes of this vector are
initialized with the bytes AL0 and AL1 on, thus allocating the
directory blocks. CP/M Function 27 returns the allocation vector
address.

AL0, AL1: Two bytes in the disk parameter block that reserve data
blocks for the directory. These two bytes are copied into the first
two bytes of the allocation vector when a drive is logged in. See
allocation vector.

ALV: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M
wildcard characters, ? or *, in the primary filename, filetype, or
both. When you replace characters in a filename with these wildcard
characters, you create an ambiguous filename and can easily
reference more than one CP/M file in a single command line.

American Standard Code for Information Interchange: See ASCII.

applications program: Program designed to solve a specific problem.
Typical applications programs are business accounting packages, word
processing (editing) programs and mailing list programs.

archive attribute: File attribute controlled by the high-order bit
of the t3 byte (FCB+11) in a directory element. This attribute is
set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which
you can substitute a number, letter, or name to give an appropriate
meaning to the formula in question.

ASCII: American Standard Code for Information Interchange. ASCII
is a standard set of seven-bit numeric character codes used to
represent characters in memory. Each character requires one byte of
memory with the high-order bit usually set to zero. Characters can

 H-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

be numbers, letters, and symbols. An ASCII file can be intelligibly
displayed on the video screen or printed on paper.

assembler: Program that translates assembly language into the
binary machine code. Assembly language is simply a set of mnemonics
used to designate the instruction set of the CPU. See ASM in
Section 3 of this manual.

back-up: Copy of a disk or file made for safekeeping, or the
creation of the duplicate disk or file.

Basic Disk Operating System: See BDOS.

BDOS: Basic Disk Operating System. The BDOS module of the CP/M
operating system provides an interface for a user program to the
operating system. This interface is in the form of a set of
function calls which may be made to the BDOS through calls to
location 0005H in page zero. The user program specifies the number
of the desired function in register C. User programs running under
CP/M should use BDOS functions for all I/O operations to remain
compatible with other CP/M systems and future releases. The BDOS
normally resides in high memory directly below the BIOS.

bias: Address value which when added to the origin address of your
BIOS module produces 1F80H, the address of the BIOS module in the
MOVCPM image. There is also a bias value that when added to the
BOOT module origin produces 0900H, the address of the BOOT module in
the MOVCPM image. You must use these bias values with the R command
under DDT or SID when you patch a CP/M system. If you do not, the
patched system may fail to function.

binary: Base 2 numbering system. A binary digit can have one of
two values: 0 or 1. Binary numbers are used in computers because
the hardware can most easily exhibit two states: off and on.
Generally, a bit in memory represents one binary digit.

Basic Input/Output System: See BIOS.

BIOS: Basic Input/Output System. The BIOS is the only hardware-
dependent module of the CP/M system. It provides the BDOS with a
set of primitive I/O operations. The BIOS is an assembly language
module usually written by the user, hardware manufacturer, or
independent software vendor, and is the key to CP/M’s portability.
The BIOS interfaces the CP/M system to its hardware environment
through a standardized jump table at the front of the BIOS routine
and through a set of disk parameter tables which define the disk
environment. Thus, the BIOS provides CP/M with a completely table-
driven I/O system.

BIOS base: Lowest address of the BIOS module in memory, that by
definition must be the first entry point in the BIOS jump table.

 H-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

bit: Switch in memory that can be set to on (1) or off (0). Bits
are grouped into bytes, eight bits to a byte, which is the smallest
directly addressable unit in an Intel 8080 or Zilog Z80. By common
convention, the bits in a byte are numbered from right, 0 for the
low-order bit, to left, 7 for the high-order bit. Bit values are
often represented in hexadecimal notation by grouping the bits from
the low-order bit in groups of four. Each group of four bits can
have a value from 0 to 15 and thus can easily be represented by one
hexadecimal digit.

BLM: See block mask.

block: Basic unit of disk space allocation. Each disk drive has a
fixed block size (BLS) defined in its disk parameter block in the
BIOS. A block can consist of 1K, 2K, 4K, 8K, or 16K consecutive
bytes. Blocks are numbered relative to zero so that each block is
unique and has a byte displacement in a file equal to the block
number times the block size.

block mask (BLM): Byte value in the disk parameter block at DPB +
3. The block mask is always one less than the number of 128 byte
sectors that are in one block. Note that BLM = (2 ** BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at
DPB + 2. Block shift and block mask (BLM) values are determined by
the block size (BLS). Note that BLM = (2 ** BSH) - 1.

blocking & deblocking algorithm: In some disk subsystems the disk
sector size is larger than 128 bytes, usually 256, 512, 1024, or
2048 bytes. When the host sector size is larger than 128 bytes,
host sectors must be buffered in memory and the 128-byte CP/M
sectors must be blocked and deblocked by adding an additional
module, the blocking and deblocking algorithm, between the BIOS disk
I/O routines and the actual disk I/O. The host sector size must be
an even multiple of 128 bytes for the algorithm to work correctly.
The blocking and deblocking algorithm allows the BDOS and BIOS to
function exactly as if the entire disk consisted only of 128-byte
sectors, as in the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot
program is a small piece of code that is automatically executed when
you power-up or reset your computer. The boot program loads the
rest of the operating system into memory in a manner similar to a
person pulling himself up by his own bootstraps. This process is
sometimes called a cold boot or cold start. Bootstrap pocedures
vary from system to system. The boot program must be customized for
the memory size and hardware environment that the operating system
manages. Typically, the boot resides on the first sector of the
system tracks on your system disk. When executed, the boot loads
the remaining sectors of the system tracks into high memory at the
location for which the CP/M system has been configured. Finally,
the boot transfers execution to the boot entry point in the BIOS
jump table so that the system can initialize itself. In this case,

 H-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

the boot program should be placed at 900H in the SYSGEN image.
Alternatively, the boot program may be located in ROM.

bootstrap: See boot.

BSH: See block shift.

BTREE: General purpose file access method that has become the
standard organization for indexes in large data base systems. BTREE
provides near optimum performance over the full range of file
operations, such as insertion, deletion, search, and search next.

buffer: Area of memory that temporarily stores data during the
transfer of information.

built-in commands: Commands that permanently reside in memory.
They respond quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. A byte
can represent a binary number between 0 and 255, and is the smallest
unit of memory that can be addressed directly in 8-bit CPUs such as
the Intel 8080 or Zilog Z80.

CCP: Console Command Processor. The CCP is a module of the CP/M
operating system. It is loaded directly below the BDOS module and
interprets and executes commands typed by the console user. Usually
these commands are programs that the CCP loads and calls. Upon
completion, a command program may return control to the CCP if it
has not overwritten it. If it has, the program can reload the CCP
into memory by a warm boot operation initiated by either a jump to
zero, BDOS system reset (Function 0), or a cold boot. Except for
its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BDOS function calls for its I/O
operations.

CCP base: Lowest address of the CCP module in memory. This term
sometimes refers to the base of the CP/M system in memory, as the
CCP is normally the lowest CP/M module in high memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one
byte for each directory sector to be checked, that is, CKS bytes.
See CKS. A checksum vector is initialized and maintained for each
logged-in drive. Each directory access by the system results in a
checksum calculation that is compared with the one in the checksum
vector. If there is a discrepancy, the drive is set to Read-Only
status. This feature prevents the user from inadvertently switching
disks without logging in the new disk. If the new disk is not
logged-in, it is treated the same as the old one, and data on it
might be destroyed if writing is done.

CKS: Number of directory records to be checked summed on directory
accesses. This is a parameter in the disk parameter block located
in the BIOS. If the value of CKS is zero, then no directory records
are checked. CKS is also a parameter in the diskdef macro library,
where it is the actual number of directory elements to be checked
rather than the number of directory records.

 H-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

cold boot: See boot. Cold boot also refers to a jump to the boot
entry point in the BIOS jump table.

COM: Filetype for a CP/M command file. See command file.

command: CP/M command line. In general, a CP/M command line has
three parts: the command keyword, command tail, and a carriage
return. To execute a command, enter a CP/M command line directly
after the CP/M prompt at the console and press the carriage return
or enter key.

command file: Executable program file of filetype COM. A command
file is a machine language object module ready to be loaded and
executed at the absolute address of 0100H. To execute a command
file, enter its primary filename as the command keyword in a CP/M
command line.

command keyword: Name that identifies a CP/M command, usually the
primary filename of a file of type COM, or a built-in command. The
command keyword precedes the command tail and the carriage return in
the command line.

command syntax: Statement that defines the correct way to enter a
command. The correct structure generally includes the command
keyword, the command tail, and a carriage return. A syntax line
usually contains symbols that you should replace with actual values
when you enter the command.

command tail: Part of a command that follows the command keyword in
the command line. The command tail can include a drive
specification, a filename and filetype, and options or parameters.
Some commands do not require a command tail.

CON: Mnemonic that represents the CP/M console device. For
example, the CP/M command PIP CON:=TEST.SUB displays the file
TEST.SUB on the console device. The explanation of the STAT command
tells how to assign the logical device CON: to various physical
devices. See console.

concatenate: Name of the PIP operation that copies two or more
separate files into one new file in the the specified sequence.

concurrency: Execution of two processes or operations
simultaneously.

CONIN: BIOS entry point to a routine that reads a character from
the console device.

CONOUT: BIOS entry point to a routine that sends a character to the
console device.

 H-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

console: Primary input/output device. The console consists of a
listing device, such as a screen or teletype, and a keyboard through
which the user communicates with the operating system or
applications program.

Console Command Processor: See CCP.

CONST: BIOS entry point to a routine that returns the status of the
console device.

control character: Nonprinting character combination. CP/M
interprets some control characters as simple commands such as line
editing functions. To enter a control character, hold down the
CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers. An operating system that
manages computer resources and provides a standard systems interface
to software written for a large variety of microprocessor-based
computer systems.

CP/M 1.4l compatibility: For a CP/M 2 system to be able to read
correctly single-density disks produced under a CP/M 1.4 system, the
extent mask must be zero and the block size 1K. This is because
under CP/M 2 an FCB may contain more than one extent. The number of
extents that may be contained by an FCB is EXM+1. The issue of CP/M
1.4 compatibility also concerns random file I/O. To perform random
file I/O under CP/M 1.4, you must maintain an FCB for each extent of
the file. This scheme is upward compatible with CP/M 2 for files
not exceeding 512K bytes, the largest file size supported under CP/M
1.4. If you wish to implement random I/O for files larger than 512K
bytes under CP/M 2, you must use the random read and random write
functions, BDOS functions 33, 34, and 36. In this case, only one
FCB is used, and if CP/M 1.4 compatiblity is required, the program
must use the return version number function, BDOS Function 12, to
determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute
your next command. The CP/M prompt consists of an upper-case
letter, A-P, followed by a > character; for example, A>. The letter
designates which drive is currently logged in as the default drive.
CP/M will search this drive for the command file specified, unless
the command is a built-in command or prefaced by a select drive
command: for example, B:STAT.

CP/NET: Digital Research network operating system enabling
microcomputers to obtain access to common resources via a network.
CP/NET consists of MP/M masters and CP/M slaves with a network
interface between them.

CSV: See checksum vector.

cursor: One-character symbol that can appear anywhere on the
console screen. The cursor indicates the position where the next
keystroke at the console will have an effect.

 H-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

data file: File containing information that will be processed by a
program.

deblocking: See blocking & deblocking algorithm.

default: Currently selected disk drive and user number. Any
command that does not specify a disk drive or a user number
references the default disk drive and user number. When CP/M is
first invoked, the default disk drive is drive A, and the default
user number is 0.

default buffer: Default 128-byte buffer maintained at 0080H in page
zero. When the CCP loads a COM file, this buffer is initialized to
the command tail; that is, any characters typed after the COM file
name are loaded into the buffer. The first byte at 0080H contains
the length of the command tail, while the command tail itself begins
at 0081H. The command tail is terminated by a byte containing a
binary zero value. The I command under DDT and SID initializes this
buffer in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH
and 006CH in page zero. The first default FCB is initialized from
the first delimited field in the command tail. The second default
FCB is initialized from the next field in the command tail.

delimiter: Special characters that separate different items in a
command line; for example, a colon separates the drive specification
from the filename. The CCP recognizes the following characters as
delimiters: . : = ; < > _, blank, and carriage return. Several
CP/M commands also treat the following as delimiter characters: , [
] () $. It is advisable to avoid the use of delimiter characters
and lower-case characters in CP/M filenames.

DIR: Parameter in the diskdef macro library that specifies the
number of directory elements on the drive.

DIR attribute: File attribute. A file with the DIR attribute can
be displayed by a DIR command. The file can be accessed from the
default user number and drive only.

DIRBUF: 128-byte scratchpad area for directory operations, usually
located at the end of the BIOS. DIRBUF is used by the BDOS during
its directory operations. DIRBUF also refers to the two-byte
address of this scratchpad buffer in the disk parameter header at
DPbase + 8 bytes.

directory: Portion of a disk that contains entries for each file on
the disk. In response to the DIR command, CP/M displays the
filenames stored in the directory. The directory also contains the
locations of the blocks allocated to the files. Each file directory
element is in the form of a 32-byte FCB, although one file can have
several elements, depending on its size. The maximum number of
directory elements supported is specified by the drive’s disk
parameter block value for DRM.

 H-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

directory element: Data structure. Each file on a disk has one or
more 32-byte directory elements associated with it. There are four
directory elements per directory sector. Directory elements can
also be referred to as directory FCBs.

directory entry: File entry displayed by the DIR command.
Sometimes this term refers to a physical directory element.

disk, diskette: Magnetic media used for mass storage in a computer
system. Programs and data are recorded on the disk in the same way
music can be recorded on cassette tape. The CP/M operating system
must be initially loaded from disk when the computer is turned on.
Diskette refers to smaller capacity removable floppy diskettes,
while disk may refer to either a diskette, removable cartridge disk,
or fixed hard disk. Hard disk capacities range from five to several
hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC, the
Digital Research macro assembler, creates disk definition tables
such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on
disk. CP/M assigns a letter to each drive under its control. For
example, CP/M may refer to the drives in a four-drive system as A,
B, C, and D.

disk parameter block (DPB): Data structure referenced by one or
more disk parameter headers. The disk parameter block defines disk
characteristics in the fields listed below:

 SPT is the total number of sectors per track.
 BSH is the data allocation block shift factor.
 BLM is the data allocation block mask.
 EXM is the extent mask determined by BLS and DSM.
 DSM is the maximum data block number.
 DRM is the maximum number of directory entries--1.
 AL0 reserves directory blocks.
 AL1 reserves directory blocks.
 CKS is the number of directory sectors check summed.
 OFF is the number of reserved system tracks.

The address of the disk parameter block is located in the disk
parameter header at DPbase +0AH. CP/M Function 31 returns the DPB
address. Drives with the same characteristics can use the same disk
parameter header, and thus the same DPB. However, drives with
different characteristics must each have their own disk parameter
header and disk parameter blocks. When the BDOS calls the SELDSK
entry point in the BIOS, SELDSK must return the address of the
drive’s disk parameter header in register HL.

disk parameter header (DPH): Data structure that contains
information about the disk drive and provides a scratchpad area for
certain BDOS operations. The disk parameter header contains six
bytes of scratchpad area for the BDOS, and the following five 2-byte
parameters:

 H-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

 XLT is the sector translation table address.
 DIRBUF is the directory buffer address.
 DPB is the disk parameter block address.
 CSV is the checksum vector address.
 ALV is the allocation vector address.

Given n disk drives, the disk parameter headers are arranged in a
table whose first row of 16 bytes corresponds to drive 0, with the
last row corresponding to drive n-1.

DKS: Parameter in the diskdef macro library specifying the number
of data blocks on the drive.

DMA: Direct Memory Access. DMA is a method of transferring data
from the disk into memory directly. In a CP/M system, the BDOS
calls the BIOS entry point READ to read a sector from the disk into
the currently selected DMA address. The DMA address must be the
address of a 128-byte buffer in memory, either the default buffer at
0080H in page zero, or a user-assigned buffer in the TPA.
Similarly, the BDOS calls the BIOS entry point WRITE to write the
record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical
drive number.

DPB: See disk parameter block.

DPH: See disk parameter header.

DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRM
is one less than the total number of directory entries allowed for
the drive. This value is related to DPB bytes AL0 and AL1, which
allocates up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM
is the maximum data block number supported by the drive. The
product BLS times (DSM+1) is the total number of bytes held by the
drive. This must not exceed the capacity of the physical disk less
the reserved system tracks.

editor: Utility program that creates and modifies text files. An
editor can be used for creation of documents or creation of code for
computer programs. The CP/M editor is invoked by typing the command
ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a
series of instructions that can be carried out by the computer. For
example, the computer cannot execute names and addresses, but it can
execute a program that prints all those names and addresses on
mailing labels.

execute a program: Start the processing of executable code.

 H-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from
0 to 31. One extent can contain 1, 2, 4, 8, or 16 blocks. EX is
the extent number field of an FCB and is a one-byte field at FCB +
12, where FCB labels the first byte in the FCB. Depending on the
block size (BLS) and the maximum data block number (DSM), an FCB can
contain 1, 2, 4, 8, or 16 extents. The EX field is normally set to
0 by the user but contains the current extent number during file
I/O. The term FCB folding describes FCBs containing more than one
extent. In CP/M version 1.4, each FCB contained only one extent.
Users attempting to perform random record I/O and maintain CP/M 1.4
compatiblity should be aware of the implications of this difference.
See CP/M 1.4 compatibility.

extent mask (EXM): A byte parameter in the disk parameter block
located at DPB + 3. The value of EXM is determined by the block
size (BLS) and whether the maximum data block number (DSM) exceeds
255. There are EXM + 1 extents per directory FCB.

FCB: See File Control Block.

file: Collection of characters, instructions, or data that can be
referenced by a unique identifier. Files are usually stored on
various types of media, such as disk, or magnetic tape. A CP/M file
is identified by a file specification and resides on disk as a
collection of from zero to 65,536 records. Each record is 128 bytes
and can contain either binary or ASCII data. Binary files contain
bytes of data that can vary in value from 0H to 0FFH. ASCII files
contain sequences of character codes delineated by a carriage return
and line-feed combination; normally byte values range from 0H to
7FH. The directory maps the file as a series of physical blocks.
Although files are defined as a sequence of consecutive logical
records, these records can not reside in consecutive sectors on the
disk. See also block, directory, extent, record, and sector.

File Control Block (FCB): Structure used for accessing files on
disk. Contains the drive, filename, filetype, and other information
describing a file to be accessed or created on the disk. A file
control block consists of 36 consecutive bytes specified by the user
for file I/O functions. FCB can also refer to a directory element
in the directory portion of the allocated disk space. These contain
the same first 32 bytes of the FCB, but lack the current record and
random record number bytes.

filename: Name assigned to a file. A filename can include a
primary filename of one to eight characters; a filetype of zero to
three characters. A period separates the primary filename from the
filetype.

file specification: Unique file identifier. A complete CP/M file
specification includes a disk drive specification followed by a
colon, d:, a primary filename of one to eight characters, a period,
and a filetype of zero to three characters. For example,
b:example.tex is a complete CP/M file specification.

 H-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

filetype: Extension to a filename. A filetype can be from zero to
three characters and must be separated from the primary filename by
a period. A filetype can tell something about the file. Some
programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store information.
Floppy disks come in 5 1/4- and 8-inch diameters.

FSC: Parameter in the diskdef macro library specifying the first
physical sector number. This parameter is used to determine SPT and
build XLT.

hard disk: Rigid, platter-like, magnetic disk sealed in a
container. A hard disk stores more information than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal
digits and letters A, B, C, D, E, and F to represent the 16 digits.
Hexadecimal notation is often used to refer to binary numbers. A
binary number can be easily expressed as a hexadecimal value by
taking the bits in groups of 4, starting with the least significant
bit, and expressing each group as a hexadecimal digit, 0-F. Thus
the bit value 1011 becomes 0BH and 10110101 becomes 0B5H.

hex file: ASCII-printable representation of a command, machine
language, file.

hex file format: Absolute output of ASM and MAC for the Intel 8080
is a hex format file, containing a sequence of absolute records that
give a load address and byte values to be stored, starting at the
load address.

HOME: BIOS entry point which sets the disk head of the currently
selected drive to the track zero position.

host: Physical characteristics of a hard disk drive in a system
using the blocking and deblocking algorithm. The term, host, helps
distinguish physical hardware characteristics from CP/M’s logical
characteristics. For example, CP/M sectors are always 128 bytes,
although the host sector size can be a multiple of 128 bytes.

input: Data going into the computer, usually from an operator
typing at the terminal or by a program reading from the disk.

input/output: See I/O.

interface: Object that allows two independent systems to
communicate with each other, as an interface between hardware and
software in a microcomputer.

I/O: Abbreviation for input/output. Usually refers to input/output
operations or routines handling the input and output of data in the
computer system.

 H-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

IOBYTE: A one-byte field in page zero, currently at location 0003H,
that can support a logical-to-physical device mapping for I/O.
However, its implementation in your BIOS is purely optional and
might or might not be supported in a given CP/M system. The IOBYTE
is easily set using the command:

 STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, and LST:; each of
these can be assigned to one of four physical devices. The IOBYTE
can be initialized by the BOOT entry point of the BIOS and
interpreted by the BIOS I/O entry points CONST, CONIN, CONOUT, LIST,
PUNCH, and READER. Depending on the setting of the IOBYTE,
different I/O drivers can be selected by the BIOS. For example,
setting LST:=TTY: might cause LIST output to be directed to a serial
port, while setting LST:=LPT: causes LIST output to be directed to a
parallel port.

K: Abbreviation for kilobyte. See kilobyte.

keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytes of memory. This is a
standard unit of memory. For example, the Intel 8080 supports up to
64K of memory address space or 65,536 bytes. 1024 kilobytes equal
one megabyte, or over one million bytes.

linker: Utility program used to combine relocatable object modules
into an absolute file ready for execution. For example, LINK-80
creates either a COM or PRL file from relocatable REL files, such as
those produced by PL/I-80 .

LIST: A BIOS entry point to a routine that sends a character to the
list device, usually a printer.

list device: Device such as a printer onto which data can be listed
or printed.

LISTST: BIOS entry point to a routine that returns the ready status
of the list device.

loader: Utility program that brings an absolute program image into
memory ready for execution under the operating system, or a utility
used to make such an image. For example, LOAD prepares an absolute
COM file from the assembler hex file output that is ready to be
executed under CP/M.

logged in: Made known to the operating system, in reference to
drives. A drive is logged in when it is selected by the user or an
executing process. It remains selected or logged in until you
change disks in a floppy disk drive or enter CTRL-C at the command
level, or until a BDOS Function 0 is executed.

logical: Representation of something that might or might not be the

 H-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

same in its actual physical form. For example, a hard disk can
occupy one physical drive, yet you can divide the available storage
on it to appear to the user as if it were in several different
drives. These apparent drives are the logical drives.

logical sector: See sector.

logical-to-physical sector translation table: See XLT.

LSC: Diskdef macro library parameter specifying the last physical
sector number.

LST: Logical CP/M list device, usually a printer. The CP/M list
device is an output-only device referenced through the LIST and
LISTST entry points of the BIOS. The STAT command allows assignment
of LST: to one of the physical devices: TTY:, CRT:, LPT:, or UL1:,
provided these devices and the IOBYTE are implemented in the LIST
and LISTST entry points of your CP/M BIOS module. The CP/NET
command NETWORK allows assignment of LST: to a list device on a
network master. For example, PIP LST:=TEST.SUB prints the file
TEST.SUB on the list device.

macro assembler: Assembler code translator providing macro
processing facilities. Macro definitions allow groups of
instructions to be stored and substituted in the source program as
the macro names are encountered. Definitions and invocations can be
nested and macro parameters can be formed to pass arbitrary strings
of text to a specific macro for substitution during expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, and
kilobyte.

microprocessor: Silicon chip that is the central processing unit
(CPU) of the microcomputer. The Intel 8080 and the Zilog Z80 are
microprocessors commonly used in CP/M systems.

MOVCPM image: Memory image of the CP/M system created by MOVCPM.
This image can be saved as a disk file using the SAVE command or
placed on the system tracks using the SYSGEN command without
specifying a source drive. This image varies, depending on the
presence of a one-sector or two-sector boot. If the boot is less
than 128 bytes (one sector), the boot begins at 0900H, the CP/M
system at 0980H, and the BIOS at 1F80H. Otherwise, the boot is at
0900H, the CP/M system at 1000H, and the BIOS at 2000H. In a CP/M
1.4 system with a one-sector boot, the addresses are the same as for
the CP/M 2 system--except that the BIOS begins at 1E80H instead of
1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer
operating system supporting multi-terminal access with multi-
programming at each terminal.

multi-programming: The capability of initiating and executing more
than one program at a time. These programs, usually called
processes, are time-shared, each receiving a slice of CPU time on a
round-robin basis. See concurrency.

 H-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

nibble: One half of a byte, usually the high-order or low-order 4
bits in a byte.

OFF: Two-byte parameter in the disk parameter block at DPB + 13
bytes. This value specifies the number of reserved system tracks.
The disk directory begins in the first sector of track OFF.

OFS: Diskdef macro library parameter specifying the number of
reserved system tracks. See OFF.

operating system: Collection of programs that supervises the
execution of other programs and the management of computer
resources. An operating system provides an orderly input/output
environment between the computer and its peripheral devices. It
enables user-written programs to execute safely. An operating
system standardizes the use of computer resources for the programs
running under it.

option: One of many parameters that can be part of a command tail.
Use options to specify additional conditions for a command’s
execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary,
whose base address is a multiple of 256 (100H) bytes. In hex
notation, pages always begin at an address with a least significant
byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000H and 0100H used to hold
critical system parameters. Page zero functions primarily as an
interface region between user programs and the CP/M BDOS module.
Note that in non-standard systems this region is the base page of
the system and represents the first 256 bytes of memory used by the
CP/M system and user programs running under it.

parameter: Value in the command tail that provides additional
information for the command. Technically, a parameter is a required
element of a command.

peripheral devices: Devices external to the CPU. For example,
terminals, printers, and disk drives are common peripheral devices
that are not part of the processor but are used in conjunction with
it.

physical: Characteristic of computer components, generally
hardware, that actually exist. In programs, physical components can
be represented by logical components.

primary filename: First 8 characters of a filename. The primary
filename is a unique name that helps the user identify the file
contents. A primary filename contains one to eight characters and
can include any letter or number and some special characters. The

 H-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

primary filename follows the optional drive specification and
precedes the optional filetype.

PRL: Page relocatable program. A page relocatable program is
stored on disk with a PRL filetype. Page relocatable programs are
easily relocated to any page boundary and thus are suitable for
execution in a nonbanked MP/M system.

program: Series of coded instructions that performs specific tasks
when executed by a computer. A program can be written in a
processor-specific language or a high-level language that can be
implemented on a number of different processors.

prompt: Any characters displayed on the video screen to help the
user decide what the next appropriate action is. A system prompt is
a special prompt displayed by the operating system. The alphabetic
character indicates the default drive. Some applications programs
have their own special prompts. See CP/M prompt.

PUN: Logical CP/M punch device. The punch device is an output-only
device accessed through the PUNCH entry point of the BIOS. In
certain implementations, PUN: can be a serial device such as a
modem.

PUNCH: BIOS entry point to a routine that sends a character to the
punch device.

RDR: Logical CP/M reader device. The reader device is an input-only
device accessed through the READER entry point in the BIOS. See
PUN:.

READ: Entry point in the BIOS to a routine that reads 128 bytes from
the currently selected drive, track, and sector into the current DMA
address.

READER: Entry point to a routine in the BIOS that reads the next
character from the currently assigned reader device.

Read-Only (R/O): Attribute that can be assigned to a disk file or a
disk drive. When assigned to a file, the Read-Only attribute allows
you to read from that file but not write to it. When assigned to a
drive, the Read-Only attribute allows you to read any file on the
disk, but prevents you from adding a new file, erasing or changing a
file, renaming a file, or writing on the disk. The STAT command can
set a file or a drive to Read-Only. Every file and drive is either
Read-Only or Read-Write. The default setting for drives and files
is Read-Write, but an error in resetting the disk or changing media
automatically sets the drive to Read-Only until the error is
corrected. See also ROM.

Read-Write (R/W): Attribute that can be assigned to a disk file or
a disk drive. The Read-Write attribute allows you to read from and
write to a specific Read-Write file or to any file on a disk that is
in a drive set to Read-Write. A file or drive can be set to either
Read-Only or Read-Write.

 H-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

record: Group of bytes in a file. A physical record consists of
128 bytes and is the basic unit of data transfer between the
operating system and the application program. A logical record
might vary in length and is used to represent a unit of information.
Two 64-byte employee records can be stored in one 128-byte physical
record. Records are grouped together to form a file.

recursive procedure: Code that can call itself during execution.

reentrant procedure: Code that can be called by one process while
another is already executing it. Thus, reentrant code can be shared
between different users. Reentrant procedures must not be self-
modifying; that is, they must be pure code and not contain data.
The data for reentrant procedures can be kept in a separate data
area or placed on the stack.

restart (RST): One-byte call instruction usually used during
interrupt sequences and for debugger break pointing. There are
eight restart locations, RST 0 through RST 7, whose addresses are
given by the product of 8 times the restart number.

R/O: See Read-Only.

ROM: Read-Only memory. This memory can be read but not written and
so is suitable for code and preinitialized data areas only.

RST: See restart.

R/W: See Read-Write.

sector: In a CP/M system, a sector is always 128 consecutive bytes.
A sector is the basic unit of data read and written on the disk by
the BIOS. A sector can be one 128-byte record in a file or a sector
of the directory. The BDOS always requests a logical sector number
between 0 and (SPT-1). This is typically translated into a physical
sector by the BIOS entry point SECTRAN. In some disk subsystems,
the disk sector size is larger than 128 bytes, usually a power of
two, such as 256, 512, 1024, or 2048 bytes. These disk sectors are
always referred to as host sectors in CP/M documentation and should
not be confused with other references to sectors, in which cases the
CP/M 128-byte sectors should be assumed. When the host sector size
is larger than 128 bytes, host sectors must be buffered in memory
and the 128-byte CP/M sectors must be blocked and deblocked from
them. This can be done by adding an additional module, the blocking
and deblocking algorithm, between the BIOS disk I/O routines and the
actual disk I/O.

sectors per track (SPT): A two-byte parameter in the disk parameter
block at DPB + 0. The BDOS makes calls to the BIOS entry point
SECTRAN with logical sector numbers ranging between 0 and (SPT - 1)
in register BC.

SECTRAN: Entry point to a routine in the BIOS that performs
logical-to-physical sector translation for the BDOS.

 H-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

SELDSK: Entry point to a routine in the BIOS that sets the
currently selected drive.

SETDMA: Entry point to a routine in the BIOS that sets the
currently selected DMA address. The DMA address is the address of a
128-byte buffer region in memory that is used to transfer data to
and from the disk in subsequent reads and writes.

SETSEC: Entry point to a routine in the BIOS that sets the
currently selected sector.

SETTRK: Entry point to a routine in the BIOS that sets the
currently selected track.

skew factor: Factor that defines the logical-to-physical sector
number translation in XLT. Logical sector numbers are used by the
BDOS and range between 0 and (SPT - 1). Data is written in
consecutive logical 128-byte sectors grouped in data blocks. The
number of sectors per block is given by BLS/128. Physical sectors
on the disk media are also numbered consecutively. If the physical
sector size is also 128 bytes, a one-to-one relationship exists
between logical and physical sectors. The logical-to-physical
translation table (XLT) maps this relationship, and a skew factor is
typically used in generating the table entries. For instance, if
the skew factor is 6, XLT will be:

 Logical: 0 1 2 3 4 5 6 ... 25
 Physical: 1 7 13 19 25 5 11 ... 22

The skew factor allows time for program processing without missing
the next sector. Otherwise, the system must wait for an entire disk
revolution before reading the next logical sector. The skew factor
can be varied, depending on hardware speed and application
processing overhead. Note that no sector translation is done when
the physical sectors are larger than 128 bytes, as sector deblocking
is done in this case. See also sector, SKF, and XLT.

SKF: A diskdef macro library parameter specifying the skew factor
to be used in building XLT. If SKF is zero, no translation table is
generated and the XLT byte in the DPH will be 0000H.

software: Programs that contain machine-readable instructions, as
opposed to hardware, which is the actual physical components of a
computer.

source file: ASCII text file usually created with an editor that is
an input file to a system program, such as a language translator or
text formatter.

SP: Stack pointer. See stack.

 H-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

spooling: Process of accumulating printer output in a file while
the printer is busy. The file is printed when the printer becomes
free; a program does not have to wait for the slow printing process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return
address when a call instruction is received. When a return
instruction is encountered, the processor restores the current
address on the stack to the program counter. Data such as the
contents of the registers can also be saved on the stack. The push
instruction places data on the stack and the pop instruction removes
it. An item is pushed onto the stack by decrementing the stack
pointer (SP) by 2 and writing the item at the SP address. In other
words, the stack grows downward in memory.

syntax: Format for entering a given command.

SYS: See system attribute.

SYSGEN image: Memory image of the CP/M system created by SYSGEN
when a destination drive is not specified. This is the same as the
MOVCPM image that can be read by SYSGEN if a source drive is not
specified. See MOVCPM image.

system attribute (SYS): File attribute. You can give a file the
system attribute by using the SYS option in the STAT command or by
using the set file attributes function, BDOS Function 12. A file
with the SYS attribute is not displayed in response to a DIR
command. If you give a file with user number 0 the SYS attribute,
you can read and execute that file from any user number on the same
drive. Use this feature to make your commonly used programs
available under any user number.

system prompt: Symbol displayed by the operating system indicating
that the system is ready to receive input. See prompt and CP/M
prompt.

system tracks: Tracks reserved on the disk for the CP/M system.
The number of system tracks is specified by the parameter OFF in the
disk parameter block (DPB). The system tracks for a drive always
precede its data tracks. The command SYSGEN copies the CP/M system
from the system tracks to memory, and vice versa. The standard
SYSGEN utility copies 26 sectors from track 0 and 26 sectors from
track 1. When the system tracks contain additional sectors or
tracks to be copied, a customized SYSGEN must be used.

terminal: See console.

TPA: Transient Program Area. Area in memory where user programs
run and store data. This area is a region of memory beginning at
0100H and extending to the base of the CP/M system in high memory.
The first module of the CP/M system is the CCP, which can be
overwritten by a user program. If so, the TPA is extended to the
base of the CP/M BDOS module. If the CCP is overwritten, the user

 H-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

program must terminate with either a system reset (Function 0) call
or a jump to location zero in page zero. The address of the base of
the CP/M BDOS is stored in location 0006H in page zero least
significant byte first.

track: Data on the disk media is accessed by combination of track
and sector numbers. Tracks form concentric rings on the disk; the
standard IBM single-density disks have 77 tracks. Each track
consists of a fixed number of numbered sectors. Tracks are numbered
from zero to one less than the number of tracks on the disk.

Transient Program Area: See TPA.

upward compatible: Term meaning that a program created for the
previously released operating system, or compiler, runs under the
newly released version of the same operating system.

USER: Term used in CP/M and MP/M systems to distinguish distinct
regions of the directory.

user number: Number assigned to files in the disk directory so that
different users need only deal with their own files and have their
own directories, even though they are all working from the same
disk. In CP/M, files can be divided into 16 user groups.

utility: Tool. Program that enables the user to perform certain
operations, such as copying files, erasing files, and editing files.
The utilities are created for the convenience of programmers and
users.

vector: Location in memory. An entry point into the operating
system used for making system calls or interrupt handling.

warm start: Program termination by a jump to the warm start vector
at location 0000H, a system reset (BDOS Function 0), or a CTRL-C
typed at the keyboard. A warm start reinitializes the disk
subsystem and returns control to the CP/M operating system at the
CCP level. The warm start vector is simply a jump to the WBOOT
entry point in the BIOS.

WBOOT: Entry point to a routine in the BIOS used when a warm start
occurs. A warm start is performed when a user program branches to
location 0000H, when the CPU is reset from the front panel, or when
the user types CTRL-C. The CCP and BDOS are reloaded from the
system tracks of drive A.

wildcard characters: Special characters that match certain
specified items. In CP/M there are two wildcard characters: ? and
*. The ? can be substituted for any single character in a filename,
and the * can be substituted for the primary filename, the filetype,
or both. By placing wildcard characters in filenames, the user
creates an ambiguous filename and can quickly reference one or more
files.

 H-19

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual H Glossary

word: 16-bit or two-byte value, such as an address value. Although
the Intel 8080 is an 8-bit CPU, addresses occupy two bytes and are
called word values.

WRITE: Entry point to a routine in the BIOS that writes the record
at the currently selected DMA address to the currently selected
drive, track, and sector.

XLT: Logical-to-physical sector translation table located in the
BIOS. SECTRAN uses XLT to perform logical-to-physical sector number
translation. XLT also refers to the two-byte address in the disk
parameter header at DPBASE + 0. If this parameter is zero, no
sector translation takes place. Otherwise this parameter is the
address of the translation table.

ZERO PAGE: See page zero.

End of Appendix H

 H-20

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Appendix I

CP/M Error Messages

 Messages come from several different sources. CP/M displays
error messages when there are errors in calls to the Basic Disk
Operating System (BDOS). CP/M also displays messages when there are
errors in command lines. Each utility supplied with CP/M has its
own set of messages. The following lists CP/M messages and utility
messages. One might see messages other than those listed here if
one is running an application program. Check the application
program’s documentation for explanations of those messages.

 Table I-1. CP/M Error Messages

 Message Meaning

 ?

 DDT. This message has four possible
 meanings:

 o DDT does not understand the assembly
 language instruction.
 o The file cannot be opened.
 o A checksum error occurred in a HEX
 file.
 o The assembler/disassembler was
 overlayed.

 ABORTED

 PIP. You stopped a PIP operation by
 pressing a key.

 ASM Error Messages

 D Data error: data statement element
 cannot be placed in specified data
 area.

 E Expression error: expression cannot
 be evaluated during assembly.

 L Label error: label cannot appear in
 this context (might be duplicate
 label).

 I-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 ASM Error Messages (continued)

 N Not implemented: unimplemented
 features, such as macros, are
 trapped.

 O Overflow: expression is too complex
 to evaluate.

 P Phase error: label value changes on
 two passes through assembly.

 R Register error: the value specified
 as a register is incompatible with
 the code.

 S Syntax error: improperly formed
 expression.

 U Undefined label: label used does not
 exist.

 V Value error: improperly formed
 operand encountered in an expression.

 BAD DELIMITER

 STAT. Check command line for typing
 errors.

 Bad Load

 CCP error message, or SAVE error message.

 Bdos Err On d:

 Basic Disk Operating System error on the
 designated drive: CP/M replaces d: with
 the drive specification of the drive where
 the error occurred. This message is
 followed by one of the four phrases in the
 situations described below.

 I-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 Bdos Err On d: Bad Sector

 This message appears when CP/M finds no
 disk in the drive, when the disk is
 improperly formatted, when the drive latch
 is open, or when power to the drive is
 off. Check for one of these situations
 and try again. This could also indicate a
 hardware problem or a worn or improperly
 formatted disk. Press ̂ C to terminate the
 program and return to CP/M, or press
 RETURN to ignore the error.

 Bdos Err On d: File R/O

 You tried to erase, rename, or set file
 attributes on a Read-Only file. The file
 should first be set to Read-Write (R/W)
 with the command: STAT filespec $R/W.

 Bdos Err On d: R/O

 Drive has been assigned Read-Only status
 with a STAT command, or the disk in the
 drive has been changed without being
 initialized with a ^C. CP/M terminates
 the current program as soon as you press
 any key.

 Bdos Err on d: Select

 CP/M received a command line specifying a
 nonexistent drive. CP/M terminates the
 current program as soon as you press any
 key. Press RETURN or CTRL-C to recover.

 Break "x" at c

 ED. "x" is one of the symbols described
 below and c is the command letter being
 executed when the error occurred.

 # Search failure. ED cannot find the
 string specified in an F, S, or N
 command.

 I-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 ? Unrecognized command letter c. ED
 does not recognize the indicated
 command letter, or an E, H, Q, or O
 command is not alone on its command
 line.

 O The file specified in an R command
 cannot be found.

 > Buffer full. ED cannot put any more
 characters in the memory buffer, or
 the string specified in an F, N, or S
 command is too long.

 E Command aborted. A keystroke at the
 console aborted command execution.

 Break "x" at c (continued)

 F Disk or directory full. This error is
 followed by either the disk or
 directory full message. Refer to the
 recovery procedures listed under
 these messages.

 CANNOT CLOSE DESTINATION FILE--{filespec}

 PIP. An output file cannot be closed.
 You should take appropriate action after
 checking to see if the correct disk is in
 the drive and that the disk is not write-
 protected.

 Cannot close, R/O
 CANNOT CLOSE FILES

 CP/M cannot write to the file. This
 usually occurs because the disk is write-
 protected.

 ASM. An output file cannot be closed.
 This is a fatal error that terminates ASM
 execution. Check to see that the disk is
 in the drive, and that the disk is not
 write-protected.

 I-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 DDT. The disk file written by a W command
 cannot be closed. This is a fatal error
 that terminates DDT execution. Check if
 the correct disk is in the drive and that
 the disk is not write-protected.

 SUBMIT. This error can occur during
 SUBMIT file processing. Check if the
 correct system disk is in the A drive and
 that the disk is not write-protected. The
 SUBMIT job can be restarted after
 rebooting CP/M.

 CANNOT READ

 PIP. PIP cannot read the specified
 source. Reader cannot be implemented.

 CANNOT WRITE

 PIP. The destination specified in the PIP
 command is illegal. You probably
 specified an input device as a
 destination.

 Checksum error

 PIP. A HEX record checksum error was
 encountered. The HEX record that produced
 the error must be corrected, probably by
 recreating the HEX file.

 CHECKSUM ERROR
 LOAD ADDRESS hhhh
 ERROR ADDRESS hhhh
 BYTES READ:
 hhhh:

 LOAD. File contains incorrect data.
 Regenerate HEX file from the source.

 Command Buffer Overflow

 SUBMIT. The SUBMIT buffer allows up to
 2048 characters in the input file.

 I-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 Command too long

 SUBMIT. A command in the SUBMIT file
 cannot exceed 125 characters.

 CORRECT ERROR, TYPE RETURN OR CTRL-Z

 PIP. A HEX record checksum was
 encountered during the transfer of a HEX
 file. The HEX file with the checksum
 error should be corrected, probably by
 recreating the HEX file.

 DESTINATION IS R/O, DELETE (Y/N)?

 PIP. The destination file specified in a
 PIP command already exists and it is Read-
 Only. If you type Y, the destination file
 is deleted before the file copy is done.

 Directory full

 ED. There is not enough directory space
 for the file being written to the
 destination disk. You can use the
 OXfilespec command to erase any
 unnecessary files on the disk without
 leaving the editor.

 SUBMIT. There is not enough directory
 space to write the $$$.SUB file used for
 processing SUBMITs. Erase some files or
 select a new disk and retry.

 Disk full

 ED. There is not enough disk space for
 the output file. This error can occur on
 the W, E, H, or X commands. If it occurs
 with X command, you can repeat the command
 prefixing the filename with a different
 drive.

 I-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 DISK READ ERROR--{filespec}

 PIP. The input disk file specified in a
 PIP command cannot be read properly. This
 is usually the result of an unexpected
 end-of-file. Correct the problem in your
 file.

 DISK WRITE ERROR--{filespec}

 DDT. A disk write operation cannot be
 successfully performed during a W command,
 probably due to a full disk. You should
 either erase some unnecessary files or get
 another disk with more space.

 PIP. A disk write operation cannot be
 successfully performed during a PIP
 command, probably due to a full disk. You
 should either erase some unnecessary files
 or get another disk with more space and
 execute PIP again.

 SUBMIT. The SUBMIT program cannot write
 the $$$.SUB file to the disk. Erase some
 files, or select a new disk and try again.

 ERROR: BAD PARAMETER

 PIP. You entered an illegal parameter in
 a PIP command. Retype the entry
 correctly.

 ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

 LOAD. Displayed if LOAD cannot find the
 specified file or if no filename is
 specified.

 ERROR: CANNOT CLOSE FILE, LOAD ADDRESS hhhh

 LOAD. Caused by an error code returned by
 a BDOS function call. Disk might be
 write-protected.

 I-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

 LOAD. Cannot find source file. Check
 disk directory.

 ERROR: DISK READ, LOAD ADDRESS hhhh

 LOAD. Caused by an error code returned by
 a BDOS function call.

 ERROR: DISK WRITE, LOAD ADDRESS hhhh

 LOAD. Destination disk is full.

 ERROR: INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

 LOAD. The address of a record was too far
 from the address of the previously-
 processed record. This is an internal
 limitation of LOAD, but it can be
 circumvented. Use DDT to read the HEX
 file into memory, then use a SAVE command
 to store the memory image file on disk.

 ERROR: NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh

 LOAD. Disk directory is full.

 Error on line nnn message

 SUBMIT. The SUBMIT program displays its
 messages in the format shown above, where
 nnn represents the line number of the
 SUBMIT file. Refer to the message
 following the line number.

 FILE ERROR

 ED. Disk or directory is full, and ED
 cannot write anything more on the disk.
 This is a fatal error, so make sure there
 is enough space on the disk to hold a
 second copy of the file before invoking
 ED.

 I-8

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 FILE EXISTS

 You have asked CP/M to create or rename a
 file using a file specification that is
 already assigned to another file. Either
 delete the existing file or use another
 file specification.

 REN. The new name specified is the name
 of a file that already exists. You cannot
 rename a file with the name of an existing
 file. If you want to replace an existing
 file with a newer version of the same
 file, either rename or erase the existing
 file, or use the PIP utility.

 File exists, erase it

 ED. The destination filename already
 exists when you are placing the
 destination file on a different disk than
 the source. It should be erased or
 another disk selected to receive the
 output file.

 ** FILE IS READ/ONLY **

 ED. The file specified in the command to
 invoke ED has the Read-Only attribute. Ed
 can read the file so that the user can
 examine it, but ED cannot change a Read-
 Only file.

 File Not Found

 CP/M cannot find the specified file.
 Check that you have entered the correct
 drive specification or that you have the
 correct disk in the drive.

 ED. ED cannot find the specified file.
 Check that you have entered the correct
 drive specification or that you have the
 correct disk in the drive.

 STAT. STAT cannot find the specified
 file. The message might appear if you
 omit the drive specification. Check to
 see if the correct disk is in the drive.

 I-9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 FILE NOT FOUND--{filespec}

 PIP. An input file that you have
 specified does not exist.

 Filename required

 ED. You typed the ED command without a
 filename. Reenter the ED command followed
 by the name of the file you want to edit
 or create.

 hhhh??=dd

 DDT. The ?? indicates DDT does not know
 how to represent the hexadecimal value dd
 encountered at address hhhh in 8080
 assembly language. dd is not an 8080
 machine instruction opcode.

 Insufficient memory

 DDT. There is not enough memory to load
 the file specified in an R or E command.

 Invalid Assignment

 STAT. You specified an invalid drive or
 file assignment, or misspelled a device
 name. This error message might be
 followed by a list of the valid file
 assignments that can follow a filename.
 If an invalid drive assignment was
 attempted the message Use: d:=RO is
 displayed, showing the proper syntax for
 drive assignments.

 I-10

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 Invalid control character

 SUBMIT. The only valid control characters
 in the SUBMIT files of the type SUB are ^
 A through ̂ Z. Note that in a SUBMIT file
 the control character is represented by
 typing the circumflex, ̂ , not by pressing
 the control key.

 INVALID DIGIT--{filespec}

 PIP. An invalid HEX digit has been
 encountered while reading a HEX file. The
 HEX file with the invalid HEX digit should
 be corrected, probably by recreating the
 HEX file.

 Invalid Disk Assignment

 STAT. Might appear if you follow the
 drive specification with anything except
 =R/O.

 INVALID DISK SELECT

 CP/M received a command line specifying a
 nonexistent drive, or the disk in the
 drive is improperly formatted. CP/M
 terminates the current program as soon as
 you press any key.

 INVALID DRIVE NAME (Use A, B, C, or D)

 SYSGEN. SYSGEN recognizes only drives A,
 B, C, and D as valid destinations for
 system generation.

 Invalid File Indicator

 STAT. Appears if you do not specify RO,
 RW, DIR, or SYS.

 I-11

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 INVALID FORMAT

 PIP. The format of your PIP command is
 illegal. See the description of the PIP
 command.

 INVALID HEX DIGIT
 LOAD ADDRESS hhhh
 ERROR ADDRESS hhhh
 BYTES READ:
 hhhh

 LOAD. File contains incorrect HEX digit.

 INVALID MEMORY SIZE

 MOVCPM. Specify a value less than 64K or
 your computer’s actual memory size.

 INVALID SEPARATOR

 PIP. You have placed an invalid character
 for a separator between two input
 filenames.

 INVALID USER NUMBER

 PIP. You have specified a user number
 greater than 15. User numbers are in the
 range 0 to 15.

 n?

 USER. You specified a number greater than
 fifteen for a user area number. For
 example, if you type USER 18<cr>, the
 screen displays 18?.

 I-12

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 NO DIRECTORY SPACE

 ASM. The disk directory is full. Erase
 some files to make room for PRN and HEX
 files. The directory can usually hold
 only 64 filenames.

 NO DIRECTORY SPACE--{filespec}

 PIP. There is not enough directory space
 for the output file. You should either
 erase some unnecessary files or get
 another disk with more directory space and
 execute PIP again.

 NO FILE--{filespec}

 DIR, ERA, REN, PIP. CP/M cannot find the
 specified file, or no files exist.

 ASM. The indicated source or include file
 cannot be found on the indicated drive.

 DDT. The file specified in an R or E
 command cannot be found on the disk.

 NO INPUT FILE PRESENT ON DISK

 DUMP. The file you requested does not
 exist.

 No memory

 There is not enough (buffer?) memory
 available for loading the program
 specified.

 NO SOURCE FILE ON DISK

 SYSGEN. SYSGEN cannot find CP/M either in
 CPMxx.com form or on the system tracks of
 the source disk.

 I-13

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 NO SOURCE FILE PRESENT

 ASM. The assembler cannot find the file
 you specified. Either you mistyped the
 file specification in your command line,
 or the filetype is not ASM.

 NO SPACE

 SAVE. Too many files are already on the
 disk, or no room is left on the disk to
 save the information.

 No SUB file present

 SUBMIT. For SUBMIT to operate properly,
 you must create a file with filetype of
 SUB. The SUB file contains usual CP/M
 commands. Use one command per line.

 NOT A CHARACTER SOURCE

 PIP. The source specified in your PIP
 command is illegal. You have probably
 specified an output device as a source.

 ** NOT DELETED **

 PIP. PIP did not delete the file, which
 might have had the R/O attribute.

 NOT FOUND

 PIP. PIP cannot find the specified file.

 OUTPUT FILE WRITE ERROR

 ASM. You specified a write-protected disk
 as the destination for the PRN and HEX
 files, or the disk has no space left.
 Correct the problem before assembling your
 program.

 I-14

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 Parameter error

 SUBMIT. Within the SUBMIT file of type
 sub, valid parameters are $0 through $9.

 PARAMETER ERROR, TYPE RETURN TO IGNORE

 SYSGEN. If you press RETURN, SYSGEN
 proceeds without processing the invalid
 parameter.

 QUIT NOT FOUND

 PIP. The string argument to a Q parameter
 was not found in your input file.

 Read error

 TYPE. An error occurred when reading the
 file specified in the type command. Check
 the disk and try again. The STAT filespec
 command can diagnose trouble.

 READER STOPPING

 PIP. Reader operation interrupted.

 Record Too Long

 PIP. PIP cannot process a record longer
 than 128 bytes.

 Requires CP/M 2.0 or later

 XSUB. XSUB requires the facilities of
 CP/M 2.0 or newer version.

 I-15

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 Requires CP/M 2.0 or new for operation

 PIP. This version of PIP requires the
 facilities of CP/M 2.0 or newer version.

 START NOT FOUND

 PIP. The string argument to an S
 parameter cannot be found in the source
 file.

 SOURCE FILE INCOMPLETE

 SYSGEN. SYSGEN cannot use your CP/M
 source file.

 SOURCE FILE NAME ERROR

 ASM. When you assemble a file, you cannot
 use the wildcard characters * and ? in the
 filename. Only one file can be assembled
 at a time.

 SOURCE FILE READ ERROR

 ASM. The assembler cannot understand the
 information in the file containing the
 assembly-language program. Portions of
 another file might have been written over
 your assembly-language file, or
 information was not properly saved on the
 disk. Use the TYPE command to locate the
 error. Assembly-language files contain
 the letters, symbols, and numbers that
 appear on your keyboard. If your screen
 displays unrecognizable output or behaves
 strangely, you have found where computer
 instructions have crept into your file.

 SYNCHRONIZATION ERROR

 MOVCPM. The MOVCPM utility is being used
 with the wrong CP/M system.

 I-16

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 "SYSTEM" FILE NOT ACCESSIBLE

 You tried to access a file set to SYS with
 the STAT command.

 ** TOO MANY FILES **

 STAT. There is not enough memory for STAT
 to sort the files specified, or more than
 512 files were specified.

 UNEXPECTED END OF HEX FILE--{filespec}

 PIP. An end-of-file was encountered prior
 to a termination HEX record. The HEX file
 without a termination record should be
 corrected, probably by recreating the HEX
 file.

 Unrecognized Destination

 PIP. Check command line for valid
 destination.

 Use: STAT d:=RO

 STAT. An invalid STAT drive command was
 given. The only valid drive assignment in
 STAT is STAT d:=RO.

 VERIFY ERROR:--{filespec}

 PIP. When copying with the V option, PIP
 found a difference when rereading the data
 just written and comparing it to the data
 in its memory buffer. Usually this
 indicates a failure of either the
 destination disk or drive.

 WRONG CP/M VERSION (REQUIRES 2.0)

 XSUB ACTIVE

 SUBMIT. XSUB has been invoked.

 I-17

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CP/M Operating System Manual I CP/M Error Messages

 Table I-1. (continued)

 Message Meaning

 XSUB ALREADY PRESENT

 SUBMIT. XSUB is already active in memory.

 Your input?

 If CP/M cannot find the command you
 specified, it returns the command name you
 entered followed by a question mark.
 Check that you have typed the command line
 correctly, or that the command you
 requested exists as a .COM file on the
 default or specified disk.

End of Appendix I

 I-18

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Index

A
Absolute line number, 36
Access mode, 13
afn (ambiguous file
 reference), 3, 4, 6
Allocation vector, 105
Ambiguous file reference
 (afn), 3, 4, 6
ASM, 15, 47
Assembler, 15, 47
Assembler/disassembler module
 (DDT), 77
Assembler errors, 62
Assembly language mnemonics
 in DDT, 71, 74
Assembly language program, 49
Assembly language statement, 49
Automatic command
 processing, 25

B

Base, 50
Basic Disk Operating System
 (BDOS), 2, 89, 127
Basic I/O System (BIOS),
 2, 89, 127
BDOS (Basic Disk Operating
 System), 2, 89, 127
Binary constants, 50
BIOS (Basic I/O System),
 2, 89, 127
BIOS disk definition, 137, 148
 subroutines
Block move command, 74
bls parameter, 149
BOOT, 90, 136, 140
 entry point
Break point, 71, 73
Built-in commands, 3

C

Case translation, 5, 6, 20,
 37, 39, 44, 45, 51, 95
CCP (Console Command
 Processor), 2, 69, 89, 127
CCP Stack, 92
Character pointer, 35
CKS parameter, 149
Close File function, 101

 Index-1

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Code and data areas, 144
Cold start loader, 136,
 140, 143
Combine files, 17
Command, 3
Command line, 90
Comment field, 49
Compute File Size
 function, 108
Condition flags, 58, 77
Conditional assembly, 56
CONIN, 140
CONOUT, 141
CONSOLE, 138
Console Command Processor
 (CCP), 2, 69, 89, 127
Console Input function, 95
Console Output function, 96
CONST, 140
Constant, 50
Control characters, 9,
Control functions, 9
CTRL-Z character, 93
Copy files, 17
CPU state, 71
cr (carriage return), 39
Create files, 23
Create system disk, 24
Creating COM files, 16
Currently logged disk,
 3, 5, 10, 17, 25

D

Data allocation size, 147
Data block number, 147
DB statement, 57
DDT commands, 70, 133
DDT nucleus, 77
DDT prompt, 70
DDT sign-on message, 69
Decimal constant, 50
Default FCB, 73
Delete File function, 102
DESPOOL, 138
Device assignment, 11
DIR, 6
DIR attribute, 14
dir parameter, 149
Direct console I/O
 function, 97
Direct Memory Address, 104
Directory, 6
Directory code, 100, 101,
 102, 103

 Index-2

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Disassembler, 71, 77
Disk attributes, 11
Disk drive name, 5
Disk I/O functions, 99-110
Disk parameter block, 146
Disk parameter header, 145
Disk parameter table, 145
Disk statistics, 10
Disk-to-disk copy, 18
DISKDEF macro, 149
Diskette format, 31
DISKS macro, 150, 186
Display file contents, 8
dks parameter, 149
DMA, 104
DMA address, 93
dn parameter, 149
DPBASE, 146
Drive characteristics, 14
Drive select code, 94
Drive specification, 5
DS statement, 57
DUMP, 27, 113
DW statement, 57

E

ED, 23, 33-45, 131
ED commands, 38, 44
ED errors, 43
Edit command line, 9
8080 CPU registers, 76
8080 registers, 51
end-of-file, 19, 93
END statement, 49, 54
EMDEF macro, 150
ENDIF statement, 56
EQU statement, 55
ERA, 6
Erase files, 6
Error messages, 29, 43,
 62, 153
Expression, 49
Extents, 13

F

FBASE, 89
FCB, 93, 94
FCB format, 93, 94
FDOS (operations), 89, 91
File attributes, 14
File compatibility, 23
File control block (FCB),
 93, 94

 Index-3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

File expansion, 128
File extent, 93
File indicators, 14
File names, 3
File reference, 3
File statistics, 10, 13
Filetype, 93
Find command, 39
fsc parameter, 149

G

Get ADDR (Alloc) function,
 105
Get ADDR (Disk Parms)
 function, 106
Get Console Status, 99
Get I/O Byte function, 97
Get Read/Only Vector
 function, 105
GETSYS, 128, 134

H

Hexadecimal, 49, 50
Hex files, 16, 19, 20, 47
HOME subroutine, 139, 141

I

Identifier, 49, 50
IF statement, 56
Initialized storage areas, 57
In-line assembly language, 71
Insert mode, 37
Insert String, 40
IOBYTE function, 138, 139

J

Jump vector, 137
Juxtaposition command,41

K

Key fields, 109

L

Label field, 49
Labels, 48, 49, 58
Library read command, 42
Line-editing control
 characters, 38, 70, 98
Line-editing functions, 9

 Index-4

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Line numbers, 36
LIST, 138, 141
List Output function, 96
LISTST, 142
LOAD, 16
Logged in, 3
Logical devices, 11, 18, 138
Logical extents, 93
Logical-physical assignments,
 12, 139
Logical to physical device
 mapping, 138
Logical to physical sector
 translation, 143, 149
Isc parameter, 149

M

Machine executable code, 16
Macro command, 42
Make File function, 103
Memory buffer, 33, 34, 35, 37
Memory image, 71, 131, 132
Memory image file, 16
Memory size, 27, 128, 132
MOVCPM, 27, 131, 132
Multiple command
 processing, 25

N

{o} parameter, 149
Octal constant, 50
ofs parameter, 150
On-line status, 100
Open File function, 100
Operand field, 49-51
Operation field, 49-58
Operators, 52, 53, 58
ORG directive, 54

P

Page zero, 144
Patching the CP/M system, 128
Peripheral devices, 138
Physical devices, 12, 18, 139
Physical file size, 109
Physical to logical device
 assignment, 12, 139
PIP, 17
PIP devices, 19
PIP parameters, 20
Print String function, 98
PRN file, 47

 Index-5

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Program counter, 71, 73, 76
Program tracing, 75
Prompt, 3
Pseudo-operation, 53
PUNCH, 138, 141
Punch Output function, 96
PUTSYS, 129, 135

R

Radix indicators, 50
Random access, 107, 108, 117
Random record number, 108
READ, 142
Read Console Buffer
 function, 98
Read only, 14
Read/only status, 14
Read random error codes, 107
Read Random function, 107
READ routine, 139
Read Sequential function, 102
Read/write, 14
READER, 138, 141
Reader Input function, 96
REN, 7
Rename file function, 104
Reset Disk function, 99
Reset Drive function, 109
Reset state, 99
Return Current Disk
 function, 104
Return Log-in Vector
 function, 104
Return Version Number
 function, 99
R/O, 14
R/O, attribute, 106
R/O bit, 105
R/W, 14

S

SAVE, 7
SAVE command, 70
Search for First function, 101
Search for Next function, 102
Search strings, 39
Sector allocation, 136
SECTRAN, 143
SELDSK, 139, 141, 146
Select Disk function, 100
Sequential access, 93
Set DMA address function, 104
Set File Attributes

 Index-6

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

 function, 106
Set/GET User Code
 function, 106
Set I/O Byte function, 97
Set Random Record
 function, 109
SET statement, 55
SETDMA, 142
SETSEC, 142
SETTRK, 141
Simple character I/O, 138
Size in records, 13
skf parameter, 149, 150
Source files, 93
Stack pointer, 92
STAT, 10, 139, 151
Stop console output, 9
String substitutions, 40
SUBMIT, 25
SYS attribute, 14
SYSGEN, 24, 134
System attribute, 44, 106
System parameters, 140
System (re)initialization, 138
System Reset function, 95

T

Testing and debugging of
 programs, 69
Text transfer commands, 35
TPA (Transient Program Area),
 2, 89
Trace mode, 76
Transient commands, 3, 9
Transient Program Area
 (TPA), 2, 89
Translate table, 150
Translation vectors, 146
TYPE, 8

U

ufn, 3, 6
Unambiguous file reference,
 3, 6
Uninitialized memory, 57
Untrace mode, 76
USER, 8
USER numbers, 8, 15, 106

V

Verify line numbers command,
 37, 45

 Index-7

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Version independent
 programming, 99
Virtual file size, 108

W

Warm start, 90, 140
WBOOT entry point, 140
WRITE, 142
Write Protect Disk
 function, 105
Write random error codes, 108
Write Random function, 108
Write Random with Zero Fill
 function, 110
Write routine, 142
Write Sequential function, 103

X

XSOB, 26

 Index-8

