Browse Source

Merge pull request #481 from kiwisincebirth/map/doc-assign

Documentation for ASSIGN.COM
pull/484/head
Wayne Warthen 1 year ago
committed by GitHub
parent
commit
4110c67db4
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
  1. BIN
      Doc/RomWBW Applications.pdf
  2. BIN
      Doc/RomWBW Disk Catalog.pdf
  3. BIN
      Doc/RomWBW Errata.pdf
  4. BIN
      Doc/RomWBW System Guide.pdf
  5. BIN
      Doc/RomWBW User Guide.pdf
  6. 591
      ReadMe.md
  7. 603
      ReadMe.txt
  8. 118
      Source/Doc/Applications.md
  9. 3
      Source/Doc/ReadMe.md
  10. 3
      Source/Doc/UserGuide.md

BIN
Doc/RomWBW Applications.pdf

Binary file not shown.

BIN
Doc/RomWBW Disk Catalog.pdf

Binary file not shown.

BIN
Doc/RomWBW Errata.pdf

Binary file not shown.

BIN
Doc/RomWBW System Guide.pdf

Binary file not shown.

BIN
Doc/RomWBW User Guide.pdf

Binary file not shown.

591
ReadMe.md

@ -1,295 +1,296 @@
**RomWBW ReadMe** \
Version 3.5 \
Wayne Warthen ([wwarthen@gmail.com](mailto:wwarthen@gmail.com)) \
19 Dec 2024
# Overview
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- [RetroBrew Computers](https://www.retrobrewcomputers.org)
(<https://www.retrobrewcomputers.org>)
- [RC2014](https://rc2014.co.uk) (<https://rc2014.co.uk>),
[RC2014-Z80](https://groups.google.com/g/rc2014-z80)
(<https://groups.google.com/g/rc2014-z80>)
- [Retro Computing](https://groups.google.com/g/retro-comp)
(<https://groups.google.com/g/retro-comp>)
- [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
\[Installation\] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the [RomWBW Releases
Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the “Assets” drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
# Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf).
## Documentation
Documentation for RomWBW includes:
- [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf)
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
- [RomWBW
Applications](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Applications.pdf)
- [RomWBW
Errata](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Errata.pdf)
# Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original code
can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW including
the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included SD
Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers which
has exponentially increased RomWBW usage. Some of his kits include
RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images including
Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft BASIC Compiler,
Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented
feature for RomWBW configuration by NVRAM.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver including
compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility (WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
# Licensing
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see <https://www.gnu.org/licenses/>.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
> Wayne Warthen
> <wwarthen@gmail.com>
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>.
**RomWBW ReadMe** \
Version 3.5 \
Wayne Warthen ([wwarthen@gmail.com](mailto:wwarthen@gmail.com)) \
20 Dec 2024
# Overview
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- [RetroBrew Computers](https://www.retrobrewcomputers.org)
(<https://www.retrobrewcomputers.org>)
- [RC2014](https://rc2014.co.uk) (<https://rc2014.co.uk>),
[RC2014-Z80](https://groups.google.com/g/rc2014-z80)
(<https://groups.google.com/g/rc2014-z80>)
- [Retro Computing](https://groups.google.com/g/retro-comp)
(<https://groups.google.com/g/retro-comp>)
- [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
\[Installation\] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the [RomWBW Releases
Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the “Assets” drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
# Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf).
## Documentation
Documentation for RomWBW includes:
- [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf)
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
- [RomWBW
Applications](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Applications.pdf)
- [RomWBW
Errata](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Errata.pdf)
# Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original code
can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW including
the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included SD
Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers which
has exponentially increased RomWBW usage. Some of his kits include
RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images including
Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft BASIC Compiler,
Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk mode
of disk assignment to the ASSIGN utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver including
compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility (WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
# Licensing
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see <https://www.gnu.org/licenses/>.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
> Wayne Warthen
> <wwarthen@gmail.com>
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>.

603
ReadMe.txt

@ -1,301 +1,302 @@
RomWBW ReadMe
Wayne Warthen (wwarthen@gmail.com)
19 Dec 2024
OVERVIEW
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
A complete list of the currently supported platforms is found in the
[Installation] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
ACQUIRING ROMWBW
The RomWBW Repository (https://github.com/wwarthen/RomWBW) on GitHub is
the official distribution location for all project source and
documentation. The fully-built distribution releases are available on
the RomWBW Releases Page (https://github.com/wwarthen/RomWBW/releases)
of the repository. On this page, you will normally see a Development
Snapshot as well as recent stable releases. Unless you have a specific
reason, I suggest you stick to the most recent stable release. Expand
the “Assets” drop-down for the release you want to download, then select
the asset named RomWBW-vX.X.X-Package.zip. The Package asset includes
all pre-built ROM and Disk images as well as full source code. The other
assets contain only source code and do not have the pre-built ROM or
disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
INSTALLATION & OPERATION
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the RomWBW User Guide.
Documentation
Documentation for RomWBW includes:
- RomWBW User Guide
- RomWBW System Guide
- RomWBW Applications
- RomWBW Errata
ACKNOWLEDGMENTS
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original
code can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and
advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW
including the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included
SD Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers
which has exponentially increased RomWBW usage. Some of his kits
include RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images
including Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft
BASIC Compiler, Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented
feature for RomWBW configuration by NVRAM.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver
including compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility
(WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
LICENSING
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see https://www.gnu.org/licenses/.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
Wayne Warthen
wwarthen@gmail.com
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
GETTING ASSISTANCE
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com.
RomWBW ReadMe
Wayne Warthen (wwarthen@gmail.com)
20 Dec 2024
OVERVIEW
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
A complete list of the currently supported platforms is found in the
[Installation] section.
General features include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included – no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
operating system. A “combo” disk image contains multiple slices, each
with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
ACQUIRING ROMWBW
The RomWBW Repository (https://github.com/wwarthen/RomWBW) on GitHub is
the official distribution location for all project source and
documentation. The fully-built distribution releases are available on
the RomWBW Releases Page (https://github.com/wwarthen/RomWBW/releases)
of the repository. On this page, you will normally see a Development
Snapshot as well as recent stable releases. Unless you have a specific
reason, I suggest you stick to the most recent stable release. Expand
the “Assets” drop-down for the release you want to download, then select
the asset named RomWBW-vX.X.X-Package.zip. The Package asset includes
all pre-built ROM and Disk images as well as full source code. The other
assets contain only source code and do not have the pre-built ROM or
disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
INSTALLATION & OPERATION
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are found
in the RomWBW User Guide.
Documentation
Documentation for RomWBW includes:
- RomWBW User Guide
- RomWBW System Guide
- RomWBW Applications
- RomWBW Errata
ACKNOWLEDGMENTS
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names – please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original
code can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and
advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW
including the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included
SD Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers
which has exponentially increased RomWBW usage. Some of his kits
include RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images
including Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft
BASIC Compiler, Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk
mode of disk assignment to the ASSIGN utility.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Jose Collado has contributed enhancements to the TMS driver
including compatibility with standard TMS register configuration.
- Kevin Boone has contributed a generic HBIOS date/time utility
(WDATE).
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Dylan Hall added support for specifying a secondary console.
- Bill Shen has contributed boot loaders for several of his systems.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
LICENSING
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version.
RomWBW is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with RomWBW. If not, see https://www.gnu.org/licenses/.
Portions of RomWBW were created by, contributed by, or derived from the
work of others. It is believed that these works are being used in
accordance with the intentions and/or licensing of their creators.
If anyone feels their work is being used outside of its intended
licensing, please notify:
Wayne Warthen
wwarthen@gmail.com
RomWBW is an aggregate work. It is composed of many individual,
standalone programs that are distributed as a whole to function as a
cohesive system. Each program may have its own licensing which may be
different from other programs within the aggregate.
In some cases, a single program (e.g., CP/M Operating System) is
composed of multiple components with different licenses. It is believed
that in all such cases the licenses are compatible with GPL version 3.
RomWBW encourages code contributions from others. Contributors may
assert their own copyright in their contributions by annotating the
contributed source code appropriately. Contributors are further
encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
GETTING ASSISTANCE
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com.

118
Source/Doc/Applications.md

@ -1077,9 +1077,12 @@ to display, assign, reassign, or remove the drive letter assignments.
| `ASSIGN /?` | `ASSIGN /?`
| `ASSIGN /L` | `ASSIGN /L`
| `ASSIGN ` *`<drv>`*`=`
| `ASSIGN `
| `ASSIGN [`*`<drv>`*`],...` | `ASSIGN [`*`<drv>`*`],...`
| `ASSIGN `*`<drv>`*`=[`*`<device>`*`:[`*`<slice>`*`]],...`
| `ASSIGN `*`<tgtdrv>`*`=`*`<srcdrv>`*`,...`
| `ASSIGN ` *`<drv>`*`=[`*`<device>`*`:[`*`<slice>`*`]],...`
| `ASSIGN ` *`<tgtdrv>`*`=`*`<srcdrv>`*`,...`
| `ASSIGN /B='*'<option>'*'['*'<option>'*'['*'<option>'*'...]]`
#### Usage #### Usage
@ -1090,23 +1093,36 @@ used in drive assignments in the running system. The devices listed
may or may not contain media. Although some device types support the may or may not contain media. Although some device types support the
use of slices, the list does not indicate this. use of slices, the list does not indicate this.
`ASSIGN A:` just specifying the drive letter will display the
assignment for the drive letter
`ASSIGN` with no parameters will list all of the current drive `ASSIGN` with no parameters will list all of the current drive
assignments. assignments.
`ASSIGN `*`<drv>`* will display the assignment for the specific drive
#### Usage (Specific)
The following describes how to assign drive specifically by identifing each
drive by its unique device and slice id's
`ASSIGN ` *`<drv>`* will display the assignment for the specific drive
For example, `ASSIGN C:` will display the assignment for drive C:. For example, `ASSIGN C:` will display the assignment for drive C:.
`ASSIGN `*`<drv>`*`=`*`<device>`*`[:`*`<slice>`*`]` will assign (or
`ASSIGN ` *`<drv>`*`=`*`<device>`*`[:`*`<slice>`*`]` will assign (or
reassign) a drive letter to a new device and (optionally) slice. If no reassign) a drive letter to a new device and (optionally) slice. If no
slice is specified, then slice 0 is assumed. For example, `ASSIGN slice is specified, then slice 0 is assumed. For example, `ASSIGN
C:=IDE0` will assign drive letter C: to device IDE0, slice 0. `ASSIGN C:=IDE0` will assign drive letter C: to device IDE0, slice 0. `ASSIGN
D:=IDE0:3` will assign drive letter D: to device IDE0 slice 3. D:=IDE0:3` will assign drive letter D: to device IDE0 slice 3.
`ASSIGN `*`<drv>`*`=` can be used to remove the assignment from a
The `ASSIGN` command will not allow you to specify a slice (other than
zero) for devices that do not support slices.
A slice should only be specified for hard disk devices (SD, IDE, PPIDE).
Floppy disk drives and RAM/ROM drives do not have slices.
`ASSIGN ` *`<drv>`*`=` can be used to remove the assignment from a
drive letter. So, `ASSIGN E:=` will remove the association of drive drive letter. So, `ASSIGN E:=` will remove the association of drive
letter E: from any previous device. letter E: from any previous device.
`ASSIGN `*`<tgtdrv>`*`=`*`<srcdrv>`* is used to swap the assignments
`ASSIGN ` *`<tgtdrv>`*`=`*`<srcdrv>`* is used to swap the assignments
of two drive letters. For example, `ASSIGN C:=D:` will swap the device of two drive letters. For example, `ASSIGN C:=D:` will swap the device
assignments of C: and D:. assignments of C: and D:.
@ -1118,6 +1134,78 @@ When the command runs it will echo the resultant assignments to the
console to confirm its actions. It will also display the remaining console to confirm its actions. It will also display the remaining
space available in disk buffers. space available in disk buffers.
#### Usage (Bulk)
The following describes how to assign drives in bulk without having to specify
the identifiers of each drive being mapped. Instead bulk mode has a
predefined set options (identified by single letter) which will map drives.
Bulk mode works by assigning drives sequentially starting at A: until all
drives are used, or there are no more options to process. Each option
will typically map between 0 and N drives depending on the option
and the available hardware in your system.
`ASSIGN /B=`*`<option><option>`*... will perform bulk assignment .
The following options will assign a small number of devices, typically you would
place at beginning of an option list.
| Option | Name | Description | Assigned |
|--------|----------|---------------------------------------------|----------|
| B | Boot | The boot device | 1 |
| A | RAM | Ram drive | 0,1 |
| O | ROM | Rom drive | 0,1 |
| F | Floppy | All floppy devices, with/without media | 0,1,2,.. |
| P | Preserve | Skip and preserve the next drive assignment | 1 |
| X | Exclude | Un-assign / Exclude the next drive | 1 |
A drive e.g. RAM, ROM, FLOPPY can only be assigned if it exists. if you system
doesn't have the hardware that supports the device, then no devices will be
assigned, and the next option will be processed.
`B` assigns the boot device. If used the `B`oot drive should typically be
assigned first.
`P` will not make any changes to the next drive, it will skip over it. While the
`X` option will un-assign the next drive, leaving a gap.
The remaining options will fill drives mostly to end, from hard drive slices,
generally choose 1 of the following:
| Option | Name | Description | Assigned |
|--------|-------------|---------------------------------------------|----------|
| S | Slices | Assign slices from boot hard drive | ...max |
| H | Hard Drive | Assign slices evenly from all hard drives | ...max |
| L | Legacy HD | Assign slices from all hard drives (legacy) | 6,...max |
| Z | Exclude All | Un-assign all remaining drives | ...max |
`S`lices assignment will map all remaining drives to slices from the boot device.
If I have other hard drives present these will not be mapped by this option.
e.g. `ASSIGN /B=BAOS`
Will first assign drives `A:(Boot), B:(RAM), C:(ROM)` this leaves 13 drives
which will be assigned to slices from the boot hard drive (D: thru P:),
leaving no unused drives.
'H'ard drive assignment will attempt to fill all remaining drive letters
by splitting the number of drives remaining evenly across all.
e.g. `ASSIGN /B=BAOH`
Will first assign drives `A:(Boot), B:(RAM), C:(ROM)` this leaves 13 drives
available. If I have 3 hard disks then (13/3) = 4 slices from each hard drive will
be assigned to drives (D: thru O:), leaving a single unused drive (P:).
`L`egacy hard drive assignment is identical to how the startup hard disk assignment
works. ie. Attempt to assign up to 8 hard drives split across hard drives
detected at boot.
e.g. `ASSIGN /B=BAOL`
Will first assign drives `A:(Boot), B:(RAM), C:(ROM)`. If I have 3 hard disks
then (8/3) = 2 slices from each hard drive will be assigned to drives (D: thru I:),
leaving 7 unused drives (J: thru P:).
#### Notes #### Notes
If the `ASSIGN` command encounters any rule violations or errors, it If the `ASSIGN` command encounters any rule violations or errors, it
@ -1136,10 +1224,6 @@ being assigned actually contains readable media. If the assigned
device has no media, you will receive an I/O error when you attempt to device has no media, you will receive an I/O error when you attempt to
use the drive letter. use the drive letter.
The `ASSIGN` command will not allow you to specify a slice (other than
zero) for devices that do not support slices (such as floppy drives
or RAM/ROM disks).
The `ASSIGN` command does not check that the media is large enough to The `ASSIGN` command does not check that the media is large enough to
support the slice you specify. In other words, you could potentially support the slice you specify. In other words, you could potentially
assign a drive letter to a slice that is beyond the end of the media assign a drive letter to a slice that is beyond the end of the media
@ -1152,7 +1236,11 @@ data (such as a FAT filesystem).
You will not be allowed to assign multiple drive letters to a single You will not be allowed to assign multiple drive letters to a single
device and slice. In other words, only one drive letter may refer to a device and slice. In other words, only one drive letter may refer to a
single filesystem at a time.
single filesystem at a time.
Attempts to assign a duplicate drive letter will fail and display an
error. If you wish to assign a different drive letter to a
device/unit/slice, unassign the existing drive letter first.
Drive letter A: must always be assigned to a device and slice. The Drive letter A: must always be assigned to a device and slice. The
`ASSIGN` command will enforce this. `ASSIGN` command will enforce this.
@ -1163,14 +1251,6 @@ all drive letters will return to their default assignments. A SUBMIT
batch file can be used to setup desired drive assignments batch file can be used to setup desired drive assignments
automatically at boot. automatically at boot.
Floppy disk drives and RAM/ROM drives do not have slices. A slice
should only be specified for hard disk devices (SD, IDE, PPIDE).
Only one drive letter may be assigned to a specific device/unit/slice
at a time. Attempts to assign a duplicate drive letter will fail and
display an error. If you wish to assign a different drive letter to a
device/unit/slice, unassign the existing drive letter first.
Be aware that this command will allow you to reassign or remove the Be aware that this command will allow you to reassign or remove the
assignment of your system drive letter. This can cause your operating assignment of your system drive letter. This can cause your operating
system to fail and force you to reboot. system to fail and force you to reboot.

3
Source/Doc/ReadMe.md

@ -192,7 +192,8 @@ please let me know if I missed you!
* Mark Pruden has also contributed a great deal of content to the * Mark Pruden has also contributed a great deal of content to the
Disk Catalog, User Guide as well as contributing the disk image Disk Catalog, User Guide as well as contributing the disk image
for the Z3PLUS operating system, the COPYSL utility, and also for the Z3PLUS operating system, the COPYSL utility, and also
implemented feature for RomWBW configuration by NVRAM.
implemented a feature for RomWBW configuration by NVRAM,
and added the /B bulk mode of disk assignment to the ASSIGN utility.
* Jacques Pelletier has contributed the DS1501 RTC driver code. * Jacques Pelletier has contributed the DS1501 RTC driver code.

3
Source/Doc/UserGuide.md

@ -4788,7 +4788,8 @@ please let me know if I missed you!
* Mark Pruden has also contributed a great deal of content to the * Mark Pruden has also contributed a great deal of content to the
Disk Catalog, User Guide as well as contributing the disk image Disk Catalog, User Guide as well as contributing the disk image
for the Z3PLUS operating system, the COPYSL utility, and also for the Z3PLUS operating system, the COPYSL utility, and also
implemented feature for RomWBW configuration by NVRAM.
implemented a feature for RomWBW configuration by NVRAM,
and added the /B bulk mode of disk assignment to the ASSIGN utility.
* Jacques Pelletier has contributed the DS1501 RTC driver code. * Jacques Pelletier has contributed the DS1501 RTC driver code.

Loading…
Cancel
Save