Compare commits

...

199 Commits

Author SHA1 Message Date
Wayne Warthen
edfbfe8eee Bump Version 2025-06-07 12:35:23 -07:00
Wayne Warthen
8510158aa0 Minor Pre Int Strategy Change
Use a global flag to indicate if interrupts have been enabled during the boot process.  Drivers that operate in the pre-interrupt phase can use this to manage interrupt disable bracketing.

This allows restoring the location of interrupt enable in the boot process to it's proper location.
2025-06-07 12:34:38 -07:00
Wayne Warthen
760ed38297 Minor Doc File Tweaks 2025-06-07 12:27:31 -07:00
Wayne Warthen
95e7c5ce3b Bump Version 2025-06-06 15:34:40 -07:00
Wayne Warthen
e92091c922 PCRTC Driver Follow-up
- Minor typos
2025-06-06 15:15:32 -07:00
Wayne Warthen
edf3cf93bb Merge pull request #570 from mabartibin/dev-pcrtc
Driver for PC style RTC, MC146818/DS1285/DS12885
2025-06-06 15:06:15 -07:00
Wayne Warthen
a110b24d76 HITECH-C Documentation Cleanup 2025-06-06 15:01:57 -07:00
Martin Giese
1813100142 Documentation additions for PC style clock 2025-06-06 22:36:51 +02:00
Martin Giese
e29fb43754 Code for MC146818/DS1285/DS12885 PC style CLOCK DRIVER 2025-06-06 22:27:09 +02:00
Wayne Warthen
d32fe11a19 Update Hi-Tech C Disk Image
Update Hi-Tech C to 3.09-19 release from Tony Nicholson.  See <https://github.com/agn453>.
2025-06-06 10:14:11 -07:00
Wayne Warthen
db577eddd9 Documentation Updates, Issue #567
- Fix Catalog document per Issue #567
- Update fonts.txt w/ latest font info
- Correct EOL on several documents
2025-06-06 08:48:57 -07:00
Wayne Warthen
603d29f4ba Merge pull request #569 from codesmythe/xosera_uart
Limit Xosera config to 2 UARTS; set $A0 base addr.
2025-06-06 08:40:40 -07:00
Rob Gowin
ba5af175ba Limit Xosera config to 2 UARTS; set $A0 base addr.
The consenus is that the best default address for Xosera
is $A0, so make that the default.

However, in that case we need to limit the number of UARTs
that are probed to two because the probe for a third UART
writes unlucky values to Xosera (at $A3) and causes it to
reconfigure itself and lock up the bus for a time.

Thanks to Wayne for his help in debugging this.
2025-06-06 11:32:15 -04:00
Wayne Warthen
a9c7be6744 Minor Doc Updates
- Clarified Memory Manager and MMU terminology.
2025-06-04 14:33:59 -07:00
Wayne Warthen
4ff7888bdc Fit RTC Detection, Issue #566
Corrected DSRTC and BQRTC drivers to properly restore the value of the NVRAM byte used for presence detection.

Thanks and credit to @MartinGieseCelonis for finding this.
2025-06-03 17:13:17 -07:00
Wayne Warthen
80e514e5d4 Improve Cowgol Catalog Documentation 2025-06-03 13:34:41 -07:00
Wayne Warthen
54b48da071 Update release.yml 2025-06-02 14:46:38 -07:00
Wayne Warthen
1b2f452373 Move Online Doc Build to Release Workflow
The build process for the online documentation site has not changed, it was just moved to the Release workflow so it will be a little more stable.
2025-06-02 13:52:37 -07:00
Wayne Warthen
4f25b011e1 KERMIT File Mode Default to Binary
KERMIT (for CP/M 2.2 and 3) was originally using a file transfer mode called "DEFAULT".  This mode tried to accommodate binary or ASCII files, but could result in file corruption.  As suggested by @PeterOGB, the BINARY setting is much safer.  This is now the built-in default setting.

Co-Authored-By: PeterOGB <7755057+PeterOGB@users.noreply.github.com>
2025-06-02 13:48:09 -07:00
Wayne Warthen
6c95a4285a Xosera Follow-up
- Change 0x prefixes to $ prefixes for TASM
- Regen documentation
2025-06-02 13:31:09 -07:00
Wayne Warthen
f2e42dd9d8 Merge pull request #565 from codesmythe/xosera2
Add VDA driver for Xosera, an FPGA-based video controller.
2025-06-02 12:55:01 -07:00
Rob Gowin
936a3958a5 Add VDA driver for Xosera, an FPGA-based video controller. 2025-06-02 09:17:29 -04:00
Wayne Warthen
eb8b76819d MkDocs Follow-Up 2025-06-01 17:22:44 -07:00
Wayne Warthen
11bc9703c0 Merge pull request #563 from codesmythe/test04
Fix links in online docs to not link to PDF files.
2025-06-01 17:08:48 -07:00
Rob Gowin
9a77d7f93e Fix links in online docs to not link to PDF files.
Now when online docs are build, `gpp` is called with
a `-DGFM` argument, which `Basic.h` uses up to create
the proper links.
2025-06-01 10:44:12 -04:00
Wayne Warthen
2f5cf8fce4 Add Bounds Check to md.asm, Issue #560
Added checks to prevent HBIOS API read/write calls from access RAM or ROM banks outside of the banks allocated for RAM/ROM disk.
2025-05-31 17:25:44 -07:00
Wayne Warthen
0d0360b277 Enhanced Hi-Tech C Compiler Files, Issue #521
Added the enhanced Hi-Tech C Compiler components from @Laci1953 to user area 1 of the Hi-Tech Compiler disk images.

Co-Authored-By: ladislau szilagyi <87603175+Laci1953@users.noreply.github.com>
2025-05-31 15:11:38 -07:00
Wayne Warthen
7515359c3f Regen Docs 2025-05-31 13:01:52 -07:00
Wayne Warthen
30a89dedbd Move Docs Build After Upload Artifact 2025-05-31 11:34:12 -07:00
Wayne Warthen
f5e1987367 Merge pull request #562 from codesmythe/test03
Use GFM version of ReadMe.md for MkDocs.
2025-05-31 07:07:39 -07:00
Rob Gowin
45222d6b2a Use GFM version of ReadMe.md for MkDocs. 2025-05-31 06:43:22 -04:00
Wayne Warthen
3513b220c0 Improve ROM Layout Management, Issue #554
General cleanup and refactoring of the ROM bank layout mechanism in the build scripts.  This will make it easier to add and adjust the components in the ROM banks.

This commit does not yet implement the pending bank layout changes.  Those will be part of the next commit.
2025-05-30 19:21:10 -07:00
Wayne Warthen
81278afefe Merge pull request #561 from codesmythe/test02
Add flow to generate documentation page via MkDocs and GitHub Pages
2025-05-30 13:45:00 -07:00
Rob Gowin
eaca39b557 Add steps to commit GH action to deploy docs to GitHub Pages. 2025-05-30 15:01:47 -04:00
Rob Gowin
27864e8128 Add flow to generate docs using MkDocs.
Source/Doc/Makefile:
  - add steps to 'deploy_mkdocs' target to generate MkDocs input.
  - change default image extension for GFM output to SVG.

Source/Doc/mkdocs.yaml:
  New config file for 'mkdocs build.'
2025-05-30 14:59:48 -04:00
Wayne Warthen
ec77861fae Update ReadMe.txt in CPM22 Folder
Add attribution comments for CCPB03.ASM and BDOSB01.ASM per Bill Beech.
2025-05-30 09:09:18 -07:00
Wayne Warthen
52ea94161c TUNE Delay Switch, Issue #558
- Add a -DELAY switch to the TUNE command line to force the use of delay mode for note pacing.  Issue #558  Credit to @robbbates for suggesting this.
- Add missing include file logic for DS1307, Issue #556.  Credit to @tpycio.
- Miscellaneous documentation improvements per Peter Onion and Petr Antos.
2025-05-28 15:27:35 -07:00
Wayne Warthen
ed77b3ef84 Fix Char Device Name Display, Issue #557
An extraneous character device enumeration string had not been deleted as needed.  This has been fixed.

Thanks and credit to @PeterOGB.
2025-05-26 13:10:00 -07:00
Wayne Warthen
2f61c3fc81 Correct DS1307 Boot Date/Time Display, Issue #556
DS1307 driver (ds7rtc.asm) was displaying an erroneous date/time in the boot messages.  The HBIOS API data was OK.  Credit and thanks to @tpycio for identifying this issue.
2025-05-25 15:32:03 -07:00
Wayne Warthen
2ffd248eb5 LPT Driver Boot Messages, Issue #555
LPT driver will now display hardware that is not detected.  Thanks and credit to @robbbates.
2025-05-25 14:42:06 -07:00
Wayne Warthen
ed4ced1ab6 Update hbios.asm
- Missed one label change in previous commit.
2025-05-24 16:26:23 -07:00
Wayne Warthen
77d201f9d3 CPU Speed LCD Dynamic Update, Issue #520
- Enable dynamic update of CPU speed display on LCD.
2025-05-24 16:10:39 -07:00
Wayne Warthen
3e1e640bb3 Minor PCF Changes
- Slightly modified to be more consistent with typical RomWBW driver config.
2025-05-23 14:54:38 -07:00
Wayne Warthen
5c6ccbf0d3 Merge pull request #552 from wdl1908/master
gitignore Fixes and cleanup
2025-05-23 10:43:38 -07:00
Wayne Warthen
4559608aa5 Hardware Doc Fix, Issue #551
Thanks and credit to @PeterOGB for pointing this out.
2025-05-23 10:36:53 -07:00
Willy De la Court
e0b6a23e4a gitignore Fixes and cleanup 2025-05-23 15:54:03 +02:00
Wayne Warthen
f42c53f9e5 Merge pull request #545 from wdl1908/master
Some enhancements to the pcf driver.
2025-05-22 08:42:04 -07:00
Wayne Warthen
9563ae4c15 Merge pull request #549 from mggates39/feature/add_cobol_image
Add MS-COBOL Disk image
2025-05-22 08:40:59 -07:00
Wayne Warthen
331a55ec89 Update ver.lib 2025-05-21 19:44:49 -07:00
Wayne Warthen
6fec2aaf90 Initialize v3.6 Development 2025-05-21 16:47:48 -07:00
Wayne Warthen
27ec33e007 Update RELEASE_NOTES.md 2025-05-21 15:39:13 -07:00
Wayne Warthen
275291e61f Update RELEASE_NOTES.md 2025-05-21 15:37:05 -07:00
Wayne Warthen
ee6621cc63 Finalize v3.5.1 2025-05-21 15:08:25 -07:00
Marshall Gates
57007a60fc merge branch 'feature/add_cobol_image' of https://github.com/mggates39/RomWBW into feature/add_cobol_image 2025-05-20 23:41:47 -04:00
Marshall Gates
e048febffb Update the Makefile to include the COBOL disk images 2025-05-20 23:41:20 -04:00
Marshall G. Gates
12e76b3434 Merge branch 'master' into feature/add_cobol_image 2025-05-20 23:15:05 -04:00
Marshall Gates
aa6375c093 Adding MS-COBOL-80 Disk Image 2025-05-20 22:55:18 -04:00
Wayne Warthen
9599a2c37b Bump Version 2025-05-18 15:10:20 -07:00
Wayne Warthen
f5f3927e69 Merge pull request #547 from kiwisincebirth/map/hw-final2
Improved HW Doc for some profiles, Moved Errata section
2025-05-18 14:58:41 -07:00
Mark Pruden
696b737612 Improved HW Doc for some profiles, Moved Errata section 2025-05-18 12:36:36 +10:00
Wayne Warthen
09e868eec0 Minor Update to Introduction Document
- Credit Mark Pruden for SLABEL.
2025-05-17 10:47:13 -07:00
Wayne Warthen
6cbe5ad9b7 Merge pull request #546 from kiwisincebirth/map/hw-doc-final
Improvements to HW Doc
2025-05-17 10:24:31 -07:00
Mark Pruden
5976afce2e Added another link 2025-05-16 18:27:51 +10:00
Mark Pruden
8581f477d2 Minor improvement to Bill Shen's configurations. 2025-05-16 16:21:13 +10:00
Mark Pruden
7d3bc01899 fix typo 2025-05-16 14:59:35 +10:00
Mark Pruden
bd558d6a30 Fix typo in Doc 2025-05-16 14:23:13 +10:00
Mark Pruden
5d4b234fdb Reorganise content in Chapter 1 into multiple tables, with very minor corrections. also added UNA_std.rom into these summary tables as it was missing. 2025-05-16 14:16:22 +10:00
Willy De la Court
149601d17c Merge branch 'master' of github.com:wdl1908/RomWBW 2025-05-15 19:11:22 +02:00
Willy De la Court
b79709f61c Added default values for PCFCLK and PCFTRNS and comparisons to set PCF_CLK and PCF_TRNS 2025-05-15 19:11:03 +02:00
Wayne Warthen
7922ac4da5 Merge pull request #544 from kiwisincebirth/map/doc-hw-links
Significant additions to HW Doc,
2025-05-15 08:02:21 -07:00
Mark Pruden
d55f3bdcae Signifint additions to HW Doc, including descriptions, links to official projects, Better Config Names. 2025-05-15 17:49:50 +10:00
Wayne Warthen
aee00b0ff8 Update CGEN.COM
Bugfix per Ladislau.  See <https://groups.google.com/g/rc2014-z80/c/sBCCIpOnnGg>

Co-Authored-By: ladislau szilagyi <87603175+Laci1953@users.noreply.github.com>
2025-05-13 13:33:29 -07:00
Wayne Warthen
a0d1825701 Bump Version 2025-05-08 16:46:30 -07:00
Wayne Warthen
cc2fda0cc2 Update pull_request_template.md 2025-05-08 16:42:51 -07:00
Wayne Warthen
e67b0f7e24 Restore EZZ80 Platform Config
Per Issue #541, a platform configuration file has been created for the EZZ80 platform.  The two ROM builds for this platform have changed prefix from RCZ80 to EZZ80.
2025-05-08 13:22:22 -07:00
Wayne Warthen
96d0900cf7 Merge pull request #542 from kiwisincebirth/map/doc-hw1
Reorganise HW Guide into sections per platform
2025-05-08 12:05:50 -07:00
Mark Pruden
98441355c9 Reorganise HW Guide into sections per platform 2025-05-08 19:48:31 +10:00
Wayne Warthen
2e0f7922ec Regen PDF Docs 2025-05-07 11:11:25 -07:00
Wayne Warthen
df3a9e7756 Merge pull request #539 from kiwisincebirth/map/improve-doc-platform
Documentation Improvements, fix omissions
2025-05-07 10:59:29 -07:00
Wayne Warthen
5e7f359b82 Merge branch 'master' into map/improve-doc-platform 2025-05-07 10:58:58 -07:00
Wayne Warthen
4ef452bcd8 Update System Guide Source
- The SystemGuide.md file associated with Issue #538 was accidentally omitted.  Thanks and credit to @kiwisincebirth for pointing this out!
2025-05-07 10:52:50 -07:00
Mark Pruden
d1af2ea8c0 Minor improvement to System Guide 2025-05-07 18:04:47 +10:00
Mark Pruden
cda51f7277 Documentation Improvements, fix omissions 2025-05-07 17:38:19 +10:00
Wayne Warthen
094545dcbb Missing Platform IDs in System Guide, Issue #538
Added missing platform IDs in the System Guide.  Thanks and credit to @hubertushirsch.
2025-05-03 11:35:28 -07:00
Wayne Warthen
d79dce64fe Regen Docs 2025-05-02 19:27:53 -07:00
Wayne Warthen
c1152cfe17 Merge pull request #537 from kiwisincebirth/map/doc-buffer_bank
Minor doc improvements
2025-05-02 19:22:16 -07:00
Mark Pruden
ea418f9dc4 Bugfix for SLABEL.COM 2025-05-02 22:04:47 +10:00
Wayne Warthen
5118ab8d0a Hardware Probing Conflicts, Issue #536
Mitigate issue where a hardware probe can corrupt the programming of a previously discovered device.
2025-04-29 13:55:35 -07:00
Wayne Warthen
e42c04d40f Bump Version for New Release Candidate 2025-04-25 13:55:20 -07:00
Wayne Warthen
3618e0a976 Font Map Images Update
- Cleanup of the .PNG images of the fonts.
2025-04-25 13:42:43 -07:00
Wayne Warthen
d0aad220df SLABEL Follow Up
- Source corrections related to TASM assembly
- Regen documentation
2025-04-25 10:57:11 -07:00
Wayne Warthen
98e633461f Merge pull request #534 from kiwisincebirth/map/slabel
New SLABEL.COM Utility
2025-04-25 10:04:25 -07:00
Wayne Warthen
cb33018341 Update Cowgol Disk Image
- Latest from Ladislau
- See <https://groups.google.com/g/rc2014-z80/c/sBCCIpOnnGg>

Co-Authored-By: ladislau szilagyi <87603175+Laci1953@users.noreply.github.com>
2025-04-24 18:00:16 -07:00
Wayne Warthen
07c08e2817 System Guide Doc Fix
- See discussion at <https://groups.google.com/g/rc2014-z80/c/TIQv8-q4R2s>
2025-04-24 17:42:03 -07:00
Mark Pruden
37f01810f5 Bugfix for SLABEL.COM 2025-04-23 10:28:59 +10:00
Mark Pruden
9b4dd7b1bb Minor correction to applicatons.md 2025-04-23 10:18:11 +10:00
Mark Pruden
98414da4d5 New SLABEL.COM Utility 2025-04-23 08:35:42 +10:00
Wayne Warthen
3450ce71a6 Bump Version for Release Candidate 2025-04-17 12:41:13 -07:00
Wayne Warthen
f162081ec1 Refactor ZMP Overlay
- ZMP was crashing in most scenarios.  This was corrected.
- Minor adjustments to ZMP usage
- Added ZMP documentation
2025-04-17 11:53:53 -07:00
Wayne Warthen
6222f7410a Document ZPM3 Cmd Line Keys, Issue #533
When Jon Saxton fixed some ZPM3 bugs, he also made some minor changes to the command line editing key bindings.  These changes have been better documented.

Thanks and credit to @jduraes for reporting this.
2025-04-13 15:05:23 -07:00
Wayne Warthen
665067eb25 Merge pull request #532 from kiwisincebirth/map/z80asm-rename
Corrected Naming of SLRNKP.COM (SLR Link Plus)
2025-04-12 18:12:44 -07:00
Mark Pruden
dd25180f7c Corrected Naming of SLRNKP.COM (SLR Link Plus) 2025-04-13 11:09:04 +10:00
Wayne Warthen
ea38e8e93b Regen Doc 2025-04-11 19:33:24 -07:00
Wayne Warthen
ddb2da2b8f Merge pull request #531 from kiwisincebirth/map/z80asm-doc3
Better documentation for the Z80ASM toolset.
2025-04-11 19:20:10 -07:00
Mark Pruden
3268d99b43 Better documentation 2025-04-12 11:52:15 +10:00
Wayne Warthen
a5314c992d Fix for SYSCOPY w/ CPM 3, Issue #529
- Corrected the size of CPMLDR.SYS to conform to the needs of  SYSCOPY and the RomWBW loader.
2025-04-10 15:44:06 -07:00
Wayne Warthen
683f31438f Regen Doc 2025-04-09 14:03:20 -07:00
Wayne Warthen
69e9eb0805 Merge pull request #526 from kiwisincebirth/map/z80asm-newer
Added Updated SLR Tools with newer or missing versions
2025-04-09 13:54:51 -07:00
Wayne Warthen
d18208ef6b Regen Doc 2025-04-09 13:46:11 -07:00
Wayne Warthen
9ec4b0aa4d Merge pull request #525 from codesmythe/typo
Fix a couple of typos.
2025-04-09 13:40:14 -07:00
Mark Pruden
10dcc4300e Added Updated SLR Tools with newer or missing versions 2025-04-09 19:31:25 +10:00
Rob Gowin
ce65f8dce0 Fix a couple of typos. 2025-04-07 21:25:58 -05:00
Wayne Warthen
ad4c4ac81b Merge pull request #524 from wwarthen/patch
Fix Baud Rate Reference in User Guide, Issue #523
2025-04-07 18:00:18 -07:00
Wayne Warthen
31dc8a72d4 Fix Baud Rate Reference in User Guide, Issue #523
Thanks and credit to @codesmythe.
2025-04-07 17:59:30 -07:00
Wayne Warthen
e4daa2d727 Merge pull request #522 from wwarthen/patch
Add Missing BCLOAD File
2025-04-06 13:46:23 -07:00
Wayne Warthen
a8d2017abc Add Missing BCLOAD File
Marshall Gates reported that the Microsoft BASIC Compiler disk image is missing the file called "BCLOAD".  Adding file back into disk image.
2025-04-06 13:43:15 -07:00
Wayne Warthen
f81e089d63 Finalize Version 3.5 2025-04-04 15:32:15 -07:00
Wayne Warthen
acc32dc819 Update Hardware Document 2025-04-04 14:59:51 -07:00
Wayne Warthen
ca29e429e7 Tweaks to System Guide 2025-04-04 09:28:46 -07:00
Wayne Warthen
39afeda279 Documentation Tweaks 2025-04-03 16:19:23 -07:00
Wayne Warthen
23c5f7b8c0 Merge pull request #519 from fraser125/fraser125-Front-Panel-Table
Update UserGuide.md - Front Panel Table
2025-04-03 15:26:52 -07:00
fraser
91c7349026 Update UserGuide.md - Front Panel Table
I thought a Table layout for the Front Panel switches would be a bit easier to follow.
2025-04-03 14:50:43 -07:00
Wayne Warthen
80995f5264 Update TE.COM
@Laci1953 updated TE under RomWBW to support up to 512K of RAM buffers.
2025-04-03 13:52:56 -07:00
Wayne Warthen
56c9edb547 Updates to TE and COWFE
- Minor updates to TE.COM and COWFE.COM provided by @Laci1953.
- Fixed typo in TE ReadMe identified by @stickbreaker.

Co-Authored-By: ladislau szilagyi <87603175+Laci1953@users.noreply.github.com>
2025-04-02 11:20:00 -07:00
Wayne Warthen
af21691d4e Add TE Editor
Added latest RomWBW version of TE Editor from @Laci1953.

Co-Authored-By: ladislau szilagyi <87603175+Laci1953@users.noreply.github.com>
2025-04-01 12:07:51 -07:00
Wayne Warthen
3a228e3c1f Merge pull request #517 from kiwisincebirth/map/doc-hdd
Improvements to User Guide by improving readability
2025-03-31 17:45:12 -07:00
Mark Pruden
d299a9009f Corrected unintended deleteion 2025-04-01 11:42:47 +11:00
Mark Pruden
667aeeb24d Improvements to User Guide by simplifying content 2025-04-01 11:36:15 +11:00
Wayne Warthen
067560ae74 More User Guide Improvements from Issue #516
Thanks and credit to @kiwisincebirth for the suggestions.
2025-03-31 16:50:29 -07:00
Wayne Warthen
ef0656f162 Improve User Guide per Issue #516
- Small changes to Combo Hard Disk Images section as suggested by @kiwisincebirth.
2025-03-31 13:50:50 -07:00
Wayne Warthen
a8a5a85c5c Update Cowgol Disk Image, Issue #506
Updated Cowgol disk image with the latest distribution from Ladislau Szilagyi.

Co-Authored-By: ladislau szilagyi <87603175+Laci1953@users.noreply.github.com>
2025-03-29 14:06:34 -07:00
Wayne Warthen
4dcd00089e Bump Version, Release Candidate 1 2025-03-28 19:44:46 -07:00
Wayne Warthen
f4caf244af Update Makefile
- Fix filename case
2025-03-28 17:32:40 -07:00
Wayne Warthen
a91deeb347 Add Peter Onion's ZDE ANSI Keyboard Support
- Added new ANSI keyboard support from Peter Onion.
- ZDE is now built as part of the RomWBW build itself.
- Did not yet include support for modified ZDE escape character.
- See <https://groups.google.com/g/rc2014-z80/c/hAZen3pZb7o>

Co-Authored-By: PeterOGB <7755057+peterogb@users.noreply.github.com>
2025-03-28 17:25:55 -07:00
Wayne Warthen
3804c69428 Minor Typos & Regen Doc 2025-03-26 12:51:47 -07:00
Wayne Warthen
1b45d32af2 Merge pull request #513 from kiwisincebirth/map/disk-doc
Revised Section 6.2.4 of UserGuide
2025-03-26 12:38:48 -07:00
Wayne Warthen
83e3b8f24f Resolve Merge Conflict 2025-03-26 11:55:51 -07:00
Wayne Warthen
29f6fea4aa Resolve Merge Conflict 2025-03-26 11:51:55 -07:00
Wayne Warthen
bf61350280 Regen Docs 2025-03-26 11:41:26 -07:00
Wayne Warthen
ecf2cdfba2 Fix Device Attribute Definition in System Guide, Issue #515 2025-03-26 11:37:41 -07:00
Wayne Warthen
9fc2c6129b Fix CIO Table in System Guide, Issue #514 2025-03-26 11:23:23 -07:00
Mark Pruden
8f80f2f9cd Revised Section 6.2.4 of UserGuide See Issue #508 2025-03-26 13:39:37 +11:00
Wayne Warthen
81d81952d3 Regen Docs 2025-03-24 11:30:12 -07:00
Wayne Warthen
ed532cb51b Fix Type in INTINF API Description, Issue #512 2025-03-24 11:20:27 -07:00
Wayne Warthen
a46e05258c Clarify .COM File Location and Naming. Issue #511 2025-03-24 11:17:30 -07:00
Wayne Warthen
a35dbefeda Fix System Guide Typo, Issue #510 2025-03-24 11:12:32 -07:00
Wayne Warthen
74f4149034 Merge pull request #509 from kiwisincebirth/map/drivereset
COPYSL : Reset CP/M Drives after Completion.
2025-03-22 18:40:19 -07:00
Mark Pruden
34cc40f459 Added Code to Reset All Drives after successful completion. 2025-03-22 22:10:32 +11:00
Wayne Warthen
6f5aa06fb3 Improve cpmtools Makefile, Issue #505
See issue #505.  This change should improve build compatibility if there are multiple variants of ncurses installed.

Thanks and credit to @mabartibin.

Co-Authored-By: mabartibin <16798058+mabartibin@users.noreply.github.com>
2025-03-21 18:50:49 -07:00
Wayne Warthen
b28e308bfd Include COPYSL in Build Process 2025-03-21 17:01:14 -07:00
Wayne Warthen
3d23cea071 Merge pull request #507 from kiwisincebirth/map/copysl
Source Code (Inactive) for CopySL Utility
2025-03-21 16:19:42 -07:00
Mark Pruden
f7b8efd964 Added source Code for copySL, build scripts not updated 2025-02-27 10:21:29 +11:00
Wayne Warthen
3c7e3d7586 Issue v3.5 Release Candidate 2025-02-24 12:30:05 -08:00
Wayne Warthen
f359f5fb61 Update SIMH Emulator 2025-02-22 16:19:08 -08:00
Wayne Warthen
50deb280b5 Update Build.cmd
- Remove debugging
2025-02-22 15:22:30 -08:00
Wayne Warthen
7654a6b2ed Minor Doc Sync 2025-02-22 15:10:32 -08:00
Wayne Warthen
dd9e7d6532 Restore ZEX to User Area 0 for BP Disk Image
ZEX.COM is required on user area 0 of BP disk images because it is used for startup processing prior to establishing a path to user area 15.
2025-02-19 15:28:52 -08:00
Wayne Warthen
37ebfefea3 Merge branch 'master' of https://github.com/wwarthen/RomWBW 2025-02-19 14:20:30 -08:00
Wayne Warthen
6d8ecbb49a Fix XM and ZMD Under UNA
Looks like the UNA driver for both XM and ZMD has always been borked.  This fixes it and tested working.
2025-02-19 14:20:26 -08:00
Wayne Warthen
dfb005ae9e Merge pull request #503 from feilipu/patch-1
HBIOS UART - manage /DTR along with /RTS
2025-02-18 16:24:24 -08:00
Phillip Stevens
5806522402 UART manage /DTR along with /RTS
The RC2014 Single and Dual UART Modules do not have the /RTS line connected. The /DTR line is used to signal flow control.

This PR simply adds active management of the /DTR.
The current UART initialisation process already does configuration, but not active management.
2025-02-19 10:09:07 +11:00
Wayne Warthen
930bcce7da Doc Improvements
- Added missing applications to Applications document
- Added a debug statement to Build.cmd in BPBIOS
2025-02-18 10:44:48 -08:00
Wayne Warthen
ad7d7638d3 Update BBC BASIC
- Updated BBC BASIC (Z80) source from R.T.Russell's repository.
2025-02-17 17:21:44 -08:00
Wayne Warthen
da05245b4a Improved STRICTPART Implementation
- Improved implementation of STRICTPART conditional based on comments from @kiwisincebirth.  See Issue #490.
2025-02-13 16:06:43 -08:00
Wayne Warthen
9469aaf333 Delete Unblock.cmd 2025-02-12 20:07:52 -08:00
Wayne Warthen
363218b0eb Create Unblock.cmd 2025-02-12 19:04:38 -08:00
Wayne Warthen
1de5458ad7 Regen Doc 2025-02-12 16:21:08 -08:00
Wayne Warthen
3c0e4a195e Merge pull request #501 from kiwisincebirth/map/releaseNotes
Documentation improvements
2025-02-12 16:09:45 -08:00
Mark Pruden
30866ccbae Some other errors and ommission in Documentation. 2025-02-13 11:03:51 +11:00
Mark Pruden
858d680371 Improved Release notes, to provide better more descriptive information 2025-02-13 11:03:19 +11:00
Wayne Warthen
252e9077e6 Bump Version 2025-02-12 15:47:45 -08:00
Wayne Warthen
6c06413dfe Add STRICTPART Config Setting
New STRICTPART setting prevents access to slices that overlap with foreign (non-CP/M) partitions.
2025-02-12 15:39:47 -08:00
Wayne Warthen
a8ee0ca19b Expanded Release Notes
See discussion #499
2025-02-12 12:53:30 -08:00
Wayne Warthen
5a48cc5b42 Update vdu.asm 2025-02-10 19:04:48 -08:00
Wayne Warthen
ae9b9f9c14 Release Testing WIP 2025-02-08 17:35:51 -08:00
Wayne Warthen
874f1b999e Escape '$' in STARTZPM and STARTZCM
The STARTZPM and STARTZCM startup alias files include commands to set the ZCPR path with "$$" as one of the parameters.  The '$' characters were not escaped.

Thanks and credit to Joao Miguel Duraes for identifying this issue and Wayne Hortensius for the solution.
2025-02-07 17:20:07 -08:00
Wayne Warthen
64611e1df4 Create cfg_RCEZ80.asm
Restore accidentally removed copy of cfg_RCEZ80.asm
2025-02-06 17:18:29 -08:00
Wayne Warthen
ebe1504d75 UNARCU Fix & More Release Work
- UNARC updated to UNARCU11 which fixes an edge case where the user number was being incorrectly changed.  See #496.  Thanks and credit to Lars Nelson for this.
2025-02-06 17:02:06 -08:00
Wayne Warthen
6dc4be24e1 Release Testing WIP
- Minor updates to Zeta and Zeta 2 configs.
2025-02-02 17:18:05 -08:00
Wayne Warthen
257fa5407b Release Testing Updates
Minor changes to config files.
2025-02-02 16:03:41 -08:00
Wayne Warthen
b8fbe0094c Release Testing WIP
- Config file updates
- Fix VRC initialization
2025-02-01 17:57:16 -08:00
Wayne Warthen
9c815a6b4c RCZ80 skz Config Tweaks
The watchdog I/O port for RCZ80_skz_std was misconfigured.
2025-01-30 19:54:18 -08:00
Wayne Warthen
2d854510e3 Accommodate uz80as #define Comments
uz80as does not handle comments on #define lines very well.  This is a minor change to accommodate it.
2025-01-30 13:06:15 -08:00
Wayne Warthen
374c0675f1 Config and Release Notes Updates
- More config file cleanup
- Per Issue #498, added VDAEMU_SERKBD default change in Release Notes
2025-01-30 10:42:15 -08:00
Wayne Warthen
766a65bed0 More Config Tweaks 2025-01-27 19:22:31 -08:00
Wayne Warthen
7ecd0aa574 Merge pull request #497 from kiwisincebirth/map/doc3
Forth documentation and Hide NVR Config app
2025-01-27 10:41:15 -08:00
Mark Pruden
c5280b3ebd Improvement to Forth documentation,
and hide NVR Configure app from app list menu
as it is in the main help menu
2025-01-27 13:11:27 +11:00
Wayne Warthen
8756937946 Minor Release Cleanups 2025-01-25 13:26:07 -08:00
Wayne Warthen
de94085558 Minor Config File Cleanups 2025-01-24 11:24:55 -08:00
Wayne Warthen
7d1cbe0f70 Use Introduction for ReadMe
See Discussion Documentation 3.5 Improvement #493
2025-01-24 11:12:33 -08:00
Wayne Warthen
8e189b4a4a Merge pull request #495 from kiwisincebirth/map/doc2
Some very minor tweaks to documentation
2025-01-24 10:51:26 -08:00
Mark Pruden
c1866d7091 added the missing "Installaltion..." section from Readme -> Introduction 2025-01-24 13:01:48 +11:00
Mark Pruden
eca0370c65 Minor improvements 2025-01-24 12:33:47 +11:00
Mark Pruden
ee7c28c119 Minor improvements 2025-01-24 11:56:48 +11:00
Wayne Warthen
1ae6274e45 Documentation Tweaks 2025-01-23 11:29:37 -08:00
Wayne Warthen
0adef71f6a Merge pull request #494 from kiwisincebirth/map/doc-intro-hw
Documentation New Introduction and Hardware documents
2025-01-23 10:32:54 -08:00
Mark Pruden
d4195b2908 Documentation New Introduction and Hardware documents
with content moved from User Guide
2025-01-23 14:38:00 +11:00
Wayne Warthen
33603ed826 Merge pull request #492 from kiwisincebirth/map/changelog
minor doc improve
2025-01-19 07:19:58 -08:00
Mark Pruden
1279daa2fc minor doc improve 2025-01-19 23:00:14 +11:00
389 changed files with 99465 additions and 24870 deletions

View File

@@ -7,5 +7,7 @@ BEFORE YOU CREATE A PULL REQUEST:
Thank you for contributing to RomWBW! I will review your pull request as soon as possible.
-Wayne
DELETE EVERYTHING IN THIS COMMENT BLOCK AND REPLACE WITH YOUR COMMENTS
-->

View File

@@ -52,6 +52,21 @@ jobs:
title: "${{env.TITLE}} ${{github.ref_name}}"
files: |
RomWBW-${{github.ref_name}}-Package.zip
- name: Build Docs
run: |
export TZ='America/Los_Angeles'
sudo apt-get install gpp pandoc
pip install mkdocs
make -C Source/Doc deploy_mkdocs
mkdocs build -f Source/Doc/mkdocs.yml
- name: Deploy Docs
uses: peaceiris/actions-gh-pages@v4
# if: github.ref == 'refs/heads/master'
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: Source/Doc/site
# - name: Upload Package Archive
# uses: AButler/upload-release-assets@v2.0.2

76
.gitignore vendored
View File

@@ -77,7 +77,6 @@ Tools/unix/zx/zx
!Source/ver.lib
!Source/Apps/FAT/FAT.COM
!Source/Apps/copysl/copysl.com
!Source/Apps/ZMP/zmpx.com
!Source/Apps/ZMD/zmdsubs.rel
!Source/Apps/Test/vdctest/font.asm
@@ -121,11 +120,14 @@ Binary/Apps/Tunes/inchina.vgm
Binary/Apps/Tunes/shirakaw.vgm
Binary/Apps/Tunes/startdem.vgm
Binary/Apps/Tunes/wonder01.vgm
Binary/Apps/copysl.doc
Binary/Apps/fdu.doc
Binary/Apps/zmconfig.ovr
Binary/Apps/zminit.ovr
Binary/Apps/zmp.doc
Binary/Apps/zmp.hlp
Binary/Apps/zmp.cfg
Binary/Apps/zmp.fon
Binary/Apps/zmterm.ovr
Binary/Apps/zmxfer.ovr
Binary/CPM3/bdos3.spr
@@ -144,8 +146,7 @@ Binary/CPNET/cpn12ser.lbr
Binary/CPNET/cpn3duo.lbr
Binary/CPNET/cpn3mt.lbr
Binary/CPNET/cpn3ser.lbr
Binary/RCEZ80_std.upd
Binary/RCZ80_std.upd
Binary/*.upd
Binary/ZPM3/bnkbdos3.spr
Binary/ZPM3/bnkbios3.spr
Binary/ZPM3/gencpm.dat
@@ -174,74 +175,17 @@ Source/Fonts/fontcgau.asm
Source/Fonts/fontvgarcc.asm
Source/Fonts/fontvgarcc.bin
Source/Fonts/fontvgarcu.asm
Source/HBIOS/RCEZ80_std.upd
Source/HBIOS/RCZ80_std.upd
Source/HBIOS/*.upd
Source/HBIOS/build_env.cmd
Source/HBIOS/hbios_env.sh
Source/HBIOS/netboot.mod
Source/Images/*.cat
Source/Images/*.img
Source/Images/blank144
Source/Images/blankhd1k
Source/Images/blankhd512
Source/Images/fd144_aztecc.img
Source/Images/fd144_bascomp.img
Source/Images/fd144_cowgol.img
Source/Images/fd144_cpm22.img
Source/Images/fd144_cpm3.img
Source/Images/fd144_fortran.img
Source/Images/fd144_games.img
Source/Images/fd144_hitechc.img
Source/Images/fd144_nzcom.img
Source/Images/fd144_qpm.img
Source/Images/fd144_tpascal.img
Source/Images/fd144_ws4.img
Source/Images/fd144_z80asm.img
Source/Images/fd144_zpm3.img
Source/Images/fd144_zsdos.img
Source/Images/hd1k_aztecc.img
Source/Images/hd1k_bascomp.img
Source/Images/hd1k_blank.img
Source/Images/hd1k_bp.img
Source/Images/hd1k_combo.img
Source/Images/hd1k_cowgol.img
Source/Images/hd1k_cpm22.img
Source/Images/hd1k_cpm3.img
Source/Images/hd1k_fortran.img
Source/Images/hd1k_games.img
Source/Images/hd1k_hitechc.img
Source/Images/hd1k_nzcom.img
Source/Images/hd1k_qpm.img
Source/Images/hd1k_tpascal.img
Source/Images/hd1k_ws4.img
Source/Images/hd1k_z80asm.img
Source/Images/hd1k_zpm3.img
Source/Images/hd1k_zsdos.img
Source/Images/hd512_aztecc.img
Source/Images/hd512_bascomp.img
Source/Images/hd512_blank.img
Source/Images/hd512_combo.img
Source/Images/hd512_cowgol.img
Source/Images/hd512_cpm22.img
Source/Images/hd512_cpm3.img
Source/Images/hd512_dos65.img
Source/Images/hd512_fortran.img
Source/Images/hd512_games.img
Source/Images/hd512_hitechc.img
Source/Images/hd512_nzcom.img
Source/Images/hd512_qpm.img
Source/Images/hd512_tpascal.img
Source/Images/hd512_ws4.img
Source/Images/hd512_z80asm.img
Source/Images/hd512_zpm3.img
Source/Images/hd512_zsdos.img
Source/RomDsk/rom0_una.dat
Source/RomDsk/rom0_wbw.dat
Source/RomDsk/rom128_una.dat
Source/RomDsk/rom128_wbw.dat
Source/RomDsk/rom256_una.dat
Source/RomDsk/rom256_wbw.dat
Source/RomDsk/rom384_una.dat
Source/RomDsk/rom384_wbw.dat
Source/RomDsk/rom896_una.dat
Source/RomDsk/rom896_wbw.dat
Source/RomDsk/*.cat
Source/RomDsk/*.dat
Source/ZCPR-DJ/zcprdemo.com
Source/ZPM3/autotog.com
Source/ZPM3/clrhist.com

View File

@@ -9,5 +9,8 @@ if exist Tunes\*.pt? del Tunes\*.pt?
if exist Tunes\*.mym del Tunes\*.mym
if exist Tunes\*.vgm del Tunes\*.vgm
if exist bbcbasic.txt del bbcbasic.txt
if exist *.cfg del *.cfg
if exist *.fon del *.fon
pushd Test && call Clean || exit /b 1 & popd
pushd ZDE && call Clean || exit /b 1 & popd

View File

@@ -1,6 +1,6 @@
TOOLS = ../../Tools
MOREDIFF := $(shell $(TOOLS)/unix/casefn.sh *.com)
SUBDIRS = Test
SUBDIRS = Test ZDE
include $(TOOLS)/Makefile.inc
@@ -8,4 +8,4 @@ all::
mkdir -p Tunes
clean::
@rm -f *.bin *.com *.img *.rom *.pdf *.log *.eeprom *.ovr *.hlp *.doc *.COM *.BIN Tunes/*.mym Tunes/*.pt? Tunes/*.vgm bbcbasic.txt
@rm -f *.bin *.com *.img *.rom *.pdf *.log *.eeprom *.ovr *.hlp *.doc *.COM *.BIN Tunes/*.mym Tunes/*.pt? Tunes/*.vgm bbcbasic.txt *.cfg *.fon

View File

@@ -0,0 +1,4 @@
@echo off
setlocal
if exist *.com del *.com

6
Binary/Apps/ZDE/Makefile Normal file
View File

@@ -0,0 +1,6 @@
TOOLS = ../../../Tools
include $(TOOLS)/Makefile.inc
clean::
@rm -f *.com

View File

@@ -0,0 +1,10 @@
***********************************************************************
*** ***
*** R o m W B W ***
*** ***
*** Z80/Z180 System Software ***
*** ***
***********************************************************************
This directory contains the ZDE executable binaries. They are
in their original, unconfigured state.

View File

@@ -68,3 +68,11 @@ ZSDOS is the DOS portion of Z-System. This is the manual for ZSDOS
1.x as included in RomWBW. The installation instructions can be
ignored since that work has already been completed as part of the
RomWBW distribution.
ZPM3 ("ZPM3.txt")
-----------------
A Z80 coded CP/M 3.0 compatible BDOS replacement with ZCPR support.
This minimal documentation is all that is provided with ZPM3.
-- WBW 8:38 AM 6/6/2025

483
Doc/CPM/ZPM3.txt Normal file
View File

@@ -0,0 +1,483 @@
Z P M 3 by Simeon Cran
========================
A Z80 coded CP/M 3.0 compatible BDOS replacement.
The first public release: 27/3/92
This document dated: 16/6/92
Distributed at: Z-Node 62 (Perth, Western Australia)
V21,V22,V22bis 09 450 0200
WELCOME TO ZPM3
~~~~~~~~~~~~~~~
Welcome to the best CP/M compatible operating system for Z80
based computers with banked memory. The best? Yes, we believe so.
CP/M 3.0 has had bad press, but the fact is that it is faster
than CP/M 2.2 ever was, and it offered more integrated
facilities. Perhaps it was all the Z80 replacement BDOSes for
CP/M 2.2 which stole the limelight from CP/M 3.0, or was it just
that few computers had the required banked memory?
Whatever the reason for CP/M 3.0's lack of success in the
marketplace, there are still plenty of users who will stand by
its wonderful facilities and speed. For those users ZPM3 provides
the long awaited Z80 coded update.
ZPM3 offers all the good things that CP/M 3.0 does, and then it
offers more. Because ZPM3 is written in Z80 code rather than the
8080 code of CP/M 3.0, it can do everything that CP/M 3.0 does,
but in much less space. With the extra space recovered, ZPM3
packs in a number of new facilities. Yet the whole package fits
in exactly the same space as CP/M 3.0 so you can directly replace
your old CP/M 3.0 BDOS with ZPM3 without a worry.
ZPM3 is also fast. Faster, in fact, than CP/M 3.0. This is
possible because the rich Z80 instruction set allows many
algorithms to be implemented more efficiently. In addition, the
extra space available in ZPM3 has been put to use to further
optimise the code. Lots of small optimisations smooth the
execution flow, so ZPM3 becomes the fastest operating system on
most banked CP/M computers.
THE FEATURES
~~~~~~~~~~~~
ZPM3, in addition to complete CP/M 3.0 compatibility, offers the
following features:
Random Read Bug fixed.
++++++++++++++++++++++
Maybe you didn't know, but CP/M 3.0 has a bug. It affects random
reads under very specific circumstances, and can result in a
program thinking that you don't have some pieces of data in a
file when in fact you do. The bug would occur very, very rarely,
but it is real. ZPM3 finally squashes it.
Protected SCB User code
+++++++++++++++++++++++
The System Control Block of CP/M 3.0 was a revolution at the
time. ZCPR has a system environment and most other operating
systems have other similar structures, but the SCB of CP/M 3.0
was one of the very first.
Unfortunately, Digital Research never properly documented it, and
some programmers found things out about it that weren't quite
true and started programming accordingly. As well, because it is
available in the TPA bank, runaway programs can overwrite it
causing problems.
Mostly though, the SCB will survive, or at least any problems
will be so obvious that the user will realise that a crash has
occurred and will reboot. A real problem exists with the CP/M 3.0
code however when the user value is written over with a value
above 15. Many programs now directly write to this byte, and if
they put a value in that is above 15, all sorts of havoc can
happen with the disk system. Actually, CP/M 3.0 will handle user
areas above 15 with this method, and all seems ok until the
operating system mistakes one of these directory entries as an
XFCB. Simply put, user areas above 15 must not be used with CP/M
3.0.
ZPM3 has code which prevents these problems, making the system
even more stable.
Obsoleted Trap system.
++++++++++++++++++++++
One of the problems of the banked operating system was that it
was possible to redirect the BIOS to code below common memory, in
which case the banked BDOS could not access it. One solution is
to call all BIOS code from common memory, but this involves a
bank switch for every BIOS call, and this slows things down
considerably.
CP/M 3.0 got around the problem by providing special code just
below the SCB. If you redirected the BIOS, you also had to change
this code which caused a bank switch when your new BIOS routine
was called. When you removed the redirection, you also had to
restore the special code.
This system has major drawbacks. For a start, if you redirect the
BIOS, then another program redirects your redirection, then you
remove your first redirection (along with the special code), the
bank switch won't happen for the second redirection and the
system will crash.
If a CP/M 2.2 program tried to do the redirection, it would know
nothing about CP/M 3.0 and would not adjust the special code, so
a crash would result in that case too.
The special code was called the "Trap System" as it was meant to
trap redirection (as long as you set the trap). ZPM3 has
eliminated the need for the traps. They are still there, and
programs can still fiddle with them, but it doesn't matter how
they are set, they are ignored. There is simply no need for them
anymore. And this has been achieved without a performance
penalty. In fact, in the case of a program which sets the traps
but forgets to restore them, performance is now much better.
Semi-Permanent Read Only status for drives.
+++++++++++++++++++++++++++++++++++++++++++
In recent years, a trend in CP/M 2.2 is to make drives which have
been set read only to remain that way until explicitly changed by
function 37. ZPM3 now adopts this logic. Previously a control-C
would return a read only drive to read write. The advantage is
that a program can now make a drive read only for a session and
know that it will stay that way.
ZCPR compatible function 152
++++++++++++++++++++++++++++
Function 152 is the CP/M 3.0 parser. It was a great innovation at
the time as parsing is one of the more tedious aspects of
programming for CP/M. Unfortunately, almost as soon as it
appeared, it was made obsolete by the fact that it didn't handle
references to user number (DU references). A line such as
A:FILE.TYP would be correctly parsed, but A3:FILE.TYP would not.
CP/M 3.0 programs would often parse the drive and user
separately, then give function 152 the line without the DU:
reference. All this extra work should not have been necessary if
CP/M 3.0 had included user number parsing.
ZPM3 parses the user number, and goes even further by handling
named directories for ZCPR. This is possible as long as you set a
special word in the SCB which tells ZPM3 where to find the ZCPR
system environment descriptor. ZCCP, a companion CCP for ZPM3,
handles this automatically, but for Z3PLUS users, a special
utility is available which automatically sets this word.
The result is that CP/M 3.0 programs will not balk at DU:
references and ZPM3 aware programs can use the full DU: and DIR:
facilities of function 152. It has also made the brilliant ZCCP
code possible.
New Functions 54 and 55
+++++++++++++++++++++++
Datestamps in CP/M 3.0 are wonderful, but difficult to
manipulate. Two new functions make them easier to handle and at
the same time give compatibility to Z80DOS aware programs.
Function 54 (Get Stamp) returns a Z80DOS compatible datestamp.
Any program (such as many directory programs) which recognise the
Z80DOS standard can make use of function 54. There is only one
slight difference between Z80DOS datestamps and ZPM3's which you
should be aware of. Z80DOS will return a correct datestamp after
any successful open or search of any extent. ZPM3 can only return
a correct datestamp after a successful open or search of the
first extent of the file. This is because CP/M 3.0 datestamps are
only saved for the first extents of each file, in order to
provide the highest performance.
Even more interesting is Function 55 (Use Stamp) which provides a
mechanism for changing datestamps on files. Trying to do this
with CP/M 3.0 was virtually impossible because it involved direct
sector writes. With Function 55 you can simply set the stamp and
then write.
Wheel protected files
+++++++++++++++++++++
If you are using a ZCPR system (ZCCP or Z3PLUS), ZPM3 has access
to the wheel byte and supports wheel protected files. Such files
act normally if the wheel is set (signifying a priveleged user),
but if the wheel is not set, the files can not be changed. This
is of most benefit to BBS systems. The implementation is
virtually the same as most current Z80 CP/M 2.2 compatible
BDOSes.
Better error messages
+++++++++++++++++++++
CP/M 3.0 introduced the best error messages that CP/M had ever
had. ZPM3 goes further. The main difference you will notice is
that the user number as well as the drive is shown in the error
message. This is invaluable in helping you identify which file
might have caused a problem.
Function 10 history buffer and improved editing.
++++++++++++++++++++++++++++++++++++++++++++++++
Function 10 is used by the CCP to input command lines. Many other
programs use function 10 for input.
CP/M 3.0 introduced a history buffer for function 10. You press
control-W and you were returned the last command. It is a great
facility, but because it only remembers one command it is rather
limited. There have been RSXes written which give a much larger
history buffer, but RSXes take up extra program memory so are
undesirable.
ZPM3 gives a large (approximately 250 bytes) history buffer which
can store multiple commands. It also makes very intelligent use
of the buffer so that identical commands are not stored twice,
and commands of less than three characters are not stored. The
history buffer takes up no additional memory, and is always
available.
For security, it is possible to clear the history buffer so that
other users can not see what commands you have used.
The ZPM3 history buffer feature is so good, that for many users,
the ZPM3 upgrade is completely justified by it.
As part of the history buffer system, ZPM3 also offers a facility
called Automatic Command Prompting. This can be disabled, or can
be made switchable from the keyboard. When it is on, ZPM3 tries
to fill in the rest of your command based on what commands you
used most recently. It is like magic, and can save you typing out
complicated commands many times. In effect, it looks through the
history buffer for you and finds the command it thinks you want.
As you keep typing, if it turns out that the command doesn't
match anymore, it will try to match another command, and if it
can't, it lets you make the command by yourself. This facility is
quite amazing to watch.
And to integrate the history buffer and the automatic command
prompting, function 10 has the best command line editing you'll
find anywhere. Most of the control keys do something when you are
editing a function 10 line, and for the most part they mimic the
standard WordStar/NewWord/ZDE functions. You can jump to
different words in the command, delete individual words, delete
individual letters, insert letters, and a whole lot more.
Here is a list of what the various control keys do for function
10:
A Move left one word
B Go to the beginning or end of the line
C Warm boot if at start of line, otherwise nothing
D Go right one character
E Go backwards one command in the history buffer
F Go right one word
G Delete current character
H Destructive backspace
I
J Enter line
K Delete all to the right
L
M Enter line
N
O
P Toggle printing
Q Toggle automatic command prompting (if enabled)
R
S Go left one character
T Delete current word
U Add current line to history buffer
V Clear line and delete from history buffer
W Go forwards one command in the history buffer
X Delete all to the left
Y Clear the whole line
Z
CPMLDR.REL bug fixed.
+++++++++++++++++++++
If you have ever tried to use the CPMLDR.REL code supplied with
CP/M 3.0 to load a CPM3.SYS file larger than 16k, you have
probably come across the CPMLDR.REL bug. The computer probably
crashed, and you were left wondering what you did wrong in your
bios.
Well CPMLDR.REL has a bug. To solve this for you ZPM3 comes with
ZPM3LDR.REL which directly replaces CPMLDR.REL. It is also
somewhat better in that all the messages, and the fcb for loading
CPM3.SYS, are at the start of the file along with plenty of spare
room. As a result you can easily patch the signon and error
messages to say whatever you like and even change the FCB to load
a file called something other than CPM3.SYS.
All About the Random Read Bug.
==============================
Never heard of it? Well it's there in CP/M 3.0. I spent a lot of
time trying to work out what it was and just why it was
happening, and if you are interested, here are the details.
CP/M 3.0 uses the Record Count byte of an active FCB a little
differently from the way CP/M 2.2 does. It is mentioned in the
CP/M 3.0 manuals that the record count may contain numbers
greater than 128, but in such a case it implies that the record
count is really 128. CP/M 2.2 would not return record counts
greater than 128.
The reason for the use of the record count in this way is to help
speed up some of the logic used to find records in a file. It
works very well for sequential access. When it comes to random
access, the system has some failings.
The idea behind CP/M 3.0's unusual use of the record count is to
keep the record count of the last logical extent of the current
physical extent always in the Record Count byte. When accessing
extents before the last one, bit 7 of the byte is set. That way
it will always be at least 128 for logical extents before the
last (which CP/M 3.0 translates to mean equal to 128), and the
lower 7 bits are used as convenient storage for the record count
of the last logical extent. This is particularly convenient
because it means there is no need to go and read the directory
entry again when it comes time to read the last logical extent.
I hope you have followed that! In sequential access, this scheme
is great. The problem occurs with random access. In this case it
is possible to access a logical extent which has no records in
it. This could be any logical extent past the last one. In such a
case the record count must be returned as 0 (which is correct).
If we then go back to a previous logical extent in the same
physical extent, CP/M 3.0 gets confused and assumes that there
must be 128 records in that extent because the one we just came
from had no records and we are now accessing an earlier extent.
You're probably well and truly lost by now!
Anyhow, the assumption that CP/M 3.0 makes is quite wrong. The
record count ends up being set to 128, a read is allowed to go
ahead as if nothing was wrong, no error is returned, and the
record count remains incorrectly set until a different physical
extent is opened. The result could be chaos, but mostly it just
means that a program returns the wrong information.
Remember, a logical extent is always 16k. A physical extent can
be a multiple of 16k and is all the data described by one
directory entry. If your system has physical extents which are
16k, you would never have the problem because a new physical
extent would be properly opened for every new logical extent that
was accessed.
Typically though, a physical extent is 32k, so it holds 2 logical
extents. The problem won't arise until the file grows past the
32k mark in such a case. And when the file gets over 48k the
problem can't occur again until it gets over 64k... and so on.
Even then, it can only happen if reads are attempted to
particular extents in a particular order. So you shouldn't be too
surprised if the bug hasn't been too noticeable to you.
ZPM3 squashes the bug once and for all by using the correct
logic. In the situation where the bug would normally occur, ZPM3
makes sure it gets the correct record count information, and the
reads return the correct record count every time.
If you are interested in seeing a demonstration of the bug in
action (on CP/M 3.0) and comparing it with ZPM3, there is a file
floating around various bulletin boards which contains
demonstrations for the bug and an RSX to fix it. The RSX is a
less than perfect way of overcoming the bug, although it seems to
work. However, now that you have ZPM3, you don't need to worry.
Other things you should know about ZPM3
=======================================
ZPM3 has worked on EVERY CP/M 3.0 system tried so far except one.
This is a Bondwell computer, and as yet it isn't clear why it
won't work. I will study the source code of its BIOS and come up
with a fix shortly.
The MAKEDOS.COM utility is not perfect (as mentioned previously)
and it seems that nobody has managed to get it to work with the
Commodore C128 system. You must use the conventional method for
installing ZPM3 on such systems.
If you have a computer that ZPM3 will not install on with MAKEDOS
and you do not have access to the files required to do a
conventional install, please contact me. I am interested in
making ZPM3 as universal as possible and will help you to install
it on your system.
The ESCAPE key is ignored by function 10. There has been some
lively discussion about this but the decision is final: it stays
ignored. Remember what function 10 is for and you will understand
why I made it ignore the ESCAPE key. The argument against this
has been from people who control their terminals from the command
line. Apparently some people type in an escape sequence at the
command line (which CP/M 3.0 will not output correctly anyhow
(converting the escape character to ^[)) then press return to
have the CCP echo back the line including the escape character.
Sorry folks, that is a KLUDGE in my books! Anybody using Z-System
would of course use an ALIAS and ECHO to do this properly, but
for those who will continue to complain that I have sacrificed
CP/M 3.0 compatibility I am now including ECHOTERM.COM to solve
your problems. Run it and whatever you type will be sent to the
terminal correctly after you press RETURN. Press RETURN twice to
exit the program.
And a reminder that the ability to put control characters into
function 10 lines was always limited by the fact that some
control keys were used to edit the command line. CP/M 3.0 added
even more, and ZPM3 uses virtually all the control keys. The few
that aren't used are ignored, and this is in fact a FEATURE which
guarantees that unusable characters can't get into function 10
lines by accident.
LEGALS and SUCH
===============
The ZPM3 package is supplied free of charge, on the condition
that you don't use it to make money. If you want to use it
commercially you must contact me to get the OK (and negotiate our
fee).
If you find anyone (except myself) charging money for ZPM3,
please inform me!
Nobody is making any guarantees about this software. None at all.
If it causes your house to burn down, or a divorce, or just a bad
day, this is unfortunate, regrettable, but there is nothing that
I can or will do about it. You have been warned.
The ZPM3 package must only be distributed in the form that you
found it. Do not change or add anything. Don't even change it
into a different type of archive. Just leave it alone. However
you are free to distribute it to as many places and people that
you can. Just don't charge for it.
If in using ZPM3 you find that it doesn't act as described,
please forward the details to me so that either the ZPM3 code or
the documentation can be changed. If you would like further
details, please forward your specific questions to me. SJC.
As a service to all our ZPM3 fans, the latest version of the ZPM3
package can now be ordered. At this stage we can only supply IBM
formatted 3.5 inch 720k disks, however if you are keen enough
that shouldn't matter. ZPM3 remains free, however this service
will cost you $15 Australian (for the disk, copying, postage and
packing) to most places in the Western World (others by
arrangement).
This is a good way to guarantee you have the latest version, and
to guarantee that your package has not been corrupted by some
unscrupulous person.
When we fill your order, we will make sure to include the latest
demonstration copy of MYZ80 - the fastest and best Z80 emulator
for IBM AT (and better) compatibles. MYZ80 can run ZPM3 with
ease. It also handles ZCPR and CP/M 2.2. And yes, we do mean
FASTEST.
Send your international money order to:
Software by Simeon
ZPM3 Package
2 Maytone Ave
Killara NSW
Australia 2071
Your order will be promptly filled.


View File

@@ -1,3 +1,27 @@
Version 3.6
-----------
- RDG: Added VDA driver for Xosera FPGA-based VDC
- MGG: Added COBOL language disk image
- WDC: Added config options to PCF driver
- WBW: Enabled dynamic CPU speed update on LCD screen
- WBW: Improve LPT driver boot messaging when not detected (per Robb Bates)
- WBW: Correct DS1307 boot date/time display (per Tadeusz Pycio)
- WBW: Add -DELAY option to TUNE app (per Robb Bates)
- RDG: Add online documentation site
- WBW: Added enhanced Hi-Tech C Compiler files from Ladislau Szilagyi
- WBW: Added boundary check to ram/rom disk driver
- WBW: Per Peter Onion, switch KERMIT default file xfer mode to binary
Version 3.5.1
-------------
- WBW: Fix CPMLDR.SYS & ZPMLDR.SYS for SYSCOPY (reported by Guido Santer)
- MAP: Enhanced SLR Tools Disk Image with Plus versions
- WBW: Add missing BCLOAD file to MS BASIC Compiler Disk Image (reported by Marshall Gates)
- WBW: Doc improvements (per Fraser and Rob Gowin)
- WBW: Correct ZMP application crash
- MAP: Contribution of the SLABEL.COM tool for displaying and changing slice labels.
- MAP: Hardware documentation, Significant new content added with project links.
Version 3.5
-----------
- M?F: Fix for hours display in HBRTC application
@@ -38,8 +62,8 @@ Version 3.5
- WBW: Add CPU speed selection for HEATH platform to HBIOS
- WBW: Add Warm/Cold reboot options to CPUSPD utility
- D?N: Added support for eZ80 CPU
- MAP: Contributed COPYSL utility
- MAP: Added new HBIOS function EXT_SLICE (orginally SYSGET_DIOMED)
- MAP: Contributed COPYSL utility that allows disk slices to be copied
- MAP: Added new HBIOS function EXT_SLICE, extended disk slice info
- MAP: ROMLDR now uses EXT_SLICE to get Slice Sector for boot
- MAP: CBIOS now uses EXT_SLICE during drive selection
- MAP: CPM3 Boot Loader, and BIOS (drive select) now use EXT_SLICE
@@ -47,12 +71,17 @@ Version 3.5
- MAP: Significant improvement in Disk Catalog document
- MAP: Added Disk Image for the Z3PLUS (Z-System for CP/M-Plus) os.
- H?H: Fix XModem 12.3 WRERR to put CAN char in proper register to send.
- MAP: Initial NVRAM configuration infrastructure, and boot device selection.
- MAP: Added support for dynamic HBIOS config via (RTC) NVRAM
- MAP: Added boot application to allow config of NVRAM options
- MAP: Configuration of autoboot disk/app added to NVRAM config
- WBW: Autoboot is now handled in separate prompt during RomWBW startup
- MAP: Added additional tools (Linker/Disasembler) to the Z80ASM Disk Image
- PMS: Support interrupt-driven PS2 Keyboard Interface
- D?M: Added NetBoot support for Duodyne
- WBW: Add options to TUNE/HBIOS to force detection of MSX and RC AY/YM standard PSG ports
- MAP: Added /B=OPTIONS for automated drive assignment to ASSIGN.COM
- WBW: Added TE Editor (Ladislau Szilagyi)
- WBW: Refrech Cowgol disk image (Ladislau Szilagyi)
Version 3.4
-----------

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -28,12 +28,13 @@ ChangeLog.txt
Log of changes in RomWBW by version.
RomWBW Introduction ("RomWBW Introduction.pdf")
RomWBW User Guide ("RomWBW User Guide.pdf")
RomWBW System Guide ("RomWBW System Guide.pdf")
RomWBW Applications ("RomWBW Applications.pdf")
RomWBW ROM Applications ("RomWBW ROM Applications.pdf")
RomWBW Disk Catalog ("RomWBW Disk Catalog.pdf")
RomWBW Errata ("RomWBW Errata.pdf")
RomWBW Hardware ("RomWBW Hardware.pdf")
-------------------------------------------------------
Documentation set for RomWBW. The primary document is the
@@ -84,4 +85,4 @@ UCSD p-System Users Manual ("UCSD p-System Users Manual.pdf")
Official user manual for p-System operating system included with
RomWBW.
--WBW 5:18 PM 6/14/2023
--WBW 8:37 AM 6/6/2025

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Doc/RomWBW Hardware.pdf Normal file

Binary file not shown.

BIN
Doc/RomWBW Introduction.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,29 +1,116 @@
# RomWBW Release Notes
This file contains information useful to those upgrading to a new
release of RomWBW.
All Versions
============
## All Versions
- Please review Section "15 Upgrading" of the RomWBW User Guide.
- **Please** review the "Upgrading" Section of the RomWBW User Guide.
- Many RomWBW-specific applications are locked to the ROM version
being used. After upgrading your ROM, you will need to upgrade
your disk-based RomWBW applications and OS boot files.
- The RomWBW ROM and the RomWBW disk images are intended to be a
matched set. After upgrading your ROM, it is important to update
the OS boot tracks of your disks as well as the RomWBW-specific
applications. This is discussed in the "Upgrading" section of the
RomWBW User Guide.
Version 3.5
===========
## Version 3.5.1
This is a patch release of v3.5.
### Fixes
- Corrects an issue with the `CPMLDR.SYS` and `ZPMLDR.SYS` files that
caused `SYSCOPY` to fail when used with them.
- Added missing `BCLOAD` file to the MS BASIC Compiler disk image.
### New Features
- Added `SLABEL` application (Mark Pruden).
- Variety of documentation improvements, especially an overhaul of
the Hardware Document (Mark Pruden).
## Version 3.5
### Upgrade Notes
- RomWBW is now more strict with respect to hard disk partition
tables. If your hard disk media was created using any of the
pre-built disk image files, this will **not** affect you. If not,
pre-built disk image files, this will **not** affect you. Otherwise,
you may find you are unable to access slices beyond the first
slice. If so, use FDISK80 to reset the partition table on the
slice. If so, use `FDISK80` to reset the partition table on the
disk. This will restore normal access to all slices. **Only** do
this if you are having an issue.
- For those building custom ROMs, if you overriding
DEFSERCFG, note that this setting has been moved to a #DEFINE
instead of an equate (.SET or .EQU). See cfg_MASTER.asm for
an example. You will need to change your setting to a #DEFINE
at the top of your config file and remove any .SET or .EQU
lines for DEFSERCFG.
- For those building custom ROMs that are overriding `DEFSERCFG`, note
that this setting has been moved to a `#DEFINE` instead of an equate
(`.SET` or `.EQU`). You will find this `#DEFINE` at the top of all
standard config files. You will need to change your setting to a
`#DEFINE` at the top of your config file and remove any `.SET` or
`.EQU` lines for `DEFSERCFG`.
- Combining config settings `AUTOCON` and `VDAEMU_SERKBD` causes issues
at the boot loader prompt. So, all config files have been changed to
consistently enable `AUTOCON` and disable `VDAEMU_SERKBD` (`$FF`). If
are want to use `VDAEMU_SERKBD`, you need to set it in your config
file as well as disabling AUTOCON.
### New Features
- RC2014 Front Panel and LCD Screen support.
- Console "takeover" support at Boot Loader prompt by pressing the
<space> key twice on an alternate console device.
- Cowgol disk image based on the work of Ladislau Szilagyi.
- TMS video is automatically reset after an OS warm boot which
allows OS to recover from applications that reprogram the TMS
video display controller.
- Implemented "application" RAM banks that can be discovered via
the HBIOS API.
- Documentation improvements (Mark Pruden), including:
- Reorganization into multiple directories.
- Improved Disk Management section in User Guide.
- Overhaul of Disk Catalog.
- Disk image for Z3PLUS (Mark Pruden).
- `REBOOT` application added (Martin R). Also, reboot capability
added to `CPUSPD` utility.
- `COPYSL` slice copy application (Mark Pruden).
- `SLABEL` slice label display/edit tool (Mark Pruden).
- Improved disk slice management and protection (Mark Pruden).
- Initial NVRAM configuration support (Mark Pruden).
- Enhancements to ASSIGN command to automatically assign drives
(Mark Pruden).
### New Hardware Support
- NABU w/ RomWBW Option Board.
- EF9345 video display controller driver (Laszlo Szolnoki).
- Duodyne Disk I/O (CP/NET) and Media boards.
- PS/2 keyboard interface on RCBus systems.
- S100 FPGA-based Z80 including console, SD Cards, and RTC.
- Support for 16C550-family UART support on additional platforms.
- Genesis STD Bus Z180 platform (Doug Jackson).
- Support for Dinoboard eZ80 CPU board provided by Dean Netherton.
- Added interrupt support to PS/2 keyboard driver by Phil Summers.

278
ReadMe.md
View File

@@ -1,17 +1,22 @@
**RomWBW ReadMe** \
Version 3.5 \
**RomWBW Introduction** \
Version 3.6 \
Wayne Warthen ([wwarthen@gmail.com](mailto:wwarthen@gmail.com)) \
18 Jan 2025
07 Jun 2025
# Overview
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
Z80/180/280 retro-computing hardware systems.
A wide variety of platforms are supported including those produced by
these developer communities:
- [RetroBrew Computers](https://www.retrobrewcomputers.org)
(<https://www.retrobrewcomputers.org>)
@@ -23,47 +28,43 @@ communities:
- [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
\[Installation\] section.
A complete list of the currently supported platforms is found in [RomWBW
Hardware](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Hardware.pdf)
.
General features include:
# Description
## Primary Features
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
Supported hardware features of RomWBW include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Video drivers including TMS9918, SY6545, MOS8563, HD6445, Xosera
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Support for CP/NET networking using Wiznet, MT011 or Serial
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
OSes and allows up to 2GB of addressable storage on a single device,
with up to 128MB accessible at any one time.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
## Included Software
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
@@ -72,37 +73,79 @@ with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
Some of the included software:
- Operating Systems (CP/M 2.2, ZSDOS, NZ-COM, CP/M 3, ZPM3, Z3PLUS, QPM
)
- Support for other operating systems, p-System, FreeRTOS, and FUZIX.
- Programming Tools (Z80ASM, Turbo Pascal, Forth, Cowgol)
- C Compilers including Aztec-C, and HI-TECH C
- Microsoft Basic Compiler, and Microsoft Fortran
- Some games such as Colossal Cave, Zork, etc
- Wordstar Word processing software
Some of the provided software can be launched directly from the ROM
firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
## ROM Distribution
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the [RomWBW Releases
Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
distribution location for all project source and documentation.
RomWBW is distributed as both source code and pre-built ROM and disk
images.
The pre-built ROM images distributed with RomWBW are based on the
default system configurations as determined by the hardware
provider/designer. The pre-built ROM firmware images are generally
suitable for most users.
The fully-built distribution releases are available on the [RomWBW
Releases Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository.
On this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the “Assets” drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
stick to the most recent stable release.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
The asset named RomWBW-vX.X.X-Package.zip includes all pre-built ROM and
Disk images as well as full source code. The other assets contain only
source code and do not have the pre-built ROM or disk images.
# Installation & Operation
#### Distribution Directory Layout
The RomWBW distribution is a compressed zip archive file organized in a
set of directories. Each of these directories has its own ReadMe.txt
file describing the contents in detail. In summary, these directories
are:
| **Directory** | **Description** |
|----|----|
| **Binary** | The final output files of the build process are placed here. Most importantly, the ROM images with the file names ending in “.rom” and disk images ending in .img. |
| **Doc** | Contains various detailed documentation, both RomWBW specifically as well as the operating systems and applications. |
| **Source** | Contains the source code files used to build the software and ROM images. |
| **Tools** | Contains the programs that are used by the build process or that may be useful in setting up your system. |
#### Building from Source
It is also very easy to modify and build custom ROM images that fully
tailor the firmware to your specific preferences. All tools required to
build custom ROM firmware under Windows are included no need to
install assemblers, etc. The firmware can also be built using Linux or
MacOS after confirming a few standard tools have been installed.
## Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
@@ -119,18 +162,73 @@ for helpful release-specific information.
## Documentation
Documentation for RomWBW includes:
There are several documents that form the core of the RomWBW
documentation:
- [RomWBW User
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20User%20Guide.pdf)
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
is the main user guide for RomWBW, it covers the major topics of how
to install, manage and use RomWBW, and includes additional guidance to
the use of some of the operating systems supported by RomWBW
- [RomWBW
Hardware](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Hardware.pdf)
contains a description of all the hardware platforms, and devices
supported by RomWBW.
- [RomWBW
Applications](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Applications.pdf)
- [RomWBW
Errata](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Errata.pdf)
is a reference for the ROM-hosted and OS-hosted applications created
or customized to enhance the operation of RomWBW.
# Acknowledgments
- [RomWBW Disk
Catalog](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20Disk%20Catalog.pdf)
is a reference for the contents of the disk images provided with
RomWBW, with a description of many of the files on each image
- [RomWBW System
Guide](https://github.com/wwarthen/RomWBW/raw/master/Doc/RomWBW%20System%20Guide.pdf)
discusses much of the internal design and construction of RomWBW. It
includes a reference for the RomWBW HBIOS API functions.
Each of the operating systems and ROM applications included with RomWBW
are sophisticated tools in their own right. It is not reasonable to
fully document their usage. However, you will find complete manuals in
PDF format in the Doc directory of the distribution. The intention of
this documentation is to describe the operation of RomWBW and the ways
in which it enhances the operation of the included applications and
operating systems.
Since RomWBW is purely a software product for many different platforms,
the documentation does **not** cover hardware construction,
configuration, or troubleshooting please see your hardware provider
for this information.
# Support
## Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>. I am
happy to provide support adapting RomWBW to new or modified systems
# Contributions
All source code and distributions are maintained on GitHub.
Contributions of all kinds to RomWBW are very welcome.
## Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
@@ -201,11 +299,15 @@ let me know if I missed you!
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk mode
of disk assignment to the ASSIGN utility.
- Mark Pruden has made a wide variety of contributions including:
- significant content in the Disk Catalog and User Guide
- creation of the Introduction and Hardware documents
- Z3PLUS operating system disk image
- COPYSL utility
- SLABEL utility
- a feature for RomWBW configuration by NVRAM
- the /B bulk mode of disk assignment to the ASSIGN utility
- Jacques Pelletier has contributed the DS1501 RTC driver code.
@@ -238,10 +340,50 @@ let me know if I missed you!
- Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
- Rob Gowin created an online documentation site via MkDocs, and
contributed a driver for the Xosera FPGA-based video controller.
## Related Projects
Outside of the hardware platforms adapted to RomWBW, there are a variety
of projects that either target RomWBW specifically or provide a
RomWBW-specific variation. These efforts are greatly appreciated and are
listed below. Please contact the author if there are any other such
projects that are not listed.
#### Z88DK
Z88DK is a software powerful development kit for Z80 computers
supporting both C and assembly language. This kit now provides specific
library support for RomWBW HBIOS. The Z88DK project is hosted at
<https://github.com/z88dk/z88dk>.
#### Paleo Editor
Steve Garcia has created a Windows-hosted IDE that is tailored to
development of RomWBW. The project can be found at
<https://github.com/alloidian/PaleoEditor>.
#### Z80 fig-FORTH
Dimitri Theulings implementation of fig-FORTH for the Z80 has a
RomWBW-specific variant. The project is hosted at
<https://github.com/dimitrit/figforth>.
#### Assembly Language Programming for the RC2014 Zed
Bruce Hall has written a very nice document that describes how to
develop assembly language applications on RomWBW. It begins with the
setup and configuration of a new RC2014 Zed system running RomWBW. It
describes not only generic CP/M application development, but also RomWBW
HBIOS programming and bare metal programming. The latest copy of this
document is hosted at [http://w8bh.net/Assembly for
RC2014Z.pdf](http://w8bh.net/Assembly%20for%20RC2014Z.pdf).
# Licensing
## License Terms
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
@@ -281,19 +423,3 @@ encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
- [RC2014 Google
Group](https://groups.google.com/forum/#!forum/rc2014-z80)
- [retro-comp Google
Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the [RomWBW GitHub
Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email Wayne Warthen at <wwarthen@gmail.com>.

View File

@@ -1,6 +1,9 @@
RomWBW ReadMe
RomWBW Introduction
Wayne Warthen (wwarthen@gmail.com)
18 Jan 2025
07 Jun 2025
@@ -9,41 +12,45 @@ OVERVIEW
RomWBW software provides a complete, commercial quality implementation
of CP/M (and workalike) operating systems and applications for modern
Z80/180/280 retro-computing hardware systems. A wide variety of
platforms are supported including those produced by these developer
communities:
Z80/180/280 retro-computing hardware systems.
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
A wide variety of platforms are supported including those produced by
these developer communities:
A complete list of the currently supported platforms is found in the
[Installation] section.
- RetroBrew Computers (https://www.retrobrewcomputers.org)
- RC2014 (https://rc2014.co.uk),
RC2014-Z80 (https://groups.google.com/g/rc2014-z80)
- Retro Computing (https://groups.google.com/g/retro-comp)
- Small Computer Central (https://smallcomputercentral.com/)
General features include:
A complete list of the currently supported platforms is found in RomWBW
Hardware .
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and
FreeRTOS
- Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
DESCRIPTION
Primary Features
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
Supported hardware features of RomWBW include:
- Z80 Family CPUs including Z80, Z180, and Z280
- Banked memory services for several banking designs
- Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip,
Iomega
- Serial drivers including UART (16550-like), ASCI, ACIA, SIO
- Video drivers including TMS9918, SY6545, MOS8563, HD6445, Xosera
- Keyboard (PS/2) drivers via VT8242 or PPI interfaces
- Real time clock drivers including DS1302, BQ4845
- Support for CP/NET networking using Wiznet, MT011 or Serial
- Built-in VT-100 terminal emulation support
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
@@ -51,15 +58,11 @@ Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
OSes and allows up to 2GB of addressable storage on a single device,
with up to 128MB accessible at any one time.
The pre-built ROM firmware images are generally suitable for most users.
However, it is also very easy to modify and build custom ROM images that
fully tailor the firmware to your specific preferences. All tools
required to build custom ROM firmware under Windows are included no
need to install assemblers, etc. The firmware can also be built using
Linux or MacOS after confirming a few standard tools have been
installed.
Included Software
Multiple disk images are provided in the distribution. Most disk images
contain a complete, bootable, ready-to-run implementation of a specific
@@ -68,11 +71,24 @@ with a full operating system implementation. If you use this disk image,
you can easily pick whichever operating system you want to boot without
changing media.
By design, RomWBW isolates all of the hardware specific functions in the
ROM chip itself. The ROM provides a hardware abstraction layer such that
all of the operating systems and applications on a disk will run on any
RomWBW-based system. To put it simply, you can take a disk (or CF/SD/USB
Card) and move it between systems transparently.
Some of the included software:
- Operating Systems (CP/M 2.2, ZSDOS, NZ-COM, CP/M 3, ZPM3, Z3PLUS, QPM
)
- Support for other operating systems, p-System, FreeRTOS, and FUZIX.
- Programming Tools (Z80ASM, Turbo Pascal, Forth, Cowgol)
- C Compilers including Aztec-C, and HI-TECH C
- Microsoft Basic Compiler, and Microsoft Fortran
- Some games such as Colossal Cave, Zork, etc
- Wordstar Word processing software
Some of the provided software can be launched directly from the ROM
firmware itself:
- System Monitor
- Operating Systems (CP/M 2.2, ZSDOS)
- ROM BASIC (Nascom BASIC and Tasty BASIC)
- ROM Forth
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
@@ -80,30 +96,67 @@ slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
ACQUIRING ROMWBW
ROM Distribution
The RomWBW Repository (https://github.com/wwarthen/RomWBW) on GitHub is
the official distribution location for all project source and
documentation. The fully-built distribution releases are available on
the RomWBW Releases Page (https://github.com/wwarthen/RomWBW/releases)
of the repository. On this page, you will normally see a Development
Snapshot as well as recent stable releases. Unless you have a specific
reason, I suggest you stick to the most recent stable release. Expand
the “Assets” drop-down for the release you want to download, then select
the asset named RomWBW-vX.X.X-Package.zip. The Package asset includes
all pre-built ROM and Disk images as well as full source code. The other
assets contain only source code and do not have the pre-built ROM or
disk images.
documentation.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
RomWBW is distributed as both source code and pre-built ROM and disk
images.
The pre-built ROM images distributed with RomWBW are based on the
default system configurations as determined by the hardware
provider/designer. The pre-built ROM firmware images are generally
suitable for most users.
The fully-built distribution releases are available on the RomWBW
Releases Page (https://github.com/wwarthen/RomWBW/releases) of the
repository.
On this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release.
The asset named RomWBW-vX.X.X-Package.zip includes all pre-built ROM and
Disk images as well as full source code. The other assets contain only
source code and do not have the pre-built ROM or disk images.
Distribution Directory Layout
The RomWBW distribution is a compressed zip archive file organized in a
set of directories. Each of these directories has its own ReadMe.txt
file describing the contents in detail. In summary, these directories
are:
-------------------------------------------------------------------------
DIRECTORY DESCRIPTION
----------- -------------------------------------------------------------
BINARY The final output files of the build process are placed here.
Most importantly, the ROM images with the file names ending
in “.rom” and disk images ending in .img.
DOC Contains various detailed documentation, both RomWBW
specifically as well as the operating systems and
applications.
SOURCE Contains the source code files used to build the software and
ROM images.
TOOLS Contains the programs that are used by the build process or
that may be useful in setting up your system.
-------------------------------------------------------------------------
Building from Source
It is also very easy to modify and build custom ROM images that fully
tailor the firmware to your specific preferences. All tools required to
build custom ROM firmware under Windows are included no need to
install assemblers, etc. The firmware can also be built using Linux or
MacOS after confirming a few standard tools have been installed.
INSTALLATION & OPERATION
Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
@@ -118,133 +171,229 @@ Notes for helpful release-specific information.
Documentation
Documentation for RomWBW includes:
There are several documents that form the core of the RomWBW
documentation:
- RomWBW User Guide
- RomWBW System Guide
- RomWBW Applications
- RomWBW Errata
- RomWBW User Guide is the main user guide for RomWBW, it covers the
major topics of how to install, manage and use RomWBW, and includes
additional guidance to the use of some of the operating systems
supported by RomWBW
- RomWBW Hardware contains a description of all the hardware platforms,
and devices supported by RomWBW.
- RomWBW Applications is a reference for the ROM-hosted and OS-hosted
applications created or customized to enhance the operation of RomWBW.
- RomWBW Disk Catalog is a reference for the contents of the disk images
provided with RomWBW, with a description of many of the files on each
image
- RomWBW System Guide discusses much of the internal design and
construction of RomWBW. It includes a reference for the RomWBW HBIOS
API functions.
Each of the operating systems and ROM applications included with RomWBW
are sophisticated tools in their own right. It is not reasonable to
fully document their usage. However, you will find complete manuals in
PDF format in the Doc directory of the distribution. The intention of
this documentation is to describe the operation of RomWBW and the ways
in which it enhances the operation of the included applications and
operating systems.
Since RomWBW is purely a software product for many different platforms,
the documentation does NOT cover hardware construction, configuration,
or troubleshooting please see your hardware provider for this
information.
ACKNOWLEDGMENTS
SUPPORT
Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com. I am happy
to provide support adapting RomWBW to new or modified systems
CONTRIBUTIONS
All source code and distributions are maintained on GitHub.
Contributions of all kinds to RomWBW are very welcome.
Acknowledgments
I want to acknowledge that a great deal of the code and inspiration for
RomWBW has been provided by or derived from the work of others in the
RetroBrew Computers Community. I sincerely appreciate all of their
contributions. The list below is probably missing many names please
let me know if I missed you!
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original
code can still be found in RomWBW.
- Andrew Lynch started it all when he created the N8VEM Z80 SBC which
became the first platform RomWBW supported. Some of his original code
can still be found in RomWBW.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and
advice.
- Dan Werner wrote much of the code from which RomWBW was originally
derived and he has always been a great source of knowledge and advice.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Douglas Goodall contributed code, time, testing, and advice in “the
early days”. He created an entire suite of application programs to
enhance the use of RomWBW. Unfortunately, they have become unusable
due to internal changes within RomWBW. As of RomWBW 2.6, these
applications are no longer provided.
- Sergey Kiselev created several hardware platforms for RomWBW
including the very popular Zeta.
- Sergey Kiselev created several hardware platforms for RomWBW including
the very popular Zeta.
- David Giles created support for the Z180 CSIO which is now included
SD Card driver.
- David Giles created support for the Z180 CSIO which is now included SD
Card driver.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Phil Summers contributed the Forth and BASIC adaptations in ROM, the
AY-3-8910 sound driver, DMA support, and a long list of general code
and documentation enhancements.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Ed Brindley contributed some of the code that supports the RCBus
platform.
- Spencer Owen created the RC2014 series of hobbyist kit computers
which has exponentially increased RomWBW usage. Some of his kits
include RomWBW.
- Spencer Owen created the RC2014 series of hobbyist kit computers which
has exponentially increased RomWBW usage. Some of his kits include
RomWBW.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Stephen Cousins has likewise created a series of hobbyist kit
computers at Small Computer Central and is distributing RomWBW with
many of them.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- Alan Cox has contributed some driver code and has provided a great
deal of advice.
- The CP/NET client files were developed by Douglas Miller.
- The CP/NET client files were developed by Douglas Miller.
- Phillip Stevens contributed support for FreeRTOS.
- Phillip Stevens contributed support for FreeRTOS.
- Curt Mayer contributed the original Linux / MacOS build process.
- Curt Mayer contributed the original Linux / MacOS build process.
- UNA BIOS and FDISK80 are the products of John Coffman.
- UNA BIOS and FDISK80 are the products of John Coffman.
- FLASH4 is a product of Will Sowerbutts.
- FLASH4 is a product of Will Sowerbutts.
- CLRDIR is a product of Max Scane.
- CLRDIR is a product of Max Scane.
- Tasty Basic is a product of Dimitri Theulings.
- Tasty Basic is a product of Dimitri Theulings.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- Dean Netherton contributed eZ80 CPU support, the sound driver
interface, and the SN76489 sound driver.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- The RomWBW Disk Catalog document was produced by Mykl Orders.
- Rob Prouse has created many of the supplemental disk images
including Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft
BASIC Compiler, Microsoft Fortran Compiler, and a Games compendium.
- Rob Prouse has created many of the supplemental disk images including
Aztec C, HiTech C, SLR Z80ASM, Turbo Pascal, Microsoft BASIC Compiler,
Microsoft Fortran Compiler, and a Games compendium.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
- Mark Pruden has also contributed a great deal of content to the Disk
Catalog, User Guide as well as contributing the disk image for the
Z3PLUS operating system, the COPYSL utility, and also implemented a
feature for RomWBW configuration by NVRAM, and added the /B bulk
mode of disk assignment to the ASSIGN utility.
- Mark Pruden has made a wide variety of contributions including:
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- significant content in the Disk Catalog and User Guide
- creation of the Introduction and Hardware documents
- Z3PLUS operating system disk image
- COPYSL utility
- SLABEL utility
- a feature for RomWBW configuration by NVRAM
- the /B bulk mode of disk assignment to the ASSIGN utility
- Jose Collado has contributed enhancements to the TMS driver
including compatibility with standard TMS register configuration.
- Jacques Pelletier has contributed the DS1501 RTC driver code.
- Kevin Boone has contributed a generic HBIOS date/time utility
(WDATE).
- Jose Collado has contributed enhancements to the TMS driver including
compatibility with standard TMS register configuration.
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Kevin Boone has contributed a generic HBIOS date/time utility (WDATE).
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Matt Carroll has contributed a fix to XM.COM that corrects the port
specification when doing a send.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Dean Jenkins enhanced the build process to accommodate the Raspberry
Pi 4.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Tom Plano has contributed a new utility (HTALK) to allow talking
directly to HBIOS COM ports.
- Dylan Hall added support for specifying a secondary console.
- Lars Nelson has contributed several generic utilities such as a
universal (OS agnostic) UNARC application.
- Bill Shen has contributed boot loaders for several of his systems.
- Dylan Hall added support for specifying a secondary console.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Bill Shen has contributed boot loaders for several of his systems.
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
- Laszlo Szolnoki has contributed an EF9345 video display controller
driver.
- Les Bird has contributed support for the NABU w/ Option Board
- Ladislau Szilagyi has contributed an enhanced version of CP/M Cowgol
that leverages RomWBW memory banking.
Contributions of all kinds to RomWBW are very welcome.
- Les Bird has contributed support for the NABU w/ Option Board
- Rob Gowin created an online documentation site via MkDocs, and
contributed a driver for the Xosera FPGA-based video controller.
Related Projects
Outside of the hardware platforms adapted to RomWBW, there are a variety
of projects that either target RomWBW specifically or provide a
RomWBW-specific variation. These efforts are greatly appreciated and are
listed below. Please contact the author if there are any other such
projects that are not listed.
Z88DK
Z88DK is a software powerful development kit for Z80 computers
supporting both C and assembly language. This kit now provides specific
library support for RomWBW HBIOS. The Z88DK project is hosted at
https://github.com/z88dk/z88dk.
Paleo Editor
Steve Garcia has created a Windows-hosted IDE that is tailored to
development of RomWBW. The project can be found at
https://github.com/alloidian/PaleoEditor.
Z80 fig-FORTH
Dimitri Theulings implementation of fig-FORTH for the Z80 has a
RomWBW-specific variant. The project is hosted at
https://github.com/dimitrit/figforth.
Assembly Language Programming for the RC2014 Zed
Bruce Hall has written a very nice document that describes how to
develop assembly language applications on RomWBW. It begins with the
setup and configuration of a new RC2014 Zed system running RomWBW. It
describes not only generic CP/M application development, but also RomWBW
HBIOS programming and bare metal programming. The latest copy of this
document is hosted at http://w8bh.net/Assembly for RC2014Z.pdf.
LICENSING
License Terms
RomWBW is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
@@ -284,20 +433,3 @@ encouraged to submit their contributions via the RomWBW source code
control system to ensure their contributions are clearly documented.
All contributions to RomWBW are subject to this license.
GETTING ASSISTANCE
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
- RetroBrew Computers Forum
- RC2014 Google Group
- retro-comp Google Group
Submission of issues and bugs are welcome at the RomWBW GitHub
Repository.
Also feel free to email Wayne Warthen at wwarthen@gmail.com.

View File

@@ -1,16 +1,21 @@
This is a RomWBW HBIOS adaptation of BBCBASIC v5.00. The
cursor and screen management assumes the use of an ANSI/VT-100 terminal
which is generally correct for RomWBW. Support for a hardware system
timer is also implemented. If your system does not have a hardware
timer, the TIME function will always return 0 and the timeout
This is a RomWBW HBIOS adaptation of BBCBASIC v5.00 by R.T.Russell.
This implementation was adapted from the source code found at
https://github.com/rtrussell/BBCZ80.
The cursor and screen management assumes the use of an ANSI/VT-100
terminal which is generally correct for RomWBW. Support for a hardware
system timer is also implemented. If your system does not have a
hardware timer, the TIME function will always return 0 and the timeout
parameter of the INKEY(n) function will not be observed (will never
timeout).
What follows is some basic information on BBCBASIC from the
distribution. Note that it starts with the v3.00 information and
later on provides information on the changes in v5.00.
later on provides information on the changes in v5.00. Complete
documentation for the BBC BASIC (Z80) is found online at
https://www.bbcbasic.co.uk/bbcbasic/mancpm/index.html.
-- WBW 1:15 PM 5/30/2024
-- WBW 4:21 PM 2/17/2025
@@ -23,55 +28,55 @@ later on provides information on the changes in v5.00.
1. INTRODUCTION
BBC BASIC (Z80) has been designed to be as compatible as possible with
Version 4 of the 6502 BBC BASIC resident in the BBC Micro Master series.
The language syntax is not always identical to that of the 6502 version,
BBC BASIC (Z80) has been designed to be as compatible as possible with
Version 4 of the 6502 BBC BASIC resident in the BBC Micro Master series.
The language syntax is not always identical to that of the 6502 version,
but in most cases the Z80 version is more tolerant.
BBC BASIC (Z80) is as machine independent as possible and, as supplied,
it will run on any CP/M 2.2 (or later) system using a Z80 processor
(checks are carried out to ensure that the processor is a Z80 and that
the version of CP/M is at least 2.2). It is minimally configured for an
BBC BASIC (Z80) is as machine independent as possible and, as supplied,
it will run on any CP/M 2.2 (or later) system using a Z80 processor
(checks are carried out to ensure that the processor is a Z80 and that
the version of CP/M is at least 2.2). It is minimally configured for an
ADM3a-compatible VDU.
Few CP/M systems offer colour graphics of the quality provided as
standard on the BBC Microcomputer, and no software can provide colour
high-resolution graphics from a monochrome character-orientated computer.
However, many CP/M system users are interested in the advanced program
structures available from BBC BASIC and, within the limitations of the
host computer, BBC BASIC (Z80) provides the programming structures and
Few CP/M systems offer colour graphics of the quality provided as
standard on the BBC Microcomputer, and no software can provide colour
high-resolution graphics from a monochrome character-orientated computer.
However, many CP/M system users are interested in the advanced program
structures available from BBC BASIC and, within the limitations of the
host computer, BBC BASIC (Z80) provides the programming structures and
the non-graphic commands and functions specified for BBC BASIC.
In order to make full use of the facilities available in BBC BASIC (Z80)
it is necessary to install a small patch to adapt it to the capabilities
of the host computer. The source code of the patch present in the
In order to make full use of the facilities available in BBC BASIC (Z80)
it is necessary to install a small patch to adapt it to the capabilities
of the host computer. The source code of the patch present in the
distribution version is supplied as BBCDIST.MAC.
This documentation should be read in conjunction with a standard BBC
BASIC manual. Only those features which differ from the standard Acorn
This documentation should be read in conjunction with a standard BBC
BASIC manual. Only those features which differ from the standard Acorn
versions are documented here.
2. MEMORY UTILISATION
BBC BASIC (Z80) requires about 16 Kbytes of code space, resulting in a
value of PAGE of about &3E00. The remainder of the user memory is
available for BASIC programs, variables (heap) and stack. Depending on
BBC BASIC (Z80) requires about 16 Kbytes of code space, resulting in a
value of PAGE of about &3E00. The remainder of the user memory is
available for BASIC programs, variables (heap) and stack. Depending on
the system configuration, HIMEM can have a value up to &FE00.
3. COMMANDS, STATEMENTS AND FUNCTIONS
The syntax of BASIC commands, statements and functions is in most cases
identical to that of the BBC Micro version (BASIC 4). The few
The syntax of BASIC commands, statements and functions is in most cases
identical to that of the BBC Micro version (BASIC 4). The few
differences are documented here:
ADVAL
This function is not implemented.
CALL
CALL sets up a table in RAM containing details of the parameters; the
processor's IX register is set to the address of this parameter table.
CALL sets up a table in RAM containing details of the parameters; the
processor's IX register is set to the address of this parameter table.
The other processor registers are initialised as follows:
A is initialised to the least significant byte of A%
@@ -92,7 +97,7 @@ later on provides information on the changes in v5.00.
128 Fixed string $A%
129 Movable string A$
On entry to the subroutine the parameter table contains the following
On entry to the subroutine the parameter table contains the following
values:
Number of parameters 1 byte (at IX)
@@ -103,29 +108,29 @@ later on provides information on the changes in v5.00.
Parameter type ) repeated as often as necessary
Parameter address )
Except in the case of a movable string (normal string variable), the
parameter address given is the absolute address at which the item is
stored. In the case of movable strings (type 129) it is the address of a
4-byte parameter block containing the current length, the maximum length
Except in the case of a movable string (normal string variable), the
parameter address given is the absolute address at which the item is
stored. In the case of movable strings (type 129) it is the address of a
4-byte parameter block containing the current length, the maximum length
and the start address of the string (LSB first) in that order.
Integer variables are stored in twos complement form with their least
Integer variables are stored in twos complement form with their least
significant byte first.
Fixed strings are stored as the characters of the string followed by a
Fixed strings are stored as the characters of the string followed by a
carriage return (&0D).
Floating point variables are stored in binary floating point format with
their least significant byte first; the fifth byte is the exponent. The
mantissa is stored as a binary fraction in sign and magnitude format.
Bit 7 of the most significant byte is the sign bit and, for the purposes
of calculating the magnitude of the number, this bit is assumed to be set
to one. The exponent is stored as an integer in excess 127 format (to
Floating point variables are stored in binary floating point format with
their least significant byte first; the fifth byte is the exponent. The
mantissa is stored as a binary fraction in sign and magnitude format.
Bit 7 of the most significant byte is the sign bit and, for the purposes
of calculating the magnitude of the number, this bit is assumed to be set
to one. The exponent is stored as an integer in excess 127 format (to
find the exponent subtract 127 from the value in the fifth byte).
If the exponent byte of a floating point number is zero, the number is an
integer stored in integer format in the mantissa bytes. Thus an integer
can be represented in two different ways in a real variable. For example
If the exponent byte of a floating point number is zero, the number is an
integer stored in integer format in the mantissa bytes. Thus an integer
can be represented in two different ways in a real variable. For example
the value +5 can be stored as:
05 00 00 00 00 Integer 5
@@ -138,15 +143,15 @@ later on provides information on the changes in v5.00.
This statement is not implemented.
EDIT
A command to edit or concatenate and edit the specified program line(s).
The specified lines (including their line numbers) are listed as a single
line. By changing only the line number you can use EDIT to duplicate a
A command to edit or concatenate and edit the specified program line(s).
The specified lines (including their line numbers) are listed as a single
line. By changing only the line number you can use EDIT to duplicate a
line.
EDIT 230
EDIT 200,230
The following control functions are active both in the EDIT mode and in
The following control functions are active both in the EDIT mode and in
the immediate entry mode (i.e. at the BASIC prompt):
Move the cursor one character position to the left
@@ -159,8 +164,8 @@ later on provides information on the changes in v5.00.
Delete all characters to the left of the cursor
Delete all characters from the cursor to the end of the line
The choice of which keys activate these functions is made when BBC BASIC
is configured for a particular system. The distribution version uses ^H,
The choice of which keys activate these functions is made when BBC BASIC
is configured for a particular system. The distribution version uses ^H,
^I, ^K, ^J, ^A, ^E, DEL (&7F), ^L and ^X.
To exit EDIT mode and replace the edited line, type RETURN (ENTER).
@@ -171,28 +176,28 @@ later on provides information on the changes in v5.00.
This statement is not implemented.
GET
This function waits for a character to be typed at the keyboard, and
This function waits for a character to be typed at the keyboard, and
returns the ASCII code.
GET can also be used to read data from a processor I/O port; full 16-bit
GET can also be used to read data from a processor I/O port; full 16-bit
port addressing is available:
N% = GET(X%) : REM input from port X%
INKEY
This function waits for a specified maximum number of centiseconds for a
character to be typed at the keyboard. If no character is typed in that
time, the value -1 is returned. In the distribution version the delay is
determined by a simple software timing loop, and may be very inaccurate.
The customisation patch allows this to be adjusted to suit the system in
This function waits for a specified maximum number of centiseconds for a
character to be typed at the keyboard. If no character is typed in that
time, the value -1 is returned. In the distribution version the delay is
determined by a simple software timing loop, and may be very inaccurate.
The customisation patch allows this to be adjusted to suit the system in
use.
INPUT#
The format of data files is different from that used by the BBC Micro, in
part to improve compatibility with standard CP/M files. Numeric values
are stored as five bytes in the format documented under CALL; if the
fifth byte is zero the value is an integer. Strings are stored as the
characters of the string (in the correct order!) followed by a carriage
The format of data files is different from that used by the BBC Micro, in
part to improve compatibility with standard CP/M files. Numeric values
are stored as five bytes in the format documented under CALL; if the
fifth byte is zero the value is an integer. Strings are stored as the
characters of the string (in the correct order!) followed by a carriage
return (&0D).
MODE
@@ -208,15 +213,15 @@ later on provides information on the changes in v5.00.
This function is not implemented.
PRINT#
The format of data files is different from that used by the BBC Micro, in
part to improve compatibility with standard CP/M files. Numeric values
are stored as five bytes in the format documented under CALL; if the
fifth byte is zero the value is an integer. Strings are stored as the
characters of the string (in the correct order!) followed by a carriage
The format of data files is different from that used by the BBC Micro, in
part to improve compatibility with standard CP/M files. Numeric values
are stored as five bytes in the format documented under CALL; if the
fifth byte is zero the value is an integer. Strings are stored as the
characters of the string (in the correct order!) followed by a carriage
return (&0D).
PUT
A statement to output data to a processor port. Full 16-bit addressing
A statement to output data to a processor port. Full 16-bit addressing
is available.
PUT A%,N% : REM Output N% to port A%
@@ -225,7 +230,7 @@ later on provides information on the changes in v5.00.
This statement is not implemented.
TIME
This pseudo-variable is not implemented in the distribution version, but
This pseudo-variable is not implemented in the distribution version, but
can be supported by means of the customisation patch. See BBCDIST.MAC.
USR
@@ -240,34 +245,34 @@ later on provides information on the changes in v5.00.
H is initialised to the least significant byte of H%
L is initialised to the least significant byte of L%
USR returns a 32-bit integer result composed of the processor's H, L, H'
USR returns a 32-bit integer result composed of the processor's H, L, H'
and L' registers, with H being the most significant.
4. RESIDENT Z80 ASSEMBLER
The in-line assembler is accessed in exactly the same way as the 6502
assembler in the BBC Micro version of BBC BASIC. That is, '[' enters
The in-line assembler is accessed in exactly the same way as the 6502
assembler in the BBC Micro version of BBC BASIC. That is, '[' enters
assembler mode and ']' exits assembler mode.
All standard Zilog mnemonics are accepted: ADD, ADC and SBC must be
followed by A or HL. For example, ADD A,C is accepted but ADD C is not.
However, the brackets around the port number in IN and OUT are optional.
Thus both OUT (5),A and OUT 5,A are accepted. The instruction IN F,(C)
All standard Zilog mnemonics are accepted: ADD, ADC and SBC must be
followed by A or HL. For example, ADD A,C is accepted but ADD C is not.
However, the brackets around the port number in IN and OUT are optional.
Thus both OUT (5),A and OUT 5,A are accepted. The instruction IN F,(C)
is not accepted, but the equivalent code is produced from IN (HL),C
The pseudo-ops DEFB, DEFW and DEFM are included. DEFM works like EQUS in
The pseudo-ops DEFB, DEFW and DEFM are included. DEFM works like EQUS in
the 6502 version.
5. OPERATING SYSTEM INTERFACE
The following resident Operating System ("star") commands are
implemented. They may be accessed directly (e.g. *BYE) or via the OSCLI
The following resident Operating System ("star") commands are
implemented. They may be accessed directly (e.g. *BYE) or via the OSCLI
statement (OSCLI "BYE").
Control characters, lower-case characters, DEL and quotation marks may be
incorporated in filenames by using the 'escape' character '|'. However,
Control characters, lower-case characters, DEL and quotation marks may be
incorporated in filenames by using the 'escape' character '|'. However,
there is no equivalent to the BBC Microcomputer's '|!' to set bit 7.
*BYE
@@ -278,7 +283,7 @@ later on provides information on the changes in v5.00.
*. [filespec]
*DIR [filespec]
List the files which match the (optional) ambiguous filespec. If the
List the files which match the (optional) ambiguous filespec. If the
filespec is omitted, all .BBC files are listed:
*DIR List all .BBC files on the disk
*DIR B:*.* List all files on disk B:
@@ -288,53 +293,53 @@ later on provides information on the changes in v5.00.
Select drive d as the default drive for subsequent disk operations.
*ERA filespec
Erase (delete) the specified disk file or files. The extension defaults
Erase (delete) the specified disk file or files. The extension defaults
to .BBC if omitted.
*ESC [ON|OFF]
*ESC OFF disables the abort action of the ESCape key; after *ESC OFF the
ESCape key simply returns the ASCII code ESC (27). *ESC ON, or *ESC,
*ESC OFF disables the abort action of the ESCape key; after *ESC OFF the
ESCape key simply returns the ASCII code ESC (27). *ESC ON, or *ESC,
restores the normal action of the ESCape key.
*EXEC filespec
Accept console input from the specified file instead of from the
Accept console input from the specified file instead of from the
keyboard. If the extension is omitted, .BBC is assumed.
*LOAD filespec aaaa
Loads the specified file into memory at address aaaa. The load address
Loads the specified file into memory at address aaaa. The load address
must be specified. If the extension is omitted, .BBC is assumed.
*OPT [n]
Select the destination for console output characters. The value n is in
Select the destination for console output characters. The value n is in
the range 0 to 2, as follows:
0 Send characters to the console output
1 Send characters to the auxiliary output
2 Send characters to the printer (list) output
*REN newfile=oldfile
*RENAME newfile=oldfile
Renames 'oldfile' as 'newfile'. If the extension is omitted, .BBC is
Renames 'oldfile' as 'newfile'. If the extension is omitted, .BBC is
assumed.
*RESET
Rest the disk system (CP/M function 13). This command does not close any
files nor does it perform any other housekeeping function. You should
Rest the disk system (CP/M function 13). This command does not close any
files nor does it perform any other housekeeping function. You should
use *RESET after you have changed a disk.
*SAVE filespec aaaa bbbb
*SAVE filespec aaaa +llll
This command saves a specified range of memory to disk. The address range
is specified either as start (aaaa) and end+1 (bbbb) or as start (aaaa)
This command saves a specified range of memory to disk. The address range
is specified either as start (aaaa) and end+1 (bbbb) or as start (aaaa)
and length (llll). If the extension is omitted, .BBC is assumed.
*SPOOL [filespec]
Copy all subsequent console output to the specified file. If the filename
is omitted, any current spool file is closed and spooling is terminated.
Copy all subsequent console output to the specified file. If the filename
is omitted, any current spool file is closed and spooling is terminated.
If the extension is omitted, .BBC is assumed.
*TYPE filespec
Type the specified file to the screen. If the extension is omitted, .BBC
Type the specified file to the screen. If the extension is omitted, .BBC
is assumed.
*| comment
@@ -352,7 +357,7 @@ later on provides information on the changes in v5.00.
Trappable - BASIC:
1 Out of range 24 Exp range
2 25
2 25
3 26 No such variable
4 Mistake 27 Missing )
5 Missing , 28 Bad HEX
@@ -383,9 +388,9 @@ later on provides information on the changes in v5.00.
198 Disk full 254 Bad command
200 Close error 255 CP/M error
204 Bad name

New features in BBC BASIC (Z80) version 5.00, May 2024:
New features in BBC BASIC (Z80) version 5.00, January 2025:
1. BASIC V statements
@@ -394,7 +399,7 @@ New features in BBC BASIC (Z80) version 5.00, May 2024:
1.3 CASE...WHEN...OTHERWISE...ENDCASE
1.4 LOCAL DATA / RESTORE DATA
1.5 ON ERROR LOCAL / RESTORE ERROR
1.6 DIM var LOCAL size
1.6 DIM var LOCAL size
1.7 ERROR err, message$
1.8 RESTORE +n
1.9 SWAP var1,var2
@@ -408,10 +413,10 @@ New features in BBC BASIC (Z80) version 5.00, May 2024:
2.3 REPORT$
2.4 Binary constants
2.5 LEFT$ & RIGHT$ with last parameter omitted
2.6 MOD(array)
2.7 SUM(array)
2.8 SUMLEN(array)
2.9 GET$#file
2.6 MOD(array())
2.7 SUM(array())
2.8 SUMLEN(array())
2.9 GET$#file
3. BASIC V whole array operations
@@ -423,9 +428,12 @@ New features in BBC BASIC (Z80) version 5.00, May 2024:
3.6 Array initialisation lists
3.7 Array compound assignment (+= etc.)
3.8 Make a whole array LOCAL
3.9 DIM a LOCAL array (on the stack) +
3.9 DIM a LOCAL array (on the stack) +
* String array expressions are not currently supported, instead of using
a$() = b$() + c$() use a$() = b$() : a$() += c$()
The use of EVAL with whole-array expressions is not currently supported.
* String array expressions A$() = B$() + C$() are not currently supported.
+ LOCAL string arrays should be initialised to their maximum needed length
to eliminate the risk of a memory leak each time the PROC/FN is called:
LOCAL a$() : DIM a$(size%) : a$() = STRING$(max%, "a") : a$() = ""
@@ -434,22 +442,27 @@ New features in BBC BASIC (Z80) version 5.00, May 2024:
4.1 Bit-shifts <<, >>, >>>
4.2 Floating-point indirection (|)
4.3 RETURNed parameters from FN/PROC
4.4 Compound assignment (+=, -=, *=, /= etc.)
4.5 Assigning to a sub-string: LEFT$()=, MID$()= , RIGHT$()=
4.6 Hooks for CIRCLE,ELLIPSE,FILL,LINE,MOUSE,ORIGIN,RECTANGLE,TINT,SYS,WAIT
4.7 Hooks for WIDTH function, TINT function, MODE function
4.3 Additional VDU delimiter '|'
4.4 RETURNed parameters from FN/PROC
4.5 Compound assignment (+=, -=, *=, /= etc.)
4.6 Assigning to a sub-string: LEFT$()=, MID$()= , RIGHT$()=
4.7 Hooks for CIRCLE, ELLIPSE, FILL, LINE, ORIGIN, RECTANGLE (graphics)
4.8 Hooks for MOUSE, OFF, ON, SYS, TINT, WAIT (statements)
4.9 Hooks for MODE function, TINT function, WIDTH function
5. Extensions to Acorn's BASIC V, compatible with BB4W, BBCSDL and BBCTTY
5.1 EXIT REPEAT / WHILE / FOR [var]
5.2 Address-of operator ^
5.3 Byte variables and arrays (& suffix)
5.2 Address-of operator (^)
5.3 Byte (unsigned 8-bit) variables and arrays (& suffix)
5.4 'BY len' and 'TO term' qualifiers to GET$#file
5.5 ELSE IF <condition> THEN; (trailing semicolon)
5.6 == synonymous with = in comparisons
5.7 DIM a global array inside a FN/PROC (use RETURN)
5.8 DIM var LOCAL -1 returns the stack pointer, even outside a FN/PROC
5.9 RESTORE LOCAL restores local variables without exiting the FN/PROC
Note: The token for PUT has changed from &CE in version 3 to &0E in version 5.
If this token is present in existing programs it will list as ENDWHILE rather
than PUT, and the programs will need to be modified to restore functionality.
than PUT, and the programs will need to be modified to restore functionality.


File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,64 +1,68 @@
NAME ('HOOK')
;
GLOBAL CLG
GLOBAL COLOUR
GLOBAL DRAW
GLOBAL ENVEL
GLOBAL GCOL
GLOBAL MODE
GLOBAL MOVE
GLOBAL PLOT
GLOBAL SOUND
GLOBAL PUTIMS
GLOBAL CIRCLE
GLOBAL ELLIPSE
GLOBAL FILL
GLOBAL MOUSE
GLOBAL ORIGIN
GLOBAL RECTAN
GLOBAL LINE
GLOBAL TINT
GLOBAL WAIT
GLOBAL SYS
;
GLOBAL ADVAL
GLOBAL POINT
GLOBAL GETIMS
GLOBAL TINTFN
GLOBAL MODEFN
GLOBAL WIDFN
;
EXTRN EXTERR
;
CLG:
COLOUR:
DRAW:
ENVEL:
GCOL:
MODE:
MOVE:
PLOT:
SOUND:
ADVAL:
POINT:
GETIMS:
PUTIMS:
CIRCLE:
ELLIPSE:
FILL:
MOUSE:
ORIGIN:
RECTAN:
LINE:
TINT:
TINTFN:
MODEFN:
WIDFN:
WAIT:
SYS:
XOR A
CALL EXTERR
DEFM 'Sorry'
DEFB 0
;
END
NAME ('HOOK')
;
GLOBAL CLG
GLOBAL COLOUR
GLOBAL DRAW
GLOBAL ENVEL
GLOBAL GCOL
GLOBAL MODE
GLOBAL MOVE
GLOBAL PLOT
GLOBAL SOUND
GLOBAL PUTIMS
GLOBAL CIRCLE
GLOBAL ELLIPS
GLOBAL FILL
GLOBAL MOUSE
GLOBAL ORIGIN
GLOBAL RECTAN
GLOBAL LINE
GLOBAL TINT
GLOBAL WAIT
GLOBAL SYS
GLOBAL CSRON
GLOBAL CSROFF
;
GLOBAL ADVAL
GLOBAL POINT
GLOBAL GETIMS
GLOBAL TINTFN
GLOBAL MODEFN
GLOBAL WIDFN
;
EXTRN EXTERR
;
CLG:
COLOUR:
DRAW:
ENVEL:
GCOL:
MODE:
MOVE:
PLOT:
SOUND:
ADVAL:
POINT:
GETIMS:
PUTIMS:
CIRCLE:
ELLIPS:
FILL:
MOUSE:
ORIGIN:
RECTAN:
LINE:
TINT:
TINTFN:
MODEFN:
WIDFN:
WAIT:
SYS:
CSRON:
CSROFF:
XOR A
CALL EXTERR
DEFM 'Sorry'
DEFB 0
;
END

View File

@@ -0,0 +1,19 @@
Copyright (c) 2024, Richard T. Russell, http://www.rtrussell.co.uk/
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -29,6 +29,8 @@ call :build Survey || exit /b
call :build HTalk || exit /b
call :build BBCBASIC || exit /b
call :build copysl || exit /b
call :build slabel || exit /b
call :build ZDE || exit /b
goto :eof

View File

@@ -24,6 +24,8 @@ call :clean Survey || exit /b
call :clean HTalk || exit /b
call :clean BBCBASIC || exit /b
call :clean copysl || exit /b
call :clean slabel || exit /b
call :clean ZDE || exit /b
goto :eof

View File

@@ -1,5 +1,5 @@
SUBDIRS = HTalk XM FDU FAT Tune Test ZMP ZMD Dev VGM cpuspd reboot Survey BBCBASIC copysl \
sysgen syscopy assign format talk mode rtc timer
slabel sysgen syscopy assign format talk mode rtc timer ZDE
TOOLS =../../Tools
include $(TOOLS)/Makefile.inc

View File

@@ -23,6 +23,19 @@ CLI_HAVE_HBIOS_SWITCH1 ; NOT MATCHED --HBIOS
LD (HBIOSMD), A
RET
CLI_HAVE_DELAY_SWITCH:
LD HL, CLIARGS ; TEST FOR --DELAY ON COMMAND LINE
LD DE, DELAYOPT
CALL STRINDEX
JR NZ, CLI_HAVE_DELAY_SWITCH1
OR $FF ; MATCHED --DELAY
LD (DELAYMD), A
RET
CLI_HAVE_DELAY_SWITCH1 ; NOT MATCHED --HBIOS
XOR A
LD (DELAYMD), A
RET
CLI_PORTS:
LD HL, CLIARGS ; TEST FOR -MSX ON COMMAND LINE
LD DE, OPT_MSX
@@ -101,7 +114,8 @@ CLI_OCTAVE_ADJST5:
OPT_MSX .DB "-MSX", 0 ; USE MSX PORTS
OPT_RC .DB "-RC", 0 ; USE RC PORTS
HBIOSOPT: .DB "--HBIOS", 0
HBIOSOPT: .DB "--HBIOS", 0 ; USE HBIOS API FOR PLAYBACK
DELAYOPT: .DB "-DELAY",0 ; FORCE DELAY MODE
DOWN1 .DB "-t1", 0 ; DOWN AN OCTAVE
DOWN2 .DB "-t2", 0 ; DOWN TWO OCTAVE
UP1 .DB "+t1", 0 ; UP AN OCTAVE

View File

@@ -41,8 +41,14 @@ DLY1 DEC BC ; [6]
; Test for timer running to determine if it can be used for delay
; Return string message in DE
; Assigned (WMOD) with 0 if no hardware time, 1 if hardware timer found
; If -DELAY on command line, force delay mode
;
PROBETIMER:
LD A,(DELAYMD) ; GET COMMAND LINE DELAY FLAG
OR A ; TEST IT
LD A,0 ; ASSUME NO TIMER
LD DE,MSGDLY ; DELAY MODE MESSAGE
JR NZ,SETDLY ; IF TRUE, DONE
LD B,BF_SYSGET ; HBIOS: GET function
LD C,$D0 ; TIMER subfunction
RST 08 ; DE:HL := current tick count

View File

@@ -53,6 +53,7 @@
; 2024-07-11 [WBW] Updated, Les Bird's module now uses same settings as EB6
; 2024-09-17 [WBW] Add support for HEATH H8 with Les Bird's MSX Card
; 2024-12-12 [WBW] Add options to force standard MSX or RC ports
; 2025-05-28 [WBW] Add option to force delay mode
;_______________________________________________________________________________
;
; ToDo:
@@ -113,6 +114,7 @@ Id .EQU 1 ; 5) Insert official identificator
CALL CLI_ABRT_IF_OPT_FIRST
CALL CLI_PORTS
CALL CLI_HAVE_HBIOS_SWITCH
CALL CLI_HAVE_DELAY_SWITCH
CALL CLI_OCTAVE_ADJST
JP CONTINUE
@@ -703,15 +705,16 @@ FILTYP .DB 0 ; Sound file type (TYPPT2, TYPPT3, TYPMYM)
TMP .DB 0 ; work around use of undocumented Z80
HBIOSMD .DB 0 ; NON-ZERO IF USING HBIOS SOUND DRIVER, ZERO OTHERWISE
DELAYMD .DB 0 ; FORCE DELAY MODE IF TRUE (NON-ZERO)
OCTAVEADJ .DB 0 ; AMOUNT TO ADJUST OCTAVE UP OR DOWN
USEPORTS .DB 0 ; AUDIO CHIP PORT SELECTION MODE
MSGBAN .DB "Tune Player for RomWBW v3.12, 12-Dec-2024",0
MSGUSE .DB "Copyright (C) 2024, Wayne Warthen, GNU GPL v3",13,10
MSGBAN .DB "Tune Player for RomWBW v3.13, 28-May-2025",0
MSGUSE .DB "Copyright (C) 2025, Wayne Warthen, GNU GPL v3",13,10
.DB "PTxPlayer Copyright (C) 2004-2007 S.V.Bulba",13,10
.DB "MYMPlay by Marq/Lieves!Tuore",13,10,13,10
.DB "Usage: TUNE <filename>.[PT2|PT3|MYM] [-msx|-rc] [--hbios] [+tn|-tn]",0
.DB "Usage: TUNE <filename>.[PT2|PT3|MYM] [-msx|-rc] [-delay] [--hbios] [+tn|-tn]",0
MSGBIO .DB "Incompatible BIOS or version, "
.DB "HBIOS v", '0' + RMJ, ".", '0' + RMN, " required",0
MSGPLT .DB "Hardware error, system not supported!",0

View File

@@ -146,6 +146,13 @@ MINIT_UB1:
LD A,E ; Put in A
LD (CPUSPD),A ; Save it
;
LD A,(UNIT) ; get current unit specified
CP 0FFH ; check for undefined
JR NZ,MINIT_UB2 ; if already specified, go ahead
XOR A ; default is unit 0
LD (UNIT),A ; and save it
;
MINIT_UB2:
JP UB_INIT ; UNA BIOS init
;
MINIT_RET:
@@ -284,7 +291,7 @@ EXTRA3:
BIOID DB 0 ; BIOS ID, 1=HBIOS, 2=UBIOS
CPUSPD DB 10 ; CPU speed in MHz
RCVSCL DW 6600 ; RECV loop timeout scalar
UNIT DB 0 ; BIOS serial device unit number
UNIT DB 0FFH ; BIOS serial device unit number
BIOSBID DB 00H ; BIOS bank id
;
TAG DB "RomWBW, 30-May-2020$"
@@ -323,7 +330,7 @@ HB_JPTBL:
JP HB_GETCHR ; get character from modem
JP HB_RCVRDY ; check receive ready
JP HB_SNDRDY ; check send ready
JP HB_SPEED ; get speed value for file transfer time
JP HB_SPEED ; get speed value for file transfer time
;
;-----------------------------------------------------------------------
;
@@ -535,8 +542,10 @@ UB_SENDR:
PUSH BC
PUSH DE
PUSH HL
LD BC,0012H ; unit 0, func 12h (write char)
LD E,A ; character to E
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,12H ; func 12h (write char)
RST 08
POP HL
POP DE
@@ -568,7 +577,9 @@ UB_MDIN:
PUSH BC
PUSH DE
PUSH HL
LD BC,0011H ; unit 0, func 12h (write char)
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,11H ; func 11h (read char)
RST 08
LD A,E ; byte received to A
POP HL
@@ -586,12 +597,14 @@ UB_RCVRDY:
PUSH BC
PUSH DE
PUSH HL
LD BC,0013H ; unit 0, func 13h (input stat)
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,13H ; func 13h (input stat)
RST 08
XOR A ; zero accum ; 4
CP E ; CF means not zero ; 4
CCF ; CF means zero ; 4
RLA ; ZF means not zero ; 4
LD A,E ; move char count to accum
SUB 1 ; CF set IFF zero
RL A ; CF to bit 0 of A
AND 01H ; set Z flag as needed
LD A,0 ; report no line errors
POP HL
POP DE
@@ -606,12 +619,14 @@ UB_SNDRDY:
PUSH BC
PUSH DE
PUSH HL
LD BC,0014H ; unit 0, func 14h (output stat)
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,14H ; func 14h (output stat)
RST 08
XOR A ; zero accum ; 4
CP E ; CF means not zero ; 4
CCF ; CF means zero ; 4
RLA ; ZF means not zero ; 4
LD A,E ; char avail to send to accum
SUB 1 ; CF set IFF zero
RL A ; CF to bit 0 of A
AND 01H ; set Z flag as needed
POP HL
POP DE
POP BC
@@ -804,7 +819,6 @@ UF_INIT:
; Send character on top of stack
;
UF_SENDR:
POP AF ; get character to send from stack
OUT (0FFH),A ; write to fifo
UF_SCDP EQU $-1 ; data port

35
Source/Apps/ZDE/Build.cmd Normal file
View File

@@ -0,0 +1,35 @@
@echo off
setlocal
set TOOLS=../../../Tools
set PATH=%TOOLS%\tasm32;%TOOLS%\zxcc;%PATH%
set TASMTABS=%TOOLS%\tasm32
set CPMDIR80=%TOOLS%/cpm/
:: These variations of ZDE are built here as reference copies. They
:: are not copied anywhere else during the build.
:: The resulting .COM files are manually
:: copied to /Source/Images/d_ws/u1 as needed.
zxcc ZMAC -ZDE16 -/P -/H || exit /b
zxcc MLOAD25 ZDE16 || exit /b
copy /Y zde16.com ..\..\..\Binary\Apps\ZDE\ || exit /b
zxcc ZMAC ZDE16A.PAT -/H || exit /b
zxcc MLOAD25 ZDE16A=ZDE16.COM,ZDE16A.HEX || exit /b
copy /Y zde16a.com ..\..\..\Binary\Apps\ZDE\ || exit /b
zxcc ZMAC -ZDE17 -/P -/H || exit /b
zxcc MLOAD25 ZDE17 || exit /b
copy /Y zde17.com ..\..\..\Binary\Apps\ZDE\ || exit /b
zxcc ZMAC -ZDE18 -/P -/H || exit /b
zxcc MLOAD25 ZDE18 || exit /b
copy /Y zde18.com ..\..\..\Binary\Apps\ZDE\ || exit /b
zxcc ZMAC -ZDE19 -/P -/H || exit /b
zxcc MLOAD25 ZDE19 || exit /b
copy /Y zde19.com ..\..\..\Binary\Apps\ZDE\ || exit /b

View File

@@ -0,0 +1,9 @@
@echo off
setlocal
if exist *.prn del *.prn
if exist *.err del *.err
if exist *.rel del *.rel
if exist *.com del *.com
if exist *.hex del *.hex
if exist *.sym del *.sym

15
Source/Apps/ZDE/Makefile Normal file
View File

@@ -0,0 +1,15 @@
# These variations of ZDE are built here as reference copies. They
# are not copied anywhere else during the build.
# The resulting .COM files are manually
# copied to /Source/Images/d_ws/u1 as needed.
OBJECTS = zde16.com zde16a.com zde17.com zde18.com zde19.com
DEST = ../../../Binary/Apps/ZDE
TOOLS = ../../../Tools
OTHERS = *.hex
include $(TOOLS)/Makefile.inc
zde16a.com: zde16.com zde16a.pat
$(ZXCC) ZMAC zde16a.pat -/H
$(ZXCC) MLOAD25 zde16a=zde16.com,zde16a.hex || exit /b

38
Source/Apps/ZDE/ReadMe.md Normal file
View File

@@ -0,0 +1,38 @@
# ZDE 1.6 (Z-System Display Editor) reconstituted source - MECPARTS
11/19/2020
Using the source code of [VDE 2.67]
(http://www.classiccmp.org/cpmarchives/cpm/Software/WalnutCD/enterprs/cpm/utils/s/vde267sc.lbr)
as a guide, I've reconstituted the source code for [ZDE 1.6](http://www.classiccmp.org/cpmarchives/cpm/Software/WalnutCD/cpm/editor/zde16.lbr).
The resulting source code is available from the GitHub repository
https://github.com/mecparts/zde.
The source has been assembled with:
* Al Hawley's ZMAC: assemble as is.
* MicroSoft's M80: rename to ZDE16.MAC, un-comment the first two lines
and assemble. Use RELHEX to create ZDE16.HEX.
* ZASM (Cromemco's ASMB): Rename to ZDE16.Z80 and assemble. Use RELHEX
to create ZDE16.HEX.
Use MLOAD to create ZDE16.COM.
There are still a couple of routines new to ZDE that I haven't figured
out (yet). But most of them have been sussed out.
## ZDE 1.7 - MECPARTS 11/24/2020
I've fixed the "doesn't preserve timestamps for files larger than a
single extent under ZSDOS" bug that was present in v1.6. The existing
ZDENST16.COM program will work with the 1.7 to set the program up for
your terminal and printer.
## ZDE 1.8 - Lars Nelson 12/3/2022
Added routine to save create time stamp under CP/M Plus since
CP/M Plus, unlike ZSDOS, has no native ability to set time stamps.
## ZDE 1.9 - Peter Onion 03/27/2025
- Added support for ANSI PgUp, PgDn, Home, & End.
- Support ANSI F1 key for menu/error escape.

8111
Source/Apps/ZDE/zde16.z80 Normal file

File diff suppressed because it is too large Load Diff

102
Source/Apps/ZDE/zde16a.pat Normal file
View File

@@ -0,0 +1,102 @@
; This patch file modifies the officially-distributed .COM file
; for ZDE Ver 1.6 (copyright by Carson Wilson) to:
; - Correct a bug which did not preserve create times when
; editing files > 1 extent.
; - Use an apparently 'dead' byte in the configuration area as
; a configuration flag to allow disabling the 'Auto-Indent'
; feature which was always 'on' in ZDE1.6.
;
; With the second change, you may configure the 'Auto-Indent'
; feature to be active (as distributed) or disabled (as this patch
; is configured) by altering the DB at label 'AIDflt' in the
; second part of this patch file below.
;
; Assemble this file to a .HEX file (example uses ZMAC) as:
;
; ZMAC ZDE16A.PAT /H
;
; then overlay the resulting ZDE16.HEX onto ZDE16.COM with MYLOAD
; (or equivalent) as:
;
; MYLOAD ZDE.COM=ZDE.COM,ZDE16.HEX
;
; The resulting ZDE.COM will be identified as 'ZDE 1.6a' in the
; text identification string near the beginning of the .COM file.
;
; Harold F. Bower, 18 July 2001.
;
; CP/M Standard Equates
;
BDOS EQU 0005H
FCB EQU 005CH
DMA EQU 0080H
TPA EQU 0100H
;
SDMA EQU 26 ; CP/M Function to set DMA Address
;
; Needed locations within ZDE 1.6
;
Fill EQU TPA+0F8BH ; For Date Patch
TimBuf EQU TPA+3B3FH ; " " "
;
VTFlg EQU TPA+3ADAH ; For Auto-Ins Patch
HCRFlg EQU TPA+3AE3H ; " " " "
LfMarg EQU TPA+3AFDH ; " " " "
;
; ----------- Begin Patch File -----------
;
; --- Fix Create Time Stamp Preservation Error ---
ORG TPA+0029H
; was:
DB 'a, (C)' ; DB ', Copr.'
ORG TPA+2461H
; was:
LD (FCB+13),A ; CALL ClUsrF
;
ORG TPA+2F10H
; was:
LD B,4 ; CALL ClUsrF
CALL ClUsrF ; LD DE,TimBuf
LD DE,TimBuf ; LD C,SDMA
CALL SetDMA ; CALL BDOS
;
ORG TPA+30AAH
; was:
LD DE,DMA ; LD C,SDMA
SetDMA: LD C,SDMA ; LD DE,DMA
;
ORG TPA+30B4H
; was:
ClUsrF: XOR A ; XOR A
EX DE,HL ; LD (FCB+13),A
JP Fill ; RET
;
; --- Usurp Config Flag for Auto-Insert use, sense on startup ---
;
ORG TPA+0057H
; was: 0FFH
AIDflt: DB 00H ; Set Desired default (0=Off, FF=On)
;
ORG TPA+262AH
; was:
LD (LfMarg),HL ; LD HL,0101H
XOR A ; LD (LfMarg),HL
LD (VTFlg),A ; XOR A
LD (HCRFlg),A ; LD (VTFlg),A
NOP ; LD (HCRFlg),A
LD A,(AIDflt) ; DEC A
;
ORG TPA+2711H
; was:
NOP ; LD A,(0157H) {Unknown Use}
NOP ; OR A
NOP ; JP Z,Error2
NOP
NOP
NOP
NOP
;
;------------ End of Patch File ------------
END


8111
Source/Apps/ZDE/zde17.z80 Normal file

File diff suppressed because it is too large Load Diff

8567
Source/Apps/ZDE/zde18.z80 Normal file

File diff suppressed because it is too large Load Diff

8598
Source/Apps/ZDE/zde19.z80 Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -81,7 +81,7 @@ MINIT1:
SUB '0' ; Got it, convert to binary
LD (UNIT),A ; Save it
LD A,' ' ; Space character to accum
LD (HL),A ; Remove numberic from FCB
LD (HL),A ; Remove numeric from FCB
JR MINIT3 ; Proceed with initialization
MINIT2:
@@ -181,6 +181,13 @@ MINIT_UB1:
LD A,E ; Put in A
LD (CPUSPD),A ; Save it
;
LD A,(UNIT) ; get current unit specified
CP 0FFH ; check for undefined
JR NZ,MINIT_UB2 ; if already specified, go ahead
XOR A ; default is unit 0
LD (UNIT),A ; and save it
;
MINIT_UB2:
JP UB_INIT ; UNA BIOS init
;
MINIT_RET:
@@ -213,7 +220,6 @@ MINIT_RET:
;
; Return with CPU speed in A
LD A,(CPUSPD) ; A := CPU speed in MHz
LD HL,(RCVSCL) ; HL := receive scalar
RET ; and return
;
;-----------------------------------------------------------------------
@@ -299,6 +305,22 @@ FAIL:
CALL BDOS ; Do it
JP 0 ; Bail out!
;
; Adjust CPUSPD to account for overhead of HBIOS or UBIOS. It appears
; that dividing CPU speed in MHz by 8 results in timeouts that are
; roughly correct.
;
SLOW:
LD A,(CPUSPD) ; Get true CPU speed
ADD A,4 ; Add for rounding
SRL A ; Divide by 8
SRL A
SRL A
JR NZ,SLOW1 ; If not zero, we are good
LD A,1 ; else, make it 1
SLOW1:
LD (CPUSPD),A ; Save it
RET
;
;-----------------------------------------------------------------------
;
; The following are all dummy routines that are unused because MINIT
@@ -318,7 +340,6 @@ EXTRA3:
;
BIOID DB 0 ; BIOS ID, 1=HBIOS, 2=UBIOS
CPUSPD DB 10 ; CPU speed in MHz
RCVSCL DW 6600 ; RECV loop timeout scalar
UNIT DB 0FFH ; BIOS serial device unit number
BIOSBID DB 00H ; BIOS bank id
;
@@ -365,8 +386,7 @@ HB_JPTBL:
; HBIOS initialization
;
HB_INIT:
LD HL,2150 ; Smaller receive loop timeout scalar
LD (RCVSCL),HL ; ... to compensate for BIOS overhead
CALL SLOW ; Adjust CPUSPD for HBIOS overhead
;
; Patch SENDR w/ FastPath addresses
LD BC,0F801H ; Get CIO func/data adr
@@ -404,10 +424,6 @@ HB_INIT:
RST 08
JP NZ,APIERR ; handle API error
LD (HB_SRFN),HL ; Plug in func adr
;
; Claim 1 MHz CPU to offset overhead of HBIOS
LD A,1
LD (CPUSPD),A ; Save it
;
LD HL,HB_JPTBL
LD DE,HB_LBL
@@ -556,14 +572,8 @@ UB_INIT:
;
; TODO:
; - TEST!!!
; - ADJUST RCVSCL?
;
LD HL,3000 ; Smaller receive loop timeout scalar
LD (RCVSCL),HL ; ... to compensate for BIOS overhead
;
; Claim 1 MHz CPU to offset overhead of HBIOS
LD A,1
LD (CPUSPD),A ; Save it
CALL SLOW ; Adjust CPUSPD for UBIOS overhead
;
LD HL,UB_JPTBL
LD DE,UB_LBL
@@ -578,8 +588,10 @@ UB_SENDR:
PUSH BC
PUSH DE
PUSH HL
LD BC,0012H ; unit 0, func 12h (write char)
LD E,A ; character to E
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,12H ; func 12h (write char)
RST 08
POP HL
POP DE
@@ -611,7 +623,9 @@ UB_MDIN:
PUSH BC
PUSH DE
PUSH HL
LD BC,0011H ; unit 0, func 12h (write char)
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,11H ; func 11h (read char)
RST 08
LD A,E ; byte received to A
POP HL
@@ -629,12 +643,14 @@ UB_RCVRDY:
PUSH BC
PUSH DE
PUSH HL
LD BC,0013H ; unit 0, func 13h (input stat)
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,13H ; func 13h (input stat)
RST 08
XOR A ; zero accum ; 4
CP E ; CF means not zero ; 4
CCF ; CF means zero ; 4
RLA ; ZF means not zero ; 4
LD A,E ; move char count to accum
SUB 1 ; CF set IFF zero
RL A ; CF to bit 0 of A
AND 01H ; set Z flag as needed
LD A,0 ; report no line errors
POP HL
POP DE
@@ -649,12 +665,14 @@ UB_SNDRDY:
PUSH BC
PUSH DE
PUSH HL
LD BC,0014H ; unit 0, func 14h (output stat)
LD A,(UNIT) ; unit
LD B,A ; to B
LD C,14H ; func 14h (output stat)
RST 08
XOR A ; zero accum ; 4
CP E ; CF means not zero ; 4
CCF ; CF means zero ; 4
RLA ; ZF means not zero ; 4
LD A,E ; char avail to send to accum
SUB 1 ; CF set IFF zero
RL A ; CF to bit 0 of A
AND 01H ; set Z flag as needed
POP HL
POP DE
POP BC
@@ -705,9 +723,6 @@ UA_JPTBL:
; UART initialization
;
UA_INIT:
LD DE,13000 ; receive loop timeout scalar
LD (RCVSCL),DE ; ... for UART RCVRDY timing
;
LD A,L ; get base I/O port address
LD (UA_SCP),A ; set port value in SENDR
LD (UA_GCP),A ; set port value in GETCHR
@@ -826,9 +841,6 @@ UF_JPTBL:
; USB-FIFO initialization
;
UF_INIT:
LD DE,12000 ; receive loop timeout scalar
LD (RCVSCL),DE ; ... for UART RCVRDY timing
;
LD A,L ; get base I/O port address (data port)
LD (UF_SCDP),A ; set data port in SENDR
LD (UF_GCDP),A ; set data port in GETCHR/MDIN
@@ -847,7 +859,6 @@ UF_INIT:
; Send character on top of stack
;
UF_SENDR:
POP AF ; get character to send from stack
OUT (0FFH),A ; write to fifo
UF_SCDP EQU $-1 ; data port

View File

@@ -7,10 +7,13 @@ set PATH=%TOOLS%\zxcc;%PATH%
set CPMDIR80=%TOOLS%/cpm/
zxcc Z80ASM -ZMO-RW01/H || exit /b
zxcc MLOAD25 -ZMP.COM=ZMPX.COM,ZMO-RW01 || exit /b
:: zxcc Z80ASM -ZMO-RW01/LH || exit /b
zxcc Z80ASM -ZMO-WBW/LH || exit /b
zxcc MLOAD25 -ZMP.COM=ZMPX.COM,ZMO-WBW || exit /b
copy /Y zmp.com ..\..\..\Binary\Apps\ || exit /b
copy /Y *.ovr ..\..\..\Binary\Apps\ || exit /b
copy /Y zmp.cfg ..\..\..\Binary\Apps\ || exit /b
copy /Y zmp.fon ..\..\..\Binary\Apps\ || exit /b
copy /Y *.hlp ..\..\..\Binary\Apps\ || exit /b
copy /Y zmp.doc ..\..\..\Binary\Apps\ || exit /b

View File

@@ -1,10 +1,10 @@
OBJECTS = zmp.com *.ovr *.hlp zmp.doc
OBJECTS = zmp.com *.ovr zmp.cfg zmp.fon *.hlp zmp.doc
DEST = ../../../Binary/Apps
TOOLS = ../../../Tools
OTHERS = *.hex
NODELETE = *.ovr zmp.doc *.hlp
NODELETE = *.ovr zmp.doc zmp.cfg zmp.fon *.hlp
include $(TOOLS)/Makefile.inc
zmp.com: zmo-rw01.hex
$(ZXCC) MLOAD25 -ZMP.COM=ZMPX.COM,ZMO-RW01
zmp.com: zmo-wbw.hex
$(ZXCC) MLOAD25 -ZMP.COM=ZMPX.COM,ZMO-WBW

View File

@@ -27,4 +27,15 @@ as at Aug 23rd, 2021.
Untested on Ron Murrays ZMP15
- Space getting short so messages shortened.
--PMS 8/24/2021
--PMS 8/24/2021
- Refactored overlay to resolve some stack issues.
- Removed support for setport because it didn't make much sense
with ability to specify port on command line.
- Added an equate (pcfg) which controls whether port configuration
is implemented. It is set to false (no port configuration).
because ZMP it is unable to handle many RomWBW serial port settings
(notably the hard-wired 115200 baud of many RCBus systems). You
must now used MODE to configure port before starting ZMP.
--WBW 1:55 PM 4/16/2025

Binary file not shown.

Binary file not shown.

844
Source/Apps/ZMP/zmo-wbw.z80 Normal file
View File

@@ -0,0 +1,844 @@
;-----------------------------------------------------------------------------
;
; Overlay for ZMP (Z-Modem Program)
;
; Name ZMO-WBW.Z80
;
; Dated April 14, 2025
;
; Written by -
; Phil Summers, Wayne Warthen
;
; ROMWBW version using HBIOS and https://github.com/mecparts/zmp
; version of zmodem
;
; - All modem/serial i/o is through RomWBW HBIOS.
;
; - Data bits, stop bits, and parity are determined by HBIOS.
; The ZMP settings will have no effect. Use RomWBW MODE
; command to set serial port config before starting ZMP.
;
; - Timing delay calculations based on HBIOS reported CPU speed.
;
; - The pcfg equate determines whether the overlay will
; implement port initialization. Normally, pcfg will be
; set to false because ZMP does not allow configuring
; many HBIOS speeds (notably the 115200 baud hardwired
; into many RCBus systems). In this case, you must
; configure the modem port using the RomWBW
; MODE command as desired before starting ZMP.
;
; - The modem port is assigned to an HBIOS character unit. By
; default, the modem is assigned to HBIOS character unit 1.
; An alternate HBIOS character unit may be specified as a
; parameter on the command line as a single number. For
; example, the following will assign HBIOS port 3 as the
; ZMP modem port:
;
; ZMP 3
;
; - The original version of ZMP from Ron Murray allows you to
; select from 2 logical modem ports. This overlay ignores
; any attempt to select ports from within ZMP. The desired
; modem port should be assigned using the command line
; parameter as described above.
;
; - Teraterm users may need to change the ZmodemWinSize value
; to 1024 in the teraterm.ini configuration file.
;
;-----------------------------------------------------------------------------
;
;
; System-dependent code overlay for ZMODEM
;
;
;
; Insert your own code as necessary in this file. Code contained herein
; has been written in Z80 code for use with M80 or SLR. Assemble as follows:
;
; SLR ZMO-xx01/h
; MLOAD ZMP.COM=ZMODEM.COM,ZMO-xx01.HEX
; or
; M80 =ZMO-xx01.Z80
; RELHEX ZMO-xx01
; MLOAD ZMP.COM=ZMODEM.COM,ZMO-xx01.HEX
;
;
; (Don't use L80 without changing the source for assembly as a
; cseg file.)
;
;-----------------------------------------------------------------------------
;
;
; Notes on modifying this file:
;
; C requires that functions do not change either index register (IX or IY).
; If your overlay requires either of these to be changed, ensure they are
; restored to the original values on return.
; Since collecting parameters from C functions can be tricky, only change
; the parts marked 'Insert your own code here'. Do NOT modify the jump
; table at the start. Do NOT modify the entry/exit sections of each
; function. Do NOT pass 'GO'. Do NOT collect $200.
; Apart from defining modem functions, this file also defines terminal
; characteristics. Examples provided are for ADM-3A (with a few of my own
; additions). Modify to suit your own terminal. An inline print routine
; is provided for printing strings in the usual way: usage is
;
; call print
; db 'required string',0
;
;-----------------------------------------------------------------------------
;
;
; Don't forget to set your clock speed at the clkspd variable.
;
;
; If you find your overlay exceeds the maximum size (currently 0400h),
; you will have to contact me for another version. If too many people need
; to do it, we haven't allowed enough room.
;
; Ron Murray 15/8/88
;
;
;
;---------------------------------------------------------------------------
false equ 0
true equ not false
;------------------------------------------------------------------------------
; User-set variables:
debug equ false ; to allow debugging of overlay with Z8E etc.
clkspd equ 8 ; Processor clock speed in MHz
pcfg equ false ; Allow ZMP to configure port
;
;Set the following two equates to the drive and user area which will contain
; ZMP's .OVR files, .CFG file, .FON file and .HLP file. Set both to zero
; (null) to locate them on the drive from which ZMP was invoked.
overdrive equ 0 ; Drive to find overlay files on ('A'-'P')
overuser equ 0 ; User area to find files
;------------------------------------------------------------------------------
; NOT user-set variables
userdef equ 0145h ; origin of this overlay
; This address should not change with
; subsequent revisions.
mspeed equ 03ch ; location of current baud rate.
ovsize equ 0400h ; max size of this overlay
fcb equ 05ch ; primary command line CP/M fcb
.z80 ; use z80 code
aseg ; absolute
if debug
org 100h ; so you can debug it with cebug, zsid, etc
else
org userdef
endif
esc equ 1bh
ctrlq equ 11h
cr equ 0dh
lf equ 0ah
bdos equ 5
codebgn equ $
;Jump table for the overlay: do NOT change this
jump_tab:
jp scrnpr ; screen print
jp mrd ; modem read with timeout
jp mchin ; get a character from modem
jp mchout ; send a character to the modem
jp mordy ; test for tx buffer empty
jp mirdy ; test for character received
jp sndbrk ; send break
jp cursadd ; cursor addressing
jp cls ; clear screen
jp invon ; inverse video on
jp invoff ; inverse video off
jp hide ; hide cursor
jp show ; show cursor
jp savecu ; save cursor position
jp rescu ; restore cursor position
jp mint ; service modem interrupt
jp invec ; initialise interrupt vectors
jp dinvec ; de-initialise interrupt vectors
jp mdmerr ; test uart flags for error
jp dtron ; turn DTR on
jp dtroff ; turn DTR OFF
jp init ; initialise uart
jp wait ; wait seconds
jp mswait ; wait milliseconds
jp userin ; user-defined entry routine
jp userout ; user-defined exit routine
jp getvars ; get system variables
jp setport ; set port (0 or 1)
; Spare jumps for compatibility with future versions
jp spare ; spare for later use
jp spare ; spare for later use
jp spare ; spare for later use
jp spare ; spare for later use
jp spare ; spare for later use
jp spare ; spare for later use
; Local storage
hbunit db 1 ; Active HBIOS unit for modem I/O
cpumhz db clkspd ; CPU clock speed in MHz
;
; Main code starts here
;
;Screen print function
scrnpr:
; <== Insert your own code here
call print
db 'Screen print not supported.',cr,lf,0
; <== End of your own code
spare:
ret
; User-defined entry routine: leave empty if not needed
userin:
push bc
push de
push hl
call print
db cr,lf,'ZMP Overlay for RomWBW HBIOS v1.0',cr,lf,0
; Scan and parse default FCB to initialize HBIOS unit if
; specified.
ld a,(fcb + 1) ; get parm from fcb
cp ' ' ; anything there?
jr z,userin1 ; if empty, done
sub '0' ; ASCII to binary
jr c,parmerr ; less than 0, parm error
cp 10 ; >= 10?
jr nc,parmerr ; greater than 9, parm error
ld (hbunit),a ; save it
userin1:
call showcom ; show com port info
; check that unit is actually available in HBIOS
ld bc,0f800h ; get HBIOS char unit count
rst 8 ; do it
ld a,(hbunit) ; get active modem unit
cp e ; compare to units available
jr nc,porterr ; unit too high, port error
if pcfg
; Force port initialization by setting an invalid
; baud rate (mspeed).
; speed to an arbitrary value of 8 (9600 baud).
ld a,-1
ld (mspeed),a
else
; We don't support port configuration. Here we set the modem
; speed to an arbitrary value of 8 (9600 baud).
ld a,8
ld (mspeed),a
endif
ld bc,0f8f0h ; HBIOS func get CPU info
rst 08 ; do it, l = CPU speed in MHz
ld a,l ; to accum
ld (cpumhz),a ; and save it for wait loop
ld hl,2
call waithls
pop hl
pop de
pop bc
ret
parmerr:
; Handle a bad parameter
call print ; print error message
db cr,lf,'ZMP parameter error!',cr,lf,0
rst 0 ; bail out to OS
porterr:
; Handle a bad port
call print ; print error message
db cr,lf,'Invalid HBIOS unit for ZMP Modem port!',cr,lf,0
rst 0 ; bail out to OS
showcom:
; Display the HBIOS unit to be used for the ZMP Modem
call print
db cr,lf,'ZMP Modem on HBIOS Unit #',0
ld a,(hbunit)
add a,'0'
call cout
call print
db cr,lf,0
; User-defined exit routine: leave empty if not needed
userout:
ret
;Get a character from the modem: return in HL
mchin:
push bc
; <== Insert your own code here
ld a,(hbunit)
ld c,a
ld b,00h
rst 08
ld a,e
; <== End of your own code
ld l,a ; put in HL
ld h,0
or a ; set/clear Z
pop bc
ret
;Send a character to the modem
mchout:
ld hl,2 ; get the character
add hl,sp
ld a,(hl)
; <== Insert your own code here
push bc
ld e,a
ld a,(hbunit)
ld c,a
ld b,01h
rst 08
pop bc
; <== End of your own code
ret ; done
;Test for output ready: return TRUE (1) in HL if ok
mordy:
; <== Insert your own code here
push bc
ld a,(hbunit)
ld c,a
ld b,03h
rst 08
ld h,0
ld l,a
pop bc
; <== End of your own code
ld a,l ; set/clear Z
or a
ret
;Test for character at modem: return TRUE (1) in HL if so
mirdy:
; <== Insert your own code here
push bc
ld a,(hbunit)
ld c,a
ld b,02h
rst 08
ld h,0
ld l,a
pop bc
; <== End of your own code
ld a,l ; set/clear Z
or a
ret
;Send a break to the modem: leave empty if your system can't do it
sndbrk:
; <== Insert your own code here
ld hl,300 ; wait 300 mS
call waithlms
; <== End of your own code
ret
;
;Test UART flags for error: return TRUE (1) in HL if error.
mdmerr:
; <== Insert your own code here
xor a ; not implemented
; <== End of your own code
ld a,l ; set/clear Z
or a
ret
;Turn DTR ON
dtron:
; <== Insert your own code here
; <== End of your own code
ret
;Turn DTR OFF
dtroff:
; <== Insert your own code here
; <== End of your own code
ret
;Initialise the uart
init:
ld hl,2 ; get parameters
add hl,sp
ex de,hl
call getparm ; in HL
ld (brate),hl ; baud rate
call getparm
ld (parity),hl ; parity
call getparm
ld (data),hl ; data bits (BINARY 7 or 8)
call getparm
ld (stop),hl ; stop bits (BINARY 1 or 2)
; <== Insert your own code here
; using values below
; don't forget to load mspeed with the
; current brate value if the new rate is
; valid. See table of values below.
push bc
; If pcfg is true, attempt to initialize the active
; HBIOS unit. If false, initialization if bypassed with
; the assumption that the RomWBW MODE command was used
; to initialize the port priot to running ZMP.
if pcfg
call print
db 'Initializing device: ',0
call diport
ld a,(hbunit) ; get device type
ld c,a
ld b,06h
rst 08
or a ; check if valid
jr nz,initerr
ld a,(brate) ; get baud rate to set
ld c,a
ld b,0
ld hl,baudtbl
add hl,bc
ld a,(hl) ; convert to encoded hbios
cp a,-1
jr z,initerr
push af
ld a,(hbunit) ; get line characteristics
ld c,a
ld b,05h
rst 08
ld a,d ; mask out exisitng
and 11100000b ; replace with rate
ld d,a
pop af
or d
ld d,a
ld b,04h ; set new
ld a,(hbunit) ; speed
ld c,a
rst 08
or a
jr nz,initerr
ld a,(brate) ; load mspeed with the current brate value if
ld (mspeed),a ; the new rate is valid. See table of values below.
call print
db lf,lf,'Initization completed, device: ',0
call diport
jr init_z
initerr:call print
db lf,lf,'Initization failed, device: ',0
call diport
jr init_z
diport: ld a,(hbunit) ; Display port
diport1:add a,'0'
call cout
call print
db cr,lf,0
ld hl,2
call waithls
ret
else
;call print
;db cr,lf,'Modem port initialization...',0
;ld hl,2
;call waithls
ld b,05h ; HBIOS port reset function
ld a,(hbunit) ; get active modem port
ld c,a ; and put in accum
rst 8 ; reset port
or a ; check result
jr nz,init1 ; if error, handle it
ld a,8 ; dummy value for speed
ld (mspeed),a ; save it
jr init_z ; done
init1:
; Handle error return from initialization
call print
db cr,lf,'Modem port initialization failed!',cr,lf,0
ld hl,2
call waithls
jr init_z
endif
init_z:
pop bc
; <== End of your own code
ret
;--------------------------------------------------------------------------
stop: dw 1 ; stop bits
parity: dw 'N' ; parity
data: dw 8 ; data bits
brate: dw 7 ; baud rate:
;--------------------------------------------------------------------------
;
;Values of brate for each baud rate
;
; hb encode baud rate brate
;
baudtbl:
db -1 ; 110 0 not supported
db 2 ; 300 1
db 17 ; 450 2
db 3 ; 600 3
db -1 ; 710 4 not supported
db 4 ; 1200 5
db 5 ; 2400 6
db 6 ; 4800 7
db 7 ; 9600 8
db 8 ; 19200 9
db 9 ; 38400 10
db 24 ; 57600 11
db 10 ; 76800 12
;
; Set the port. ZMP supplies either 0 or 1 as a parameter. You're on your
; own here -- your system is bound to be different from any other! You may
; implement a software switch on all the modem-dependent routines, or perhaps
; you can have one or two centralised routines for accessing the UARTs and
; modify the code from this routine to select one or the other. (Who said
; there was anything wrong with self-modifying code?). If you have only one
; UART port, or if you don't want to go through all the hassles, just have
; this routine returning with no changes made. Note that ZMP calls this
; routine with both values for the port on initialisation.
;
; Only originl ZMP calls setport. MECPARTS variant does not.
;
; We ignore this call. Since we are using a command line parameter
; to specify the desired modem port, it makes no sense.
;
setport:
ld hl,2 ; get port number
add hl,sp
ex de,hl
call getparm ; in HL (values are 0 and 1)
; <== Insert your own code here
; <== End of your own code
ret
;
;****************************************************************************
;Video terminal sequences: these are for VT-100: Modify as you wish
;Cursor addressing:
cursadd:
ld hl,2 ; get parameters
add hl,sp
ex de,hl
call getparm ; in HL
inc hl
ld (row),hl ; row
call getparm
inc hl
ld (col),hl ; column
;
push bc
call print
db esc,'[',0
ld a,(row) ; row first
call cursconv
ld a,';'
call cout
ld a,(col) ; same for column
call cursconv
ld a,'H'
call cout
pop bc
ret
;
cursconv:
ld b,a
xor a
ca1: add a,1
daa
djnz ca1
ld (num),a
and 0f0h
jr z,ca2
srl a
srl a
srl a
srl a
or '0'
call cout
ca2: ld a,(num)
and 0fh
or '0'
call cout
ret
;
row: ds 2 ; row
col: ds 2 ; column
num: ds 1
;
;Clear screen:
cls:
call print
db esc,"[H",esc,"[2J",0
ret
;
;Inverse video on:
invon:
call print
db esc,"[7m",0
ret
;
;Inverse video off:
invoff:
call print
db esc,"[m",0
ret
;
;Turn off cursor:
hide:
call print
db esc,'[?25l',0
ret
;
;Turn on cursor:
show:
call print
db esc,'[?25h',0
ret
;
;Save cursor position:
savecu:
call print
db esc,'[7',0
ret
;
;Restore cursor position:
rescu:
call print
db esc,'[8',0
ret
;****************************************************************************
;Service modem interrupt:
mint:
ret ; handled in HBIOS
;Initialise interrupt vectors:
invec:
ret ; ditto
;De-initialise interrupt vectors:
dinvec:
ret ; ditto
;****************** End of user-defined code ********************************
; Do not change anything below here.
;Modem character test for 100 ms
mrd:
push bc ; save bc
ld bc,100 ; set limit
mrd1:
call mirdy ; char at modem?
jr nz,mrd2 ; yes, exit
ld hl,1 ; else wait 1ms
call waithlms
dec bc ; loop till done
ld a,b
or c
jr nz,mrd1
ld hl,0 ; none there, result=0
xor a
mrd2:
pop bc
ret
; Inline print routine: destroys A and HL
print:
ex (sp),hl ; get address of string
ploop:
ld a,(hl) ; get next
inc hl ; bump pointer
or a ; done if zero
jr z,pdone
call cout ; else print
jr ploop ; and loop
pdone:
ex (sp),hl ; restore return address
ret ; and quit
;
;Output a character in A to the console
;
cout:
push bc ; save regs
push de
push hl
ld e,a ; character to E
ld c,2
call bdos ; print it
pop hl
pop de
pop bc
ret
;Wait seconds
wait:
ld hl,2
add hl,sp
ex de,hl ; get delay size
call getparm
; fall thru to..
;Wait seconds in HL
waithls:
push hl ; save loop control
ld hl,1000 ; 1000ms = 1 second
call waithlms
pop hl ; restore loop control
dec hl
ld a,h
or l
jr nz,waithls
ret
;Wait milliseconds
mswait:
ld hl,2
add hl,sp
ex de,hl ; get delay size
call getparm
; fall thru to..
;Wait milliseconds in HL
waithlms:
; burn 1000us (1ms)
ld a,(cpumhz)
ld e,a
hlms1:
; burn 1000 t-states
; 50 * 20 = 1000 t-states
ld d,50
hlms2:
nop ; 4
dec d ; 4
jr nz,hlms2 ; 12 20
dec e
jr nz,hlms1
dec hl
ld a,h
or l
jr nz,waithlms
ret
;Get next parameter from (de) into hl
getparm:
ex de,hl ; get address into hl
ld e,(hl) ; get lo
inc hl
ld d,(hl) ; then hi
inc hl ; bump for next
ex de,hl ; result in hl, address still in de
ret
;Get address of user-defined variables
getvars:
ld hl,uservars
ret
uservars:
dw overdrive ; .OVR etc. drive/user
dw overuser
if ($ - codebgn) gt ovsize
toobig: jp errval ; Overlay too large!
endif
end


View File

@@ -26,11 +26,11 @@
; has been written in Z80 code for use with M80 or SLR. Assemble as follows:
;
; SLR ZMO-xx01/h
; MLOAD ZMP.COM=ZMODEM.COM,ZMO-xx01.HEX
; MLOAD ZMP.COM=ZMPX.COM,ZMO-xx01.HEX
; or
; M80 =ZMO-xx01.Z80
; RELHEX ZMO-xx01
; MLOAD ZMP.COM=ZMODEM.COM,ZMO-xx01.HEX
; MLOAD ZMP.COM=ZMPX.COM,ZMO-xx01.HEX
;
;
; (Don't use L80 without changing the source for assembly as a
@@ -570,4 +570,3 @@ toobig: jp errval ; Overlay too large!
endif
end


View File

@@ -12,6 +12,10 @@ awhile (some, a few decades):
* In keyboard macros, ! translates to a CR now, not CR/LF.
* \ escapes ! and ~ so those literal characters can be used in
keyboard macros.
* Waits in keyboard macros now allow characters from the modem to
be handled.
* Keys in keyboard macros now have 25ms waits between them as to
not overrun the remove system.
* Long distance access code has been removed.
* Quick dialing letters limited to A-T.
@@ -23,5 +27,5 @@ version in ZMP15.LBR. So, to quote the original author,
new one with the config option. There have again been changes to
the format of this file."
June 7, 2021
August 15, 2023


Binary file not shown.

View File

@@ -1,8 +1,11 @@
@echo off
setlocal
:: copysl.com is currently distributed as a binary application, so
:: it is not built here.
set TOOLS=../../../Tools
set PATH=%TOOLS%\tasm32;%PATH%
set TASMTABS=%TOOLS%\tasm32
tasm -t80 -g3 -fFF copysl.asm copysl.com copysl.lst || exit /b
copy /Y copysl.com ..\..\..\Binary\Apps\ || exit /b
copy /Y copysl.doc ..\..\..\Binary\Apps\ || exit /b

View File

@@ -1,5 +1,6 @@
@echo off
setlocal
:: copysl.com is currently distributed as a binary application, so
:: we do not delete the .COM file.
if exist *.com del *.com
if exist *.lst del *.lst
if exist *.bin del *.bin

View File

@@ -1,7 +1,9 @@
OBJECTS = copysl.com
NODELETE = $(OBJECTS)
DOCS = copysl.doc
DEST = ../../../Binary/Apps
DOCDEST = ../../../Binary/Apps
TOOLS=../../../Tools
include $(TOOLS)/Makefile.inc
TOOLS =../../../Tools
USETASM=1
include $(TOOLS)/Makefile.inc

View File

@@ -0,0 +1,16 @@
;
bdos .EQU 5
;
; Force BDOS to reset (logout) all drives
;
drvrst:
ld c,$0D ; BDOS Reset Disk function
call bdos ; do it
;
ld c,$25 ; BDOS Reset Multiple Drives
ld de,$FFFF ; all drives
call bdos ; do it
;
xor a ; signal success
ret
;

328
Source/Apps/copysl/cio.asm Normal file
View File

@@ -0,0 +1,328 @@
BDOS .EQU 5
; bdos commands
CONIN .EQU 1
CONOUT .EQU 2
DIRCONIO .EQU 6
; TODO for more routines see assign.asm
; ===============
; INPUT
; Console Input
getchr:
PUSH BC
PUSH DE
PUSH HL
LD C,CONIN
CALL BDOS
POP HL
POP DE
POP BC
RET
; direct console io
; BDOS 6 - FF FE FD - commands
conread:
RET
constatus:
RET
coninput:
RET
; =======================================
; STANDARD OUTPUT
;
; Print character in A without destroying any registers
;
prtchr:
; PUSH AF
PUSH HL ; We must preserve HL, as the BDOS call sets it
PUSH BC
PUSH DE
LD C, CONOUT
LD E, A
CALL BDOS
POP DE
POP BC
POP HL
; POP AF
RET
;
prtdot:
push af
ld a, '.'
call prtchr
pop af
ret
;
; Print a zero terminated string at (HL) without destroying any registers
;
prtstr:
PUSH AF
PUSH BC
push de
prtstr1:
ld a,(hl)
or 0
jr z,prtstr2
ld c, CONOUT
ld e,a
push hl
call BDOS
pop hl
inc hl
jr prtstr1
prtstr2:
pop de
pop bc
pop af
ret
;
; Print the value in A in hex without destroying any registers
;
prthex:
push af ; save AF
push de ; save DE
call hexascii ; convert value in A to hex chars in DE
ld a,d ; get the high order hex char
call prtchr ; print it
ld a,e ; get the low order hex char
call prtchr ; print it
pop de ; restore DE
pop af ; restore AF
ret ; done
;
; print the hex word value in bc
;
prthexword:
push af
ld a,b
call prthex
ld a,c
call prthex
pop af
ret
;
; Convert binary value in A to ascii hex characters in DE
;
hexascii:
ld d,a ; save A in D
call hexconv ; convert low nibble of A to hex
ld e,a ; save it in E
ld a,d ; get original value back
rlca ; rotate high order nibble to low bits
rlca
rlca
rlca
call hexconv ; convert nibble
ld d,a ; save it in D
ret ; done
;
; Convert low nibble of A to ascii hex
;
hexconv:
and 0Fh ; low nibble only
add a,90h
daa
adc a,40h
daa
ret
;
; Print the decimal value of A, with leading zero suppression
;
prtdec:
push hl
ld h,0
ld l,a
call prtdecword ; print it
pop hl
ret
;
; Print the Decimal value (word) in HL
;
prtdecword:
push af
push bc
push de
push hl
call prtdec0
pop hl
pop de
pop bc
pop af
ret
;
prtdec0:
ld e,'0'
ld bc,-10000
call prtdec1
ld bc,-1000
call prtdec1
ld bc,-100
call prtdec1
ld c,-10
call prtdec1
ld e,0
ld c,-1
prtdec1:
ld a,'0' - 1
prtdec2:
inc a
add hl,bc
jr c,prtdec2
sbc hl,bc
cp e
ret z
ld e,0
call prtchr
ret
;
; Print a byte buffer in hex pointed to by DE
; Register A has size of buffer
;
prthexbuf:
or a
ret z ; empty buffer
prthexbuf1:
ld a,' '
call prtchr
ld a,(de)
call prthex
inc de
djnz prthexbuf1
ret
;
; Start a new Line
;
prtcrlf2:
call prtcrlf
prtcrlf:
push hl
ld hl, prtcrlf_msg
call prtstr
pop hl
ret
prtcrlf_msg:
.DB 13,10,0
; =================================
; following is from dmamon util.asm
;
; IMMEDIATE PRINT
; =================================
;
; PRINT A CHARACTER REFERENCED BY POINTER AT TOP OF STACK
; USAGE:
; CALL IPRTCHR
; .DB 'X'
;
iprtchr:
EX (SP),HL
PUSH AF
LD A,(HL)
CALL prtchr
POP AF
INC HL
EX (SP),HL
RET
; Print a string referenced by pointer at top of stack
; Usage
; call iprtstr
; .DB "text", 0
;
iprtstr:
EX (SP),HL
CALL prtstr
INC HL
EX (SP),HL
RET
;
; ===========================================================
;
; Following is for INPUT, used to process command line args
;
; ===========================================================
;
; Skip whitespace at buffer adr in DE, returns with first
; non-whitespace character in A.
;
skipws:
ld a,(hl) ; get next char
or a ; check for eol
ret z ; done if so
cp ' ' ; blank?
ret nz ; nope, done
inc hl ; bump buffer pointer
jr skipws ; and loop
;
; Uppercase character in A
;
upcase:
cp 'a' ; below 'a'?
ret c ; if so, nothing to do
cp 'z'+1 ; above 'z'?
ret nc ; if so, nothing to do
and ~020h ; convert character to lower
ret ; done
;
; Get numeric chars at HL and convert to number returned in A
; Carry flag set on overflow
; C is used as a working register
;
getnum:
ld c,0 ; C is working register
getnum1:
ld a,(hl) ; get the active char
cp '0' ; compare to ascii '0'
jr c,getnum2 ; abort if below
cp '9' + 1 ; compare to ascii '9'
jr nc,getnum2 ; abort if above
;
ld a,c ; get working value to A
rlca ; multiply by 10
ret c ; overflow, return with carry set
rlca ; ...
ret c ; overflow, return with carry set
add a,c ; ...
ret c ; overflow, return with carry set
rlca ; ...
ret c ; overflow, return with carry set
ld c,a ; back to C
ld a,(hl) ; get new digit
sub '0' ; make binary
add a,c ; add in working value
ret c ; overflow, return with carry set
ld c,a ; back to C
;
inc hl ; bump to next char
jr getnum1 ; loop
;
getnum2:
ld a,c ; return result in A
or a ; with flags set, CF is cleared
ret
;
; Is character in A numeric? NZ if not
;
isnum:
cp '0' ; compare to ascii '0'
jr c,isnum1 ; abort if below
cp '9' + 1 ; compare to ascii '9'
jr nc,isnum1 ; abort if above
cp a ; set Z
ret
isnum1:
or 0FFh ; set NZ
ret ; and done

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -1,6 +1,6 @@
==========================================================================
CopySlice Utility v0.2 for RomWbW computers
written by Mark Pruden (Sept 2024)
CopySlice Utility v0.3 for RomWbW computers
written by Mark Pruden (March 2025)
==========================================================================
Purpose:
@@ -12,37 +12,37 @@ from one disk slice to another slice
Background
----------
This tool is only supported by RomWBW HBIOS, it uses HDIOS for all its
disk IO. UNA UBIOS is not supported by this tool.
This tool is only supported by RomWBW HBIOS, it uses HDIOS for all its
disk IO. UNA UBIOS is not supported by this tool.
This tool is running on CP/M 2.2 or 3.0 and has access to full 64kb of
RAM, with a minimum of 48kb TPA
This tool only works with hard disk devices, other media types like
floppy, are not supported at this time. This tool works across different
This tool only works with hard disk devices, other media types like
floppy, are not supported at this time. This tool works across different
hard disk device types, even of different physical type
Both hd1k and hd512 are fully supported, however copying from one layout
Both hd1k and hd512 are fully supported, however copying from one layout
type to the other is not supported.
During operation data is copied in a single read/write pass, data is not
During operation data is copied in a single read/write pass, data is not
verified by default. If there is a write error, it will be reported, and
operation will stop.
General Usage
-------------
This tool operates at the disk level via RomWBW, thus all disk identifiers
This tool operates at the disk level via RomWBW, thus all disk identifiers
are in the RomWBW <disk>.<unit> format
The syntax (similar to copy) for the command is:
COPYSL <destunit>[.<slice>]=<srcunit>[.<slice>] [/options]
E.g.
COPYSL 3.3=2.10 /U
Means copy from slice 10 on disk 2, onto disk 3 slice 3. This is in
Means copy from slice 10 on disk 2, onto disk 3 slice 3. This is in
unattended mode, so you will not be asked to confirm the copy operation.
Options
@@ -54,39 +54,40 @@ V - Verify. Does an additional read and verify after write.
Description
-----------
When run COPYSL will perform command line argument validation and display
When run COPYSL will perform command line argument validation and display
an error if they are illegal. Also any disk IO errors will cause COPYSL
to exit.
When specifying slice number(s) a check is made that the slice number is
valid, i.e. not too large that it would extend past the end of the
When specifying slice number(s) a check is made that the slice number is
valid, i.e. not too large that it would extend past the end of the
partition (hd1k), or the end of the media (hd512). For hd512 a check is
also performed to ensure that the slice would not extend into the first
also performed to ensure that the slice would not extend into the first
defined partition.
The copy operation will be faster if the source disk has been formatted
with the CP/M file system, since during copy the CP/M directory is scanned,
and unused blocks are not copied.
with the CP/M file system, since during copy the CP/M directory is scanned,
and unused blocks are not copied.
If a filesystem is not found, (or the /F option is chosen) all data is
If a filesystem is not found, (or the /F option is chosen) all data is
copied.
Verification (if option chosen) will do an aditional read (after write)
and compare the data read matches what was written. This compare is only
on every 32'nd byte. This is done for efficiency.
on every 32'nd byte. This is done for efficiency.
During copy dots "." will be displayed to indicate progress of the copy.
Each "." represents 16 kBytes of data. Each line of "." 's is 1 mBytes.
Testing
-------
This tool has been writen and tested on a SC126 computer. Testing been on both
This tool has been writen and tested on a SC126 computer. Testing been on both
SD and CF media types, and with both hd1k and hd512 formats
History
-------
* v 0.1 Initial Release
* v 0.2 Added the /v command option to read and verify after write
* v 0.3 Refresh CP/M disk buffers after completion
Future
------
@@ -95,4 +96,3 @@ Future
This would be at the cost of performance
* ability to abort once the copy has started <ctrl><c>


110
Source/Apps/copysl/crc.asm Normal file
View File

@@ -0,0 +1,110 @@
;
; Simple Block Compare for Comparison purposes
; Both HL and DL contain Block pointers to compare
; HL MUST start on an even block e.g. 8000h
; RET NZ - Failure, Z if no issue
;
_cmp20block
; inc de ; uncommnet to test crc fail!
ld bc, 20h ; 10t Size of Pointer Increment
_cmp20block1:
ld a, (de) ; 7t Do The comparison itself
cp (hl) ; 7t
JR NZ, _cmp20block2 ; 7t / 12t = 21t
add hl, bc ; 11t Add the Increment to both pointers
ex de, hl ; 4t
add hl, bc ; 11t
ex de, hl ; 4t = 30t
ld a, h ; 4t High order byte on Even Boundary
bit 4, a ; 8t has bit 4 been set then exceeded 1000h (4k boundary)
JR Z, _cmp20block1 ; 12t / 7t = 24t
xor a ; 4t
RET ; 10t Return Success
_cmp20block2:
scf ; signal CARRY FLAG Also
RET ; This is the error
; clock cycles for above
; add 40h -> 64 (loop) * 73t =>> 4,672 - 1.56%
; add 20h ->128 (loop) * 73t =>> 9,344 - 3.13% <= WENT WITH THIS
; add 10h ->256 (loop) * 73t =>> 18,688 - 6.25%
; accuracy = 88/4096 => 2.1%
; =====================================================================
; From : https://tomdalby.com/other/crc.html
; And : https://map.grauw.nl/sources/external/z80bits.html#6.1
; =====================================================================
;
; =====================================================================
; input - hl=start of memory to check, de=length of memory to check
; returns - a=result crc
; 20b
; =====================================================================
; THE COMMNETED LINES NEED TO BE UNCOMMENTED
_crc8b:
xor a ; 4t - initial value so first byte can be XORed in (CCITT)
; ld c, 07h ; 7t - c=polyonimal used in loop (small speed up)
_byteloop8b:
xor (hl) ; 7t - xor in next byte, for first pass a=(hl)
inc hl ; 6t - next mem
; ld b, 8 ; 7t - loop over 8 bits
_rotate8b:
; add a,a ; 4t - shift crc left one
; jr nc, _nextbit8b ; 12/7t - only xor polyonimal if msb set (carry=1)
; xor c ; 4t - CRC8_CCITT = 0x07
_nextbit8b:
; djnz _rotate8b ; 13/8t
ld b,a ; 4t - preserve a in b
dec de ; 6t - counter-1
ld a,d ; 4t - check if de=0
or e ; 4t
ld a,b ; 4t - restore a
jr nz, _byteloop8b ; 12/7t
ret ; 10t
; Clock Cycle For above with 4k bypes
; Loop = 4096 * 47 cycles + 11 => 192,523 x 2 (src/dest) => 385,046
; acuracy = 1 / 256 => 0.4 %
; =====================================================================
; CRC-CCITT
;
; CCITT polynomial 1021h
; Initial Value FFFFh
;
; input - de=start of memory to check, bc=length of memory to check
; returns - hl=result crc
; =====================================================================
_crc16:
ld hl, 0ffffh ; 10t - initial crc = $ffff
_byte16:
; push bc ; 11t - preserve counter
ld a,(de) ; 7t - get byte
inc de ; 6t - next mem
; xor h ; 4t - xor byte into crc high byte
; ld h,a ; 4t - back into high byte
; ld b,8 ; 7t - rotate 8 bits
_rotate16:
; add hl,hl ; 11t - rotate crc left one
; jr nc,_nextbit16 ; 12/7t - only xor polyonimal if msb set
; ld a,h ; 4t
; xor 10h ; 7t - high byte with $10
; ld h,a ; 4t
; ld a,l ; 4t
; xor 21h ; 7t - low byte with $21
; ld l,a ; 4t - hl now xor $1021
_nextbit16:
; djnz _rotate16 ; 13/8t - loop over 8 bits
; pop bc ; 10t - bring back main counter
dec bc ; 6t
ld a,b ; 4t
or c ; 4t
jr nz,_byte16 ; 12/7t
ret ; 10t
;

View File

@@ -0,0 +1,178 @@
;
; HBIOS FUNCTIONS
;
;
BF_DIO .EQU 010H
BF_DIOSTATUS .EQU BF_DIO + 0 ; DISK STATUS
BF_DIORESET .EQU BF_DIO + 1 ; DISK RESET
BF_DIOSEEK .EQU BF_DIO + 2 ; DISK SEEK
BF_DIOREAD .EQU BF_DIO + 3 ; DISK READ SECTORS
BF_DIOWRITE .EQU BF_DIO + 4 ; DISK WRITE SECTORS
BF_DIOVERIFY .EQU BF_DIO + 5 ; DISK VERIFY SECTORS
BF_DIOFORMAT .EQU BF_DIO + 6 ; DISK FORMAT TRACK
BF_DIODEVICE .EQU BF_DIO + 7 ; DISK DEVICE INFO REPORT
BF_DIOMEDIA .EQU BF_DIO + 8 ; DISK MEDIA REPORT
BF_DIODEFMED .EQU BF_DIO + 9 ; DEFINE DISK MEDIA
BF_DIOCAP .EQU BF_DIO + 10 ; DISK CAPACITY REPORT
BF_DIOGEOM .EQU BF_DIO + 11 ; DISK GEOMETRY REPORT
;
BF_SYS .EQU 0F0H
BF_SYSRESET .EQU BF_SYS + 0 ; SOFT RESET HBIOS
BF_SYSVER .EQU BF_SYS + 1 ; GET HBIOS VERSION
BF_SYSSETBNK .EQU BF_SYS + 2 ; SET CURRENT BANK
BF_SYSGETBNK .EQU BF_SYS + 3 ; GET CURRENT BANK
BF_SYSSETCPY .EQU BF_SYS + 4 ; BANK MEMORY COPY SETUP
BF_SYSBNKCPY .EQU BF_SYS + 5 ; BANK MEMORY COPY
BF_SYSALLOC .EQU BF_SYS + 6 ; ALLOC HBIOS HEAP MEMORY
BF_SYSFREE .EQU BF_SYS + 7 ; FREE HBIOS HEAP MEMORY
BF_SYSGET .EQU BF_SYS + 8 ; GET HBIOS INFO
BF_SYSSET .EQU BF_SYS + 9 ; SET HBIOS PARAMETERS
BF_SYSPEEK .EQU BF_SYS + 10 ; GET A BYTE VALUE FROM ALT BANK
BF_SYSPOKE .EQU BF_SYS + 11 ; SET A BYTE VALUE IN ALT BANK
BF_SYSINT .EQU BF_SYS + 12 ; MANAGE INTERRUPT VECTORS
;
BF_SYSGET_CIOCNT .EQU 00h ; GET CHAR UNIT COUNT
BF_SYSGET_CIOFN .EQU 01h ; GET CIO UNIT FN/DATA ADR
BF_SYSGET_DIOCNT .EQU 10h ; GET DISK UNIT COUNT
BF_SYSGET_DIOFN .EQU 11h ; GET DIO UNIT FN/DATA ADR
BF_SYSGET_RTCCNT .EQU 20h ; GET RTC UNIT COUNT
BF_SYSGET_DSKYCNT .EQU 30h ; GET DSKY UNIT COUNT
BF_SYSGET_VDACNT .EQU 40h ; GET VDA UNIT COUNT
BF_SYSGET_VDAFN .EQU 41h ; GET VDA UNIT FN/DATA ADR
BF_SYSGET_SNDCNT .EQU 50h ; GET VDA UNIT COUNT
BF_SYSGET_SNDFN .EQU 51h ; GET SND UNIT FN/DATA ADR
BF_SYSGET_TIMER .EQU 0D0h ; GET CURRENT TIMER VALUE
BF_SYSGET_SECS .EQU 0D1h ; GET CURRENT SECONDS VALUE
BF_SYSGET_BOOTINFO .EQU 0E0h ; GET BOOT INFORMATION
BF_SYSGET_CPUINFO .EQU 0F0h ; GET CPU INFORMATION
BF_SYSGET_MEMINFO .EQU 0F1h ; GET MEMORY CAPACTITY INFO
BF_SYSGET_BNKINFO .EQU 0F2h ; GET BANK ASSIGNMENT INFO
BF_SYSGET_CPUSPD .EQU 0F3h ; GET CLOCK SPEED & WAIT STATES
BF_SYSGET_PANEL .EQU 0F4h ; GET FRONT PANEL SWITCHES VAL
BF_SYSGET_APPBNKS .EQU 0F5h ; GET APP BANK INFORMATION
;
; MEDIA ID VALUES
;
MID_NONE .EQU 0
MID_MDROM .EQU 1
MID_MDRAM .EQU 2
MID_RF .EQU 3
MID_HD .EQU 4
MID_FD720 .EQU 5
MID_FD144 .EQU 6
MID_FD360 .EQU 7
MID_FD120 .EQU 8
MID_FD111 .EQU 9
MID_HDNEW .EQU 10
; -----------------
;
; Read timer in sconds.
;
sysgetseconds:
ld b,BF_SYSGET
ld c,BF_SYSGET_SECS
rst 08 ; do it
ret
; -----------------
;
; Return non zero if A (media ID)
; is a type of hard drive
; If not A=0 and Z flag is set
;
isaharddrive:
cp MID_HD
jr z, ishdd1
cp MID_HDNEW
jr z, ishdd1
xor a ; clear A and set Z flag
ret
ishdd1:
or a ; set Z flag and return
ret
; -------------------------------------
;
; used to pass the buffer address argument
;
bankid .DB 0 ; bank id used for read writes
dma .DW 8000h ; address argument for read write
;
;
; basic setup for disk io
; call to get the current bank IO
;
initdiskio:
; Get current RAM bank
ld b,BF_SYSGETBNK ; HBIOS GetBank function
RST 08 ; do it via RST vector, C=bank id
JP NZ, err_hbios
ld a,c ; put bank id in A
ld (bankid),a ; put bank id in Argument
RET
;
;
; Read disk sector(s)
; DE:HL is LBA, B is sector count, C is disk unit
; (dma) is the buffer address
; (bankid) is the memory bank
; Returns E sectors read, and A status
;
diskread:
; Seek to requested sector in DE:HL
push bc ; save unit & count
set 7,d ; set LBA access flag
ld b,BF_DIOSEEK ; HBIOS func: seek
rst 08 ; do it
pop bc ; recover unit & count
jp nz,err_diskio ; handle error
; Read sector(s) into buffer
ld e,b ; transfer count
ld b,BF_DIOREAD ; HBIOS func: disk read
ld hl,(dma) ; read into info sec buffer
ld a,(bankid) ; user bank
ld d,a
rst 08 ; do it
jp nz,err_diskio ; handle error
xor a ; signal success
ret ; and done
;
; Write disk sector(s)
; DE:HL is LBA, B is sector count, C is disk unit
; (dma) is the buffer address
; (bankid) is the memory bank
; Returns E sectors written, and A status
;
diskwrite:
; Seek to requested sector in DE:HL
push bc ; save unit & count
set 7,d ; set LBA access flag
ld b,BF_DIOSEEK ; HBIOS func: seek
rst 08 ; do it
pop bc ; recover unit & count
jp nz,err_diskio ; handle error
; Write sector(s) from buffer
ld e,b ; transfer count
ld b,BF_DIOWRITE ; HBIOS func: disk write
ld hl,(dma) ; write from sec buffer
ld a,(bankid) ; user bank
ld d,a
rst 08 ; do it
jp nz,err_diskio ; handle error
xor a ; signal success
ret ; and done
;
err_diskio:
; push hl
; ld hl,str_err_prefix
; call prtstr
; pop hl
; or 0ffh ; signal error
ret ; done
;str_err_prefix db 13,10,13,10,"*** ",0

View File

@@ -0,0 +1,10 @@
@echo off
setlocal
set TOOLS=../../../Tools
set PATH=%TOOLS%\tasm32;%PATH%
set TASMTABS=%TOOLS%\tasm32
tasm -t80 -g3 -fFF slabel.asm slabel.com slabel.lst || exit /b
copy /Y slabel.com ..\..\..\Binary\Apps\ || exit /b

View File

@@ -0,0 +1,6 @@
@echo off
setlocal
if exist *.com del *.com
if exist *.lst del *.lst
if exist *.bin del *.bin

View File

@@ -0,0 +1,7 @@
OBJECTS = slabel.com
DEST = ../../../Binary/Apps
TOOLS =../../../Tools
USETASM=1
include $(TOOLS)/Makefile.inc

View File

@@ -0,0 +1,763 @@
;==============================================================================
; SLICE LABEL - Update Disk Labels
; Version December-2024
;==============================================================================
;
; Author: Mark Pruden
;______________________________________________________________________________
;
; Usage:
; SLABEL [unit.slice,label] [/?]
; ex: SLABEL Display current list of Labels
; SLABEL unit.slice=label Assign a disk Label to the Slice on Unit
; SLABEL /? Display version and usage
;
; Operation:
; Print and Assign a Disk Label to a Hard Disk Slice.
;
; Technical:
; On the third sector of "bootable" Disk Slice there is metadata used by RomWBW to know how
; to boot the OS found on the slice. This includes a Label for the volume, which is printed
; out by RomWBW during the boot process.
; Note this label is not associated to any label the OS may assign to the volume.
; See loader.asm in each of the O/S directories e.g. /src/CPM22 which describe these sectors
;
; This ony works on slices which have existing media information in the third sector.
; There is no capabiity to write this information on demand.
;
; known Issues:
; - Listing the slabel for all slices can be time consuming, because of the use of the EXT_MEDIA
; function call. This function reads the partition table (on each call) to assert (if valid)
; the LBA location of the requested slice. Ideally we would only need to read the partition
; table once (per device), and work out all the LBA's from this single read.
; Note this doesnt omit the fact that the 3 rd sector of each slice wold need to be read regarless.
; To slightly reduce some IO only slices < 64 are considered.
;
; This code will only execute on a Z80 CPU (or derivitive)
; This code requirs the use of HBIOS
;
;______________________________________________________________________________
;
; Change Log:
; 2024-12-11 [MAP] Started - Reboot v1.0 used as the basis for this code
; 2024-12-14 [MAP] Initial 0.9 alpha with basic working functionality
; 2025-04-21 [MAP] Initial v1.0 release for distribution, fixing all issues
;______________________________________________________________________________
;
; Include Files
;
#include "../../ver.inc" ; to ensure it is the correct ver
#include "../../HBIOS/hbios.inc"
;
;===============================================================================
;
; General operational equates (should not requre adjustment)
;
stksiz .equ $40 ; Working stack size
;
restart .equ $0000 ; CP/M restart vector
bdos .equ $0005 ; BDOS invocation vector
cmdbuf .equ $0081 ; CPM command buffer
;
bf_sysreset .equ $F0 ; restart system
bf_sysres_int .equ $00 ; reset hbios internal
bf_sysres_warm .equ $01 ; warm start (restart boot loader)
;
ident .equ $FFFE ; loc of RomWBW HBIOS ident ptr
;
sigbyte1 .equ $A5 ; 1st sig byte boot info sector (bb_sig)
sigbyte2 .equ $5A ; 2nd sig byte boot info sector (bb_sig)
;
labelterm .equ '$' ; terminating charater for disk label
;
;===============================================================================
;
.org $0100 ; standard CP/M TPA executable
;
ld (stksav),sp ; save stack
ld sp,stack ; set new stack
;
ld de,str_banner
call prtstr ; print the banner
;
call init ; initialize
jr nz,exit ; abort if init fails
;
call main ; do the real work
;
exit:
call crlf ; print terminating crlf
ld sp,(stksav) ; restore stack to prior state
jp restart ; return to CP/M via restart
;
;===============================================================================
; Initialization
;
init:
; check for UNA (UBIOS)
ld a,($FFFD) ; fixed location of UNA API vector
cp $C3 ; jp instruction?
jr nz,initwbw ; if not, not UNA
ld hl,($FFFE) ; get jp address
ld a,(hl) ; get byte at target address
cp $FD ; first byte of UNA push ix instruction
jr nz,initwbw ; if not, not UNA
inc hl ; point to next byte
ld a,(hl) ; get next byte
cp $E5 ; second byte of UNA push ix instruction
jr nz,initwbw ; if not, not UNA
jp err_una ; UNA not supported
;
initwbw:
; get location of config data and verify integrity
ld hl,(ident) ; HL := adr or RomWBW HBIOS ident
ld a,(hl) ; get first byte of RomWBW marker
cp 'W' ; match?
jp nz,err_inv ; abort with invalid config block
inc hl ; next byte (marker byte 2)
ld a,(hl) ; load it
cp ~'W' ; match?
jp nz,err_inv ; abort with invalid config block
inc hl ; next byte (major/minor version)
ld a,(hl) ; load it
cp rmj << 4 | rmn ; match?
jp nz,err_ver ; abort with invalid os version
;
initz:
; initialization complete
xor a ; signal success
ret ; return
;
;===============================================================================
; Main Execution
;
main:
call initdiskio ; initi DiskIO routines (bank ID)
;
ld de,cmdbuf ; start of command input buffer
call skipws ; skip whitespace on cmd line
;
ld a,(de) ; get first non-ws char
or a ; test for terminator, no parms
jr z,prtslc ; if so, print details, and return
;
call isnum ; do we have a number?
jp z,setlabel ; if so, then we are setting Label.
;
jp usage ; otherwise print usage and return
ret ; and exit
;
;===============================================================================
; Print Usage /? Information
;
usage:
ld de,str_usage ; display the cmd options for this utility
call prtstr
;
ret ; exit back out to CP/M CCP
;
;===============================================================================
; Print list of all slices
;
prtslc:
ld de,PRTSLC_HDR ; Header for list of Slices
call prtstr ; Print It
;
ld bc,BC_SYSGET_DIOCNT ; FUNC: SYSTEM INFO GET DISK DRIVES
rst 08 ; E := UNIT COUNT
;
ld b,e ; MOVE Disk CNT TO B FOR LOOP COUNT
ld c,0 ; C WILL BE UNIT INDEX
prtslc1:
ld a,b ; loop counter
or a ; set flags
ret z ; IF no more drives, finished
;
ld a,c ; unit index
ld (currunit),a ; store the unit number
;
push bc ; save loop vars
call prtslc2 ; for each disk Unit, print its details
pop bc ; restore loop variables
;
inc c ; bump the unit number
djnz prtslc1 ; main disk loop
;
ret ; loop has finished
;
;-------------------------------------------------------------------------------
; Print list of All Slices for a given Unit
;
prtslc2:
; get the media infor
ld b,BF_DIOMEDIA ; get media information
ld e,1 ; with media discovery
rst 08 ; do media discovery
ret nz ; an error
;
ld a,MID_HD ; hard disk
cp e ; is it hard disk
ret nz ; if not noting to do
;
; setup the loop
ld b,64 ; arbitrary (?) number of slices to check.
; NOTE: could be higher, but each slice check has disk IO
ld c,0 ; starting at slice 0
;
prtslc2a:
ld a,c ; slice number
ld (currslice),a ; save slice number
;
push bc ; save loop
call prtslc3 ; print detals of the slice
pop bc ; restore loop
ret nz ; if error dont continie
;
inc c ; next slice number
djnz prtslc2a ; loop if more slices
;
ret ; return from Slice Loop
;
;-------------------------------------------------------------------------------
; Print details of a Slice for a given Unit/Slice
;
prtslc3:
; get the details of the device / slice
ld a,(currunit)
ld d,a ; unit
ld a,(currslice)
ld e,a ; slice
ld b,BF_EXTSLICE ; EXT function to check compute slice offset
rst 08 ; noting this call checks partition table.
ret NZ ; an error, for lots of reasons, e.g. Slice not valid
;
call thirdsector ; point to the third sector of partition
;
call diskread ; do the sector read
ret nz ; read error. exit the slice loop
;
; Check signature
ld bc,(bb_sig) ; get signature read
ld a,sigbyte1 ; expected value of first byte
cp b ; compare
jr nz,prtslc5 ; ignore missing signature and loop
ld a,sigbyte2 ; expected value of second byte
cp c ; compare
jr nz,prtslc5 ; ignore missing signature and loop
;
; Print volume label string at HL, '$' terminated, 16 chars max
ld a,(currunit)
call prtdecb ; print unit number as decimal
call pdot ; print a DOT
ld a,(currslice)
call prtdecb
ld a,' '
call cout ; print a space
call cout ; print a space
ld hl,bb_label ; point to label
call pvol ; print it
call crlf
;
prtslc5:
xor a
ret
;
;-------------------------------------------------------------------------------
; Print volume label string at HL, '$' terminated, 16 chars max
;
pvol:
ld b,16 ; init max char downcounter
pvol1:
ld a,(hl) ; get next character
cp labelterm ; set flags based on terminator $
inc hl ; bump pointer regardless
ret z ; done if null
call cout ; display character
djnz pvol1 ; loop till done
ret ; hit max of 16 chars
;
;===============================================================================
; Set Label Information onto disk
;
setlabel:
call getnum ; parse a number
jp c,err_parm ; handle overflow error
ld (currunit),a ; save boot unit
xor a ; zero accum
ld (currslice),a ; save default slice
call skipws ; skip possible whitespace
ld a,(de) ; get separator char
or a ; test for terminator
jp z,err_parm ; if so, incomplete
cp '=' ; otherwise, is ','?
jr z,setlabel4 ; if so, skip the Slice parm
cp '.' ; otherwise, is '.'?
jp NZ,err_parm ; if not, format error
;
inc de ; bump past separator
call skipws ; skip possible whitespace
call isnum ; do we have a number?
jp nz,err_parm ; if not, format error
call getnum ; get number
jp c,err_parm ; handle overflow error
ld (currslice),a ; save boot slice
setlabel3:
call skipws ; skip possible whitespace
ld a,(de) ; get separator char
or a ; test for terminator
jp z,err_parm ; if so, then an error
cp '=' ; otherwise, is ','?
jp nz,err_parm ; if not, format error
setlabel4:
inc de ; bump past separator
call skipws ; skip possible whitespace
ld (newlabel),de ; address of disk label after '='
;
ld a,(currunit) ; passing boot unit
ld d,a
ld a,(currslice) ; and slice
ld e,a
ld b,BF_EXTSLICE ; HBIOS func: SLICE CALC - extended
rst 08 ; info for the Device, and Slice
;
; Check errors from the Function
cp ERR_NOUNIT ; compare to no unit error
jp z,err_nodisk ; handle no disk err
cp ERR_NOMEDIA ; no media in the device
jp z,err_nomedia ; handle the error
cp ERR_RANGE ; slice is invalid
jp z,err_badslice ; bad slice, handle err
or a ; any other error
jp nz,err_diskio ; handle as general IO error
;
call thirdsector ; point to the third sector of partition
;
call diskread ; read the sector
jp nz,err_diskio ; abort on error
;
; Check signature
ld de,(bb_sig) ; get signature read
ld a,sigbyte1 ; expected value of first byte
cp d ; compare
jp nz,err_sig ; handle error
ld a,sigbyte2 ; expected value of second byte
cp e ; compare
jp nz,err_sig ; handle error
;
ld b,16 ; loop down counter (max size of label)
ld de,(newlabel) ; reading from cmd line
ld hl,bb_label ; writing to disk label in sector buffer
updatelabel:
ld a,(de) ; read input
or a ; look for string terminator
jr z,updatelabel2 ; if terminator then complete
ld (hl),a ; store char in sector buff
inc de ; update pointers
inc hl
djnz updatelabel ; loop for next character
updatelabel2:
ld a,labelterm
ld (hl),a ; store the final terminator $ char
writelabel:
; write the sector
ld hl,(lba) ; lba, low word, same as read sector
ld de,(lba+2) ; lba, high word
call diskwrite ; write the sector back to disk
jp nz,err_diskio ; abort on error
;
; print the outcome.
ld de,PRTSLC_HDR ; Header for list of Slices
call prtstr ; Print header
call prtslc3 ; print updated label for unit/slice
;
ret
;
;-------------------------------------------------------------------------------
; advance the DE HL LBA sector by 2, ie third sector
;
thirdsector:
ld bc,2 ; sector offset
add hl,bc ; add to LBA value low word
jr nc,sectornum ; check for carry
inc de ; if so, bump high word
sectornum:
ld (lba),hl ; update lba, low word
ld (lba+2),de ; update lba, high word
ret
;
;===============================================================================
; Error Handlers
;
err_una:
ld de,str_err_una
jr err_ret
err_inv:
ld de,str_err_inv
jr err_ret
err_ver:
ld de,str_err_ver
jr err_ret
err_parm:
ld de,str_err_parm
jr err_ret
err_nodisk:
ld de,str_err_nodisk
jr err_ret
err_nomedia:
ld de,str_err_nomedia
jr err_ret
err_badslice:
ld de,str_err_badslc
jr err_ret
err_sig:
ld de,str_err_sig
jr err_ret
err_diskio:
ld de,str_err_diskio
jr err_ret
err_ret:
call crlf2
call prtstr
or $FF ; signal error
ret
;
;===============================================================================
; Utility Routines
;-------------------------------------------------------------------------------
; Print a dot on console
;
pdot:
push af
ld a,'.'
call cout
pop af
ret
;
;-------------------------------------------------------------------------------
; Print character in A without destroying any registers
;
prtchr:
cout:
push af ; save registers
push bc
push de
push hl
ld e,a ; character to print in E
ld c,$02 ; BDOS function to output a character
call bdos ; do it
pop hl ; restore registers
pop de
pop bc
pop af
ret
;
;-------------------------------------------------------------------------------
; Start a newline on console (cr/lf)
;
crlf2:
call crlf ; two of them
crlf:
push af ; preserve AF
ld a,13 ; <CR>
call prtchr ; print it
ld a,10 ; <LF>
call prtchr ; print it
pop af ; restore AF
ret
;
;-------------------------------------------------------------------------------
; Print a zero terminated string at (de) without destroying any registers
;
prtstr:
push af
push de
;
prtstr1:
ld a,(de) ; get next char
or a
jr z,prtstr2
call prtchr
inc de
jr prtstr1
;
prtstr2:
pop de ; restore registers
pop af
ret
;
;-------------------------------------------------------------------------------
; Print value of a in decimal with leading zero suppression
;
prtdecb:
push hl
push af
ld l,a
ld h,0
call prtdec
pop af
pop hl
ret
;
;-------------------------------------------------------------------------------
; Print value of HL in decimal with leading zero suppression
;
prtdec:
push bc
push de
push hl
ld e,'0'
ld bc,-10000
call prtdec1
ld bc,-1000
call prtdec1
ld bc,-100
call prtdec1
ld c,-10
call prtdec1
ld e,0
ld c,-1
call prtdec1
pop hl
pop de
pop bc
ret
prtdec1:
ld a,'0' - 1
prtdec2:
inc a
add hl,bc
jr c,prtdec2
sbc hl,bc
cp e
jr z,prtdec3
ld e,0
call cout
prtdec3:
ret
;
;-------------------------------------------------------------------------------
; INPUT ROUTINES
;-------------------------------------------------------------------------------
; Skip whitespace at buffer adr in DE, returns with first
; non-whitespace character in A.
;
skipws:
ld a,(de) ; get next char
or a ; check for eol
ret z ; done if so
cp ' ' ; blank?
ret nz ; nope, done
inc de ; bump buffer pointer
jr skipws ; and loop
;
;-------------------------------------------------------------------------------
; Convert character in A to uppercase
;
upcase:
cp 'a' ; if below 'a'
ret c ; ... do nothing and return
cp 'z' + 1 ; if above 'z'
ret nc ; ... do nothing and return
res 5,a ; clear bit 5 to make lower case -> upper case
ret ; and return
;
;-------------------------------------------------------------------------------
; Get numeric chars at DE and convert to number returned in A
; Carry flag set on overflow
;
getnum:
ld c,0 ; C is working register
getnum1:
ld a,(de) ; get the active char
cp '0' ; compare to ascii '0'
jr c,getnum2 ; abort if below
cp '9' + 1 ; compare to ascii '9'
jr nc,getnum2 ; abort if above
;
; valid digit, add new digit to C
ld a,c ; get working value to A
rlca ; multiply by 10
ret c ; overflow, return with carry set
rlca ; ...
ret c ; overflow, return with carry set
add a,c ; ...
ret c ; overflow, return with carry set
rlca ; ...
ret c ; overflow, return with carry set
ld c,a ; back to C
ld a,(de) ; get new digit
sub '0' ; make binary
add a,c ; add in working value
ret c ; overflow, return with carry set
ld c,a ; back to C
;
inc de ; bump to next char
jr getnum1 ; loop
;
getnum2: ; return result
ld a,c ; return result in A
or a ; with flags set, CF is cleared
ret
;
;-------------------------------------------------------------------------------
; Is character in A numeric? NZ if not
;
isnum:
cp '0' ; compare to ascii '0'
jr c,isnum1 ; abort if below
cp '9' + 1 ; compare to ascii '9'
jr nc,isnum1 ; abort if above
cp a ; set Z
ret
isnum1:
or $FF ; set NZ
ret ; and done
;
;-------------------------------------------------------------------------------
; DISK IO ROUTINES
;-------------------------------------------------------------------------------
; Init Disk IO
;
initdiskio:
; Get current RAM bank
ld b,BF_SYSGETBNK ; HBIOS GetBank function
RST 08 ; do it via RST vector, C=bank id
RET NZ ; had to replace this line below.
ld a,c ; put bank id in A
ld (BID_USR),a ; put bank id in Argument
RET
;
;-------------------------------------------------------------------------------
; Read disk sector(s)
; DE:HL is LBA, B is sector count, C is disk unit
;
diskread:
;
; Seek to requested sector in DE:HL
ld a,(currunit)
ld c,a ; from the specified unit
set 7,d ; set LBA access flag
ld b,BF_DIOSEEK ; HBIOS func: seek
rst 08 ; do it
ret nz ; handle error
;
; Read sector(s) into buffer
ld a,(currunit)
ld c,a ; from the specified unit
ld e,1 ; read 1 sector
ld hl,(dma) ; read into info sec buffer
ld a,(BID_USR) ; get user bank to accum
ld d,a ; and move to D
ld b,BF_DIOREAD ; HBIOS func: disk read
rst 08 ; do it
ret ; and done
;
;-------------------------------------------------------------------------------
; WRITE disk sector(s)
; DE:HL is LBA, B is sector count, C is disk unit
;
diskwrite:
;
ld a,(currunit) ; disk unit to read
ld c,a ; put in C
ld b,1 ; one sector
;
; Seek to requested sector in DE:HL
push bc ; save unit & count
set 7,d ; set LBA access flag
ld b,BF_DIOSEEK ; HBIOS func: seek
rst 08 ; do it
pop bc ; recover unit & count
ret nz ; handle error
;
; Read sector(s) into buffer
ld e,b ; transfer count
ld b,BF_DIOWRITE ; HBIOS func: disk read
ld hl,(dma) ; read into info sec buffer
ld a,(BID_USR) ; get user bank to accum
ld d,a ; and move to D
rst 08 ; do it
ret ; and done
;
;===============================================================================
; Constants
;===============================================================================
;
str_banner .db "\r\n"
.db "Slice Label, v1.0, April 2025 - M.Pruden",0
;
str_err_una .db " ERROR: UNA not supported by application",0
str_err_inv .db " ERROR: Invalid BIOS (signature missing)",0
str_err_ver .db " ERROR: Unexpected HBIOS version",0
str_err_parm .db " ERROR: Parameter error (SLABEL /? for usage)",0
str_err_nodisk .db " ERROR: Disk unit not available",0
str_err_nomedia .db " ERROR: Media not present",0
str_err_badslc .db " ERROR: Slice specified is illegal",0
str_err_sig .db " ERROR: No system image on disk",0
str_err_diskio .db " ERROR: Disk I/O failure",0
;
str_usage .db "\r\n\r\n"
.db " Usage: SLABEL - list current labels\r\n"
.db " SLABEL unit[.slice]=label - Defines a label\r\n"
.db " SLABEL /? - Display this help info.\r\n"
.db " Options are case insensitive.\r\n",0
;
PRTSLC_HDR .TEXT "\r\n\r\n"
.TEXT "Un.Sl Drive \r\n"
.TEXT "----- ----------------\r\n"
.DB 0
;
;===============================================================================
; Working data
;===============================================================================
;
currunit .db 0 ; parameters for disk unit, current unit
currslice .db 0 ; parameters for disk slice, current slice
lba .dw 0, 0 ; lba address (4 bytes), of slice
newlabel .dw 0 ; address of parameter, new label to write
;
BID_USR .db 0 ; Bank ID for user bank
dma .dw bl_infosec ; address for disk buffer
;
stksav .dw 0 ; stack pointer saved at start
.fill stksiz,0 ; stack
stack .equ $ ; stack top
;
;===============================================================================
; Disk Buffer
;===============================================================================
;
; define origin of disk buffer above 8000 for performance.
.org $8000
;
; Below is copied from ROM LDR
; Boot info sector is read into area below.
; The third sector of a disk device is reserved for boot info.
;
bl_infosec .equ $
.ds (512 - 128)
bb_metabuf .equ $
bb_sig .ds 2 ; signature (0xA55A if set)
bb_platform .ds 1 ; formatting platform
bb_device .ds 1 ; formatting device
bb_formatter .ds 8 ; formatting program
bb_drive .ds 1 ; physical disk drive #
bb_lu .ds 1 ; logical unit (lu)
.ds 1 ; msb of lu, now deprecated
.ds (bb_metabuf + 128) - $ - 32
bb_protect .ds 1 ; write protect boolean
bb_updates .ds 2 ; update counter
bb_rmj .ds 1 ; rmj major version number
bb_rmn .ds 1 ; rmn minor version number
bb_rup .ds 1 ; rup update number
bb_rtp .ds 1 ; rtp patch level
bb_label .ds 16 ; 16 character drive label
bb_term .ds 1 ; label terminator ('$')
bb_biloc .ds 2 ; loc to patch boot drive info
bb_cpmloc .ds 2 ; final ram dest for cpm/cbios
bb_cpmend .ds 2 ; end address for load
bb_cpment .ds 2 ; CP/M entry point (cbios boot)
;
;===============================================================================
;
.end

View File

@@ -38,7 +38,7 @@ It is an independent disassembly and reconstruction of CCP/BDOS.
DRI CPM22PAT01 was already applied. Unclear why, but the BDOS
source was checking for a blank instead of a ctrl-s in the
KBSTAT routine. Ctrl-s seems to be correct based on all other
BDOS images I have encountered. Also, these files imbed the
BDOS images I have encountered. Also, these files embed the
CP/M version number into the serial number fields. Other than
this, they are byte identical to the OS2CCP/OS3BDOS images above.
@@ -51,17 +51,24 @@ BDOS22.ASM - Modified ORG & fix for ctrl-S
CCPB03 & BDOSB01
----------------
Sourced from N8VEM effort to create an enhanced
variant of CP/M 2.2.
These files were derived from a disassembly of the Jade DD CP/M-80
image by William Beech in 1982.
It appears to be a disassembly and reconstruction of CCP/BDOS,
but there are no comments attributing the work. DRI CPM22PAT01
was already applied. The message string literals are all
- Modified by Bill Beech for global CP/M size configuration
and separate CCP and BDOSE 2013.
- Modified by Bill Beech for addition of MON
command and display/change of user on command line
1984. Also removed all SN checks.
Eventually modified as part of the N8VEM project and converted to
the Z80 instruction set.
DRI CPM22PAT01 has been applied. The message string literals are all
in CAPS in BDOS. Additionally, there is explicit filler of 0x55
value bytes at the end of the CCP/BDOS files padding their
length out to full page. Other than this, the BDOS
is byte identical to the others above. CCP contains multiple
enhancements and is, therefore, not identical to others.
is byte identical to the others above.
CCPB03.ASM - Enhanced reassembly of CCP

View File

@@ -668,15 +668,15 @@ lba ds 4 ; current lba
stack equ $
stksav ds 2
csvbufs equ 256
alvbufs equ 512
dirbufs equ 512
dtabufs equ 512
; CPMLDR.SYS must be a multiple of 512 bytes (one sector)
; for the RomWBW loader. Below padding as needed to force
; this.
ds 80h
;csvbuf ds 256 ; length (CSV) = ((DRM+1)/4)
;alvbuf ds 512 ; length (ALV) = ((DSM+1)/4)
;dirbuf ds 512 ; sector buffer
;dtabuf ds 512 ; sector buffer
csvbufs equ 256 ; length (CSV) = ((DRM+1)/4)
alvbufs equ 512 ; length (ALV) = ((DSM+1)/4)
dirbufs equ 512 ; sector buffer
dtabufs equ 512 ; sector buffer
; Trying to save space. The loader must fit underneath
; the start of BNKBDOS3 and we have a big BNKBDOS because

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
$define{doc_ver}{Version 3.5}$
$define{doc_ver}{Version 3.6}$
$define{doc_product}{RomWBW}$
$define{file_root}{https://github.com/wwarthen/RomWBW/raw/master}$
$define{doc_root}{$file_root$/Doc}$
@@ -8,12 +8,20 @@ $define{doc_date}{$date{%d %b %Y}$}$
$ifndef{doc_authmail}$ $define{doc_authmail}{wwarthen@gmail.com}$ $endif$
$define{doc_orgname}{RetroBrew Computers Group}$
$define{doc_orgurl}{www.retrobrewcomputers.org}$
$define{doc_intro}{[RomWBW Introduction]($doc_root$/RomWBW Introduction.pdf)}$
$define{doc_user}{[RomWBW User Guide]($doc_root$/RomWBW User Guide.pdf)}$
$define{doc_sys}{[RomWBW System Guide]($doc_root$/RomWBW System Guide.pdf)}$
$define{doc_apps}{[RomWBW Applications]($doc_root$/RomWBW Applications.pdf)}$
$define{doc_catalog}{[RomWBW Disk Catalog]($doc_root$/RomWBW Disk Catalog.pdf)}$
$define{doc_errata}{[RomWBW Errata]($doc_root$/RomWBW Errata.pdf)}$
$define{doc_hardware}{[RomWBW Hardware]($doc_root$/RomWBW Hardware.pdf)}$
$ifdef{GFM}$
$define{doc_intro}{[RomWBW Introduction](Introduction.md)}$
$define{doc_user}{[RomWBW User Guide](UserGuide.md)}$
$define{doc_sys}{[RomWBW System Guide](SystemGuide.md)}$
$define{doc_apps}{[RomWBW Applications](Applications.md)}$
$define{doc_catalog}{[RomWBW Disk Catalog](Catalog.md)}$
$define{doc_hardware}{[RomWBW Hardware](Hardware.md)}$
$endif$
---
title: $doc_product$ $doc_title$
subtitle: $doc_ver$

View File

@@ -15,20 +15,24 @@ set PATH=%TOOLS%\gpp;%PATH%
if not "%1"=="" (call :GenDoc %1 & goto :eof)
call :GenDoc ReadMe || exit /b
:: call :GenDoc ReadMe || exit /b
call :GenDoc Introduction || exit /b
call :GenDoc UserGuide || exit /b
call :GenDoc SystemGuide || exit /b
call :GenDoc Applications || exit /b
call :GenDoc Catalog || exit /b
call :GenDoc Errata || exit /b
call :GenDoc Hardware || exit /b
if exist ReadMe.gfm copy Readme.gfm ..\..\ReadMe.md || exit /b
if exist ReadMe.txt copy ReadMe.txt ..\..\ReadMe.txt || exit /b
:: if exist ReadMe.gfm copy Readme.gfm ..\..\ReadMe.md || exit /b
:: if exist ReadMe.txt copy ReadMe.txt ..\..\ReadMe.txt || exit /b
if exist Introduction.gfm copy Introduction.gfm ..\..\ReadMe.md || exit /b
if exist Introduction.txt copy Introduction.txt ..\..\ReadMe.txt || exit /b
if exist Introduction.pdf copy Introduction.pdf "..\..\Doc\RomWBW Introduction.pdf" || exit /b
if exist UserGuide.pdf copy UserGuide.pdf "..\..\Doc\RomWBW User Guide.pdf" || exit /b
if exist SystemGuide.pdf copy SystemGuide.pdf "..\..\Doc\RomWBW System Guide.pdf" || exit /b
if exist Applications.pdf copy Applications.pdf "..\..\Doc\RomWBW Applications.pdf" || exit /b
if exist Catalog.pdf copy Catalog.pdf "..\..\Doc\RomWBW Disk Catalog.pdf" || exit /b
if exist Errata.pdf copy Errata.pdf "..\..\Doc\RomWBW Errata.pdf" || exit /b
if exist Hardware.pdf copy Hardware.pdf "..\..\Doc\RomWBW Hardware.pdf" || exit /b
echo.
goto :eof
@@ -53,4 +57,4 @@ pandoc %1.tmp -f markdown -t gfm-yaml_metadata_block -s -o %1.gfm --default-imag
::pandoc %1.tmp -f markdown -t gfm-yaml_metadata_block -s -o %1.txt --markdown-headings=setext --default-image-extension=png || exit /b
pandoc %1.tmp -f markdown -t plain+gutenberg -s -o %1.txt || exit /b
goto :eof
goto :eof

View File

@@ -70,11 +70,12 @@ disks should now be fully described.
CP/M 3. Applications have been patched according to the DRI
patch list.
- **ZPM3**: Digital Research CP/M-80 2.2 Distribution Files
- **ZPM3**: ZPM3 Distribution Files
Documentation: *CPM Manual.pdf*
Documentation: *ZPM3.txt*
These files are from Simeon Cran's ZPM3 operating system distribution.
These files are from Simeon Cran's official distribution of ZPM3.
All known patches have been applied.
`\clearpage`{=latex}
@@ -381,11 +382,10 @@ The following files appear in User Area 0
| `GET.COM` | DRI CPM+ Temporarily get console input form a disk file |
| `HELP.COM` | DRI CPM+ Display information on how to use commands |
| `HELP.HLP` | DRI CPM+ Databse of help information for HELP.COM |
| `HEXCOM.COM` | DRI CPM+ Create a COM file from a hex file output by MAC |
| `HEXCOM.COM` | DRI CPM+ Create a COM file from a hex file (replaces LOAD.COM) |
| `INITDIR.COM` | DRI CPM+ Initializes a disk to allow time and date stamping |
| `LIB.COM` | DRI object file library manager |
| `LINK.COM` | DRI object file linker |
| `LOAD.COM` | DRI loader for Intel hex files |
| `MAC.COM` | DRI 8080 macro assembler |
| `PATCH.COM` | DRI CPM+ Display or install patch to the CPM+ system or command files |
| `PIP.COM` | DRI CPM+ Periperal Interchange Program |
@@ -574,7 +574,7 @@ This is a generic ZPM3 adaptation for RomWBW.
The following files came from from Microcode Consulting. The official
distribution files can be found on the Microcode Consulting website at
[https://www.microcodeconsulting.com/z80/qpm.htm].
<https://www.microcodeconsulting.com/z80/qpm.htm>.
Also included in this image are debugz, and linkz frm the same company.
This disk includes the standard DRI CP/M 2.2 files in addition to the
@@ -652,7 +652,7 @@ look a little strange depending on the terminal emulation you are using.
User area 4 contains a full implementation of the CP/NET 1.2 client
provided by Doug Miller. Please refer to
[https://github.com/durgadas311/cpnet-z80] for more information,
<https://github.com/durgadas311/cpnet-z80> for more information,
complete documentation and the latest source code.
Please refer to the RomWBW User Guide for instructions on installing
@@ -667,10 +667,12 @@ The following are found in
| **File** | **CP/NET Version** | **OS** | **Hardware** |
|-----------------|---------------------|-----------------|-------------------------|
| CPN12MT.LBR | CP/NET 1.2 | CP/M 2.2 | RCBus w/ MT011 |
| CPN3MT.LBR | CP/NET 3 | CP/M 3 | RCBus w/ MT011 |
| CPN12DUO.LBR | CP/NET 1.2 | CP/M 2.2 | Duodyne w/ Disk I/O |
| CPN3DUO.LBR | CP/NET 3 | CP/M 3 | Duodyne w/ Disk I/O |
| `CPN12MT.LBR` | CP/NET 1.2 | CP/M 2.2 | RCBus w/ MT011 |
| `CPN3MT.LBR` | CP/NET 3 | CP/M 3 | RCBus w/ MT011 |
| `CPN12DUO.LBR` | CP/NET 1.2 | CP/M 2.2 | Duodyne w/ Disk I/O |
| `CPN3DUO.LBR` | CP/NET 3 | CP/M 3 | Duodyne w/ Disk I/O |
| `CPN12SER.LBR` | CP/NET 1.2 | CP/M 2.2 | RomWBW Serial Port |
| `CPN3SER.LBR` | CP/NET 3 | CP/M 3 | RomWBW Serial Port |
## General Purpose Applications
@@ -687,34 +689,34 @@ RomWBW enhancements. These applications are typically documented in the
"RomWBW Applications.pdf" document in the Doc directory of the
RomWBW Distribution.
| **File** | **Source** | **Description** |
|----------------|-----------------|---------------------------------------------------------------|
| `ASSIGN.COM` | RomWBW | Assign,remove,swap drive letters of RomWBW disk slices |
| `CLRDIR.COM` | Max Scane | Initializes the directory area of a disk |
| `COPYSL.COM` | M.Pruden | Copy CPM Hard Disk Slices |
| `COPYSL.DOC` | M.Pruden | Documentation for COPYSL.COM |
| `CPUSPD.COM` | RomWBW | CPU Speed |
| `FAT.COM` | RomWBW | MS-DOS FAT filesystem tool (list, copy, delete, format, etc.) |
| `FDISK80.COM` | John Coffman | Hard disk partitioning tool |
| `FDU.COM` | RomWBW | Floppy Disk Utility, Test and format floppy disks |
| `FDU.DOC` | RomWBW | Documentation for FDU |
| `FLASH.COM` | Will Sowerbutts | Program FLASH chips in-situ |
| `FLASH.DOC` | Will Sowerbutts | Documentation for FLASH |
| `FORMAT.COM` | RomWBW | Placeholder application with formatting instructions |
| `HTALK.COM` | Tom Plano | Terminal utility talking directly to HBIOS Character Units |
| `MODE.COM` | RomWBW | Change serial line characteristics (baud rate, etc.) |
| `REBOOT.COM` | MartinR | Cold or Warm Boot the RomWBW System |
| `RTC.COM` | Andrew Lynch | Test real time clock hardware on your system |
| `SURVEY.COM` | RomWBW | Display system resources summary |
| `SYSCOPY.COM` | RomWBW | Copy system tracks to disks (make bootable) |
| `TALK.COM` | RomWBW | Route console I/O to & from specified serial port |
| `TIMER.COM` | RomWBW | Test and display system timer ticks |
| `TUNE.COM` | RomWBW | Play .PT2, .PT3, and .MYM audio files on supported hardware |
| `VGMPLAY.COM` | | Simple player for VGM (Video Game Music) files. |
| `WDATE.COM` | Kevin Boone | Utility to configure RTC Date. |
| `XM.COM` | RomWBW | XModem file transfer application |
| **File** | **Source** | **Description** |
|----------------|-------------------|---------------------------------------------------------------|
| `ASSIGN.COM` | RomWBW | Assign,remove,swap drive letters of RomWBW disk slices |
| `CLRDIR.COM` | Max Scane | Initializes the directory area of a disk |
| `COPYSL.COM` | M.Pruden | Copy CPM Hard Disk Slices |
| `COPYSL.DOC` | M.Pruden | Documentation for COPYSL.COM |
| `CPUSPD.COM` | RomWBW | CPU Speed |
| `FAT.COM` | RomWBW | MS-DOS FAT filesystem tool (list, copy, delete, format, etc.) |
| `FDISK80.COM` | John Coffman | Hard disk partitioning tool |
| `FDU.COM` | RomWBW | Floppy Disk Utility, Test and format floppy disks |
| `FDU.DOC` | RomWBW | Documentation for FDU |
| `FLASH.COM` | Will Sowerbutts | Program FLASH chips in-situ |
| `FLASH.DOC` | Will Sowerbutts | Documentation for FLASH |
| `FORMAT.COM` | RomWBW | Placeholder application with formatting instructions |
| `HTALK.COM` | Tom Plano | Terminal utility talking directly to HBIOS Character Units |
| `MODE.COM` | RomWBW | Change serial line characteristics (baud rate, etc.) |
| `REBOOT.COM` | MartinR | Cold or Warm Boot the RomWBW System |
| `RTC.COM` | Andrew Lynch | Test real time clock hardware on your system |
| `SURVEY.COM` | RomWBW | Display system resources summary |
| `SYSCOPY.COM` | RomWBW | Copy system tracks to disks (make bootable) |
| `TALK.COM` | RomWBW | Route console I/O to & from specified serial port |
| `TIMER.COM` | RomWBW | Test and display system timer ticks |
| `TUNE.COM` | RomWBW | Play .PT2, .PT3, and .MYM audio files on supported hardware |
| `VGMPLAY.COM` | | Simple player for VGM (Video Game Music) files. |
| `WDATE.COM` | Kevin Boone | Utility to configure RTC Date. |
| `XM.COM` | RomWBW | XModem file transfer application |
Then we have some more general purpose applcations.
Then we have some more general purpose applications.
In general, there is no documentation for these applications included with the RomWBW
distribution. Some provide command line help themselves. Some are fairly obvious.
@@ -741,7 +743,9 @@ distribution. Some provide command line help themselves. Some are fairly obvio
| `SUPERSUB.DOC` | | Documentation for SUPERSUB |
| `SYSGEN.COM` | DRI | Copy system tracks to disks |
| `TBASIC.COM` | Dimitri Theulings | Tasty Basic. This also exists as a Rom appication |
| `TDLBASIC.COM` | | TDL Zapple 12K BASIC language interpreter |
| `TDLBASIC.COM` | | TDL Zapple 12K BASIC language interpreter |
| `TE.COM` | Ladislau Szilagyi | RomWBW enhanced version of TE editor |
| `TE.DOC` | Ladislau Szilagyi | TE Editor Documentation |
| `UNARC.COM` | | Extract file(s) from .ARC or .ARK archive |
| `UNARC.DOC` | | Documentation for UNARC |
| `UNCR.COM` | | Decompress Crunched file(s). See CRUNCH.COM |
@@ -924,12 +928,12 @@ The following files are found in
| **File** | **Description** |
|----------------|-----------------------------------------------------------|
| HDIR.COM | |
| R.COM | transfer files between the simulator and host file system |
| RSETSIMH.COM | -- |
| TIMER.COM | -- |
| URL.COM | -- |
| W.COM | transfer files between the simulator and host file system |
| `HDIR.COM` | |
| `R.COM` | transfer files between the simulator and host file system |
| `RSETSIMH.COM` | -- |
| `TIMER.COM` | -- |
| `URL.COM` | -- |
| `W.COM` | transfer files between the simulator and host file system |
## Testing Applications
@@ -976,7 +980,7 @@ The following files are found in
| `ZEXDOC.COM` | Z80 Instruction Set Exerciser |
And The following CPU Tests - Which are probably originally from this source.
[https://github.com/raxoft/z80test]
<https://github.com/raxoft/z80test>
| **File** | **Description** |
|----------------|---------------------------------------------------------------|
@@ -999,7 +1003,7 @@ including MS-DOS, Apple II DOS 3.3 and PRoDOS, Commodore 64, Macintosh and
Amiga. This disk contains the CP/M version of that compiler. A cross-compiler
for MS-DOS or Windows XP is also available.
For full documentation, see [https://www.aztecmuseum.ca]
For full documentation, see <https://www.aztecmuseum.ca>
The user manual is available in the Doc/Language directory
Aztec_C_1.06_User_Manual_Mar84.pdf
@@ -1045,10 +1049,10 @@ NOTE : The above is incomplete
The Cowgol 2.0 compiler and related tools.
These files were provided by Ladislau Szilagyi and were sourced
from his GitHub repository at [https://github.com/Laci1953/Cowgol_on_CP_M].
from his GitHub repository at <https://github.com/Laci1953/Cowgol_on_CP_M>.
The primary distribution site for Cowgol 2.0 is at
[https://github.com/davidgiven/cowgol].
<https://github.com/davidgiven/cowgol>.
The user manual is available in the Doc/Language directory
Cowgol Language.pdf
@@ -1056,25 +1060,66 @@ The following files are found in
* /Source/Images/d_cowgol
| **File** | **Description** |
|--------------|--------------------------------------------|
| ADVENT.COW | Adventure game program source |
| ADVENT.SUB | Submit file to build ADVENT |
| ADVENT?.TXT | Adventure game program resource |
| ADVMAIN.COW | Adventure game program source |
| RAND.AS | Assembler Library File |
| COWBE.COM | |
| COWFE.COM | RomWBW specific (Memory Manage) version |
| COWLINK.COM | |
| DYNMSORT.COW | demonstrates a sort algorithm |
| DYNMSORT.SUB | Submit file to build DYNMSORT |
| HEXDUMP.COW | a simple hex dump utility, purely a Cowgol |
| HEXDUMP.SUB | Submit file to build HEXDUMP |
| HMERGES.C | C Library File |
| XRND.AS | Assembler Library File |
| - | - |
NOTE : The above is incomplete
| **File** | **Description** |
|----------------|--------------------------------------------|
| `$EXEC.COM` | HiTech C batch processor which launches the Cowgol toolchain executables |
| `ADVENT.COW` | Adventure game program source |
| `ADVENT.SUB` | SUBMIT file to build Adventure game |
| `ADVENT?.TXT` | Adventure game program resources |
| `ADVMAIN.COW` | Adventure game program source |
| `ADVTRAV.COW` | Adventure game component source |
| `ARGV.COH` | Cowgol include file providing command line argument processing |
| `C.LIB` | HI-TECH C runtime library |
| `CGEN.COM` | HiTech C compiler pass 2 |
| `COMMFILE.COH` | Include file providing file I/O |
| `COMMON.COH` | Include file providing common functions |
| `COWBE.COM` | Cowgol back end which builds the cowgol object files (optimized) |
| `COWFE.COM` | Cowgol front end which parses the source file (optimized) |
| `COWFIX.COM` | Interface to Z80AS -- performs code optimizations |
| `COWGOL.COH` | Include file providing standard Cowgol functions |
| `COWGOL.COM` | Interprets the command line and generates $EXEC run requests (a variant of HiTech C.COM) |
| `COWGOL.COO` | Cowgol object file with ??? |
| `COWGOL.LIB` | ??? |
| `COWGOLC.COH` | Cowgol include file providing ??? |
| `COWLINK.COM` | Cowgol linker which binds all the cowgol object files and outputs a Z80 assembler file (optimized) |
| `CPP.COM` | HiTech C pre-processor, modified to accept // style comments |
| `DYNMSORT.COW` | Sort algorithm sample program source |
| `DYNMSORT.SUB` | SUBMIT file to build DYNMSORT sample application |
| `FACT.COW` | Factorial computation sample program source |
| `FILE.COH` | Include file providing CP/M file processing support |
| `FILEIO.COH` | Include file providing CP/M file processing support |
| `HEXDUMP.COW` | Hex file dump sample source |
| `HEXDUMP.SUB` | SUBMIT file to build HEXDUMP sample program |
| `LIBBASIC.COH` | Include file providing ??? |
| `LIBBIOS.COH` | Include file providing ??? |
| `LIBCONIO.COH` | Include file providing console I/O |
| `LIBFP.COH` | Include file providing floating point support |
| `LIBR.COM` | HiTech object file librarian |
| `LIBSTR.COH` | Include file providing string functions |
| `LINK.COM` | HiTech linker which builds the final executable from object and library files |
| `MALLOC.COH` | Include file providing dynamic memory management functions |
| `MERGES.C` | Merge sort sample function C language source |
| `MISC.COH` | Include file providing miscellaneous functions |
| `MISC.COO` | Miscellaneous functions object file |
| `MISC.COW` | Miscellaneous functions source file |
| `OPTIM.COM` | HiTech C compiler optimizer |
| `P1.COM` | HiTech C compiler first pass |
| `RAND.AS` | Pseudo-random number generator source in assembly language |
| `RANFILE.COH` | Include file providing random file access functions |
| `RANFILE.COO` | Random file access functions object file |
| `RANFILE.COW` | Random file access functions source file |
| `README.TXT` | Cowgol disk image release notes |
| `SEQFILE.COH` | Include file providing sequential file access functions |
| `SEQFILE.COO` | Sequential file access functions object file |
| `SEQFILE.COW` | Sequential file access functions source file |
| `STDCOW.COH` | Include file providing standard library functions |
| `STRING.COH` | Include file providing string functions |
| `STRING.COO` | String functions object file |
| `STRING.COW` | String functions source file |
| `STRINGS.COH` | Include file implementing string functions |
| `TESTAS.COW` | Assembly language interface sample program source |
| `TESTAS.SUB` | SUBMIT file to build TESTAS sample program |
| `Z80AS.COM` | Z80 assembler which assembles the output of COWFIX and other Z80 source files (see <https://github.com/Laci1953/Z80AS>) |
## Microsoft Fortran 80 (Fortran)
@@ -1111,12 +1156,12 @@ Zork 1 through 3, Planetfall and Hitchhiker's Guide to the Galaxy.
Nemesis and Dungeon Master is a Rogue-like game released in 1981. It is playable
on a text terminal using ASCII graphics to represent the dungeon. Only a few
thousand copies of the game were ever made, making it very rare. See
[http://crpgaddict.blogspot.com/2019/03/game-322-nemesis-1981.html]
<http://crpgaddict.blogspot.com/2019/03/game-322-nemesis-1981.html>
Colossal Cave Adventure is a CP/M port of the 1976 classic game originally
written by Will Crowther for the PDP-10 mainframe. See
[https://en.wikipedia.org/wiki/Colossal_Cave_Adventure] and
[https://if50.substack.com/p/1976-adventure]
<https://en.wikipedia.org/wiki/Colossal_Cave_Adventure> and
<https://if50.substack.com/p/1976-adventure>
The following files are found in
@@ -1133,31 +1178,92 @@ NOTE : The above is incomplete
| Floppy Disk Image: **fd_hitechc.img**
| Hard Disk Image: **hd_hitechc.img**
The HI-TECH C Compiler is a set of software which
The HI-TECH C Compiler is a set of software which
translates programs written in the C language to executable
machine code programs. Versions are available which compile
programs for operation under the host operating system, or
which produce programs for execution in embedded systems
without an operating system.
This is the Mar 21, 2023 update 17 released by Tony Nicholson who currently
maintains HI-TECH C at [https://github.com/agn453/HI-TECH-Z80-C]
This is the Jun 2, 2025 update 19 released by Tony Nicholson who
currently maintains HI-TECH C at
<https://github.com/agn453/HI-TECH-Z80-C>.
The manual is available in the Doc/Language directory,
HI-TECH Z80 C Compiler Manual.txt
A good blog post about the HI-TECH C Compiler is available at
[https://techtinkering.com/2008/10/22/installing-the-hi-tech-z80-c-compiler-for-cpm]
<https://techtinkering.com/2008/10/22/installing-the-hi-tech-z80-c-compiler-for-cpm>.
User area 1 contains another complete copy of the HI-TECH C Compiler.
It is identical to the copy in user area 0 except for the following files
which were enhanced by Ladislau Szilagyi from his GitHub Repository at
<https://github.com/Laci1953/HiTech-C-compiler-enhanced>. The files
take advantage of additional banked memory using the RomWBW HBIOS API.
As such, they require RomWBW to operate. They should be compatible with
all CP/M and compatible operations systems provided in RomWBW.
The enhanced files are:
- `CGEN.COM`
- `CPP.COM`
- `OPTIM.COM`
- `P1.COM`
- `ZAS.COM` (replaced with Z80AS)
A thread discussing this enhanced version of HI-TECH C is found at
<https://groups.google.com/g/rc2014-z80/c/sBCCIpOnnGg>.
The following files are found in
* /Source/Images/d_hitechc
| **File** | **Description** |
|----------|-----------------|
| -- | -- |
NOTE : The above is incomplete
| **File** | **Description** |
|----------------|--------------------------------------------|
| `$EXEC.COM` | Compiler execution manager |
| `ASSERT.H` | Language include file |
| `C.COM` | Compiler invocation application (updated) |
| `C309.COM` | Compiler invocation application (original) |
| `CGEN.COM` | The code generator - produces assembler code |
| `CONIO.H` | Language include file (see manual) |
| `CPM.H` | Language include file (see manual) |
| `CPP.COM` | Pre-processor - handles macros and conditional compilation |
| `CREF.COM` | Produces cross-reference listings of C or assembler programs |
| `CRTCPM.OBJ` | Startup Object File (standard) |
| `CTYPE.H` | Language include file (see manual) |
| `DEBUG.COM` | C Debugger (Z80) |
| `DRTCPM.OBJ` | Startup Object File (???) |
| `EXEC.H` | Language include file (see manual) |
| `FLOAT.H` | Language include file (see manual) |
| `HITECH.H` | Language include file (see manual) |
| `LIBC.LIB` | Standard C Runtime Library |
| `LIBF.LIB` | Floating Point Library |
| `LIBOVR.LIB` | Overlay Library |
| `LIBR.COM` | Creates and maintains libraries of object modules |
| `LIMITS.H` | Language include file (see manual) |
| `LINQ.COM` | Link editor - links object files with libraries |
| `MATH.H` | Language include file (see manual) |
| `NRTCPM.OBJ` | Startup Object File (minimal getargs) |
| `OBJTOHEX.COM` | Converts the output of LINK into the appropriate executable file format (e.g., .EXE or .PRG or .HEX) |
| `OPTIM.COM` | Code improver - may optionally be omitted, reducing compilation time at a cost of larger, slower code produced |
| `OPTIONS` | Compiler usage help file |
| `OVERLAY.H` | Language include file |
| `P1.COM` | The syntax and semantic analysis pass - writes intermediate code for the code generator to read |
| `RRTCPM.OBJ` | Startup Object File (self relocating) |
| `SETJMP.H` | Language include file (see manual) |
| `SIGNAL.H` | Language include file (see manual) |
| `STAT.H` | Language include file (see manual) |
| `STDARG.H` | Language include file (see manual) |
| `STDDEF.H` | Language include file (see manual) |
| `STDINT.H` | Language include file (see manual) |
| `STDIO.H` | Language include file (see manual) |
| `STDLIB.H` | Language include file (see manual) |
| `STRING.H` | Language include file (see manual) |
| `SYMTOAS.COM` | Convert symbol file to assembler |
| `SYS.H` | Language include file (see manual) |
| `TIME.H` | Language include file (see manual) |
| `UNIXIO.H` | Language include file (see manual) |
| `ZAS.COM` | The assembler - in fact a general purpose macro assembler |
## MSX ROMS
@@ -1167,7 +1273,7 @@ NOTE : The above is incomplete
The collection of MSX ROMs (2 disks) as provided by Les Bird.
These ROMs are "run" by using the
appropriate variant of Les' MSX8 ROM loader. You can download the
loader binaries from [https://github.com/lesbird/MSX8]. You will need
loader binaries from <https://github.com/lesbird/MSX8>. You will need
appropriate hardware to run the loader.
Please review the file ROMLIST.TXT for information on the current
@@ -1203,23 +1309,23 @@ The manual can be found in the Docs/Language directory,
Turbo_Pascal_Version_3.0_Reference_Manual_1986.pdf
A good overview of using Turbo Pascal in CP/M is available at
[https://techtinkering.com/2013/03/05/turbo-pascal-a-great-choice-for-programming-under-cpm]
<https://techtinkering.com/2013/03/05/turbo-pascal-a-great-choice-for-programming-under-cpm>
The following files are found in
* /Source/Images/d_tpascal
| **File** | **Description** |
|--------------|--------------------------------|
| ART.TXT | Part of the Example program |
| SA.PAS | Example Program |
| TINST.COM | Installation and Configuration |
| TINST.DTA | Part of TINST |
| TINST.MSG | Part of TINST |
| TURBO.COM | The main Turbo Pascal program |
| TURBO.MSG | Part of TURBO tascal |
| TURBO.OVR | Part of TURBO tascal |
| TURBOMSG.OVR | Part of TURBO tascal |
| **File** | **Description** |
|----------------|--------------------------------|
| `ART.TXT` | Part of the Example program |
| `SA.PAS` | Example Program |
| `TINST.COM` | Installation and Configuration |
| `TINST.DTA` | Part of TINST |
| `TINST.MSG` | Part of TINST |
| `TURBO.COM` | The main Turbo Pascal program |
| `TURBO.MSG` | Part of TURBO Pascal |
| `TURBO.OVR` | Part of TURBO Pascal |
| `TURBOMSG.OVR` | Part of TURBO Pascal |
## WordStar 4
@@ -1306,7 +1412,7 @@ Also contained on this image in User Area 1 are.
| Floppy Disk Image: **fd_z80asm.img**
| Hard Disk Image: **hd_z80asm.img**
This disk contains 4 major components
This disk contains 6 major components
* Z80ASM is a relocating macro assembler for CP/M. It takes assembly language
source statements from a disk file, converts them into their binary equivalent,
@@ -1316,22 +1422,30 @@ listing output may be sent to a disk file, the console and/or the printer, in
any combination. Output files may also be generated containing cross-reference
information on each symbol used.
* Z80ASMP (Z80ASM Plus). Referred to as the "Virtual Memory" version which
uses disk for working storage, thus not constrained by RAM.
* SLR180 is a powerful relocating macro assembler for Z80
compatible CP/M systems. It takes assembly language source
statements from a disk file, converts them into their binary
equivalent, and stores the output in either a core-image, Intel
hex format, or relocatable object file. The mnemonics recognized
are those of Zilog/Hitachi. The optional listing output may be
are those of Zilog (Z180)/Hitachi. The optional listing output may be
sent to a disk file, the console and/or the printer, in any
combination. Output files may also be generated containing
cross-reference information on each symbol used.
* SLRMAC relocating macro assembler for Intel 8080 mnemonics
* SLRNK is a powerful linking loader for Z80-based CP/M systems.
It takes relocatable binary information in either Microsoft or
SLR Systems format from a disk file, resolves external and entry
point references, and stores the output in memory for execution
or outputs it to a disk file.
* SLRNKP (SLRNK Plus). Referred to as the "Virtual Memory" version which
uses disk for working storage, thus not constrained by RAM.
* Z80DIS is an entirely new disassembler for Z80 based CP/M sys-
tems. Z80DIS is written in TURBO PASCAL. Z80DIS generates Z80
mnemonics and prepares an assembly language file with many
@@ -1347,10 +1461,10 @@ The manual(s) are available in the Doc/Language directory,
* Z80DIS User Manual (1985).pdf
A run through of using the assembler is available at
[https://8bitlabs.ca/Posts/2023/05/20/learning-z80-asm]
<https://8bitlabs.ca/Posts/2023/05/20/learning-z80-asm>
And another shorter, but shows linker usage guide
[https://pollmyfinger.wordpress.com/2022/01/10/modular-retro-z80-assembly-language-programming-using-slr-systems-z80asm-and-srlnk/]
<https://pollmyfinger.wordpress.com/2022/01/10/modular-retro-z80-assembly-language-programming-using-slr-systems-z80asm-and-srlnk/>
The following files are found in
@@ -1358,49 +1472,53 @@ The following files are found in
User Area 0 - Assembler
| **File** | **Description** |
|-------------|---------------------------------------------|
| 180FIG.COM | Configuration utility for SLR180.COM |
| 8080.MAC | ? |
| CONFIG.COM | Configuration utility for Z80ASM.COM |
| DUMP.* | Sample Program |
| MAKESYM.COM | Symbol File .SYM file generation |
| MAKESYM.DOC | Documentation for MAKESYM.COM |
| SLR180.COM | HD64180 Relocating Macro Assembler |
| SLR180.DOC | Release Notes for SLR180.COM |
| SYNTAX.HLP | Documentation basic usage for all SLR Tools |
| SYNTAX.TXT | Documentation basic usage for all SLR Tools |
| TEST.* | Sample Program |
| Z80ASM.COM | Z80 Relocating Macro Assembler |
| Z80ASM.DOC | Release Notes for Z80ASM.COM |
| **File** | **Description** |
|---------------|---------------------------------------------|
| `180FIG.COM` | Configuration utility for SLR180.COM |
| `8080.MAC` | ? |
| `CONFIG.COM` | Configuration utility for Z80ASM.COM |
| `CONFIGP.COM` | Configuration utility for Z80ASMP.COM |
| `DUMP.*` | Sample Program |
| `MAKESYM.COM` | Symbol File .SYM file generation |
| `MAKESYM.DOC` | Documentation for MAKESYM.COM |
| `SLR180.COM` | HD64180 (Z180) Relocating Macro Assembler |
| `SLR180.DOC` | Release Notes for SLR180.COM |
| `SLRMAC.COM` | 8080 Relocating Macro Assembler |
| `SYNTAX.HLP` | Documentation basic usage for all SLR Tools |
| `SYNTAX.TXT` | Documentation basic usage for all SLR Tools |
| `TEST.\*` | Sample Program |
| `Z80ASM.COM` | Z80 Relocating Macro Assembler |
| `Z80ASMP.COM` | Z80 Relocating Macro Assembler (PLUS) |
| `Z80ASM.DOC` | Release Notes for Z80ASM.COM |
User Area 1 - Linker
User Area 1 - Linker and Library Management
| **File** | **Description** |
|--------------|-----------------------------------------------|
| LNKFIG.COM | Configuration utility for SLRNK.COM |
| NZLNKFIX.ZEX | ? |
| SLRIB.COM | SuperLibrarian, library manager |
| SLRNK.COM | SuperLinker, the main linker tool |
| SLRNK.DOC | Release Notes for SLRNK.COM |
| SLRNKFIX.ZEX | ? |
| SYNTAX.HLP | Documentation basic usage for all SLR Tools |
| SYNTAX.TXT | Documentation basic usage for all SLR Tools |
| SYSSLR.REL | SYSLIB (older) Library compatible with SLR |
| VSLR.REL | VLIB (older) Library compatible with SLR |
| Z3SLR.REL | Z3LIB (older) Library compatible with SLR |
| **File** | **Description** |
|----------------|-----------------------------------------------|
| `LNKFIG.COM` | Configuration utility for SLRNK.COM |
| `NZLNKFIX.ZEX` | ? |
| `SLRIB.COM` | SuperLibrarian, library manager |
| `SLRNK.COM` | SuperLinker, the main linker tool |
| `SLRNKP.COM` | SuperLinker (PLUS) |
| `SLRNK.DOC` | Release Notes for SLRNK.COM |
| `SLRNKFIX.ZEX` | ? |
| `SYNTAX.HLP` | Documentation basic usage for all SLR Tools |
| `SYNTAX.TXT` | Documentation basic usage for all SLR Tools |
| `SYSSLR.REL` | SYSLIB (older) Library compatible with SLR |
| `VSLR.REL` | VLIB (older) Library compatible with SLR |
| `Z3SLR.REL` | Z3LIB (older) Library compatible with SLR |
User Area 2 - Disassembler
| **File** | **Description** |
|--------------|----------------------------------|
| README.22 | Documentation for Z80DIS |
| Z80DIS.000 | Overlay File for Z80DIS.COM |
| Z80DIS.001 | Overlay File for Z80DIS.COM |
| Z80DIS.002 | Overlay File for Z80DIS.COM |
| Z80DIS.COM | Z80DIS Disassembler main program |
| Z80DIS22.DOC | Main Documentation for Z80DIS |
| ZDINSTAL.COM | Instal and Config for Z80DIS.COM |
| ZDINSTAL.DTA | Overlay file for ZDINSTAL.COM |
| ZDINSTAL.MSG | Overlay file for ZDINSTAL.COM |
| **File** | **Description** |
|----------------|----------------------------------|
| `README.22` | Documentation for Z80DIS |
| `Z80DIS.000` | Overlay File for Z80DIS.COM |
| `Z80DIS.001` | Overlay File for Z80DIS.COM |
| `Z80DIS.002` | Overlay File for Z80DIS.COM |
| `Z80DIS.COM` | Z80DIS Disassembler main program |
| `Z80DIS22.DOC` | Main Documentation for Z80DIS |
| `ZDINSTAL.COM` | Instal and Config for Z80DIS.COM |
| `ZDINSTAL.DTA` | Overlay file for ZDINSTAL.COM |
| `ZDINSTAL.MSG` | Overlay file for ZDINSTAL.COM |

View File

@@ -1,19 +0,0 @@
$define{doc_title}{Errata}$
$include{"Book.h"}$
# Errata
The following errata apply to $doc_product$ $doc_ver$:
* The use of high density floppy disks requires a CPU speed of 8 MHz or
greater.
* The PropIO support is based on RomWBW specific firmware. Be sure to
program/update your PropIO firmware with the corresponding firmware
image provided in the Binary directory of the RomWBW distribution.
* Reading bytes from the video memory of the VDU board (not Color
VDU) appears to be problematic. This is only an issue when the driver
needs to scroll a portion of the screen which is done by applications
such as WordStar or ZDE. You are likely to see screen corruption in
this case.

2407
Source/Doc/Hardware.md Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,11 +1,12 @@
$define{doc_title}{ReadMe}$
$include{"Basic.h"}$
$define{doc_title}{Introduction}$
$include{"Book.h"}$
# Overview
RomWBW software provides a complete, commercial quality
implementation of CP/M (and workalike) operating systems and
RomWBW software provides a complete, commercial quality
implementation of CP/M (and workalike) operating systems and
applications for modern Z80/180/280 retro-computing hardware systems.
A wide variety of platforms are supported including those
produced by these developer communities:
@@ -19,45 +20,43 @@ produced by these developer communities:
* [Small Computer Central](https://smallcomputercentral.com/)
(<https://smallcomputercentral.com/>)
A complete list of the currently supported platforms is found in the
[Installation] section.
A complete list of the currently supported platforms is found in
$doc_hardware$ .
General features include:
`\clearpage`{=latex}
# Description
## Primary Features
By design, RomWBW isolates all of the hardware specific functions in
the ROM chip itself. The ROM provides a hardware abstraction layer
such that all of the operating systems and applications on a disk
will run on any RomWBW-based system. To put it simply, you can take
a disk (or CF/SD/USB Card) and move it between systems transparently.
Supported hardware features of RomWBW include:
* Z80 Family CPUs including Z80, Z180, and Z280
* Banked memory services for several banking designs
* Disk drivers for RAM, ROM, Floppy, IDE ATA/ATAPI, CF, SD, USB, Zip, Iomega
* Serial drivers including UART (16550-like), ASCI, ACIA, SIO
* Video drivers including TMS9918, SY6545, MOS8563, HD6445
* Video drivers including TMS9918, SY6545, MOS8563, HD6445, Xosera
* Keyboard (PS/2) drivers via VT8242 or PPI interfaces
* Real time clock drivers including DS1302, BQ4845
* OSes: CP/M 2.2, ZSDOS, CP/M 3, NZ-COM, ZPM3, QPM, p-System, and FreeRTOS
* Support for CP/NET networking using Wiznet, MT011 or Serial
* Built-in VT-100 terminal emulation support
RomWBW is distributed as both source code and pre-built ROM and disk
images. Some of the provided software can be launched directly from the
ROM firmware itself:
* System Monitor
* Operating Systems (CP/M 2.2, ZSDOS)
* ROM BASIC (Nascom BASIC and Tasty BASIC)
* ROM Forth
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
A dynamic disk drive letter assignment mechanism allows mapping
operating system drive letters to any available disk media.
Additionally, mass storage devices (IDE Disk, CF Card, SD Card, etc.)
support the use of multiple slices (up to 256 per device). Each slice
contains a complete CP/M filesystem and can be mapped independently to
any drive letter. This overcomes the inherent size limitations in legacy
OSes and allows up to 2GB of accessible storage on a single device.
OSes and allows up to 2GB of addressable storage on a single device,
with up to 128MB accessible at any one time.
The pre-built ROM firmware images are generally suitable for most
users. However, it is also very easy to modify and build custom ROM
images that fully tailor the firmware to your specific preferences.
All tools required to build custom ROM firmware under Windows are
included -- no need to install assemblers, etc. The firmware can also
be built using Linux or MacOS after confirming a few standard tools
have been installed.
## Included Software
Multiple disk images are provided in the distribution. Most disk
images contain a complete, bootable, ready-to-run implementation of a
@@ -66,59 +65,152 @@ slices, each with a full operating system implementation. If you use
this disk image, you can easily pick whichever operating system you
want to boot without changing media.
By design, RomWBW isolates all of the hardware specific functions in
the ROM chip itself. The ROM provides a hardware abstraction layer
such that all of the operating systems and applications on a disk
will run on any RomWBW-based system. To put it simply, you can take
a disk (or CF/SD/USB Card) and move it between systems transparently.
Some of the included software:
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
* Operating Systems (CP/M 2.2, ZSDOS, NZ-COM, CP/M 3, ZPM3, Z3PLUS, QPM )
* Support for other operating systems, p-System, FreeRTOS, and FUZIX.
* Programming Tools (Z80ASM, Turbo Pascal, Forth, Cowgol)
* C Compiler's including Aztec-C, and HI-TECH C
* Microsoft Basic Compiler, and Microsoft Fortran
* Some games such as Colossal Cave, Zork, etc
* Wordstar Word processing software
Some of the provided software can be launched directly from the
ROM firmware itself:
* System Monitor
* Operating Systems (CP/M 2.2, ZSDOS)
* ROM BASIC (Nascom BASIC and Tasty BASIC)
* ROM Forth
A tool is provided that allows you to access a FAT-12/16/32 filesystem.
The FAT filesystem may be coresident on the same disk media as RomWBW
slices or on stand-alone media. This makes exchanging files with modern
OSes such as Windows, MacOS, and Linux very easy.
# Acquiring RomWBW
`\clearpage`{=latex}
## ROM Distribution
The [RomWBW Repository](https://github.com/wwarthen/RomWBW)
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation. The
fully-built distribution releases are available on the
(<https://github.com/wwarthen/RomWBW>) on GitHub is the official
distribution location for all project source and documentation.
RomWBW is distributed as both source code and pre-built ROM and disk
images.
The pre-built ROM images distributed with RomWBW are based on
the default system configurations as determined by the hardware
provider/designer. The pre-built ROM firmware images are generally
suitable for most users.
The fully-built distribution releases are available on the
[RomWBW Releases Page](https://github.com/wwarthen/RomWBW/releases)
(<https://github.com/wwarthen/RomWBW/releases>) of the repository. On
this page, you will normally see a Development Snapshot as well as
(<https://github.com/wwarthen/RomWBW/releases>) of the repository.
On this page, you will normally see a Development Snapshot as well as
recent stable releases. Unless you have a specific reason, I suggest you
stick to the most recent stable release. Expand the "Assets" drop-down
for the release you want to download, then select the asset named
RomWBW-vX.X.X-Package.zip. The Package asset includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
stick to the most recent stable release.
The asset named RomWBW-vX.X.X-Package.zip includes all pre-built ROM
and Disk images as well as full source code. The other assets contain
only source code and do not have the pre-built ROM or disk images.
All source code and distributions are maintained on GitHub. Code
contributions are very welcome.
#### Distribution Directory Layout
# Installation & Operation
The RomWBW distribution is a compressed zip archive file organized in
a set of directories. Each of these directories has its own
ReadMe.txt file describing the contents in detail. In summary, these
directories are:
| **Directory** | **Description** |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Binary** | The final output files of the build process are placed here. Most importantly, the ROM images with the file names ending in ".rom" and disk images ending in .img. |
| **Doc** | Contains various detailed documentation, both RomWBW specifically as well as the operating systems and applications. |
| **Source** | Contains the source code files used to build the software and ROM images. |
| **Tools** | Contains the programs that are used by the build process or that may be useful in setting up your system. |
`\clearpage`{=latex}
#### Building from Source
It is also very easy to modify and build custom ROM
images that fully tailor the firmware to your specific preferences.
All tools required to build custom ROM firmware under Windows are
included -- no need to install assemblers, etc. The firmware can also
be built using Linux or MacOS after confirming a few standard tools
have been installed.
## Installation & Operation
In general, installation of RomWBW on your platform is very simple. You
just need to program your ROM with the correct ROM image from the RomWBW
distribution. Subsequently, you can write disk images on your disk
distribution. Subsequently, you can write disk images on your disk
drives (IDE disk, CF Card, SD Card, etc.) which then provides even more
functionality.
Complete instructions for installation and operation of RomWBW are
found in the $doc_user$. It is also a good idea to review the
[Release Notes](https://github.com/wwarthen/RomWBW/blob/master/RELEASE_NOTES.md)
Complete instructions for installation and operation of RomWBW are found
in the $doc_user$. It is also a good idea to review the [Release
Notes](https://github.com/wwarthen/RomWBW/blob/master/RELEASE_NOTES.md)
for helpful release-specific information.
## Documentation
Documentation for $doc_product$ includes:
There are several documents that form the core of the RomWBW documentation:
* $doc_user$
* $doc_sys$
* $doc_apps$
* $doc_errata$
* $doc_user$ is the main user guide for RomWBW, it covers the major topics
of how to install, manage and use RomWBW, and includes additional guidance
to the use of some of the operating systems supported by RomWBW
# Acknowledgments
* $doc_hardware$ contains a description of all the hardware platforms,
and devices supported by RomWBW.
* $doc_apps$ is a reference for the ROM-hosted and OS-hosted applications
created or customized to enhance the operation of RomWBW.
* $doc_catalog$ is a reference for the contents of the disk images
provided with RomWBW, with a description of many of the files on each image
* $doc_sys$ discusses much of the internal design and construction
of RomWBW. It includes a reference for the RomWBW HBIOS API
functions.
Each of the operating systems and ROM applications included with RomWBW
are sophisticated tools in their own right. It is not reasonable to
fully document their usage. However, you will find complete manuals
in PDF format in the Doc directory of the distribution. The intention
of this documentation is to describe the operation of RomWBW and the ways in
which it enhances the operation of the included applications and
operating systems.
Since RomWBW is purely a software product for many different platforms,
the documentation does **not** cover hardware construction,
configuration, or troubleshooting -- please see your hardware provider
for this information.
# Support
## Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
* [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
* [RC2014 Google Group](https://groups.google.com/forum/#!forum/rc2014-z80)
* [retro-comp Google Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the
[RomWBW GitHub Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email $doc_author$ at [$doc_authmail$](mailto:$doc_authmail$).
I am happy to provide support adapting RomWBW to new or modified systems
# Contributions
All source code and distributions are maintained on GitHub.
Contributions of all kinds to RomWBW are very welcome.
## Acknowledgments
I want to acknowledge that a great deal of the code and inspiration
for RomWBW has been provided by or derived from the work of others
@@ -190,12 +282,15 @@ please let me know if I missed you!
* Martin R has provided substantial help reviewing and improving the
User Guide and Applications documents.
* Mark Pruden has also contributed a great deal of content to the
Disk Catalog, User Guide as well as contributing the disk image
for the Z3PLUS operating system, the COPYSL utility, and also
implemented a feature for RomWBW configuration by NVRAM,
and added the /B bulk mode of disk assignment to the ASSIGN utility.
* Mark Pruden has made a wide variety of contributions including:
- significant content in the Disk Catalog and User Guide
- creation of the Introduction and Hardware documents
- Z3PLUS operating system disk image
- COPYSL utility
- SLABEL utility
- a feature for RomWBW configuration by NVRAM
- the /B bulk mode of disk assignment to the ASSIGN utility
* Jacques Pelletier has contributed the DS1501 RTC driver code.
@@ -229,10 +324,53 @@ please let me know if I missed you!
* Les Bird has contributed support for the NABU w/ Option Board
Contributions of all kinds to RomWBW are very welcome.
* Rob Gowin created an online documentation site via MkDocs, and
contributed a driver for the Xosera FPGA-based video
controller.
`\clearpage`{=latex}
## Related Projects
Outside of the hardware platforms adapted to RomWBW, there are a variety
of projects that either target RomWBW specifically or provide
a RomWBW-specific variation. These efforts are greatly appreciated
and are listed below. Please contact the author if there are any other
such projects that are not listed.
#### Z88DK
Z88DK is a software powerful development kit for Z80 computers
supporting both C and assembly language. This kit now provides
specific library support for RomWBW HBIOS. The Z88DK project is
hosted at <https://github.com/z88dk/z88dk>.
#### Paleo Editor
Steve Garcia has created a Windows-hosted IDE that is tailored to
development of RomWBW. The project can be found at
<https://github.com/alloidian/PaleoEditor>.
#### Z80 fig-FORTH
Dimitri Theulings' implementation of fig-FORTH for the Z80 has a
RomWBW-specific variant. The project is hosted at
<https://github.com/dimitrit/figforth>.
#### Assembly Language Programming for the RC2014 Zed
Bruce Hall has written a very nice document that describes how to
develop assembly language applications on RomWBW. It begins with the
setup and configuration of a new RC2014 Zed system running RomWBW.
It describes not only generic CP/M application development, but also
RomWBW HBIOS programming and bare metal programming. The latest copy
of this document is hosted at
[http://w8bh.net/Assembly for RC2014Z.pdf](http://w8bh.net/Assembly%20for%20RC2014Z.pdf).
# Licensing
## License Terms
RomWBW is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
@@ -274,17 +412,3 @@ source code control system to ensure their contributions are clearly
documented.
All contributions to RomWBW are subject to this license.
# Getting Assistance
The best way to get assistance with RomWBW or any aspect of the
RetroBrew Computers projects is via one of the community forums:
* [RetroBrew Computers Forum](https://www.retrobrewcomputers.org/forum/)
* [RC2014 Google Group](https://groups.google.com/forum/#!forum/rc2014-z80)
* [retro-comp Google Group](https://groups.google.com/forum/#!forum/retro-comp)
Submission of issues and bugs are welcome at the
[RomWBW GitHub Repository](https://github.com/wwarthen/RomWBW).
Also feel free to email $doc_author$ at [$doc_authmail$](mailto:$doc_authmail$).

View File

@@ -9,7 +9,7 @@
# On Ubuntu Linux:
# apt install gpp pandoc texlive texlive-luatex texlive-fonts-extra
#
OBJECTS = ReadMe.gfm ReadMe.txt UserGuide.pdf SystemGuide.pdf Applications.pdf Catalog.pdf Errata.pdf
OBJECTS = Introduction.gfm Introduction.txt Introduction.pdf UserGuide.pdf SystemGuide.pdf Applications.pdf Catalog.pdf Hardware.pdf
# DEST = ../../Doc
TOOLS = ../../Tools
OTHERS = *.tmp
@@ -18,6 +18,10 @@ include $(TOOLS)/Makefile.inc
all :: deploy
clean ::
rm -rf mkdocs
rm -rf site
%.tmp : %.md
gpp -o $@ -U "$$" "$$" "{" "}{" "}$$" "{" "}" "@@@" "" -M "$$" "$$" "{" "}{" "}$$" "{" "}" $<
@@ -31,16 +35,29 @@ all :: deploy
pandoc $< -f markdown -t dokuwiki -s -o $@ --default-image-extension=pdf
%.gfm : %.tmp
pandoc $< -f markdown -t gfm -s -o $@ --default-image-extension=pdf
pandoc $< -f markdown -t gfm-yaml_metadata_block -s -o $@ --default-image-extension=svg
%.txt : %.tmp
pandoc $< -f markdown -t plain -s -o $@ --default-image-extension=pdf
mkdocs/%.md : %.md
-mkdir -p mkdocs
gpp -DGFM -U "$$" "$$" "{" "}{" "}$$" "{" "}" "@@@" "" -M "$$" "$$" "{" "}{" "}$$" "{" "}" $< \
| pandoc -f markdown -t gfm-yaml_metadata_block -s -o $@ --default-image-extension=svg
deploy :
cp ReadMe.gfm "../../ReadMe.md"
cp ReadMe.txt "../../ReadMe.txt"
cp Introduction.gfm "../../ReadMe.md"
cp Introduction.txt "../../ReadMe.txt"
cp Introduction.pdf "../../Doc/RomWBW Introduction.pdf"
cp UserGuide.pdf "../../Doc/RomWBW User Guide.pdf"
cp SystemGuide.pdf "../../Doc/RomWBW System Guide.pdf"
cp Applications.pdf "../../Doc/RomWBW Applications.pdf"
cp Catalog.pdf "../../Doc/RomWBW Disk Catalog.pdf"
cp Errata.pdf "../../Doc/RomWBW Errata.pdf"
cp Hardware.pdf "../../Doc/RomWBW Hardware.pdf"
deploy_mkdocs : mkdocs/Introduction.md mkdocs/UserGuide.md mkdocs/SystemGuide.md mkdocs/Applications.md \
mkdocs/Catalog.md mkdocs/Hardware.md
mkdir -p mkdocs/UserGuide/Graphics mkdocs/SystemGuide/Graphics
cp mkdocs/Introduction.md mkdocs/README.md
cp Graphics/*.svg mkdocs/UserGuide/Graphics
cp Graphics/*.svg mkdocs/SystemGuide/Graphics

View File

@@ -16,7 +16,7 @@ constraints, new hardware platforms can be supported by simply
adjusting values in a build configuration file.
RomWBW is geared toward hardware being developed in modern
retro-computing hobbyist communities, not as a replacement for
retro-computing hobbyist communities, not as replacement software for
legacy hardware. As a result, RomWBW requires at least 128KB
of bank switched RAM.
@@ -42,11 +42,11 @@ RomWBW firmware (ROM) includes:
It is appropriate to note that much of the code and components that make
up a complete RomWBW package are derived from pre-existing work. Most
notably, the embedded operating system is simply a ROM-based copy of
notably, the embedded operating systems are simply ROM-based copies of
generic CP/M or ZSDOS. Much of the hardware support code was originally
produced by other members of the RetroBrew Computers Community.
The remainder of this document focuses on HBIOS which is the
The remainder of this document focuses on RomWBW HBIOS which is the
fundamental basis of RomWBW.
# Background
@@ -61,13 +61,13 @@ space that is much larger than the CPU address space (typically 512K or
the CPU using a technique called bank switching. To achieve this, the
physical memory is divided up into chunks (banks) of 32K each. A
designated area of the CPU's 64K address space is then reserved to "map"
any of the physical memory chunks. You can think of this as a window
any of the physical memory chunks. You can think of this as a window
that can be adjusted to view portions of the physical memory in 32K
blocks. In the case of RomWBW, the lower 32K of the CPU address space is
used for this purpose (the window). The upper 32K of CPU address space
used for this purpose (the window). The upper 32K of CPU address space
is assigned a fixed 32K area of physical memory that never changes. The
lower 32K can be "mapped" on the fly to any of the 32K banks of physical
memory at a time. The only constraint is that the CPU cannot be
memory at a time. The primary constraint is that the CPU cannot be
executing code in the lower 32K of CPU address space at the time that a
bank switch is performed.
@@ -91,6 +91,17 @@ operating system is unaware this has occurred. As control is returned to
the operating system, the lower 32KB of memory is switched back to the
original memory bank.
The HBIOS functions are invoked simply by placing function parameters
in Z80 registers and calling an address within the HBIOS proxy.
Additionally, HBIOS implements a complete hardware interrupt management
framework. When a hardware interrupt occurs, control vectors through
the HBIOS proxy which saves the machine state, selects the HBIOS
driver bank into memory, and transfers control to the registered
driver's interrupt handler. Upon completion of interrupt processing,
control returns via the HBIOS proxy, machine state is restored, and
normal processing resumes. The interrupt management framework supports
Z80 interrupt modes 1, 2, and 3 (Z280).
HBIOS is completely agnostic with respect to the operating system (it
does not know or care what operating system is using it). The operating
system makes simple calls to HBIOS to access any desired hardware
@@ -124,8 +135,31 @@ execution.
# Runtime Memory Layout
![Bank Switched Memory Layout](Graphics/BankSwitchedMemory){ width=100% }
RomWBW divides the standard 64KB Z80 address space into 2 sections.
The lower 32KB is the "banked" area. This is the area that will
contain any of the 32KB chunks of physical RAM based on which bank is
currently selected. The upper 32KB is "fixed". This area of memory
is never swapped out and is used to contain software and operating
systems that must remain in the Z80 address space.
Throughout this document, this mechanism of selecting banks of memory
into the lower 32K is referred to as memory management. Achieving
this functionality requires some type of hardware which is generally
referred to as the system's Memory Management Unit (MMU). RomWBW
supports a variety of MMUs -- but they all perform the same function
of swapping in/out banks of memory in the lower 32K of CPU address
space.
Figure 4.1 depicts the memory layout for a system running the CP/M
operating system. Applications residing in TPA invoke BDOS services
of CP/M, BDOS invokes the custom CBIOS APIs, and finally CBIOS
invokes HBIOS functions as needed by calling into the HBIOS proxy.
The HBIOS proxy swaps in the HBIOS bank as needed to perform the
requested function.
Additional banks of RAM are used to create a virtual disk drive.
![Bank Switched Memory Layout](Graphics/BankSwitchedMemory){ width=100% }
## Bank Id
@@ -139,16 +173,17 @@ a ROM bank is being referred to. If it is 1, it indicates a RAM bank
is being referred to.
For example, let's say we have a typical system with 512KB of ROM and
512KB of RAM. The Bank Ids would look like this:
512KB of RAM. The following table demonstrates how Bank Ids represent
areas of physical memory.
| Physical Memory | Type | Physical Bank | Bank Id |
|-------------------|------|---------------|-----------|
| 0x000000-0x007FFF | ROM | 0 | 0x00 |
| 0x008000-0x00FFFF | ROM | 1 | 0x01 |
| 0x010000-0x07FFFF | ROM | 2-15 | 0x02-0x0F |
| 0x080000-0x087FFF | RAM | 16 | 0x80 |
| 0x088000-0x08FFFF | RAM | 17 | 0x81 |
| 0x090000-0x0FFFFF | RAM | 18-31 | 0x82-0x8F |
| **Physical Memory** | **Type** | **Physical Bank** | **Bank Id** |
|-----------------------|----------|-------------------|---------------|
| 0x000000-0x007FFF | ROM | 0 | 0x00 |
| 0x008000-0x00FFFF | ROM | 1 | 0x01 |
| 0x010000-0x07FFFF | ROM | 2-15 | 0x02-0x0F |
| 0x080000-0x087FFF | RAM | 16 | 0x80 |
| 0x088000-0x08FFFF | RAM | 17 | 0x81 |
| 0x090000-0x0FFFFF | RAM | 18-31 | 0x82-0x8F |
Note that Bank Id 0x00 is **always** the first bank of ROM and 0x80 is
**always** the first bank of RAM. If there were more banks of physical ROM,
@@ -170,23 +205,23 @@ table describes the way the banks are assigned. The Typical column
shows the specific values that would be assigned for a common system
with 512KB of ROM and 512KB of RAM (nROM=16, nRAM=16).
| Bank Id | Identity | Typical | Purpose |
|-------------------|-----------|---------|------------------------------------------|
| 0x00 |BID_BOOT | 0x00 | Boot Bank (HBIOS image) |
| 0x01 |BID_IMG0 | 0x01 | Boot Loader, Monitor, ROM OSes, ROM Apps |
| 0x02 |BID_IMG1 | 0x02 | ROM Apps |
| 0x03 |BID_IMG2 | 0x03 | \<Reserved\> |
| 0x04 |BID_ROMD0 | 0x04 | First ROM Disk Bank |
| nROM - 1 | | 0x0F | Last ROM Disk Bank |
| 0x80 |BID_BIOS | 0x80 | HBIOS (working copy) |
| 0x81 |BID_RAMD0 | 0x81 | First RAM Disk Bank |
| 0x80 + nRAM - 8 | | 0x88 | Last RAM Disk Bank |
| 0x80 + nRAM - 7 |BID_APP0 | 0x89 | First Application Bank |
| 0x80 + nRAM - 5 | | 0x8B | Last Application Bank |
| 0x80 + nRAM - 4 |BID_BUF | 0x8C | OS Disk Buffers |
| 0x80 + nRAM - 3 |BID_AUX | 0x8D | OS Code Bank |
| 0x80 + nRAM - 2 |BID_USR | 0x8E | User Bank (CP/M TPA) |
| 0x80 + nRAM - 1 |BID_COM | 0x8F | Common Bank |
| **Bank Id** | **Identity** | **Typical** | **Purpose** |
|---------------------|--------------|-------------|--------------------------------------------|
| 0x00 | BID_BOOT | 0x00 | Boot Bank (HBIOS image) |
| 0x01 | BID_IMG0 | 0x01 | Boot Loader, Monitor, ROM OSes, ROM Apps |
| 0x02 | BID_IMG1 | 0x02 | ROM Apps |
| 0x03 | BID_IMG2 | 0x03 | \<Reserved\> |
| 0x04 | BID_ROMD0 | 0x04 | First ROM Disk Bank |
| nROM - 1 | | 0x0F | Last ROM Disk Bank |
| 0x80 | BID_BIOS | 0x80 | HBIOS (working copy) |
| 0x81 | BID_RAMD0 | 0x81 | First RAM Disk Bank |
| 0x80 + nRAM - 8 | | 0x88 | Last RAM Disk Bank |
| 0x80 + nRAM - 7 | BID_APP0 | 0x89 | First Application Bank |
| 0x80 + nRAM - 5 | | 0x8B | Last Application Bank |
| 0x80 + nRAM - 4 | BID_BUF | 0x8C | OS Disk Buffers |
| 0x80 + nRAM - 3 | BID_AUX | 0x8D | OS Code Bank |
| 0x80 + nRAM - 2 | BID_USR | 0x8E | User Bank (CP/M TPA) |
| 0x80 + nRAM - 1 | BID_COM | 0x8F | Common Bank |
In this table, nROM and nRAM refer to the number of corresponding
ROM and RAM banks in the the system.
@@ -263,30 +298,130 @@ Common Bank:
It is a fixed mapping that is never changed in normal RomWBW operation
hence the name "Common".
## Memory Managers
The following hardware memory managers are supported by RomWBW. The
operation of these memory managers is not documented here -- please
refer to the documentation of your hardware provider for that.
Z2:
: Memory memory manager introduced by Sergey Kiselv in the Zeta 2 SBC.
Popular in many RCBus systems.
Z180:
: Memory manager built into the Z180 CPU
Z280:
: Memory manager built into the Z280 CPU
ZRC:
: Memory manager onboard the ZRC series of computers by Bill Shen.
SBC:
: Memory manager onboard the N8VEM SBC series of computers by
Andrew Lynch.
MBC:
: Memory manager onboard the Nhyodyne computer system by Andrew Lynch.
N8:
: Memory manager onboard the N8 SBC computer by Andrew Lynch.
EZ512:
: Memory manager onboard the EaZy80-512 Z80 CPU Module by Bill Shen.
RPH:
: Memory manager onboard the Rhyophyre computer system by Andrew Lynch.
The memory manager used is determined by the configuration choices
that are part of a RomWBW build process. A given ROM can only have a
single memory manager -- it is not selected dynamically.
The configuration variable `MEMMGR` sets the memory mannager used by
the ROM build. It must be set to one of the above memory manager
types. For example, for the Z2 memory manager, `MEMMGR` should be set
to `MM_Z2`.
Note that the term memory manager (MM) and memory management unit (MMU)
are used interchangeably in the documentation and code.
# Disk Layout
RomWBW supports two hard disk layouts: the Classic layout used by
RomWBW with 512 directory entries per slice and a Modern layout with
1024 directory entries per slice. These layouts are referred to as
hd512 and hd1k respectively.
## Floppy Disk Layout
RomWBVW generally handles floppy disks in the same physical formats
as MS-DOS. However, the filesystem will normally be CP/M. The following
table lists the floppy disk formats used by RomWBW. In all cases,
the sector size is 512 bytes.
| **HBIOS Media ID** | **Capacity** | **Tracks** | **Heads** | **Sectors** |
|--------------------|-------------:|-----------:|----------:|------------:|
| MID_FD720 | 720KB | 80 | 2 | 9 |
| MID_FD144 | 1440KB | 80 | 2 | 18 |
| MID_FD360 | 360KB | 40 | 2 | 9 |
| MID_FD120 | 1200KB | 80 | 2 | 15 |
| MID_FD111 | 1155KB | 77 | 2 | 15 |
## Hard Disk Layout
RomWBW supports the use of PC MBR hard disk partitioning (see
<https://en.wikipedia.org/wiki/Disk_partitioning>). When accessing
a hard disk device, HBIOS will look for a partition with type id 0x2E
and will use that partition exclusively for all storage. If a hard
disk does not have a valid partition table with a partition of type
0x2E, the HBIOS will treat the hard disk as dedicated storage and
will store data starting at the first sector of the disk.
The use of a partition of type 0x2E is preferred for RomWBW and is
referred to as a "Modern" disk layout. If there is no RomWBW
partition on the disk, then the disk is designated as having a
"Classic" disk layout.
When a disk uses a RomWBW partition (type 0x2E) for storage (Modern
layout), the CP/M filesystems on that disk will utilize a format with
1,024 directory entries per filesystem. If there is no RomWBW
partition, the CP/M filesystems will have 512 directory entries per
filesystem. As a result, the Modern disk layout with a RomWBW partition
is also referred to as the "hd1k" layout indicating 1024 directory
entries. Similarly, the Classic disk layout (no partition of type 0x2E)
is also referred to as the "hd512" layout indicating 512 directory
entries.
The layout type of any hard disk is simply dictated by the existence of
a RomWBW partition. This also means that if you add or remove a
partition table entry of type 0x2E on existing hard disk media, you will
lose access to any pre-existing CP/M data on the disk. If used,
partitioning should be done before putting any data on the disk.
WARNING: You **can not** mix the two hard disk layouts on one hard
disk device. You can use different layouts on different hard disk
devices in a single system though.
RomWBW determines which of the hard disk layouts to use for a given
hard disk device based on whether there is a RomWBW hard disk
partition on the disk containing the slices. If there is no RomWBW
partition, then RomWBW will assume the 512 directory entry format for
all slices and will assume the slices start at the first sector of
the hard disk. If there is a RomWBW partition on the hard disk
device, then RomWBW will assume the 1024 directory entry format for
all slices and will assume the slices are located in the defined
partition.
Regardless of whether a disk is Modern or Classic, RomWBW supports
the concept of CP/M filesystem slices. In general, CP/M filesystems are
limited to 8MB. Since current disk media is dramatically larger than
this, RomWBW implements a mechanism to put many (up to 256) CP/M
filesystems on a single disk. Each such filesystem is called a slice
referring to the idea that the disk has been sliced into many
independent CP/M filesystems. RomWBW allows the disk slices to be
mapped to the limited (16) drive letters of CP/M. The mapping can be
modified on-the-fly on a running system as desired.
RomWBW supports up to 256 CP/M slices (0-255). Under hd512, the slices
begin at the start of the hard disk. Under hd1k, the slices reside
within partition type 0x2E.
If the case of a Modern disk layout (with a RomWBW partition), the
slices are contained within the defined partition area and the number
of slices is dictated by the size of the partition. In the case of a
Classic disk layout (no RomWBW partition), the slices are located at the
start of the disk (first sector). In either case, the slices are just
sequential areas of space on the hard disk.
RomWBW accesses all hard disks using Logical Block Addressing (pure
sector offset). When necessary, RomWBW simulates the following disk
@@ -315,17 +450,16 @@ and CP/M knows nothing about the FAT partition. However, the FAT
application can be run under CP/M to access the FAT partition
programmatically.
A CP/M slice is (re)initialized using the CP/M command CLRDIR. A CP/M
slice can be made bootable by copying system image to the System Area
using SYSCOPY.
Before being used, A CP/M slice must be (re)initialized using the CP/M
command CLRDIR. A CP/M slice can be made bootable by copying a system
image to the System Area using SYSCOPY.
The FAT partition can be created from CP/M using the FDISK80 application.
The FAT partition can be initialized using the FAT application from CP/M
using the command `FAT FORMAT n:` where n is the RomWBW disk unit
number containing the FAT partition to be formatted.
## Modern Disk Layout (hd1k)
### Modern Hard Disk Layout (hd1k)
![Modern Disk Layout](Graphics/hd1k)
@@ -336,7 +470,7 @@ The CP/M slices reside entirely within a hard disk partition of type
0x2E. The number of slices is determined by the number of slices that
fit within the partition spaces allocated up to the maximum of 256.
## Classic Disk Layout (hd512)
### Classic Hard Disk Layout (hd512)
![Classic Disk Layout](Graphics/hd512)
@@ -363,27 +497,25 @@ application. The user is responsible for ensuring that the start of the
FAT partition does not overlap with the area they intend to use for
CP/M slices. FDISK80 has a Reserve option to assist with this.
## Mapping to Media ID
### Mapping to Media ID
HBIOS has a definition of "Media ID", which defines the type and physical
properties of disk media provided by an underlying storage device. For a
complete list of Media ID's please see the following section
[Disk Input/Output (DIO)]
complete list of Media ID's please see [Disk Input/Output (DIO)].
There are two important Media ID's relating to Hard Disk Layouts:
| **Media** | **ID** | **Format / Meaning** |
|------------|-------:|-------------------------------------------------------------|
| MID_HD | 4 | Classic Disk Layout (hd512) *--and--* HBIOS Hard Disk Drive |
| MID_HDNEW | 10 | Modern Disk Layout (hd1k) |
| **Media** | **ID** | **Format / Meaning** |
|----------------|-------:|-------------------------------------------------------------|
| MID_HD | 4 | Classic Disk Layout (hd512) *--and--* HBIOS Hard Disk Drive |
| MID_HDNEW | 10 | Modern Disk Layout (hd1k) |
HBIOS typically does not understand the format of data on a device,
instead just treating all hard disks as raw sectors. `MID_HD` is the typical
Media ID used by HBIOS to describe high capaity hard disk media
Media ID used by HBIOS to describe high capacity hard disk media
When the Modern Disk Layout was added, the `MID_HDNEW`, was added to
differentiate (at the oerating system level) between the Classic and Modern layouts.
differentiate (at the operating system level) between the Classic and Modern layouts.
However HBIOS itself typically does NOT make this distinction, since the use
of these two formats is determined by the operating system based on the
@@ -464,8 +596,10 @@ of a system image before programming it to the ROM; or 2) easily switch
between system images on the fly.
During the RomWBW build process, one of the output files produced is an
actual CP/M application (an executable .COM program file). Once you have
a running CP/M (or compatible) system, you can upload/copy this
actual CP/M application (an executable .COM program file). Like the
normal .ROM files, this file is placed in the Binary directory with the
same name as the ROM file, but with the file extension of .ROM. Once
you have a running CP/M (or compatible) system, you can upload/copy this
application file to the filesystem. By executing this file, you will
initiate an Application Boot using the system image contained in the
application file itself.
@@ -501,7 +635,7 @@ and control is passed to the Boot Loader.
## Boot Recovery
To assist users when driver faults or misconfiguration causes a boot
To assist users when driver faults or mis-configuration causes a boot
failure, RomWBW supports a limited recovery capability. This is
achieved by allowing the user to reboot their machine, loading
a minimal driver set. Implementation of this feature requires a
@@ -638,7 +772,7 @@ CRT character device, the data is actually passed to a built-in terminal
emulator which, in turn, utilizes a set of VDA (Video Display Adapter)
functions (such as cursor positioning, scrolling, etc.).
Figure 7.1 depicts the relationship between these components
Figure 9.1 depicts the relationship between these components
of HBIOS video processing:
![Character / Emulation / Video Services](Graphics/CharacterEmulationVideoServices){ width=100% }
@@ -689,7 +823,7 @@ must be careful not to modify the operating environment in any way that
the operating system does not expect.
In general, the desired function is placed in the B register. Register C
is frequently used to specify a subfunction or a target device unit
is frequently used to specify a sub-function or a target device unit
number. Additional registers are used as defined by the specific
function. Register A should be used to return function result
information. See below for result code definitions.
@@ -712,7 +846,7 @@ lower 32K of CPU address space. For optimal performance, such buffers
should be placed in the upper 32K of CPU address space.
HBIOS also implements a small number of core functions in the HBIOS
proxy area at the top of RAM. These exist primarily to faciliate the
proxy area at the top of RAM. These exist primarily to facilitate the
operation of normal HBIOS function calls. However, they are available
to be used by OSes and applications. These functions can only be
invoked by calling into a jump table in upper RAM.
@@ -766,10 +900,11 @@ below enumerates these values.
| CIODEV_DUART | 0x09 | SCC2681 Family Dual UART | duart.asm |
| CIODEV_Z2U | 0x0A | Zilog Z280 Built-in Serial Ports | z2u.asm |
| CIODEV_LPT | 0x0B | Parallel I/O Controller | lpt.asm |
| CIODEV_ESPCON | 0x0B | ESP32 VGA Console | esp.asm |
| CIODEV_ESPSER | 0x0B | ESP32 Serial Port | esp.asm |
| CIODEV_SCON | 0x0B | S100 Console | scon.asm |
| CIODEV_EZ80UART | 0x11 | eZ80 Built-in UART0 Interface | ez80uart.asm |
| CIODEV_ESPCON | 0x0C | ESP32 VGA Console | esp.asm |
| CIODEV_ESPSER | 0x0D | ESP32 Serial Port | esp.asm |
| CIODEV_SCON | 0x0E | S100 Console | scon.asm |
| CIODEV_SSER | 0x0F | Simple Serial Console | sser.asm |
| CIODEV_EZ80UART | 0x10 | eZ80 Built-in UART0 Interface | ez80uart.asm |
Character devices can usually be configured with line characteristics
such as speed, framing, etc. A word value (16 bit) is used to describe
@@ -906,7 +1041,9 @@ Returns the current Line Characteristics (DE) of the specified Character
Returns device information for the specified Character Unit (C). The
status (A) is a standard HBIOS result code.
Device Attribute (C) values are: 0 = RS/232, 1 = Terminal, 2 = Parallel.
The two high bits of Device Attribute (C) are: 00 = RS/232, 01 = Terminal,
10 = Parallel. The remaining bits should be ignored and are used
internally.
Device Type (D) indicates the specific hardware driver that handles the
specified Character Unit. Values are listed at the start of this
@@ -932,7 +1069,7 @@ during the boot process that identifies all disk devices uniquely.
All character units are assigned a Device Type ID which indicates
the specific hardware device driver that handles the unit. The table
below enumerates there values.
below enumerates their values.
| **Device Type** | **ID** | **Description** | **Driver** |
|-----------------|-------:|------------------------------------------|------------|
@@ -1074,6 +1211,13 @@ contain all sectors requested. Disk data transfers will be faster if
the buffer resides in the top 32K of memory because it avoids a
double buffer copy.
Also for buffers in the top 32K of memory the Bank ID is not
strictly required as this memory is alway mapped to the common bank.
For buffers in the bottom 32KB ram, the Bank ID is used to identify
the bank to use for the buffer. If you do not wih to use banked memory
you will need to provide the current Bank ID, which can be obtained
using [Function 0xF3 -- System Get Bank (SYSGETBNK)]
### Function 0x14 -- Disk Write (DIOWRITE)
| **Entry Parameters** | **Returned Values** |
@@ -1272,6 +1416,7 @@ unit. The table below enumerates these values.
| RTCDEV_DS7 | 0x04 | Maxim DS1307 PCF I2C RTC w/ NVRAM | ds7rtc.asm |
| RTCDEV_RP5 | 0x05 | Ricoh RPC01A Real-Time Clock w/ NVRAM | rp5rtc.asm |
| RTCDEV_EZ80 | 0x07 | eZ80 on-chip RTC | ez80rtc.asm |
| RTCDEV_PC | 0x08 | MC146818/DS1285/DS12885 RTC w/ NVRAM | pcrtc.asm |
The time functions to get and set the time (RTCGTM and RTCSTM) require a
6 byte date/time buffer in the following format. Each byte is BCD
@@ -1618,16 +1763,19 @@ keyboard functions should return a failure status.
All video units are assigned a Device Type ID which indicates
the specific hardware device driver that handles the unit. The table
below enumerates there values.
below enumerates their values.
| **Device Type** | **ID** | **Description** | **Driver** |
|-----------------|-------:|------------------------------------------|------------|
| VDADEV_VDU | 0x00 | MC6845 Family Video Display Controller | vdu.asm |
| VDADEV_CVDU | 0x01 | MC8563-based Video Display Controller | cvdu.asm |
| VDADEV_GDC | 0x02 | uPD7220 Video Display Controller | gdc.asm |
| VDADEV_TMS | 0x03 | TMS9918/38/58 Video Display Controller | tms.asm |
| VDADEV_VGA | 0x04 | HD6445CP4-based Video Display Controller | vga.asm |
| VDADEV_VRC | 0x05 | VGARC | vrc.asm |
| **Device Type** | **ID** | **Description** | **Driver** |
|-----------------|-------:|--------------------------------------------|------------|
| VDADEV_VDU | 0x00 | MC6845 Family Video Display Controller | vdu.asm |
| VDADEV_CVDU | 0x01 | MC8563-based Video Display Controller | cvdu.asm |
| VDADEV_GDC | 0x02 | uPD7220 Video Display Controller | gdc.asm |
| VDADEV_TMS | 0x03 | TMS9918/38/58 Video Display Controller | tms.asm |
| VDADEV_VGA | 0x04 | HD6445CP4-based Video Display Controller | vga.asm |
| VDADEV_VRC | 0x05 | VGARC | vrc.asm |
| VDADEV_EF | 0x06 | EF9345 | ef.asm |
| VDADEV_FV | 0x07 | S100 FPGA VGA | fv.asm |
| VDADEV_XOSERA | 0x08 | Xosera FPGA-based Video Display Controller | xosera.asm |
Depending on the capabilities of the hardware, the use of colors and
attributes may or may not be supported. If the hardware does not support
@@ -1981,15 +2129,19 @@ standard HBIOS result code.
| | E: Keycode |
Read the next key data from keyboard of the specified Video Unit (C). If
a keyboard buffer is used, return the next key code in the buffer. If
a keyboard buffer is used, return the next Keycode in the buffer. If
no key data is available, this function will wait indefinitely for a
keypress. The Status (A) is a standard HBIOS result code.
The Scancode (C) value is the raw scancode from the keyboard for the
keypress. Scancodes are from the PS/2 scancode set 2 standard.
keypress. Scancodes are optional and may not be implemented by the
driver. The Scancode values are driver dependent. In the case of a
PS/2 keyboard driver, they should be the PS/2 scancode. Other keyboard
drivers may return values appropriate for their specific keyboard. If
the driver does not implement this, it should return 0 in C.
The Keystate (D) is a bitmap representing the value of all modifier keys
and shift states as they existed at the time of the keystroke. The
and shift states as they existed at the time of the keystroke. The
bitmap is defined as:
| **Bit** | **Keystate Indication** |
@@ -2003,6 +2155,9 @@ bitmap is defined as:
| 1 | Control key was held down |
| 0 | Shift key was held down |
Not all of these bits may be relevant for all keyboards. Any bit that
is not relevant should be returned as 0.
The Keycode (E) is generally returned as appropriate ASCII values, if
possible. Special keys, like function keys and arrows, are returned as
reserved codes as described at the start of this section.
@@ -2331,7 +2486,7 @@ start of the Slice (E). The Status (A) is a standard HBIOS result code.
This function extends upon [Function 0x18 -- Disk Media (DIOMEDIA)] for hard
disk media by scanning for a partition to determine if the disk uses HD512
or HD1K, correctly reporting MID_HD or MID_HDNEW respectively.
See the folowing for some background [Mapping to Media ID]
See the following for some background [Mapping to Media ID]
It will also return the sector number of the first sector in the
slice if the slice number is valid. If the slice number is invalid
@@ -2410,26 +2565,34 @@ version 3.1.0, build 2.
The hardware Platform (L) is identified as follows:
| **Name** | **Id** | **Platform ** |
| **Name** | **Id** | **Platform ** |
|---------------|-------:|-----------------------------------------|
| PLT_SBC |1 | ECB Z80 SBC |
| PLT_ZETA |2 | ZETA Z80 SBC |
| PLT_ZETA2 |3 | ZETA Z80 V2 SBC |
| PLT_N8 |4 | N8 (HOME COMPUTER) Z180 SBC |
| PLT_MK4 |5 | MARK IV |
| PLT_UNA |6 | UNA BIOS |
| PLT_RCZ80 |7 | RCBUS W/ Z80 |
| PLT_RCZ180 |8 | RCBUS W/ Z180 |
| PLT_EZZ80 |9 | EASY/TINY Z80 |
| PLT_SCZ180 |10 | RCBUS SC126, SC130, SC131, SC140 |
| PLT_DYNO |11 | DYNO MICRO-ATX MOTHERBOARD |
| PLT_RCZ280 |12 | RCBUS W/ Z280 |
| PLT_MBC |13 | NHYODYNE MULTI-BOARD COMPUTER |
| PLT_RPH |14 | RHYOPHYRE GRAPHICS SBC |
| PLT_Z80RETRO |15 | Z80 RETRO COMPUTER |
| PLT_S100 |16 | S100 COMPUTERS Z180 |
| PLT_DUO |17 | DUODYNE Z80 SYSTEM |
| PLT_RCEZ80 |24 | RCBUS W/ eZ80 |
| PLT_SBC | 1 | ECB Z80 SBC |
| PLT_ZETA | 2 | ZETA Z80 SBC |
| PLT_ZETA2 | 3 | ZETA Z80 V2 SBC |
| PLT_N8 | 4 | N8 (HOME COMPUTER) Z180 SBC |
| PLT_MK4 | 5 | MARK IV |
| PLT_UNA | 6 | UNA BIOS |
| PLT_RCZ80 | 7 | RCBUS W/ Z80 |
| PLT_RCZ180 | 8 | RCBUS W/ Z180 |
| PLT_EZZ80 | 9 | EASY/TINY Z80 |
| PLT_SCZ180 | 10 | SMALL COMPUTER CENTRAL Z180 |
| PLT_DYNO | 11 | DYNO MICRO-ATX MOTHERBOARD |
| PLT_RCZ280 | 12 | RCBUS W/ Z280 |
| PLT_MBC | 13 | NHYODYNE MULTI-BOARD COMPUTER |
| PLT_RPH | 14 | RHYOPHYRE GRAPHICS SBC |
| PLT_Z80RETRO | 15 | Z80 RETRO COMPUTER |
| PLT_S100 | 16 | S100 COMPUTERS Z180 |
| PLT_DUO | 17 | DUODYNE Z80 SYSTEM |
| PLT_HEATH | 18 | HEATHKIT H8 Z80 SYSTEM |
| PLT_EPITX | 19 | Z180 MINI-ITX |
| PLT_MON | 20 | MONSPUTER (DEPRECATED) |
| PLT_GMZ180 | 21 | GENESIS Z180 SYSTEM |
| PLT_NABU | 22 | NABU PC W/ ROMWBW OPTION BOARD |
| PLT_FZ80 | 23 | S100 FPGA Z80 |
| PLT_RCEZ80 | 24 | RCBUS W/ eZ80 |
For more information on these platforms see $doc_hardware$
### Function 0xF2 -- System Set Bank (SYSSETBNK)
@@ -2721,7 +2884,7 @@ Switches may be returned as a 16 bit (HL) or 8 bit (L) value. It is up to the ca
to process the returned value correctly. Note for Switch 0xFF (status) the returned value
is primarily in the Status (A) register.
Errors are signalled in the return by setting the NZ flag. When set the
Errors are signaled in the return by setting the NZ flag. When set the
(A) register may contain an error code, but this code does not conform to RomWBW standard
Success is indicated by setting the Z flag
@@ -3039,7 +3202,7 @@ Status (A) is a standard HBIOS result code.
This function allows the caller to query information about the interrupt
configuration of the running system and allows adding or hooking
interrupt handlers dynamically. Register C is used to specify a
subfunction. Additional input and output registers may be used as
sub-function. Additional input and output registers may be used as
defined by the sub-function. The Status (A) is a standard
HBIOS result code.
@@ -3099,13 +3262,11 @@ with the handler prior to uninstalling it.
| C: 0x00 | D: Interrupt Mode |
| | E: IVT Size |
Return current Interrupt Mode (D) of the system. Also return the
number of Interrupt Vector Table (IVT) entries in IVT Size (E).
interrupt mode in D and size of interrupt vector table in E. For
IM1, the size of the table is the number of vectors chained together.
For IM2, the size of the table is the number of slots in the vector
table. The Status (A) is a standard
HBIOS result code.
Return current Interrupt Mode (D) of the system. Also return the number
of Interrupt Vector Table (IVT) entries in IVT (E). For IM1, the size
of the table is the number of vectors chained together. For IM2, the
size of the table is the number of slots in the vector table. The
Status (A) is a standard HBIOS result code.
#### SYSINT Subfunction 0x10 -- Get Interrupt (INTGET)
@@ -3468,5 +3629,3 @@ The following section outlines the read only data referenced by the
| DCNTL* | 14 | 1 | Z180 DMA/WAIT CONTROL |
* ONLY PRESENT FOR Z180 BUILDS

File diff suppressed because it is too large Load Diff

16
Source/Doc/mkdocs.yml Normal file
View File

@@ -0,0 +1,16 @@
site_name: RomWBW Documentation V3.6
repo_url: https://github.com/wwarthen/RomWBW
edit_uri: ""
docs_dir: mkdocs
nav:
- Introduction: Introduction.md
- User Guide: UserGuide.md
- System Guide: SystemGuide.md
- Applications: Applications.md
- Catalog: Catalog.md
- Hardware: Hardware.md
theme:
name: mkdocs
color_mode: auto
user_color_mode_toggle: true
navigation_depth: 3

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.6 KiB

After

Width:  |  Height:  |  Size: 7.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.2 KiB

After

Width:  |  Height:  |  Size: 9.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

After

Width:  |  Height:  |  Size: 5.6 KiB

BIN
Source/Fonts/fontcga.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.1 KiB

View File

@@ -15,13 +15,18 @@ There are multiple fonts associated with ROMWBW supported hardware:
ECB-VGA3 vga.asm 6445
MBC-VDC cvdu.asm 8568
MBC-VDP tms.asm 9938/9958
RCBUS-VRC vrc.asm PLD
RCBUS-TMS tms.asm 99x8
Name Font Storage Size Board & Display Mode
--------------------------------------------------------------------------------------------
font8x8u.bin 6x8 8x8 2048 ECB-SCG, ECB-VGA3 (80x60), MBC-VDP
font8x11u.bin 8x11 8x11 2816 ECB-VGA3 (80x43)
font8x16u.bin 8x14 8x16 4096 ECB-CVDU (80x25), ECB-VGA3 (80x24, 80x25, 80x30), MBC-VDC
fontcgau.bin 8x8 8x16 4096 ECB-CVDU (80x25), MBC-VDC
Name Glyph Cell Size Comp Board & Display Mode
------------------------------------------------------------------------------------------------
font8x8 7x8 8x8 2048 1034 ECB-SCG, ECB-VGA3 (80x60), MBC-VDP
font8x11 8x11 8x11 2816 1252 ECB-VGA3 (80x43)
font8x16 8x14 8x16 4096 1466 ECB-CVDU (EGA), ECB-VGA3 (80x24, 80x25, 80x30), MBC-VDC (EGA)
fontcga 8x8 8x16 4096 1280 ECB-CVDU (CGA), MBC-VDC (CGA)
fontvrc 8x8 8x8 1024 650 VGARC
----- -----
14080 5682
Notes:

BIN
Source/Fonts/fontvgarc.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

View File

@@ -6,7 +6,7 @@ BF_SYSRESET EQU 0F0h ; RESTART SYSTEM
BF_SYSRES_WARM EQU 01h ; WARM START (RESTART BOOT LOADER)
; THE FOLLOWING NEED TO BE SYNCED WITH STD.ASM SO ROMLDR
; THE FOLLOWING NEED TO BE SYNCED WITH INCLUDE.ASM SO ROMLDR
; KNOWS WHERE THIS EXECUTES AT
FTH_SIZ EQU 1700h
@@ -31,7 +31,7 @@ HB_LOC EQU 0FD80h
; You should have received a copy of the GNU General Public License
; along with this program. If not, see <http://www.gnu.org/licenses/>.
; Commercial inquiries should be directed to the author at
; Commercial inquiries should be directed to the author at
; 115 First St., #105, Collingwood, Ontario L9Y 4W3 Canada
; or via email to bj@camelforth.com
;
@@ -68,18 +68,18 @@ HB_LOC EQU 0FD80h
; keywords are being passed in a
; macro.
; b1ackmai1er difficultylevelhigh@gmail.com
; 03-Dec 20 v1.02 Add James Bowmans double
; 03-Dec 20 v1.02 Add James Bowmans double
; precision words as per RC2014
; version. Increase terminal
; version. Increase terminal
; input buffer (TIB) size.
; b1ackmai1er difficultylevelhigh@gmail.com
; b1ackmai1er difficultylevelhigh@gmail.com
; 22-Jan 21 v1.02 Adjust for revised HBIOS
; proxy size.
; b1ackmai1er difficultylevelhigh@gmail.com
; 07-Sep 21 v1.02 Separate additions.
; 07-Sep 21 v1.02 Separate additions.
; 05-Oct 21 v1.02 Add Douglas Beattie Jr.'s
; API call and port read and
; write words.
; write words.
; ===============================================
; Macros to define Forth headers
; HEAD label,length,name,action
@@ -296,7 +296,7 @@ dodoes: ; -- a-addr
next
; CP/M TERMINAL I/O =============================
;C EMIT c -- output character to console
head EMIT,4,EMIT,docode
PUSH DE
@@ -309,7 +309,7 @@ dodoes: ; -- a-addr
POP DE
pop BC ; PUT TOP OF STACK IN BC
next
;
;
;Z SAVEKEY -- addr temporary storage for KEY?
head savekey,7,SAVEKEY,dovar
SVKY: DW 0
@@ -318,7 +318,7 @@ SVKY: DW 0
head querykey,4,KEY?,docode
PUSH BC ; SAVE TOP OF STACK
PUSH DE
PUSH HL ; GET CONSOLE INPUT STATUS VIA HBIOS
PUSH HL ; GET CONSOLE INPUT STATUS VIA HBIOS
LD C,CIODEV_CONSOLE ; CONSOLE UNIT TO C
LD B,CIOIST ; HBIOS FUNC: INPUT STATUS
RST 08 ; HBIOS RETURNS STATUS IN A
@@ -334,7 +334,7 @@ key3: LD C,0
LD (HL),B
INC HL
LD (HL),C
POP HL
POP HL
POP DE
next
@@ -1090,6 +1090,6 @@ ELSE
nop
ENDIF
.DEPHASE
END

View File

@@ -71,7 +71,7 @@ Bank ID Usage
0x82 User TPA
0x83 Common
ROMless Standard Bank Layout (512K)
ROMless Standard Bank Layout (512K): ZRC, ZRC512, EZ512, Z1RCC, ZZRCC, FZ80
Bank ID Usage
------- ------

View File

@@ -17,8 +17,8 @@ set CPMDIR80=%TOOLS%/cpm/
::
:: This PowerShell script validates the build variables passed in. If
:: necessary, the user is prmopted to pick the variables. It then creates
:: an include file that is imbedded in the HBIOS assembly (build.inc).
:: necessary, the user is prompted to pick the variables. It then creates
:: an include file that is embedded in the HBIOS assembly (build.inc).
:: It also creates a batch command file that sets environment variables
:: for use by the remainder of this batch file (build_env.cmd).
::
@@ -97,7 +97,6 @@ call :asm nascom || exit /b
call :asm game || exit /b
call :asm usrrom || exit /b
call :asm updater || exit /b
call :asm imgpad2 || exit /b
:: Sysconf builds as both BIN and COM files
tasm -t%CPUType% -g3 -fFF -dROMWBW sysconf.asm sysconf.bin sysconf_bin.lst || exit /b
@@ -106,30 +105,32 @@ tasm -t%CPUType% -g3 -fFF -dCPM sysconf.asm sysconf.com sysconf_com.lst || exit
::
:: Create additional ROM bank images by assembling components into
:: 32K chunks which can be concatenated later. Note that
:: osimg_small is a special case because it is 20K in size. This
:: appboot is a special case because it is 20K in size. This
:: image is subsequently used to generate the .com loadable file.
::
copy /b romldr.bin + dbgmon.bin + ..\zsdos\zsys_wbw.bin + ..\cpm22\cpm_wbw.bin osimg.bin || exit /b
copy /b ..\Forth\camel80.bin + nascom.bin + ..\tastybasic\src\tastybasic.bin + game.bin + eastaegg.bin + %NETBOOT% + updater.bin + sysconf.bin + usrrom.bin osimg1.bin || exit /b
copy /b romldr.bin + dbgmon.bin + ..\zsdos\zsys_wbw.bin + ..\cpm22\cpm_wbw.bin rom1.bin || exit /b
copy /b ..\Forth\camel80.bin + nascom.bin + ..\tastybasic\src\tastybasic.bin + game.bin + eastaegg.bin + %NETBOOT% + updater.bin + sysconf.bin + usrrom.bin rom2.bin || exit /b
if %Platform%==S100 (
zxcc slr180 -s100mon/fh
zxcc mload25 -s100mon || exit /b
copy /b s100mon.com osimg2.bin || exit /b
copy /b s100mon.com rom3.bin || exit /b
) else (
copy /b imgpad2.bin osimg2.bin || exit /b
copy nul rom3.bin
)
copy /b romldr.bin + dbgmon.bin + ..\zsdos\zsys_wbw.bin osimg_small.bin || exit /b
copy /b romldr.bin + dbgmon.bin + ..\zsdos\zsys_wbw.bin appboot.bin || exit /b
::
:: Inject one byte checksum at the last byte of all 4 ROM bank image files.
:: This means that computing a checksum over any of the 32K osimg banks
:: should yield a result of zero.
:: This means that computing a checksum over any of the 32K rom banks
:: should yield a result of zero. Any bank image file that is not
:: 32K will be automatically normalized to 32K by the srec_cat
:: formula (extended or truncated)!!!
::
for %%f in (hbios_rom.bin osimg.bin osimg1.bin osimg2.bin) do (
for %%f in (hbios_rom.bin rom1.bin rom2.bin rom3.bin) do (
"%TOOLS%\srecord\srec_cat.exe" %%f -Binary -Crop 0 0x7FFF -Checksum_Negative_Big_Endian 0x7FFF 1 1 -o %%f -Binary || exit /b
)
@@ -150,13 +151,13 @@ for %%f in (hbios_rom.bin osimg.bin osimg1.bin osimg2.bin) do (
::
if %ROMSize% gtr 0 (
copy /b hbios_rom.bin + osimg.bin + osimg1.bin + osimg2.bin + ..\RomDsk\rom%ROMDiskSize%_wbw.dat %ROMName%.rom || exit /b
copy /b hbios_rom.bin + osimg.bin + osimg1.bin + osimg2.bin %ROMName%.upd || exit /b
copy /b hbios_app.bin + osimg_small.bin %ROMName%.com || exit /b
copy /b hbios_rom.bin + rom1.bin + rom2.bin + rom3.bin + ..\RomDsk\rom%ROMDiskSize%_wbw.dat %ROMName%.rom || exit /b
copy /b hbios_rom.bin + rom1.bin + rom2.bin + rom3.bin %ROMName%.upd || exit /b
copy /b hbios_app.bin + appboot.bin %ROMName%.com || exit /b
) else (
copy /b hbios_rom.bin + osimg.bin + osimg1.bin + osimg2.bin + ..\RomDsk\rom%RAMDiskSize%_wbw.dat %ROMName%.rom || exit /b
copy /b hbios_rom.bin + osimg.bin + osimg1.bin + osimg2.bin %ROMName%.upd || exit /b
copy /b hbios_app.bin + osimg_small.bin %ROMName%.com || exit /b
copy /b hbios_rom.bin + rom1.bin + rom2.bin + rom3.bin + ..\RomDsk\rom%RAMDiskSize%_wbw.dat %ROMName%.rom || exit /b
copy /b hbios_rom.bin + rom1.bin + rom2.bin + rom3.bin %ROMName%.upd || exit /b
copy /b hbios_app.bin + appboot.bin %ROMName%.com || exit /b
)
::
@@ -187,14 +188,14 @@ call :asm dbgmon || exit /b
call :asm romldr || exit /b
:: Create the OS bank
copy /b romldr.bin + dbgmon.bin + ..\zsdos\zsys_una.bin + ..\cpm22\cpm_una.bin osimg.bin || exit /b
copy /b romldr.bin + dbgmon.bin + ..\zsdos\zsys_una.bin + ..\cpm22\cpm_una.bin rom2.bin || exit /b
:: Copy OS Bank and ROM Disk image files to output
copy /b osimg.bin ..\..\Binary\UNA_WBW_SYS.bin || exit /b
copy /b rom2.bin ..\..\Binary\UNA_WBW_SYS.bin || exit /b
copy /b ..\RomDsk\rom%ROMDiskSize%_una.dat ..\..\Binary\UNA_WBW_ROM%ROMDiskSize%.bin || exit /b
:: Create the final ROM image
copy /b ..\UBIOS\UNA-BIOS.BIN + osimg.bin + ..\UBIOS\FSFAT.BIN + ..\RomDsk\rom%ROMDiskSize%_una.dat %ROMName%.rom || exit /b
copy /b ..\UBIOS\UNA-BIOS.BIN + rom2.bin + ..\UBIOS\FSFAT.BIN + ..\RomDsk\rom%ROMDiskSize%_una.dat %ROMName%.rom || exit /b
:: Copy to output
copy %ROMName%.rom ..\..\Binary || exit /b
@@ -227,9 +228,10 @@ call Build ZETA2 std || exit /b
call Build N8 std || exit /b
call Build MK4 std || exit /b
call Build RCZ80 std || exit /b
call Build RCEZ80 std || exit /b
call Build RCZ80 kio_std || exit /b
call Build RCZ80 easy_std || exit /b
call Build RCZ80 tiny_std || exit /b
call Build EZZ80 easy_std || exit /b
call Build EZZ80 tiny_std || exit /b
call Build RCZ80 skz_std || exit /b
call Build RCZ80 zrc_std || exit /b
call Build RCZ80 zrc_ram_std || exit /b

View File

@@ -27,7 +27,7 @@ $ErrorAction = 'Stop'
# UNA BIOS is simply imbedded, it is not built here.
#
$PlatformListZ80 = "SBC", "MBC", "ZETA", "ZETA2", "RCZ80", "Z80RETRO", "DUO", "UNA", "HEATH", "MON", "NABU", "FZ80", "RCEZ80"
$PlatformListZ80 = "SBC", "MBC", "ZETA", "ZETA2", "RCZ80", "EZZ80", "Z80RETRO", "DUO", "UNA", "HEATH", "MON", "NABU", "FZ80", "RCEZ80"
$PlatformListZ180 = "N8", "MK4", "RCZ180", "SCZ180", "DYNO", "RPH", "S100", "EPITX", "GMZ180"
$PlatformListZ280 = "RCZ280"

View File

@@ -18,10 +18,11 @@ if [ "${ROM_PLATFORM}" == "dist" ] ; then
ROM_PLATFORM="ZETA2"; ROM_CONFIG="std"; bash Build.sh
ROM_PLATFORM="N8"; ROM_CONFIG="std"; bash Build.sh
ROM_PLATFORM="MK4"; ROM_CONFIG="std"; bash Build.sh
ROM_PLATFORM="RCEZ80"; ROM_CONFIG="std"; bash Build.sh
ROM_PLATFORM="RCZ80"; ROM_CONFIG="std"; bash Build.sh
ROM_PLATFORM="RCZ80"; ROM_CONFIG="kio_std"; bash Build.sh
ROM_PLATFORM="RCZ80"; ROM_CONFIG="easy_std"; bash Build.sh
ROM_PLATFORM="RCZ80"; ROM_CONFIG="tiny_std"; bash Build.sh
ROM_PLATFORM="EZZ80"; ROM_CONFIG="easy_std"; bash Build.sh
ROM_PLATFORM="EZZ80"; ROM_CONFIG="tiny_std"; bash Build.sh
ROM_PLATFORM="RCZ80"; ROM_CONFIG="skz_std"; bash Build.sh
ROM_PLATFORM="RCZ80"; ROM_CONFIG="zrc_std"; bash Build.sh
ROM_PLATFORM="RCZ80"; ROM_CONFIG="zrc_ram_std"; bash Build.sh

View File

@@ -42,11 +42,16 @@
; ".SET" TO OVERRIDE SETTINGS. THE ASSEMBLER WILL ERROR IF YOU ATTEMPT
; TO USE ".EQU" BECAUSE IT WON'T LET YOU REDEFINE A SETTING WITH ".EQU".
;
#DEFINE BOOT_DEFAULT "H" ; DEFAULT BOOT LOADER CMD FOR EMPTY CMD LINE
#DEFINE AUTO_CMD "" ; AUTO CMD WHEN BOOT_TIMEOUT IS ENABLED
#DEFINE DEFSERCFG SER_38400_8N1 | SER_RTS ; DEFAULT SERIAL CONFIGURATION
;
#INCLUDE "cfg_DUO.asm"
;
BOOT_TIMEOUT .SET -1 ; AUTO BOOT TIMEOUT IN SECONDS, -1 TO DISABLE, 0 FOR IMMEDIATE
BOOT_PRETTY .SET FALSE ; BOOT WITH PRETTY PLATFORM NAME
BT_REC_TYPE .SET BT_REC_NONE ; BOOT RECOVERY METHOD TO USE: BT_REC_[NONE|FORCE|SBCB0|SBC1B|SBCRI|DUORI]
AUTOCON .SET TRUE ; ENABLE CONSOLE TAKEOVER AT LOADER PROMPT
;
BATCOND .SET TRUE ; ENABLE LOW BATTERY WARNING MESSAGE
CPUOSC .SET 8000000 ; CPU OSC FREQ IN MHZ
INTMODE .SET 2 ; INTERRUPTS: 0=NONE, 1=MODE 1, 2=MODE 2, 3=MODE 3 (Z280)
@@ -57,11 +62,28 @@ ROMSIZE .SET 512 ; SIZE OF ROM IN KB (MUST MATCH YOUR HARDWARE!!!)
PCFENABLE .SET TRUE ; ENABLE PCF8584 I2C CONTROLLER
;
CRTACT .SET FALSE ; ACTIVATE CRT (VDU,CVDU,PROPIO,ETC) AT STARTUP
VDAEMU_SERKBD .SET $FF ; VDA EMULATION: SERIAL KBD UNIT #, OR $FF FOR HW KBD
;
DSRTCENABLE .SET TRUE ; DSRTC: ENABLE DS-1302 CLOCK DRIVER (DSRTC.ASM)
INTRTCENABLE .SET FALSE ; ENABLE PERIODIC INTERRUPT CLOCK DRIVER (INTRTC.ASM)
;
UARTENABLE .SET TRUE ; UART: ENABLE 8250/16550-LIKE SERIAL DRIVER (UART.ASM)
UARTINTS .SET FALSE ; UART: INCLUDE INTERRUPT SUPPORT UNDER IM1/2/3
SIOENABLE .SET TRUE ; SIO: ENABLE ZILOG SIO SERIAL DRIVER (SIO.ASM)
;
TMSENABLE .SET FALSE ; TMS: ENABLE TMS9918 VIDEO/KBD DRIVER (TMS.ASM)
TMS80COLS .SET FALSE ; TMS: ENABLE 80 COLUMN SCREEN, REQUIRES V9958
;
MDFFENABLE .SET FALSE ; MD: ENABLE FLASH FILE SYSTEM
FDENABLE .SET TRUE ; FD: ENABLE FLOPPY DISK DRIVER (FD.ASM)
FD0TYPE .SET FDT_3HD ; FD 0: DRIVE TYPE: FDT_[3DD|3HD|5DD|5HD|8]
FD1TYPE .SET FDT_3HD ; FD 1: DRIVE TYPE: FDT_[3DD|3HD|5DD|5HD|8]
PPIDEENABLE .SET TRUE ; PPIDE: ENABLE PARALLEL PORT IDE DISK DRIVER (PPIDE.ASM)
SDENABLE .SET TRUE ; SD: ENABLE SD CARD DISK DRIVER (SD.ASM)
;
CHENABLE .SET TRUE ; CH: ENABLE CH375/376 USB SUPPORT
ESPENABLE .SET FALSE ; ESP: ENABLE ESP32 IO BOARD DRIVER (ESP.ASM)
SN76489ENABLE .SET FALSE ; SN: ENABLE SN76489 SOUND DRIVER
AY38910ENABLE .SET FALSE ; AY: ENABLE AY-3-8910 / YM2149 SOUND DRIVER
;
DMAENABLE .SET TRUE ; DMA: ENABLE DMA DRIVER (DMA.ASM)

Some files were not shown because too many files have changed in this diff Show More